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Abstract

Models for Visual Question Answering (VQA)001
often rely on the spurious correlations, i.e.,002
the language priors, that appear in the biased003
samples of training set, which make them brit-004
tle against the out-of-distribution (OOD) test005
data. Recent methods have achieved promis-006
ing progress in overcoming this problem by re-007
ducing the impact of biased samples on model008
training. However, these models reveal a009
trade-off that the improvements on OOD data010
severely sacrifice the performance on the in-011
distribution (ID) data (which is dominated by012
the biased samples). Therefore, we propose a013
novel contrastive learning approach, MMBS,014
for building robust VQA models by Making015
the Most of Biased Samples. Specifically, we016
construct positive samples for contrastive learn-017
ing by eliminating the information related to018
spurious correlation from the original training019
samples and explore several strategies to use020
the constructed positive samples for training.021
Instead of undermining the importance of bi-022
ased samples in model training, our approach023
precisely exploits the biased samples for unbi-024
ased information that contributes to reasoning.025
The proposed method is compatible with vari-026
ous VQA backbones. We validate our contribu-027
tions by achieving competitive performance on028
the OOD dataset VQA-CP v2 while preserving029
robust performance on the ID dataset VQA v2.030

1 Introduction031

Visual Question Answering (VQA), aiming to an-032

swer a question about the given image, is a multi-033

modal task that involves the intersection between034

vision and language. Despite the remarkable per-035

formance on many VQA datasets such as VQA036

v2 (Goyal et al., 2017), recent studies (Antol et al.,037

2015; Kafle and Kanan, 2017; Agrawal et al., 2016)038

find that the VQA systems rely heavily on the lan-039

guage priors. They are caused by the strong spuri-040

ous correlation between certain question category041

and answers, e.g., the frequent co-occurrence of042

Figure 1: Qualitative comparison of our method
LMH+MMBS against the plain method UpDn and the
debiasing method LMH. In VQA-CP v2 (upper), the
question types (‘Does the’ and ‘How many’) bias UpDn
to the most common answers (see Fig. 5 for the an-
swer distribution). LMH alleviates the language priors
for yesno questions (upper left), while it fails on the
more difficult non-yesno questions (upper right). Be-
sides, LMH damages the ID performance, giving an un-
common answer to the common sample from VQA v2
(lower right). MMBS improves the OOD performance
while maintains the ID performance (lower right).

the question category ‘what sport’ and the answer 043

‘tennis’ (Selvaraju et al., 2019). As a result, the 044

VQA models, which are over-reliant on the lan- 045

guage priors of training set, fail to generalize to the 046

OOD dataset, VQA-CP v2 (Agrawal et al., 2018). 047

Recently, several methods achieved remarkable 048

progress in overcoming this language prior prob- 049

lem. They assign less importance to the biased sam- 050

ples that can be correctly classified with the spu- 051

rious correlation. However, most of them achieve 052

gains on VQA-CP v2 at the cost of degrading the 053

model’s ID performance on the VQA v2 dataset 054

(see Tab. 2). This trade-off suggests that the suc- 055

cess of these methods merely comes from biasing 056

the models to other directions, rather than endow- 057

ing them with the reasoning capability and robust- 058

ness to language priors. Ideally, a robust VQA 059

system should maintain its performance on the ID 060

dataset while overcoming the language priors, as 061
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shown in Fig. 1.062

We think the essence of both language-prior and063

trade-off problems is about the learning of biased064

samples. The former is caused by over-reliance on065

biased information from biased samples, while the066

latter is caused by undermining the importance of067

biased samples. Therefore, if a model can precisely068

exploit the biased samples for intrinsic information069

of the given task, both problems can be alleviated070

simultaneously.071

Motivated by this, we propose a self-supervised072

contrastive learning method (MMBS) for building073

robust VQA systems by Make the Most of Biased074

Samples. Firstly, in view of the characteristics of075

the spurious correlations, we construct two kinds076

of positive samples for the questions of training077

samples to exploit the unbiased information, and078

then design four strategies to use the constructed079

positive samples. Next, we propose a novel algo-080

rithm to distinguish between biased and unbiased081

samples, so as to treat them differently. On this082

basis, we introduce an auxiliary contrastive train-083

ing objective, which helps the model learn a more084

general representation with ameliorated language085

priors by narrowing the distance between original086

samples and positive samples in the cross-modality087

joint embedding space.088

To summarize, our contributions are as follow:089

i) We propose a novel contrastive learning method,090

which effectively addresses the language prior prob-091

lem and the ID-OOD performance trade-off in092

VQA, by making the most of biased samples. ii)093

We propose an algorithm to distinguish between094

biased and unbiased samples and treat them dif-095

ferently in contrastive learning. iii) Experimental096

results demonstrate that our method is compatible097

with various VQA backbones and achieve compet-098

itive performance on the language-bias sensitive099

VQA-CP v2 dataset while preserving the original100

accuracy on the in-distribution VQA v2 dataset.101

2 Related Work102

Overcoming Language Priors in VQA. Re-103

cently, the language biases in VQA datasets raised104

the attention of many researchers (Goyal et al.,105

2017; Antol et al., 2015; Agrawal et al., 2016; Ker-106

vadec et al., 2021) (see App. A.1 for details). In107

response to this problem, numerous methods are108

proposed to debias the VQA models. The most109

effective ones of them can be roughly divided into110

two categories: Ensemble-based methods (Grand111

and Belinkov, 2019; Belinkov et al., 2019; Cadene 112

et al., 2019; Clark et al., 2019; Mahabadi and Hen- 113

derson, 2019; Niu et al., 2021) introduce a biased 114

model, which is designed to focus on the spurious 115

features, to assist the training of the main model. 116

For example, the recent method LPF (Liang et al., 117

2021) leverages the output distribution of the bias 118

model to down-weight the biased sample when 119

computing the VQA loss. However, these methods 120

neglect the useful information that helps reasoning 121

in biased samples. Data-balancing methods (Zhu 122

et al., 2020; Liang et al., 2020) balance the training 123

priors. For example, CSS and Mutant (Chen et al., 124

2020; Gokhale et al., 2020) generate samples by 125

masking the critical object in images and word in 126

questions and by semantic image mutations respec- 127

tively. These methods usually outperform other 128

debiasing methods with a large margin on VQA- 129

CP v2, because they bypass the challenge of the 130

imbalanced settings (Liang et al., 2021; Niu et al., 131

2021) by explicitly balancing the answers’ distri- 132

bution at the training stage. Though our method 133

constructs the positive questions, it does not change 134

the training answers’ distribution. We also extend 135

our method to the data-balancing method SAR (Si 136

et al., 2021). Another line is the visual grounding 137

methods which are shown in App. A.2. 138

Contrastive Learning in VQA. Recently, the 139

contrastive learning is well-developed in unsuper- 140

vised learning (Oord et al., 2018; He et al., 2020) 141

while its application in VQA is still in initial stage. 142

CL (Liang et al., 2020) is the first work to employ 143

contrastive learning to improve VQA model’s ro- 144

bustness. Its motivation is to learn a better relation- 145

ship among the input sample and the factual and 146

counterfactual sample which are generated by CSS. 147

However, CL brings weak OOD performance gain 148

and ID performance drop based on CSS. In con- 149

trast, our method attributes the key point of solving 150

language bias to the positive-sample designs for 151

excluding the spurious correlations. It is model- 152

agnostic and can boost models’ OOD performance 153

significantly while retain the ID performance. 154

3 Method 155

Fig. 2 shows MMBS’s overview, which includes: 156

1) A backbone VQA model; 2) A positive sample 157

construction module; 3) An unbiased sample selec- 158

tion module; 4) A contrastive learning objective. 159
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Figure 2: Overview of our method. The question cate-
gory words are highlighted in yellow. The orange circle
and blue triangle denote the cross-modality representa-
tions of the original sample and positive sample. The
other samples in the same batch are the negative sam-
ples, which are denoted by the gray circles.

3.1 Backbone VQA Model160

The backbone VQA model is a free choice in161

MMBS. The widely-used backbone models (Ander-162

son et al., 2018; Mahabadi and Henderson, 2019)163

treat VQA as a multi-class multi-label classifica-164

tion task. Concretely, given a VQA dataset D =165

{Ii, Qi, Ai}Ni=1 with N samples, where Ii ∈ I ,166

Qi ∈ Q are the image and question of the ith sam-167

ple. Ai ∈ A is the ground-truth answer which is168

usually in multi-label form, and tgti is the corre-169

sponding target score of each label (see App. B.1170

for details). Most existing VQA models consist171

of four parts: the question encoder eq(·), the im-172

age encoder ev(·), the fusion function F (·) and the173

classifier clf(·). For example, LXMERT (Tan and174

Bansal, 2019) encodes image and caption text sep-175

arately to extract visual features Vi = ev(Ii), and176

textual features Ti = eq(Qi) , in two streams. Next,177

the higher co-attentional transformer layers fuse178

the two features and project them into the cross-179

modality joint embedding space, i.e., F (Vi, Ti). Fi-180

nally, the classifier outputs the answer prediction:181

182

P (A|Ii, Qi) = clf(F (Vi, Ti)) (1)183

The training objective minimizes the multi-label184

soft loss, Lvqa , which can be formalized as follow:185

186

Lvqa =− 1

N

∑N

i=1
[tgti · log(δ(F (Vi, Ti)))

+ (1− tgti) · log(1− δ(F (Vi, Ti)))]
(2)187

where δ denotes the sigmoid function.188

3.2 Positive Sample Construction 189

To make the most of the unbiased information con- 190

tained in the biased sample, we first construct the 191

positive samples which exclude the biased informa- 192

tion. According to the construction of VQA-CP v2, 193

there is a shift between the training and test set in 194

terms of answer distribution under the same ques- 195

tion category (Teney et al., 2020; Agrawal et al., 196

2018). As a result, the frequency co-occurrence of 197

certain answer and question category in the train- 198

ing set produces a major source of bias. Therefore, 199

we construct two kinds of positive questions (Q+
i ) 200

by corrupting the question category information of 201

each input question (Qi): 202

Shuffling: We randomly shuffle the words in 203

the question sentence so that the question category 204

words are mixed with the other words. This in- 205

creases the difficulty of building the correlations 206

between question category and answer. 207

Removal: We remove the question category 208

words from the question sentence. It eliminates 209

the co-occurrence of answer and question category 210

words completely. 211

We notice that the construction process could 212

induce some unexpected noise in the positive sam- 213

ples. To tackle this concern, we present more posi- 214

tive samples in App. B.2 and discuss their quality 215

and potential impact on our method. 216

We also propose four strategies for using the 217

constructed positive questions during training: 218

S: Use the Shuffling positive questions. 219

R: Use the Removal positive questions. 220

B: Use both positive questions. 221

SR: Use the Shuffling positive questions for non- 222

yesno (i.e., ‘Num’ and ‘Other’) questions and use 223

the Removal ones for yesno (i.e., ‘Y/N’) questions. 224

The SR strategy deals with yesno and non-yesno 225

questions in different ways based on their char- 226

acteristics. Intuitively, the question categories of 227

the yesno questions usually contain little informa- 228

tion, as they are mostly comprised of ‘is’, ‘do’, etc. 229

By contrast, the question categories of non-yesno 230

questions tend to contain more information which 231

is important for answering correctly. Therefore, 232

Removal is not applied to non-yesno questions. 233

Adopting any strategy above, we can ob- 234

tain the positive samples {Ii, Q+
i }Bi=1 for in- 235

put samples{Ii, Qi}Bi=1. The negative samples 236

{Ib, Qb}Bb=1, where b ̸= i, are the other samples in 237

the same batch. B is the batch size of training. 238
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Figure 3: The answers’ distributions of the yesno ques-
tions with “Does the” (left) and non-yesno questions
with “How many” (right). The former has a low entropy
and the latter has a high entropy.

3.3 Unbiased Sample Selection239

Following Kervadec et al. (2021), we define unbi-240

ased (or OOD) samples as the infrequent samples241

in the answers’ distribution of each question cate-242

gory in training set. Therefore, the unbiased sam-243

ples are unlikely to contain spurious correlations,244

which makes them beneficial to OOD robustness.245

Moreover, some unexpected noise in the positive246

samples may negatively impact the learning of un-247

biased samples. For the above reasons, we do not248

construct positive samples for the unbiased sam-249

ples. To filter out the unbiased samples, we propose250

a novel algorithm, consisting of three steps: (i) cal-251

culating the answer frequencies; (ii) determining252

the unbiased answer proportion; (iii) selecting the253

unbiased samples.254

Answer frequencies. We denote the ith sample’s255

question category, ground truth answer and soft256

target score as Ci ∈ C (65 categories in total), Ai257

and tgti respectively. We measure how frequent258

the answer Aj appears in the question category Ck259

as follows:260

Freq
Aj

Ck
=

∑MCk

i=1
(tgti) , if Ai = Aj (3)261

where MCk
is the number of all samples with the262

same category Ck. If a sample has a multi-label an-263

swer Ai, we count each answer’s score respectively.264

A lower value of Freq
Aj

Ck
indicates weaker spurious265

correlations between Aj and Ck, and thus the cor-266

responding samples are deemed as unbiased. We267

introduce a hyper-parameter β ∈
[
0, 1

]
to control268

the proportion of the unbiased samples.269

Entropy-based correction factor. The answers’270

distributions of |C| question categories are differ-271

ent. Empirically, when the entropy of an answers’272

distribution is lower, more answers will be associ-273

ated with only a few samples, so that the unbiased274

answer proportion should be higher. Otherwise, it275

should be lower. An illustration is given in Fig. 3.276

Therefore, we propose an entropy-based correction 277

factor WCk
to dynamically adjust the β for each 278

category Ck: 279

WCk
= 1− sigmoid(ECk

−mean(E))

ECk
= Entropy(FreqCk

/SUM)
(4) 280

where E represents {ECk
}|C|
k=1 and SUM repre- 281

sents the sum of FreqCk
. When the entropy is 282

lower, the WCk
is closer to 1, and otherwise WCk

283

is closer to 0. Finally, we obtain the unbiased an- 284

swer proportion PCk
= WCk

∗ β. 285

Selecting unbiased samples. For each question 286

category Ck, we obtain a list of unbiased answers 287

which rank in the last PCk
in FreqCk

. Then we 288

determine the samples whose ground truth (highest- 289

score) answer belongs to this list as unbiased sam- 290

ples. The unbiased sample statistics are shown in 291

App. B.3. If a sample is biased, we adopt the 292

strategy mentioned in previous section to construct 293

its positive sample. If it is unbiased, we use the 294

original sample as its positive sample. 295

3.4 Contrastive Learning Objective 296

Given input sample (Ii, Qi), we have the pos- 297

itive sample (Ii, Q+
i ) and the negative samples 298

(Ib, Qb)Bb=1 in the same batch, where b ̸= i. Af- 299

ter feeding them into the VQA model, we obtain 300

the cross-modality fusion representation of the in- 301

put sample, F (Vi, Ti), positive sample F (Vi, T
+
i ) 302

and negative samples F (Vb, Tb)
B
b=1, which are de- 303

noted as the anchor a, the positive p and the nega- 304

tive nb
B
b=1 respectively. Following (Robinson et al., 305

2020; Liang et al., 2020), we use the cosine similar- 306

ity, cos(·), as the scoring function. The contrastive 307

loss (Oord et al., 2018) is formulated as: 308

Lcl = E
a,p,nb

[
− log

ecos(a,p)

ecos(a,p) +
∑B

b=1 e
cos(a,nb)

]
(5) 309

By minimizing it, the models can focus on the 310

unbiased information from the positive question. 311

The overall loss of MMBS is formulated as: L = 312

Lvqa + α ∗ Lcl , where α is the weight of Lcl. 313

3.5 Inference Process 314

After training with this contrastive loss, the models 315

can handle the question in original, Shuffling and 316

Removal forms (Sec. 3.2) in the inference phase.1 317

1The models without MMBS performs much worse when
the question is in Shuffling or Removal forms.
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VQA-CP v2 test VQA v2 val
Methods All Y/N Num Other Gap ↑ All Y/N Num Other Gap ↑

Pl
ai

n
M

od
el

s BAN 37.03 41.55 12.43 41.4 +10.60 63.9 81.42 45.18 55.54 +0.88+MMBS 47.63 66.18 16.36 46.49 64.78 82.03 46.48 56.51
UpDn 39.74 42.27 11.93 46.05 +8.45 63.48 81.18 42.14 55.66 +0.36+MMBS 48.19 65.00 14.05 48.75 63.84 79.61 44.23 57.05
LXM 47.19 50.55 24.06 51.77 +9.32 71.01 88.24 54.07 62.39 -0.16+MMBS 56.51 79.83 28.70 51.92 70.85 88.25 55.67 61.63

D
eb

ia
si

ng
M

od
el

s
LMH 52.01 72.58 31.12 46.97 +4.43 56.35 65.06 37.63 54.69 +5.52+MMBS 56.44 76.00 43.77 49.67 61.87 75.86 40.34 56.95
SAR 66.73 86.00 62.34 57.84 +1.66 69.22 87.46 51.20 60.12 +0.21+MMBS 68.39 87.30 65.21 59.36 69.43 87.39 50.37 60.82

Table 1: Results on VQA-CP v2 test and VQA-v2 validation set based on different VQA models. ‘Gap’ denotes the
accuracy improvement of MMBS over the base model.

We find that in the framework of MMBS, Shuf-318

fling can further boost OOD performance for the319

plain models (e.g., UpDn and LXM), while origi-320

nal performs the best for debiasing methods (e.g.,321

LMH, SAR). Therefore, we shuffle the question322

words at test time when applying MMBS to the323

plain models. Detailed discussions are shown in324

App. D.1.325

4 Experiments326

4.1 Datasets and Evaluation327

We evaluate our models on the OOD VQA-CP v2328

(Agrawal et al., 2018) and the ID VQA v2 (Goyal329

et al., 2017) with the standard evaluation metric330

(Antol et al., 2015) based on accuracy. Previous331

works (Chen et al., 2020; Si et al., 2021; Gokhale332

et al., 2020) think that a minor accuracy differ-333

ence between VQA v2 and VQA-CP v2 shows the334

real robustness. This encourages the researchers335

to work in the direction that increases the accuracy336

on VQA-CP v2 by sacrificing the performance on337

VQA v2. However, a robust VQA model should338

perform well on both datasets. Therefore, we com-339

pute the relative accuracy between each method340

and its base method on both ID and OOD datasets.341

4.2 Baselines and Implementations342

Our approach is general to various VQA back-343

bones. In the work, we evaluate MMBS based344

on three plain VQA models (which are not spe-345

cially designed for overcoming language priors):346

BAN (Kim et al., 2018), UpDn (Anderson et al.,347

2018) and LXMERT (LXM), and two debiasing348

methods: LMH (Clark et al., 2019) and SAR (Si349

et al., 2021).350

We also compare our methods with the state-of-351

the-art methods on VQA-CP v2, which contain:352

1) The ensemble-based methods: AdvReg. (Ra-353

makrishnan et al., 2018), GRL (Grand and Be-354

linkov, 2019), RUBi (Cadene et al., 2019), DLR355

(Jing et al., 2020a), LMH (Clark et al., 2019), CF- 356

VQA (Niu et al., 2021), LPF (Liang et al., 2021). 357

2) The data-balancing methods: SSL (Zhu et al., 358

2020), CSS (Chen et al., 2020), CL (Liang et al., 359

2020), SAR (Si et al., 2021) and MUTANT (best- 360

performance method) (Gokhale et al., 2020). The 361

visual-grounding methods perform much worse 362

(see App. D.2 2), so we do not conduct further 363

comparison with them. 364

Following the baselines above, the checkpoint 365

for evaluation is also picked by the test set directly 366

in the work due to the lack of val set (Teney et al., 367

2020; Agrawal et al., 2018). In this paper, we 368

mainly report the results with SR strategy. We 369

also conduct experiments to analyze the impact 370

of different positive-sample construction strategies. 371

More implementation details are shown in App. C. 372

4.3 Main Results 373

Performance based on different VQA models. 374

As can be seen in Tab. 1, regardless of the backbone 375

architectures and debiasing methods, our proposed 376

method consistently outperforms the baselines with 377

comfortable margin (1.66 ~10.60 absolute accuracy 378

improvement) on OOD VQA-CP v2. For the plain 379

models, MMBS particularly improves the perfor- 380

mance on yesno questions (22.73 ~29.28) because 381

the simple yesno questions are more susceptible 382

to the influence of language bias (Zhu et al., 2020; 383

Liang et al., 2021). In terms of the ID dataset, the 384

baselines’ performance can also be also improved 385

or at least maintained with MMBS, while most de- 386

biasing methods sacrifice the accuracy on VQA v2 387

(see the corresponding column in Tab. 2). Espe- 388

cially, compared with LMH, LMH+MMBS gets 389

a prominent accuracy boost of 5.52 on VQA v2. 390

This is because making the most of biased samples 391

can effectively alleviate the ID performance decline 392

2We list the complete results of all baselines together in
App. D.2 for detailed comparison.
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VQA-CP v2 test VQA v2 val Gaps
Methods All Y/N Num Other Gap ↑ All Gap ↑ Sum
UpDn 39.74 42.27 11.93 46.05 63.48
+AdvReg. 41.17 65.49 15.48 35.48 +1.43 62.75 -0.73 +0.70
+GRL 42.33 59.74 14.78 40.76 +2.59 51.92 -11.56 -9.00
+RUBi 44.23 67.05 17.48 39.61 +4.49 61.16 -2.32 +2.17
+DLR 48.87 70.99 18.72 45.57 +9.13 57.96 -5.52 +3.61
+LMH 52.01 72.58 31.12 46.97 +12.27 56.35 -7.13 +5.14
+CF-VQA 53.55 91.15 13.03 44.97 +13.81 63.54 +0.06 +13.87
+LPF 55.34 88.61 23.78 46.57 +15.60 55.01 -8.47 +7.13

+LMH+MMBS 56.44 76.00 43.77 49.67 +16.70 61.87 -1.61 +15.09
LXM 47.19 50.55 24.06 51.77 71.01
+LMH* 63.34 78.28 65.95 54.79 +16.15 69.49 -1.52 +14.63
+U-SAR* 64.98 81.89 59.65 57.61 +17.79 69.17 -1.84 +15.95

+LMH+MMBS 65.70 81.70 61.24 58.54 +18.51 70.29 -0.72 +17.79
+U-SAR+MMBS 68.01 86.55 64.69 59.21 +20.82 69.29 -1.72 +19.10

Table 2: Comparison with the state-of-the-art ensemble-
based methods. ‘Gap’ denotes the accuracy improve-
ment of the debiasing methods over their base models.
* denotes the strong baselines introduced in this paper.

resulting from the debiasing method LMH.393

Comparison with ensemble-based SOTAs. The394

upper part of Tab. 2 compares the methods based395

on the UpDn backbone. We can observe that: 1)396

Compared with UpDn, most ensemble-based meth-397

ods suffer from obviously performance drops on398

VQA v2. This phenomenon attests to the trade-399

off between the ability to overcome the language400

priors and the ability to memorize the knowledge401

of in-distribution samples. Though to a certain402

extent, CF-VQA alleviates the phenomenon, its ac-403

curacy on VQA-CP v2 is prominently lower than404

our method. 2) LMH+MMBS performs the best405

on VQA-CP v2 and rivals the accuracy of the back-406

bone on VQA v2, clearly surpassing the previous407

best in ‘GapsSum’. This shows that the trade-408

off problem is effectively alleviated by the pro-409

pose method. 3) The previous methods, e.g., CF-410

VQA and LPF, achieve high accuracy on the simple411

yesno question where the language biases are more412

likely to exist. By contrast, our method substan-413

tially improves over them on the more challenging414

non-yesno question, while achieves relatively good415

performance on the yesno questions.416

The methods in the lower part of Tab. 2 are based417

on the LXM backbone. LXM is a cross-modal pre-418

trained model that has been used as backbone in419

some data-balancing method to further boost per-420

formance (Si et al., 2021; Gokhale et al., 2020).421

However, the performance of LXM with ensemble-422

based methods has not been fully investigated. We423

introduce two strong baselines based on LXM, i.e.,424

LXM+LMH and U-SAR. LXM+LMH represents425

the LXM model trained with LMH method, which426

is widely used as an essential component by ex-427

isting methods (Chen et al., 2020; Liang et al.,428

2020; Si et al., 2021). U-SAR is a variants of the429

VQA-CP v2 test VQA v2 val Gaps
Methods Base All Gap↑ All Gap↑ Sum
SSL UpDn 57.59 +17.85 63.73 +0.25 +18.10
LMH+CCS UpDn 58.95 +19.21 59.91 -3.57 +15.64
LMH+CCS+CL UpDn 59.18 +19.44 57.29 -6.19 +13.25
SAR LXM 66.73 +19.54 69.22 -1.79 +17.75
MUTANT LXM 69.52 +22.33 70.24 -0.77 +21.56
SAR+MMBS LXM 68.39 +21.20 69.43 -1.58 +19.62

Table 3: Comparison with the state-of-the-art data-
balancing methods.

Method Strategy All Y/N Num Other
UpDn Base* 41.06 43.13 13.71 47.48

S 42.26 45.11 13.99 48.52
R 42.83 57.74 12.25 43.41
B 44.37 51.58 14.94 48.67
SR 48.19 65.00 14.05 48.75

LXM Base* 47.19 50.55 24.06 51.77
S 47.90 52.71 26.48 51.26
R 52.11 63.65 27.89 52.72
B 50.76 61.33 29.21 51.14
SR 56.51 79.83 28.70 51.92

LMH Base* 52.58 67.10 36.59 49.36
S 55.89 76.67 37.64 50.01
R 55.87 76.79 34.96 50.65
B 55.62 76.47 35.71 50.15
SR 56.44 76.00 43.77 49.67

Table 4: Results of different positive-sample construc-
tion strategies on the VQA-CP v2 test set.

two-stage method SAR, with the data-balancing 430

method SSL replaced with UpDn. We can see that 431

MMBS further promotes the two strong baselines, 432

enhancing the OOD performance and relieving the 433

ID performance drop. Moreover, the LXM-based 434

MMBS is even competitive with the data-balancing 435

methods that generate samples. 436

Comparison with data-balancing SOTAs. We 437

can derive three observations from the results in 438

Tab. 3: 1) Most data-balancing methods also hurt 439

the ID performance, which is the result of a mis- 440

match between the balanced training priors and the 441

biased test priors. 2) Another existing contrastive 442

learning model LMH+CSS+CL (Liang et al., 2020), 443

which can only be applied to the data-balancing 444

method LMH+CSS, achieves a mild improvement 445

of 0.23 on VQA-CP v2 and sacrifices the accu- 446

racy on VQA v2. Compared with it, our MMBS 447

is general to various VQA backbones and does not 448

hurt the ID performance. 3) Our SAR+MMBS 449

brings encouraging performance gain over the 450

strong baseline SAR and achieves competitive per- 451

formance against the best-performing method MU- 452

TANT without utilizing extra manual annotations 453

to construct extensive data. 454

4.4 Analysis on Individual Components and 455

Hyper-Parameters 456

The effect of positive sample construction strate- 457

gies. As shown in Tab. 4, we conduct experi- 458

ments based on three widely used methods, i.e., the 459
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Figure 4: Results of UpDn+MMBS and LMH+MMBS
on VQA-CP v2 with varying of β (upper) and α (lower).

plain model UpDn, pre-trained model LXM and460

UpDn with the debiasing method LMH. From the461

results UpDn and LXM, we can observe that: 1)462

Both S and R strategies gain performance boost.463

This shows that the designs of both of them are464

sound and effective, and their benefits outweigh the465

potential semantic noise. 2) R strategy has a bet-466

ter overall performance than S because the model467

may still learn the superficial correlation between468

answer and the question category even when the469

category words are shuffled with the other words470

of the sentence. 3) SR strategy performs the best471

among the four strategies, especially on the yesno472

questions. The reason is that R strategy signifi-473

cantly outperforms S strategy on the yesno ques-474

tions while the S strategy performs well on the475

non-yesno questions. SR strategy combines the476

advantages of both strategies. 4) B strategy is ob-477

viously inferior to the SR strategy. This is because478

learning from two positive samples for each sample479

simultaneously may confuse the model.480

From the results of LMH, we find that all the481

strategies considerably boost the performance, in-482

cluding the S strategy. This is because the unbiased483

information contained in biased samples, which is484

useful for reasoning, is also being neglected by the485

ensemble-based methods. Through the contrastive486

learning objective, both Shuffling and Removal487

positive samples give them another channel to learn488

and utilize the useful information. SR strategy still489

has the best performance among all the strategies.490

The effect of β and α. As shown in the upper491

plots of Fig. 4, the accuracy rises first and then de-492

creases as β increases. There is a trade-off behind493

this phenomenon: when β is too small, the method494

will construct the positive samples for the unbiased495

samples, which may affect the learning of robust496

information from the unbiased samples. When β497

Method All Y/N Num Other
UpDn 41.06 43.13 13.71 47.48
UpDn+SR 47.62 62.72 13.92 48.95
UpDn+SR+β 48.00 64.06 14.10 48.89
UpDn+SR+β+WC 48.19 65.00 14.05 48.75
LXM 47.19 50.55 24.06 51.77
LXM+SR 55.26 77.13 27.33 51.47
LXM+SR+β 55.66 78.64 28.10 51.17
LXM+SR+β+WC 56.51 79.83 28.70 51.92
LMH 52.01 72.58 31.12 46.97
LMH+SR 55.41 76.50 37.20 49.35
LMH+SR+β 56.15 77.46 37.90 50.00
LMH+SR+β+WC 56.44 76.00 43.77 49.67

Table 5: Results of ablation study on VQA-CP v2.

is too large, the method will not construct positive 498

samples for some biased samples. This demeans 499

the profits from the contrastive learning objective. 500

The lower plots of Fig. 4 also revel a trade- 501

off with the increase of α. This suggests that 502

the contrastive learning objective is beneficial 503

but paying too much attention to this objective 504

hurts the final performance. we also find that the 505

best α for LMH+MMBS is smaller than that for 506

UpDn+MMBS. This is because LMH itself already 507

has certain ability to alleviate language priors. 508

Ablation study. Tab. 5 investigates the effect 509

of each component of MMBS, i.e., the backbone 510

models, the positive-sample construction module 511

(SR) and the unbiased sample selection module (β) 512

which includes the correction factor WC . We find 513

that: 1) +SR constantly outperforms the base mod- 514

els significantly, especially on the yesno questions 515

where the language biases tend to exist. We also 516

conduct experiments for further validation of the ef- 517

fectiveness of the SR strategy in App. D.3. 2) Com- 518

paring the performance of +SR and +SR+β, we 519

can find that the unbiased sample selection module 520

always benefits MMBS. This attests to the intuition 521

that we do not need to construct the positive sam- 522

ples for the unbiased samples. 3) The correction 523

factor WC consistently has a positive impact on the 524

model performance. This further demonstrates that 525

dynamically adjusting the unbiased sample propor- 526

tion for each question category is a useful strategy. 527

4.5 Qualitative Analysis on the Effectiveness 528

of MBSS 529

Visualization of the answers’ distribution. To 530

better understand the effectiveness of MBSS, we 531

compare the distribution of the predicted an- 532

swers by three methods, i.e., UpDn, LMH and 533

LMH+MMBS, and the real answer distribution of 534

the training and test sets of VQA-CP v2 (left) and 535

VQA v2 (right) in Fig. 5. From the left part, we 536
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Figure 5: The answer distribution of the training sets,
test sets, and three methods.

find that UpDn tends to output the most frequent537

answers of training set, which demonstrates that it538

overfits the training priors. In comparison, LMH539

alleviates the domination of the biased answers and540

MBSS further mitigates the impact training priors,541

resulting in answer distributions that are closet to542

the test set. This explains why MBSS generalizes543

the best to the OOD VQA-CP v2 test set.544

From the upper right plot, we see that for the545

relatively easy yesno question ‘Is the’, when the546

training set is balanced in answer distribution, the547

three methods can also produce balanced answer548

distributions similar to the test set. For the question549

type ‘How many’ on VQA v2, the most frequent550

answers in the training set, i.e., ‘2’ and ‘1’, account551

for much smaller proportion in the answer distribu-552

tion of LMH. This is because that LMH diminishes553

the training signal from biased samples. Conse-554

quently, LMH performs worse on VQA v2 where555

most questions can be correctly answered by the556

common answers. By contrast, our method exploits557

the biased samples using contrastive learning rather558

than undermining them like LMH, and thus MBSS559

recovers the answers’ distribution of ID test set.560

Attention graph of question words. The atten-561

tion graphs of LXM+LMH+MMBS, LXM+LMH562

and LXM are shown in Fig 6. As highlighted in563

the red boxes, we focus on the question category564

words, i.e., ‘What color is’ or ‘color’, and the sub-565

ject words, i.e., ‘flip flop’. We observe that: 1) For566

the cross-modality encoder (a) that extracts higher567

level representation for classification, LXM pays568

low attention to the subject words and high atten-569

tion to the question category words, which is the570

source of language bias. In comparison, the intro-571

Figure 6: (a) The attention graph of the last cross-
attention of cross-modality encoder, which averages
the attention of all visual regions to each question word.
(b) The attention graph of the last self-attention layer of
the language encoder.

duction of LMH alleviates this problem and MBSS 572

further shifts the attention to the subject words, 573

which contain less biased information and have 574

more specific visual groundings. 2) For the ques- 575

tion encoder (b) that summarizes information from 576

the textual domain, LXM+LMH pays less attention 577

to the question category word ‘color’, as compared 578

with the other two methods. We conjecture that 579

this can partly explain the poor performance of 580

LMH on the ID dataset that contains strong lan- 581

guage priors, because the word ‘color’ is essential 582

to the meaning of the question. LXM pays more 583

attention to ‘color’ but relatively less attention to 584

the subject words. By contrast, our method assigns 585

sufficient attention to both the question category 586

and subject words, which can produces a better 587

question representation. 588

5 Conclusion 589

In this paper, we propose a novel contrastive learn- 590

ing method to ameliorate the ID-OOD trade-off 591

problem faced by most existing debaising methods 592

for VQA models. Instead of undermining the im- 593

portance of the biased samples, our method makes 594

the most of them via contrastive learning. Con- 595

sidering the characteristics of language priors, we 596

design the positive samples which eliminate the 597

biased information. On this basis, we investigate 598

several strategies to use the positive samples and 599

design an algorithm that treat biased and unbiased 600

samples differently in contrastive learning. The pro- 601

posal is compatible with multiple backbone models 602

and debiasing methods, and achieves competitive 603

performance on OOD VQA-CP v2 while maintain- 604

ing the performance on ID VQA v2. Meanwhile, 605

our approach provides insights on how to avert 606

the trade-off between in-distribution and out-of- 607

distribution performance. 608
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A More Related Work 790

A.1 Language biases in VQA datasets. 791

To develop the robustness and generalization ca- 792

pability of VQA models, Agrawal et al. (2018) 793

carefully constructed the VQA-CP v2 dataset by 794

re-organizing the training and val sets of VQA 795

v23 dataset to introduce the distribution shift of 796

question categories. VQA-CP v2 is an out-of- 797

distribution dataset where the answer distributions 798

of a same question category are different in the 799

training set and test set while VQA v2 dataset is 800

in-distribution. The performance of VQA models 801

relying on the biases often drops significantly on 802

VQA-CP v2 dataset, which has become the stan- 803

dard benchmark for evaluating the capability of 804

overcoming the language priors. The data statis- 805

tics of VQA-CP v2 are shown in Tab. 6. The 806

images of both datasets are from COCO (Lin et al., 807

2014), and the questions are in English. Recently, 808

another OOD benchmark GQA-OOD (Kervadec 809

et al., 2021) was proposed. However, it is built on 810

the GQA dataset, which is generated automatically 811

and is not ‘in the wild’. 812

Although VQA-CP v2 has become the current 813

OOD benchmark in the VQA community, it intro- 814

duces only one specific type of controlled distri- 815

butional shift, i.e., question category, and thus its 816

3Both VQA-CP v2 and VQA v2 datasets are licensed under
Commons Attribution 4.0 International License.
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Type original Shuffle Removal
Y/N Is this indoors or outside ? Is ? indoors outside or this indoors or outside ?
Y/N Are these buildings new ? new these buildings ? Are buildings new ?
Y/N Does this person eat healthily ? this ? person healthily eat Does person eat healthily ?
Num How many people will be dining ? ? be many people How will dining people will be dining ?
Num How many small zebra are there ? there zebra small ? are How many small zebra are there ?
Other What is the smallest kid holding ? the is smallest What ? holding kid smallest kid holding ?
Other Who is on the screen ? Who screen ? the is on on the screen ?
Other What are people wearing on their heads ? their are wearing ? on people heads What people wearing on their heads ?
Other What animals are walking on the road ? road the are on What animals ? walking animals are walking on the road ?
Other What color is the food inside the bowl ? the color the food What is bowl inside ? food inside the bowl ?

Table 7: More examples of two types of positive samples.

Type n(Cqtype) m(ZC) m(WC)% m(PC)% m(Zunb
C )

Y/N 28 209 92.60 18.52 39
Num 4 156 56.84 11.37 19
Other 33 836 3.76 0.75 10

Table 8: The statistics about the question type (e.g.,
Y/N) and the corresponding unbiased samples with the
setting of β=20%. For all question categories (e.g, what
color) in each question type, (Cqtype) represents the
number of them; m(ZC) represents the mean value of
their label space size; m(WC ) represents the mean value
of their correction factors which are used to dynamically
adjust β; m(PC ) represents the mean value of their unbi-
ased answer proportions after being adjusted; m(Zunb

C )
represents the mean value of their unbiased answer num-
ber.

OOD settings can only evaluate the model’s reason-817

ing ability beyond the single type of biases, rather818

than the true robustness beyond multiple types of819

biases. Besides, most of recent works (Cadene820

et al., 2019; Clark et al., 2019; Grand and Belinkov,821

2019; Jing et al., 2020b; Ramakrishnan et al., 2018;822

Si et al., 2021; Wu and Mooney, 2019), including823

ours, design the de-biasing methods specifically824

for the known biases (i.e., language priors) and825

known construction of OOD splits of VQA-CP v2826

(i.e., the handcrafted inverse shifts of answer distri-827

bution between test and training sets). Therefore,828

once the bias is unknown, or the training and test829

sets do not conform to such construction procedure,830

these models may fail to generalize. Admittedly,831

more OOD datasets with unknown biases (which832

is well-developed in NLU (Clark et al., 2020; Sanh833

et al., 2020; Utama et al., 2020)) and multiple types834

of distribution shifts are needed to promote the835

de-biasing research.836

A.2 Visual grounding methods.837

Apart from these two kinds of effective methods,838

another line is the visual-grounding method (Sel-839

varaju et al., 2019; Wu and Mooney, 2019). They840

use extra human visual annotations to force model 841

to answer according to the right reason, i.e., rele- 842

vant image regions. However, Shrestha et al. (2020) 843

finds that their improvements is caused by a regular- 844

ization effect which hinders over-fitting to the train- 845

ing priors, rather than the better visual grounding. 846

Besides, the visual-grounding methods perform 847

much worse than the other two kinds of methods, 848

so we do not provide discussion about them in the 849

main paper due to the space limitation. 850

B More Details of the Proposed Method 851

B.1 Definition of target score tgt. 852

The tgti is the soft target score of each answer for 853

the ith sample. Following (Zhu et al., 2020), it is 854

annotated by the annotators for the dataset, and 855

obtained by: 856

tgti =
votes

|Ai|
(6) 857

where |Ai| is the number of valid answers in total 858

for the ith sample, and votes denotes that, for each 859

answer in Ai, how many annotators annotated it as 860

ground truth for the given ith question. 861

B.2 Discussion about the positive samples. 862

We give more examples of Shuffling and Removal 863

positive questions in Tab. 7. We can see that the in- 864

tention of the ‘Y/N’ questions can still be inferred 865

from the Removal questions. By contrast, the in- 866

tention of the Removal questions for non-‘Y/N’ 867

questions is ambiguous. This attests to the rational- 868

ity of the proposed SR strategy, which treats ‘Y/N’ 869

and non-‘Y/N’ questions differently. 870

Although the positive samples could cause some 871

confusion/ambiguity, it may not impact our method 872

too much, because: 1) In MBSS, the model only 873

makes prediction on the original samples during 874

training, and thus it does not directly associate the 875

answers with the positive questions, which are only 876
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VQA-CP v2 test VQA v2 val Gaps
Methods Base. Venue All Y/N Num Other Gap ↑ All Y/N Num Other Gap ↑ Sum ↑

Plain Models follow:
SAN (Yang et al., 2016) - CVPR 24.96 38.35 11.14 21.74 - 52.41 70.06 39.28 47.84 - -
GVQA (Agrawal et al., 2018) - CVPR 31.30 57.99 13.68 22.14 - 48.24 72.03 31.17 34.65 - -
BAN (Kim et al., 2018) - NeurIPS 37.03 41.55 12.43 41.4 - 63.9 81.42 45.18 55.54 -
UpDn (Anderson et al., 2018) - CVPR 39.74 42.27 11.93 46.05 - 63.48 81.18 42.14 55.66 - -
LXM (Tan and Bansal, 2019) - EMNLP 47.19 50.55 24.06 51.77 - 71.01 88.24 54.07 62.39 - -
MMBS BAN Ours 47.63 66.18 16.36 46.49 +10.60 64.78 82.03 46.48 56.51 +0.88 +11.48
MMBS UpDn Ours 48.19 65.00 14.05 48.75 +8.45 63.84 79.61 44.23 57.05 +0.36 +8.81
MMBS LXM Ours 56.51 79.83 28.70 51.92 +9.32 70.85 88.25 55.67 61.63 -0.16 +9.16

Visual-grounding Methods follow:
AttAlign(Selvaraju et al., 2019) UpDn ICCV 39.37 43.02 11.89 45.00 -0.37 63.24 80.99 42.55 55.22 -0.24 -0.61
HINT (Selvaraju et al., 2019) UpDn ICCV 46.73 67.27 10.61 45.88 +6.99 63.38 81.18 42.99 55.56 -0.1 +6.89
SCR (Wu and Mooney, 2019) UpDn NeurIPS 49.45 72.36 10.93 48.02 +9.71 62.20 78.80 41.60 54.50 -1.28 +8.43

Ensemble-based Methods follow:
AdvReg. (Ramakrishnan et al., 2018) UpDn NeurIPS 41.17 65.49 15.48 35.48 +1.43 62.75 79.84 42.35 55.16 -0.73 +0.70
GRL (Grand and Belinkov, 2019) UpDn NAACL 42.33 59.74 14.78 40.76 +2.59 51.92 - - - -11.56 -9.00
RUBi (Cadene et al., 2019) UpDn NeurIPS 44.23 67.05 17.48 39.61 +4.49 61.16 - - - - -2.32
DLR (Jing et al., 2020a) UpDn AAAI 48.87 70.99 18.72 45.57 +9.13 57.96 76.82 39.33 48.54 -5.52 +3.61
LMH (Clark et al., 2019) UpDn EMNLP 52.01 72.58 31.12 46.97 +12.27 56.35 65.06 37.63 54.69 -7.13 +5.14
CF-VQA (Niu et al., 2021) UpDn CVPR 53.55 91.15 13.03 44.97 +13.81 63.54 82.51 43.96 54.30 +0.06 +13.87
LPF (Liang et al., 2021) UpDn SIGIR 55.34 88.61 23.78 46.57 +15.60 55.01 64.87 37.45 52.08 -8.47 +10.13
LMH+MMBS UpDn Ours 56.44 76.00 43.77 49.67 +16.70 61.87 75.86 40.34 56.95 -1.61 +15.09
LMH(Clark et al., 2019) LXM EMNLP 63.34 78.28 65.95 54.79 +16.15 69.49 84.16 54.07 62.41 -1.52 +14.63
UpDn-SAR (Si et al., 2021) LXM ACL 61.71 78.69 47.67 56.66 +14.52 - - - - - -
UpDn-SAR+LMH (Si et al., 2021) LXM ACL 64.98 81.89 59.65 57.61 +17.79 69.17 88.08 51.04 59.58 -1.84 +15.95
LMH+MMBS LXM Ours 65.70 81.70 61.24 58.54 +18.51 70.29 84.14 55.20 63.75 -0.72 +17.79
UpDn-SAR+LMH+MMBS LXM Ours 68.01 86.55 64.69 59.21 +20.82 69.29 88.31 50.81 59.65 -1.72 +19.10

Data-balancing Methods follow:
SSL (Zhu et al., 2020) UpDn IJCAI 57.59 86.53 29.87 50.03 +17.85 63.73 - - - +0.25 +18.10
CSS (Chen et al., 2020) UpDn CVPR 41.16 43.96 12.78 47.48 +1.42 - - - - - -
LMH+CSS (Chen et al., 2020) UpDn CVPR 58.95 84.37 49.42 48.21 +19.21 59.91 73.25 39.77 55.11 -3.57 +15.64
LMH+CSS+CL (Liang et al., 2020) UpDn EMNLP 59.18 86.99 49.89 47.16 +19.44 57.29 67.27 38.40 54.71 -6.19 +13.25
LBCL (Lao et al., 2021) UpDn MM 60.74 88.28 45.77 50.14 +21.00 - - - - - -
MUTANT (Gokhale et al., 2020) UpDn EMNLP 61.72 88.90 49.68 50.78 +21.98 62.56 82.07 42.52 53.28 -0.92 +21.06
SSL-SAR+LMH (Si et al., 2021) LXM ACL 66.73 86.00 62.34 57.84 +19.54 69.22 87.46 51.20 60.12 -1.79 +17.75
MUTANT (Gokhale et al., 2020) LXM EMNLP 69.52 93.15 67.17 57.78 +22.33 70.24 89.01 54.21 59.96 -0.77 +21.56
SSL-SAR+LMH+MMBS LXM Ours 68.39 87.30 65.21 59.36 +21.20 69.43 87.39 50.37 60.82 -1.58 +19.62

Table 9: Results on VQA-CP v2 test and VQA-v2 validation set. For each base model, i.e., UpDn and LXM, the
best scores are bold. ‘Gap’ denotes the accuracy improvement of language-prior methods over their base models. *
indicates our reimplementation. We report MMBS results with SR strategy here.

used in contrastive learning. 2) Shuffling could877

change the original questions to a conflicting mean-878

ings, e.g., , ‘How many bananas are next to the879

apples?’ and ‘How many apples are next to the ba-880

nanas?’. However, such special cases are very rare.881

For a question whose length is 74, the probability882

of shuffling to a conflicting meaning is 1
7! . In most883

cases, the Shuffling just eliminates the sequential884

information of the questions, but basically conveys885

the same meaning. 3) In terms of Removal, we886

only construct this kind of positive questions for887

the ‘Y/N’ questions, which does not change the888

intended meaning of the original question as dis-889

cussed in the above paragraph. 4) Additionally,890

the proposed unbiased sample selection module891

prevents the potential noise in positive questions892

from affecting the unbiased samples, which are893

beneficial to OOD generalization.894

B.3 Unbiased sample statistics.895

To further investigate how the unbiased-sample-896

selection algorithm treats different types of ques-897

tions , i.e. ‘Y/N’, ‘Num’ and ‘Other’ questions,898

we roughly divide all the question categories into899

4The average length of questions in the training set is 7.14

the three types according their semantics, and 900

then do some statistical analysis about the ques- 901

tion types and the corresponding unbiased sam- 902

ples. We set the initial unbiased answer proportion 903

(hyper-parameter) β = 20%. As the detail statis- 904

tics shown in Tab. 8, we find that: 1) the ‘Other’ 905

questions have the largest answer space while the 906

‘Num’ questions have the smallest one. Counter- 907

intuitively, the ‘Y/N’ questions also have a rela- 908

tively large number of candidate answers. For ex- 909

ample, ‘red’ is also annotated as the answer to the 910

question ‘Is this flower red?’. However, this rarely 911

happens compared with the answer ‘yes’. 2) The 912

proposed correction factor WC is close to 1 when 913

the question is a ‘Y/N’ question and the WC is 914

close to 0 when the question is a ‘Other’ question. 915

Correspondingly, the adjusted unbiased answer pro- 916

portion PC is close to β for ‘Y/N’ questions while 917

it is relative smaller for ‘Other’ questions. This is 918

consistent with the phenomenon that most ground 919

truth of ‘Y/N’ questions concentrate on much fewer 920

answers (e.g., ‘Yes’) than that of ‘Other’ questions. 921
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Model Epo α β Lr N ′

BAN+Ours 25 1 0.5 1e-4 -
UpDn+Ours 60 1 0.6 1e-4 -
LXM+Ours 40 1 0.2 5e-6/5e-5 -
LMH+Ours 60 0.18 0.5 1e-4 -
LXM+LMH+Ours 40 0.18 0.2 5e-6/5e-5 -
U-SAR+Ours 10 0.18 0.5 1e-5 2,20 / 2,2
SAR+Ours 10 0.18 0.5 1e-5 2,20/ 2,20

Table 10: The detailed hyper-parameter settings of our
methods. The Epo represents the number of training
epochs. Lr represents the initial learning rate of Adam
optimizer on VQA-CP v2/VQA v2. N ′, is a SAR-
specific hyper-parameter, represents the number of can-
didate answers for yesno, non-yesno questions during
test on VQA-CP v2/VQA v2.

Model Param. Training Time Infrastructure
UpDn+Ours 36M 0.38h/epo TITAN RTX

24GB GPU
LXM+Ours 213M 1.73h/epo 2 x TITAN RTX

24GB GPUs

Table 11: The details of computational experiments of
our methods based on UpDn and LXM.

C More Experimental Setups922

C.1 Implementation details.923

Following existing works, we use the Faster R-924

CNN (Ren et al., 2015) to extract fixed 36 objects925

feature embeddings with 2048 dimensions for each926

image. All the questions are trimmed or padded927

to 14 words. For the UpDn backbone model, we928

apply a single-layer GRU to encode the word em-929

beddings( initialized with Glove (Pennington et al.,930

2014)) of the question into a 1280-dimensional931

question embeddings. We follow (Zhu et al., 2020)932

and adopt a multi-step learning rate that halves ev-933

ery 5 epochs after 10 epochs. For the LXMERT934

backbone, we use the tokenizer of LXMERT to seg-935

ment each input question into words. We adopt the936

cosine learning rate decay following the warmup in937

the first 5 epochs. We train the models with batch938

size of 128. The detailed hyper-parameter settings939

of our methods in the main results are shown in Tab.940

10. The details of computational experiments of our941

method based on UpDn and LXMERT are shown942

in Tab. 11. We keep the same random seed during943

training and testing for Shuffling method. As the944

change of seed has little effect on each method,945

following most of previous works, we also report946

the results with a single run.947

Method Form S R B SR
UpDn original 42.20 42.38 42.69 42.80

Shuffling 42.26 33.68 44.37 48.19
Removal 26.15 42.83 43.19 22.67

LMH original 55.89 55.87 55.62 56.44
Shuffling 54.14 39.93 52.3 52.64
Removal 31.46 49.4 47.48 32.43

Table 12: Results of UpDn+MMBS and LMH+MMBS
with three question forms at test on VQA-CP v2. S, R,
B and SR are the four strategies to use positive sample
in training.

C.2 Positive sample construction for SAR. 948

SAR (Si et al., 2021) is a two-stage framework: it 949

first selects the most relevant candidate answers, 950

and then combines the question and each candi- 951

date answer to produce dense captions, and finally, 952

reranks the dense captions based on visual entail- 953

ment. They design two ways to construct the dense 954

captions, including 1) replacing the question cate- 955

gory prefix with answer and 2) concatenating ques- 956

tion and answer directly. To apply MMBS to SAR, 957

we construct the positive dense captions for the 958

rerank stage. Specifically, we directly use the first 959

kind of captions as S positive captions, because the 960

question category prefix has already been removed. 961

For the second kind of captions, we randomly shuf- 962

fle the words to construct the R positive captions. 963

The input dense caption during training and test 964

are the second kind of captions. Following Si et al. 965

(2021), we set the number of candidate answers for 966

training to 20. During test, we set the number of 967

the candidate answers to N ′ shown in Tab. 10. 968

D More Experiments and Analysis 969

D.1 Performance with different question 970

forms at test. 971

After contrastive learning using the positive ques- 972

tions, the models trained with MMBS can also take 973

the positive question as input in the inference phase, 974

while normal models cannot. For more comprehen- 975

sive analysis, we report the results of three question 976

forms here. Because the annotation of question cat- 977

egories should not be available at test, the Removal 978

questions are not used in the other experiments. 979

From the results shown in Tab. 12, we find that: 1) 980

For UpDn with the S, B and SR strategies (which 981

involve the Shuffling positive sample), the perfor- 982

mance is the best when the test question is in the 983

Shuffling form. This shows that the Shuffling form 984

input question, when used in the test stage, may 985

further prevent the model from relying on the su- 986

perficial correlations. 2) For LMH, when the input 987
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Method All Y/N Num Other
UpDn 41.06 43.13 13.71 47.48
UpDn+orig. 41.39 42.23 13.7 48.54
UpDn+rand-SR 44.21 51.19 15.05 48.56
UpDn+SR 47.62 62.72 13.92 48.95
LXM 47.19 50.55 24.06 51.77
LXM+orig. 48.14 51.25 25.63 52.69
LXM+rand-SR 51.07 62.22 29.68 51.09
LXM+SR 55.26 77.13 27.33 51.47
LMH 52.01 72.58 31.12 46.97
LMH+orig. 55.25 74.84 41.11 48.87
LMH+rand-SR 55.50 75.36 35.67 50.54
LMH+SR 55.41 76.50 37.20 49.35

Table 13: Results on VQA-CP v2 for validating the
effectiveness of SR strategy. The models here do not
contain the unbiased sample selection module.

question during test is original, the models always988

perform the best. This is probably because the989

LMH+MMBS method is robust enough and will990

not be easily biased by the superficial correlations991

in the original questions. On the in-distribution set-992

tings, all the models obtain the best performance on993

VQA v2 when the test questions are in the original994

form.995

D.2 Full results.996

For detailed comparison, we list the complete re-997

sults of all mentioned baselines and the proposed998

methods in Tab. 9.999

D.3 Further validation of the effectiveness of1000

SR strategy.1001

To better validate the effectiveness of SR strategy,1002

we also evaluate the model performance directly us-1003

ing the original sample as positive sample ( +orig.),1004

or randomly adopting one of S and R as positive1005

sample ( +rand-SR) for each sample. We can ob-1006

serve from Tab. 13 that: 1) +orig. constantly1007

outperforms the backbone models because the con-1008

trastive learning itself is helpful for learning a better1009

feature representation. 2) It is worth noting that1010

when we apply +orig. on LMH, the performance1011

improvement is much more obvious. This is be-1012

cause ensemble-based methods have relieved the1013

language priors to some extent at the cost of almost1014

entirely attenuating the positive information from1015

the biased samples. Our method makes up for this1016

drawback and forces the model to pay attention1017

again to this information by minimizing contrastive1018

learning loss which does not cause superficial cor-1019

relations, unlike the normal VQA loss. This can1020

also explain that the performance of +orig., +rand-1021

SR and +SR is similar based on the ensemble-based1022

methods. 3) For UpDn and LXM: a) +rand-SR out-1023

Method All Y/N Num Other
LXM+LMH 63.34 78.28 65.95 54.79
LXM+LMH+orig. 65.56 81.35 61.17 58.50
LXM+LMH+rand-SR 65.22 78.55 62.13 59.09
LXM+LMH+SR 65.66 81.39 60.69 58.78
LXM+LMH+SR+β 65.63 81.64 60.62 58.72
LXM+LMH+SR+β+WC 65.70 81.70 61.24 58.54
LXM+LMH+S+β+WC 64.98 79.67 59.90 58.68
LXM+LMH+R+β+WC 65.34 78.37 62.63 59.25
LXM+LMH+B+β+WC 65.03 78.38 61.05 59.14
LXM+LMH+SR+β+WC 65.70 81.70 61.24 58.54

Table 14: Upper: Ablation study of MMBS based on
LXM+LMH. Lower: Comparison of different positive-
sample construction strategies based on LXM+LMH.

performs +orig. considerably, which demonstrates 1024

that the design of positive samples by excluding 1025

the correlations between the question category and 1026

answer benefits MMBS in overcoming language 1027

priors; b) Compared with +rand-SR, +SR achieves 1028

prominent performance boost on ‘Y/N’ questions, 1029

and slightly improves the performance or maintains 1030

competitive performance on the other two types of 1031

questions, which attests to the soundness of the 1032

motivation of strategy SR (refer to Sec. 3.2 ); 1033

D.4 Ablation study of MMBS based on 1034

LXM+LMH. 1035

From Tab. 14, we find that the phenomenon of the 1036

ablation study based on LXM+LMH is in line with 1037

the that of LMH in Tab. 5, Tab. 13 and Tab. 4. 1038
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