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Abstract—Continual reinforcement learning aims to sequen-
tially learn a variety of tasks, retaining the ability to perform
previously encountered tasks while simultaneously developing
new policies for novel tasks. However, current continual RL
approaches overlook the fact that certain tasks are identical
under basic group operations like rotations or translations,
especially with visual inputs. They may unnecessarily learn and
maintain a new policy for each similar task, leading to poor
sample efficiency and weak generalization capability. To address
this, we introduce a unique Continual Vision-based Reinforce-
ment Learning method that recognizes Group Symmetries, called
COVERS, cultivating a policy for each group of equivalent tasks
rather than an individual task. COVERS employs a proximal
policy gradient-based (PPO-based) algorithm to train each policy,
which contains an equivariant feature extractor and takes inputs
with different modalities, including image observations and
robot proprioceptive states. It also utilizes an unsupervised task
clustering mechanism that relies on 1-Wasserstein distance on the
extracted invariant features. We evaluate COVERS on a sequence
of table-top manipulation tasks in simulation and on a real robot
platform. Our results show that COVERS accurately assigns
tasks to their respective groups and significantly outperforms
baselines by generalizing to unseen but equivariant tasks in
seen task groups. Demos are available on our project page:
https://sites.google.com/view/rl-covers/.

I. INTRODUCTION

Quick adaptation to unseen tasks has been a key objective in
the field of reinforcement learning (RL) [11, 19, 18]. RL algo-
rithms are usually trained in simulated environments and then
deployed in the real world. However, pre-trained RL agents
are likely to encounter new tasks during their deployment
due to the nonstationarity of the environment. Blindly reusing
policies obtained during training can result in substantial
performance drops and even catastrophic failures [42, 16].

Continual RL (CRL), also referred to as lifelong RL,
addresses this issue by sequentially learning a series of tasks.
It achieves this by generating task-specific policies for the
current task, while simultaneously preserving the ability to
solve previously encountered tasks [18, 15, 37, 23, 36].
Existing CRL works that rely on the task delineations to handle
non-stationary initial states, dynamics or reward functions can
greatly boost task performance, particularly when significant
task changes occur [37]. However, in realistic task-agnostic
settings, these delineations are unknown a prior and have to
be identified by the agents. In this work, we explore how to
define and detect task delineations to enhance robots’ learning
capabilities in task-agnostic CRL.
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Fig. 1: This example illustrates how group symmetry enhances
adaptability. The robot is instructed to close drawers situated
in two distinct locations with top-down images as inputs.
Considering the symmetry of the drawers’ locations around
the robot’s position, the optimal control policies are equivalent
but mirrored.

Our key insight is that robotic control tasks typically pre-
serve certain desirable structures, such as group symmetries.
Existing CRL approaches typically delineate task boundaries
based on statistical measures, such as maximum a posteriori
estimates and likelihoods [37, 23]. However, these measures
overlook the geometric information inherent in task repre-
sentations, which naturally emerge in robotic control tasks,
as demonstrated in Figure 1. Consider the drawer-closing
example: conventional CRL works using image inputs would
treat each mirrored configuration as a new task and learn
the task from scratch. Yet, we, as humans, understand that
the mirrored task configuration can be easily resolved by
correspondingly reflecting the actions. Learning the mirrored
task from scratch hampers positive task interference and limits
the agent’s adaptivity. To address this issue, our goal is to
exploit the geometric similarity among tasks in the task-
agnostic CRL setting to facilitate rapid adaptation to unseen
but geometrically equivalent tasks.

In this work, we propose COVERS, a task-agnostic vision-
based CRL algorithm with strong sample efficiency and gen-
eralization capability by encoding group symmetries in the
state and action spaces. We define a task group as the set that
contains equivalent tasks under the same group operation, such
as rotations and reflections. We state our main contributions
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as follows:

1) COVERS grows a PPO-based [26] policy with an equiv-
ariant feature extractor for each task group, instead of
a single task, to solve unseen tasks in seen groups in a
zero-shot manner.

2) COVERS utilizes a novel unsupervised task grouping
mechanism, which automatically detects group bound-
aries based on 1-Wasserstein distance in the invariant
feature space.

3) In non-stationary table-top manipulation environments,
COVERS performs better than baselines in terms of
average rewards and success rates. Moreover, we show
that (a) the group symmetric information from the
equivariant feature extractor promotes the adaptivity
by maximizing the positive interference within each
group, and (b) the task grouping mechanism recovers
the ground truth group indexes, which helps minimize
the negative interference among different groups.

II. RELATED WORK

Task-Agnostic CRL. CRL has been a long-standing prob-
lem that aims to train RL agents adaptable to non-stationary
environments with evolving world models [28, 27, 8, 24, 38,
16, 17, 20, 1, 29]. In task-agnostic CRL where task identifi-
cations are unrevealed, existing methods have addressed the
problem through a range of techniques. These include hierar-
chical task modeling with stochastic processes [37, 23], meta-
learning [18, 25], online system identification [40], learning a
representation from experience [36, 5], and experience replay
[24, 7]. Considering that in realistic situations, the new task
may not belong to the same task distribution as past tasks,
we develop an ensemble model of policy networks capable
of handling diverse unseen tasks, rather than relying on a
single network to model dynamics or latent representations.
Moreover, prior work often depends on data distribution-wise
similarity or distances between latent variables, implicitly
modeling task relationships. In contrast, we aim to intro-
duce beneficial inductive bias explicitly by developing policy
networks with equivariant feature extractors to capture the
geometric structures of tasks.

Symmetries in RL. There has been a surge of interest
in modeling symmetries in components of Markov Decision
Processes (MDPs) to improve generalization and efficiency
[21, 22, 30, 31, 33, 34, 41, 32, 43, 9, 13, 14]. MDP homomor-
phic network [30] preserves equivariant under symmetries in
the state-action spaces of an MDP by imposing an equivariance
constraint on the policy and value network. As a result, it
reduces the RL agent’s solution space and increases sample
efficiency. This single-agent MDP homomorphic network is
then extended to the multi-agent domain by factorizing global
symmetries into local symmetries [31]. SO(2)-Equivariant
RL [33] extends the discrete symmetry group to the group of
continuous planar rotations, SO(2), to boost the performance
in robotic manipulation tasks. In contrast, we seek to exploit
the symmetric properties to improve the generalization capa-

bility of task-agnostic CRL algorithms and handle inputs with
multiple modalities.

III. PRELIMINARY

Markov decision process. We consider a Markov decision
process (MDP) as a 5-tuple (S,A, T,R, γ), where S andA are
the state and action space, respectively. T : S ×A → ∆(S) is
the transition function, R : S×A → R is the reward function,
and γ is the discount factor. We aim to find an optimal policy
πθ : S → A parameterized by θ that maximizes the expected
return Eτ∼πθ

[∑H−1
t=0 γtr (st, at)

]
, where H is the episode

length.
Invariance and equivariance. Let G be a mathematical

group. f : X → Y is a mapping function. For a transformation
Lg : X → X that satisfies f(x) = f(Lg[x]),∀g ∈ G, x ∈ X ,
we say f is invariant to Lg . Equivariance is closely related to
invariance. If we can find another transformation Kg : Y → Y
that fulfills Kg[f(x)] = f(Lg[x]),∀g ∈ G, x ∈ X then we say
f is equivariant to transformation Lg . It’s worth noting that
invariance is a special case of equivariance.

MDP with group symmetries. In MDPs with symmetries
[21, 22, 30], we can identify at least one mathematical group
G of a transformation Lg : S → S and a state-dependent
action transformation Ks

g : A → A, such that R(s, a) =
R
(
Lg[s],K

s
g [a]

)
, T (s, a, s′) = T

(
Lg[s],K

s
g [a], Lg [s

′]
)

hold
for all g ∈ G, s, s′ ∈ S, a ∈ A.

Equivariant convolutional layer. Let G be a Euclidean
group, with the special orthogonal group and reflection group
as subgroups. We use the equivariant convolutional layer
developed by Weiler and Cesa [35], where each layer consists
of G-steerable kernels k : R2 → Rcout×cin that satisfies
k(gx) = ρout (g)k(x)ρin

(
g−1

)
,∀g ∈ G, x ∈ R2. ρin and ρout

are the types of input vector field fin : R2 → Rcin and output
vector field fout : R2 → Rcout , respectively.

Equivariant MLP. An equivariant multi-layer perceptron
(MLP) consists of both equivariant linear layers and equiv-
ariant nonlinearities. An equivariant linear layer is a linear
function W that maps from one vector space Vin with type ρin
to another vector space with type ρout for a given group G.
Formally ∀x ∈ Vin,∀g ∈ G : ρout(g)Wx = Wρin(g)x. Here
we use the numerical method proposed by Finzi et al. [12] to
parameterize MLPs that are equivariant to arbitrary groups.

IV. METHODOLOGY

A. Problem Formulation

We focus on continual learning in table-top manipulation
environments, where various tasks are sequentially presented.
We hypothesize that the streaming tasks can be partitioned
into task groups, each containing tasks that share symmetry
with one another. We adopt a realistic setting where a new task
group may emerge at each episode, the total number of distinct
groups remains unknown and the group may arrive in random
orders. The primary objective is to devise an online learning
algorithm capable of achieving high performance across all
tasks with strong data efficiency. We visualize our CRL setting
with table-top manipulation environments in Figure 2.
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Fig. 2: The continual learning environment setup involves four task groups, including Plate Slide, Button Press, Drawer Close,
and Goal Reach. Groups streamingly come in.
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Fig. 3: Equivariant policy network architecture.

B. Algorithm

We present the pseudocode for COVERS, a task-agnostic
continual RL method with group symmetries, in Algorithm 1.
COVERS maintains a collection Π = {(π,B)}, each element
of which comprising a pair of policy π and its respective data
buffer B. Each policy π independently manages one group of
tasks, with B storing the initial frames of the group it oversees.
At fixed time intervals, COVERS collects Ns steps in parallel
under the current policy πcur and stores the first k frames
from each episode in the rollout buffer O. Based on O, the
algorithm then either (a) creates a new policy for an unseen
group and adds it to the collection Π, or (b) recalls an existing
policy from the collection Π if the group has been previously
encountered. It is worth noting that we assign policies based
on initial frames of each episode rather than the full episode
rollout. This is because frames corresponding to later timesteps
are heavily influenced by the behavior policy and could easily
lead to unstable policy assignments. Only maintaining a subset
of the rollout trajectories also helps alleviate memory usage.

After the policy assignment, the selected policy πcur with
parameters θ is updated based on an online rollout buffer
D and Proximal Policy gradient (PPO) method [26] with
loss in Equation 1. Ât is the estimated advantage, ρt =
πθ(at|st)/πθold(at|st) is the importance ratio and ϵ is the clip
range.

LCLIP = Eτ∼D

[ H∑
t=1

min[ρt(θ)Ât, clip(ρt(θ), 1−ϵ, 1+ϵ)Ât]
]
.

(1)

C. Policy Network Architecture

COVERS utilizes an equivariant policy network that com-
prises a policy network for predicting actions, a value network
approximating values, and an equivariant feature extractor
taking multiple modalities. We show the policy architecture
in Figure 3 and additional details in Figure 10.

Equivariant feature extractor. In real manipulation tasks,
the observations typically comprise multiple modalities, such
as image observations, robot proprioceptive states, and goal
positions represented in vector form. To accommodate these
diverse modalities, we designed an equivariant feature extrac-
tor hequi, that employs an equivariant convolutional network
heConv [35] for image processing, coupled with an equiv-
ariant linear network heMLP [6] to handle vector inputs.
The resulting equivariant features from these two pathways
are concatenated to form the output of the feature extractor.
Formally, hequi(s) = Concat(heConv(s), heMLP (s)).

Invariant value and equivariant policy. In the context
of MDPs involving robotic manipulation tasks with group
symmetries, it is known that the optimal value function
maintains group invariance, while the optimal policy displays
group equivariance [33]. To attain this, both the policy and
value networks utilize a shared equivariant feature extractor,
designed to distill equivariant features from observations.
Subsequently, the value network leverages a group pooling
layer to transform these equivariant features into invariant
ones, before employing a fully connected layer to generate
values. Formally, hinv(s) = GroupMaxPooling(hequi(s)). The
policy network, on the other hand, processes the equivariant
features with an additional equivariant MLP network to output
actions.

D. Unsupervised Dynamic Policy Assignment

In COVERS, we propose to detect different groups of tasks
based on distances in the invariant feature space. Such a
mechanism facilitates knowledge transfer between tasks in
each group. At a fixed episode interval, COVERS selects the
policy of the group, whose data buffer B has the minimal
distance in the invariant feature space to the rollout buffer O
collected in the current environment. Note that the invariant
features of both O and B are obtained through the feature



Algorithm 1 COVERS: Continual Vision-based RL with
Group Symmetries
Input: Threshold dϵ, initial frame number k, update interval
Nu, rollout step size Ns

Output: collection of policies Π
Initialization: Current policy πcur initialized as a random
policy with a policy data buffer B ← ∅, policy collection
Π ← {(πcur,B)}, number of episodes n ← 0, online rollout
buffer D ← ∅

1: while task not finish do
2: n← n+ 1
3: if n%Nu = 0 then
4: Rollout buffer O ← ∅ ▷ Unsupervised Policy

Assignment
5: Rollout Ns steps with πcur and get trajectories τ =
{(s0, a0, . . . , sH , aH)}

6: Append the first k frames of each episode to rollout
buffer O ← {(s0, . . . , sk−1)}

7: Append the whole episode trajectories τ to the
online rollout buffer D

8: Calculate the 1-Wasserstein distances
dWi (O,Bi),∀{πi,Bi} ∈ Π (Equation 2)

9: Get the minimum distance dWj where j =
argmini d

W
i (O,Bi)

10: if dj > dϵ then
11: Initialize a new random policy π as well as its

policy data buffer B ← O
12: πcur ← π, Π← Π ∪ {{π,B}}
13: else
14: Assign the existing policy and buffer with

πcur ← πj , Bj ← Bj ∪ O
15: Update πcur based on online rollout buffer D

(Equation 1) ▷ Equivariant Policy Update
16: D ← ∅
17: else
18: Sample an episode and append to online rollout

buffer D

extractor of π as shown in Figure 4. Considering that O
and B may have a different number of data pairs, we take
a probablistic perspective by treating those data buffers as
sample-based representations of two distributions and use the
Wasserstein distance to measure the distance between those
two feature distributions. The invariant features are obtained
from the equivariant feature extractor via a group max-pooling
operation as shown in Figure 3.

Wasserstein distance on invariant feature space. Let X
and Y be a matrix constructed by invariant features extracted
from the state buffer B of size n and the buffer O of size
m. Concretly, X = (X1, X2, ..., Xn)

T, Xi = hinv(si), i ∈
[n], si ∈ B, and Y = (Y1, Y2, ..., Ym)T, Yl = hinv(sl), l ∈
[m], sl ∈ O. We use the 1-Wasserstein distance [4] to measure
the distance between two empirical distributions X and Y.
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Fig. 4: Calculation of 1-Wasserstein distance and update of
selected policy πj , whose data has minimal distance to O.

Hence the distance between O and B is

dW (O,B) = W1(X,Y) = min
γ
⟨γ,M⟩F

s.t. γ1 = a, γT1 = b, γ ≥ 0, (2)

where Mi,l = ∥Xi − Yl∥2, a = [1/n, . . . , 1/n], b =
[1/m, . . . , 1/m]. M is the metric cost matrix.

V. SIMULATION EXPERIMENTS

We validate COVERS’s performance in robot manipulation
[39] tasks with nonstationary environments containing differ-
ent objects or following different reward functions. We aim
to investigate whether our method can (1) recall stored policy
when facing a seen group, as well as automatically initialize
a new policy when encountering an unseen group, (2) achieve
similar or better performance compared to baselines, and (3)
understand the significance of key components of COVERS.

A. Environment

Simulation setup. Our manipulation setup is composed
of four groups of tasks. Each group contains four tasks,
and all tasks within the same group exhibit rotational or
reflectional symmetry with respect to each other. We build
environments based on the Meta-World benchmark [39]. Meta-
World features a variety of table-top manipulation tasks that
require interaction with diverse objects using a Sawyer robot.
We show the four groups of tasks in Figure 2 including Goal
Reach for reaching a goal position, Button Press for pressing
the button with gripper, Drawer Close for closing drawer with
gripper, and Plate Slide for sliding the plate to a goal position.
The goal positions and object locations of tasks in each group
are symmetrically arranged around the center of the table.

States and actions. The agent receives four kinds of
observations: an RGB image captured by a top-down camera
centered over the table at each timestep, an RGB image
captured by the same camera at the beginning of the episode,
the robot state including gripper’s 3D coordinates and opening
angle, and auxiliary information. The RGB image at the initial
step helps alleviate the occlusion problem caused by the
movement of the robot. The auxiliary information contains



Fig. 5: Training curves for COVERS and other methods. Each background color corresponds to one task group. COVERS shows
similar performance with COVERS-GT, which utilizes additional ground truth group indices, and substantially outperforms
other baselines.

Fig. 6: The selected policies at each episode of COVERS. Each background color corresponds to one task group. The assigned
policy indexes remain in alignment with the ground truth ones.

3D goal positions which are only revealed to the agent in
Goal Reach since the goal locations are not visualized in
the captured image, and are masked out for other groups. To
close the sim-to-real gap, we prepossess the RGB images by
inpainting robot arms motivated by [2], with details deferred to
Section E. A comparison of the original and processed images
is visualized in Figure 7. The action is a four-dimensional
vector containing the gripper’s 3D positions and its opening
angle. Considering that we utilize two distinct robots: Sawyer
in the simulation and Kinova in the real-world, such an action
space and the image preprocessing mechanism help improve
transferability between different robot morphologies.

B. Baselines and Ablations

We compare COVERS with different methods detailed as
follows. 3RL [5], an acronym for Replay-based Recurrent RL,
is a state-of-the-art method in CRL with Meta-World tasks that
integrates experience replay [24] and recurrent neural networks
[3]. Note that we augment 3RL with a convolutional neural
network (CNN) to handle image inputs. In contrast, CLEAR
[24], a common baseline of CRL, only utilize the experience
replay by maintaining a memory buffer to store the experience
of the past tasks and oversamples the current tasks to boost the
performance in the current one. Equi utilizes a single policy
with an equivariant feature extractor to solve all tasks. CNN
utilizes a single policy with a CNN-based feature extractor
as a vanilla baseline. We provide the detailed implementation
of baselines and hyperparameters in Section D. We compare

with two ablation methods. COVERS-GT uses ground truth
group labels to assign policies to different groups, which helps
ablate the performance of our proposed policy assignment
mechanism. COVERS-CNN utilizes a vanilla CNN block as
the image feature extractor to help ablate the effect of using
equivariant feature extractors.

VI. SIMULATION RESULTS AND ABLATIONS

A. Results

Dynamic policy assignments. Figure 6 shows that when
the environment switches to a new group, COVERS quickly
detects changes and initializes a new policy for the group.
Our method also recalls the corresponding policy from the
collection when facing the same group again. Overall, the
dynamic policy assignments generated by COVERS align well
with the ground truth group labels. However, we observe some
instances where the policy assignment does not match the
ground truth. This could potentially be attributed to the fact
that the feature extractor of each policy may not be able to
capture representative features for each group during the early
stages of training. Notably, the rate of such misclassifications
significantly reduces as the number of training episodes in-
creases.

Training performance. We show the training curves of
all methods in Figure 5 and the quantitative performance in
Table II, including the average success rates and mean rewards.
COVERS achieves a much higher episode reward and success
rate consistently in different groups than baselines. It is worth



noting that although 3RL performs worse than COVERS,
it achieves better performance than baselines with implicit
task representations, including Equi, CLEAR, and CNN. This
indicates that the explicit task representation used by 3RL,
which maps transition pairs to latent variables using an RNN,
facilitates the revelation of partial task identifications, thereby
enhancing performance. It underscores the significance of task-
specific representations in CRL.

In the early stages of training, there isn’t a significant
performance difference between COVERS and Equi. However,
as training progresses, COVERS begins to outperform Equi.
This is because COVERS avoids the problem of forgetting
through the retraining of policies for each previously en-
countered task group. A comparison between CNN and Equi
reveals that incorporating group symmetries as inductive bias
within the equivariant network significantly enhances sample
efficiency. This is achieved by only optimizing the policy for
the abstracted MDP of each task group.

B. Ablation Study

The effect of group symmetric information. COVERS-
CNN devoid of the invariant feature extractor demonstrates
lower episodic rewards and success rates when compared with
COVERS as shown in Table I and Figure 5. From these results,
we conclude that the equivariant feature extractor significantly
enhances performance by modeling group symmetry informa-
tion by introducing beneficial inductive bias through its model
architecture.

The effect of the dynamic policy assignment module In
Figure 5, COVERS’s training curve is similar to COVERS-
GT, which uses ground truth group indexes as extra prior
knowledge. Table I shows that the performance drop due
to misclassification is minor considering the small standard
deviation and COVERS’s performance is within one or two
standard deviations of COVERS-GT.

VII. REAL-WORLD VALIDATION

Real-world setup. Our real-world experiment setup utilizes
a Kinova GEN3 robotic arm with a Robotiq 2F-85 gripper.
The top-down RGB image is captured with an Intel RealSense
D345f. Gripper’s coordinates and opening angle are obtained
through the robot’s internal sensors. The real robot setups
are demonstrated in Figure 8. We directly deploy the trained
policies in simulation to the real world. Table II shows average
success rates across 20 trials and shows that our trained
policies have strong generalization capability to real-world
scenarios. The performance drop compared with simulation
experiments may be due to the inconsistent visual features
and different scales of robots’ action spaces.

VIII. CONCLUSION

We propose COVERS, a novel Vision-based CRL frame-
work that leverages group symmetries to facilitate general-
ization to unseen but equivalent tasks under the same group
operations. COVERS detects group boundaries in an unsuper-
vised manner based on invariant features and grows policies

RealSim

Environment Setup

Original Top-down Image

Processed Top-down Image

Camera

Fig. 7: Image preprocessing to narrow down the sim-to-real
gap.

Fig. 8: The real Kinova GEN3 setup with four task groups.
The goal point marked in the figure is only disclosed to the
agent in Goal Reach as auxiliary information.

for each group of equivalent tasks instead of a single task.
We show that COVERS assigns tasks to different groups
with high accuracy and has a strong generalization capability,
outperforming baselines by a large margin. One limitation
of COVERS is that the memory it occupies grows linearly
with the number of task groups. However, it is worth noting



TABLE I: Quantitative results showing performances at convergence for different methods.

Methods COVERS 3RL CLEAR CNN Equi COVERS-GT COVERS-CNN

Plate Slide Success Rate 0.97± 0.02 0.28± 0.06 0.06± 0.03 0.03± 0.02 0.02± 0.02 0.91± 0.03 0.62± 0.05
Ave. Reward 344.04± 12.89 101.20± 7.35 65.65± 2.23 23.44± 1.14 64.02± 5.85 337.44± 13.87 232.25± 14.24

Button Press Success Rate 0.87± 0.04 0.52± 0.06 0.31± 0.06 0.09± 0.03 0.01± 0.01 0.87± 0.04 0.26± 0.05
Ave. Reward 323.41± 3.48 260.80± 6.86 138.78± 12.23 91.34± 9.34 121.13± 7.02 330.56± 2.63 181.21± 10.83

Drawer Close Success Rate 0.82± 0.04 0.40± 0.06 0.27± 0.05 0.16± 0.04 0.40± 0.05 0.98± 0.02 0.56± 0.05
Ave. Reward 400.09± 6.18 280.62± 6.39 216.08± 7.68 116.33± 10.1 273.26± 9.67 417.38± 5.6 227.3± 13.0

Goal Reach Success Rate 0.98± 0.02 0.60± 0.06 0.58± 0.06 0.14± 0.04 0.47± 0.05 0.97± 0.02 0.97± 0.02
Ave. Reward 483.53± 1.35 322.23± 17.33 293.5± 16.16 151.24± 14.31 306.72± 20.34 488.02± 0.35 480.96± 1.05

Average Success Rate 0.91± 0.02 0.44± 0.03 0.30± 0.03 0.1± 0.02 0.22± 0.02 0.93± 0.01 0.60± 0.03
Ave. Reward 387.77± 5.02 241.21± 7.39 178.5± 7.58 95.59± 5.59 191.28± 8.23 393.35± 5.19 280.43± 8.49

TABLE II: Real-world validation results.

Task Groups Success Rate

Plate Slide 0.45± 0.15
Button Press 0.60± 0.15
Drawer Close 0.65± 0.15
Goal Reach 0.95± 0.07

that COVERS still occupies less memory than maintaining a
policy buffer for each task by only storing representative data
frames such as the initial frames for each task group. Another
limitation is that although assuming a top-down camera with
a fixed base is widely adopted in existing works, it is hard to
fulfill outside of labs. It would be interesting to incorporate
more general group operations, such as affine transformation
and domain randomization techniques, to handle deformed
images. Another interesting future direction is extending our
work to continual multi-agent RL settings.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support from the
unrestricted research grant from Toyota Motor North America.
The ideas, opinions, and conclusions presented in this paper
are solely those of the authors.

REFERENCES

[1] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Tae-
sup Moon. Uncertainty-based continual learning with
adaptive regularization. Advances in neural information
processing systems, 32, 2019.

[2] Shikhar Bahl, Abhinav Gupta, and Deepak Pathak.
Human-to-robot imitation in the wild. arXiv preprint
arXiv:2207.09450, 2022.

[3] Bram Bakker. Reinforcement learning with long short-
term memory. Advances in neural information processing
systems, 14, 2001.

[4] Vladimir I Bogachev and Aleksandr V Kolesnikov. The
monge-kantorovich problem: achievements, connections,
and perspectives. Russian Mathematical Surveys, 67(5):
785, 2012.

[5] Massimo Caccia, Jonas Mueller, Taesup Kim, Laurent
Charlin, and Rasool Fakoor. Task-agnostic continual
reinforcement learning: In praise of a simple baseline.
arXiv preprint arXiv:2205.14495, 2022.

[6] Gabriele Cesa, Leon Lang, and Maurice Weiler. A pro-
gram to build e(n)-equivariant steerable CNNs. In Inter-
national Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=WE4qe9xlnQw.

[7] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elho-
seiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and M Ranzato. Continual learning with
tiny episodic memories. 2019.

[8] Zhiyuan Chen and Bing Liu. Lifelong machine learning.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 12(3):1–207, 2018.

[9] Taco Cohen and Max Welling. Group equivariant con-
volutional networks. In International conference on
machine learning, pages 2990–2999. PMLR, 2016.

[10] Pavel I Etingof, Oleg Golberg, Sebastian Hensel, Tiankai
Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yu-
dovina. Introduction to representation theory, volume 59.
American Mathematical Soc., 2011.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In International Conference on Machine Learn-
ing, pages 1126–1135. PMLR, 2017.

[12] Marc Finzi, Max Welling, and Andrew Gordon Wil-
son. A practical method for constructing equivariant
multilayer perceptrons for arbitrary matrix groups. In
International Conference on Machine Learning, pages
3318–3328. PMLR, 2021.

[13] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max
Welling. Se (3)-transformers: 3d roto-translation equiv-
ariant attention networks. Advances in Neural Informa-
tion Processing Systems, 33:1970–1981, 2020.

[14] Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi,
Emilien Dupont, Yee Whye Teh, and Hyunjik Kim.
Lietransformer: Equivariant self-attention for lie groups.
In International Conference on Machine Learning, pages
4533–4543. PMLR, 2021.

[15] Khimya Khetarpal, Matthew Riemer, Irina Rish, and
Doina Precup. Towards continual reinforcement learn-
ing: A review and perspectives. arXiv preprint
arXiv:2012.13490, 2020.

[16] Khimya Khetarpal, Matthew Riemer, Irina Rish, and
Doina Precup. Towards continual reinforcement learning:
A review and perspectives. Journal of Artificial Intelli-
gence Research, 75:1401–1476, 2022.

[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,

https://openreview.net/forum?id=WE4qe9xlnQw


Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic for-
getting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

[18] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S
Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning. arXiv preprint
arXiv:1803.11347, 2018.

[19] Anusha Nagabandi, Chelsea Finn, and Sergey Levine.
Deep online learning via meta-learning: Continual
adaptation for model-based rl. arXiv preprint
arXiv:1812.07671, 2018.

[20] Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi,
and Abhinav Gupta. Cora: Benchmarks, baselines, and
metrics as a platform for continual reinforcement learn-
ing agents. In Conference on Lifelong Learning Agents,
pages 705–743. PMLR, 2022.

[21] Balaraman Ravindran and Andrew G Barto. Symmetries
and model minimization in markov decision processes,
2001.

[22] Balaraman Ravindran and Andrew G Barto. Approximate
homomorphisms: A framework for non-exact minimiza-
tion in markov decision processes. 2004.

[23] Hang Ren, Aivar Sootla, Taher Jafferjee, Junxiao Shen,
Jun Wang, and Haitham Bou-Ammar. Reinforcement
learning in presence of discrete markovian context evo-
lution. arXiv preprint arXiv:2202.06557, 2022.

[24] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy
Lillicrap, and Gregory Wayne. Experience replay for
continual learning. Advances in Neural Information
Processing Systems, 32, 2019.
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APPENDIX

In this section, we briefly introduce Group and Represen-
tation Theory [10] to help understand the policy structure in
Section F.

Linear group representations describe abstract groups in
terms of linear transformations on some vector spaces. In par-
ticular, they can be used to represent group elements as linear
transformations (matrices) on that space. A representation of
a group G on a vector space V is a group homomorphism
from G to GL(V ), the general linear group on V. That is, a
representation is a map

ρ : G→ GL (V ) ,

such that ρ(g1g2) = ρ(g1)ρ(g2), ∀g1, g2 ∈ G. (3)

Here V is the representation space, and the dimension of V
is the dimension of the representation.

A. Trivial Representation

Trivial representation maps any group element to the iden-
tity, i.e.

∀g ∈ G, ρ(g) = 1. (4)

B. Irreducible Representations

A representation of a group G is said to be irreducible
(shorthand as irrep) if it has no non-trivial invariant subspaces.
For example, given a group G acting on a vector space
V , V is said to be irreducible if the only subspaces of V
preserved under the action of every group element are the
zero subspace and V itself. The trivial representation is an
irreducible representation and is common to all groups.

C. Regular Representation

Given a group G, the regular representation is a represen-
tation over a vector space V which has a basis indexed by
the elements of G. In other words, if G has n elements (if
G is finite), then the regular representation is a representation
on a vector space of dimension n. An important fact about
the regular representation is that it can be decomposed into
irreducible representations in a very structured way.

D. Dihedral Group

The dihedral group Dn is the group of symmetries of a reg-
ular n-sided polygon, including n rotations and n reflections.
Thus, Dn has 2n elements. For example, the dihedral group
of a square (D4) includes 4 rotations and 4 reflections, giving
8 transformations in total.

E. Image Inpainting

To close the sim-to-real gap, we employ a pre-processing
technique on camera images, which involves in-painting
robotic arms. The process begins by capturing a background
image in which the robotic arm is absent from the camera’s
view. For every time step, a mask that represents the po-
sition of each robotic limb is generated, leveraging the 3D
locations of individual joints and the projection matrix of the

camera. With this mask, we can select all areas devoid of the
robotic arm, and subsequently update the background image
accordingly. The images are subjected to a color correction
process to mitigate any potential color deviations attributable
to lighting or reflection. Lastly, a distinct blue circle is overlaid
at the gripper’s position on the background image to indicate
the gripper’s location. The entire image in-painting process is
shown in Figure 9.

F. Detailed Policy Architecture

In this section, we present the detailed model architecture
including the model sizes and the types of each layer in
Figure 10.

In order to make our policy network equivariant under
transformations from the finite group D2, we need to choose
the appropriate representation for both the network input and
output, while also ensuring that the network architecture and
operations preserve this equivariance.

The image input is encoded using the trivial representation.
The robot state, on the other hand, is encoded with a mixture
of different representations: the gripper’s position on the z-
axis and the gripper’s open angle are encoded with the trivial
representation since they are invariant to group actions in D2.
The gripper’s location on the x and y-axes, however, are en-
coded with two different non-trivial irreducible representations
because their values are equivariant to group actions in D2.

The value output is encoded with the trivial representation
since the optimal value function should be invariant to group
actions [33]. Finally, the action output is encoded with a
mixture of different representations. For actions, the gripper
movement along the z-axis and the gripper’s opening angle
are encoded with the trivial representation, while the gripper’s
location on the x and y-axes are encoded with two different
non-trivial irreducible representations, aligning with the input
encoding. The distance metric is encoded with trivial repre-
sentation through the group pooling operation.

G. Implementation of CLEAR

The CLEAR algorithm [24] addresses the challenge of
continual learning by putting data from preceding tasks in
a buffer, utilized subsequently for retraining. This method
effectively decelerates the rate of forgetting by emulating a
continuous learning setting. The specific network architecture
for CLEAR is illustrated in Figure 11.

To make CLEAR able to process both images and robot
state as input, we introduce a feature extractor, which har-
moniously integrates a CNN and an MLP network. This
composite feature extractor is carefully designed to contain
a similar quantity of learnable parameters to our Equivariant
feature extractor.

H. Implementation of 3RL

The 3RL algorithm [5] can be seen as an improved version
of CLEAR, wherein additional historical data is provided to
the actor and critic from a dedicated context encoder. This
historical data includes (si, ai, ri), and the context encoder



Fig. 9: Image inpainting process.

Fig. 10: Detailed equivariant policy network architecture. ReLU nonlinearity is omitted in the figure. A layer with a suffix of
R indicates the layer output is in the regular representation. A layer with a suffix of T indicates the layer output is in the trivial
representation. A layer with a suffix of ’mix’ means the layer output combines different representations.

extracted task specificities from the history data with an
RNN network. The specific network architecture for 3RL is
illustrated in Figure 12.

I. Hyperparameters

We show the hyperparameters of our proposed COVERS in
Table III. Moreover, we show the hyperparameters of baselines
in Table IV.

TABLE III: COVERS Hyperparameter

Hyperparameters Value

Wasserstein distance threshold dϵ 1.0
Initial frame number k 4
Update interval Nu 1000
Rollout buffer size Ns 1000
Batch size 64
Number of epochs 8
Discount factor 0.99
Optimizer learning rate 0.0003
Likelihood ratio clip range ϵ 0.2
Advantage estimation λ 0.95
Entropy coefficient 0.001
Max KL divergence 0.05

TABLE IV: CLEAR and 3RL Hyperparameter

Hyperparameters Value

Common hyperparameter

Replay buffer size 200000
Discount factor 0.95
Burn in period 20000
Warm up period 1000
Batch size 512
Gradient clipping range (−1.0,+1.0)
Learning rate 0.0003
Entropy regularization coefficient 0.005

3RL Specific Hyperparameters

RNN’s number of layers 1
RNN’s context size 30
RNN’s context length 5



Fig. 11: Network architecture for CLEAR. In (a) we show the network architecture of the actor network and the critic network.
In (b) we show the structure of the feature extractor, which consists of both a CNN network and an MLP network. ReLU
nonlinearity is omitted in the figure.

Fig. 12: Network architecture for 3RL. In (a), we illustrate the structure of both the actor and critic networks, whereas (b)
highlights the configuration of the context encoder, comprising a feature extractor and GRUs. It’s noteworthy that the feature
extractor has the same architecture as the CLEAR algorithm, as shown in Figure 11.


	INTRODUCTION
	Related Work
	Preliminary
	Methodology
	Problem Formulation
	Algorithm
	Policy Network Architecture
	Unsupervised Dynamic Policy Assignment

	Simulation Experiments
	Environment
	Baselines and Ablations

	Simulation Results and Ablations
	Results
	Ablation Study

	Real-world Validation
	Conclusion
	Appendix
	Trivial Representation
	Irreducible Representations
	Regular Representation
	Dihedral Group
	Image Inpainting
	Detailed Policy Architecture
	Implementation of CLEAR
	Implementation of 3RL
	Hyperparameters


