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(a) Teleoperation through a single RGB camera. (b) Learned policies for dexterous manipulation.

Fig. 1: The framework for dexterous manipulation consists of two phases. (a) Demonstrations are collected using a real-time hand tracker
on a single visual stream of a human operator’s hand. The estimated fingertip 2D pixel coordinates are retargeted to 3D coordinates in
the robot frame. (b) Given these demonstrations, dexterous manipulation policies are learned on both a real Allegro Hand, using nearest
neighbor-based imitation, and on a simulated Allegro Hand using RL augmented with demonstrations.

Abstract— Optimizing behaviors for dexterous manipula-
tion has been a longstanding challenge in robotics, with a
variety of methods from model-based control to model-free
reinforcement learning having been previously explored in
literature. Perhaps one of the most powerful techniques to
learn complex manipulation strategies is imitation learning.
However, collecting and learning from demonstrations in dex-
terous manipulation is quite challenging. The complex, high-
dimensional action-space involved with multi-finger control
often leads to poor sample efficiency of learning-based methods.
In this work, we propose ‘Dexterous Imitation Made Easy’
(DIME) a new imitation learning framework for dexterous
manipulation. DIME only requires a single RGB camera to
observe a human operator and teleoperate our robotic hand.
Once demonstrations are collected, DIME employs standard
imitation learning methods to train dexterous manipulation
policies. On both simulation and real robot benchmarks we
demonstrate that DIME can be used to solve complex, in-hand
manipulation tasks such as ‘flipping’, ‘spinning’, and ‘rotating’
objects with the Allegro hand. Our framework along with pre-
collected demonstrations will be made publicly available at:
https://nyu-robot-learning.github.io/dime.

I. INTRODUCTION

The ability to dexterously manipulate objects with multi-
fingered hands has been crucial to the development of
general-purpose manipulation in humans [1, 2, 3]. However,
multi-finger control in robots requires complex contact-rich
interactions, achieved through high-dimensional actions. Due
to this, most of our robots today often only employ primitive
end-effectors [4], which significantly limits their dexterity.
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ssilwal}@nyu.edu.

To address this gap in dexterity, early works focused on
developing physics-informed controllers that required precise
modeling of the object-hand interaction [5, 6, 7]. Since such
an ability to model the world may not be present in real-
world scenarios, more recently, learning-based approaches
have shown promise for general-purpose dexterity.

Over the last few years, we have witnessed several im-
pressive results in the use of large-scale reinforcement learn-
ing (RL) for dexterous manipulation. For instance, through
extensive simulator modeling, domain randomization, and
millions of samples of training, behaviors such as cube
rotation and Rubik’s cube manipulation were demonstrated
on the Shadow Hand [8, 9]. However, such model-free RL
techniques often require manual reward design along with
several weeks of training on industry-scale compute. This
begs the question – can we learn dexterous behaviors in a
sample-efficient manner?

Perhaps the most sample-efficient way to learn robotic
skills is imitation learning [10, 11]. Here, given a handful
of demonstrations recorded by a human operator, the robot
is tasked to imitate that behavior. So why not use imitation
learning for dexterous manipulation? The key challenge is
that obtaining demonstrations for high-dimensional systems
is quite challenging – kinesthetic teaching [12] requires
significant conditioning on the robot; custom-built cyber
gloves [13] are expensive; visual piloting [14] requires
registration and calibration of a multi-camera system.

In this work, we present Dexterous Imitation Made Easy
(DIME), a new robotic system for both collecting and
learning from visual demonstrations. Given visual inputs
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from a single RGB camera, DIME enables human operators
to teleoperate multi-fingered robotic hands that can produce
high-quality demonstrations for dexterous manipulation (See
Fig. 1(a)). Unlike prior frameworks, collecting demonstra-
tions with DIME requires minimal calibration and human
training. This is achieved by using off-the-shelf hand pose
detectors [15] to obtain fingertip positions that are then
retargeted and fed to fingertip controllers on our robotic
hand. Across our experiments, collecting a demonstration
takes around 100 seconds on average.

Given these demonstrations, DIME is then tasked with
learning policies to solve desired dexterous tasks. For this,
we investigate two broad settings – imitation in simulation
and imitation on robot hardware. In simulation, we show
that standard model-free RL combined with imitation learn-
ing [16] is able to train dexterous manipulation policies in
about 2 days of simulated training time. While on the real
robot, we demonstrate how non-parametric, nearest-neighbor
learning [17, 18] can achieve high performance on tasks im-
mediately (See Fig. 1(a)). This shows that the demonstrations
obtained from DIME are versatile across imitation learning
paradigms in simulation and on real robots.

In summary, this paper presents DIME, a framework that
enables efficient dexterous manipulation through imitation.
Concisely, our three primary contributions are: (a) We have
developed an easy-to-use teleoperation framework for dex-
terous manipulation that can be used with untrained human
operators. (b) We demonstrate the demonstrations obtained
from DIME are compatible with state-of-the-art imitation
learning algorithms. (c) We empirically study the interaction
of imitation learning techniques with DIME and successfully
solve dexterous manipulation tasks such as ‘flipping’, ‘turn-
ing’, and ‘rotating’ objects. To the best of our knowledge,
DIME is the first work to successfully train dexterous ma-
nipulation policies using inexpensive demonstrations.

II. RELATED WORK

Our framework builds on top of several important works in
collecting demonstrations, hand tracking, imitation learning,
and reinforcement learning. In this section, we describe prior
research that is relevant to our work.

A. Obtaining Robot Demonstrations

Many methods have been proposed to collect demonstra-
tions, which can accelerate the learning of complex robotic
tasks. Kinesthetic training involves a human physically guid-
ing the robot to complete a task [12, 19, 20, 21]. Although
this is a powerful technique for providing demonstrations to
robotic arms, they are difficult to use for multi-fingered hands
due to the significantly larger action space. Virtual reality-
based teleoperation [22], or the use of assistive tools [23, 24]
have been successful for manipulation tasks. However, again
they have not been shown to be useful for challenging
dexterous tasks. Perhaps the most commonly used method
to obtain demonstrations for dexterous hands is the use
of a CyberGlove [13]. Here, a custom-made glove is used
to precisely measure a human operator’s hand movements,

which is then transferred onto a real robot. However, such a
system is expensive and requires calibration before being
run. More recently the DexPilot system [14] has shown
how dexterous demonstrations can be produced without a
Cyberglove by instead using a rig of RGBD camera that
estimate the operator’s hand pose. Our framework DIME is
inspired by this work and builds on top of it by alleviating
the need for multiple cameras and the associated challenges
of registration and calibration.

B. Vision-Based Hand Tracking

There has been a recent push in the computer vision
community to detect and estimate the pose of human hands
using image [25, 15, 26] and depth-based [27, 28]. Obtaining
hand estimates from a single camera provides a significant
advantage over expensive gloves [13] or precisely-calibrated
camera rigs [14]. We however note that single-camera ap-
proaches can run into unobservability due to occlusions. In
our experiments, we find that our human operators avoid
occlusion regions and can hence still solve dexterous tasks.
Most similar to our methodology of collecting demonstra-
tions, recent work [29] has shown how the FrankMocap [30]
pose estimator can be used to teleoperate the Allegro hand.
DIME builds on top of this work by collecting more dex-
terous demonstrations and training behavior policies using
them. Instead of FrankMocap, DIME uses the MediaPipe
hand detector [15], a real-time hand tracking pipeline that
produces a hand skeleton from a single RGB camera. This
detector is trained on a variety of hand poses across syn-
thetic, wild, and in-house datasets to detect 21 keypoints
on the hand in a 2.5D coordinate space. Coupled with GPU
acceleration, this allows for more accurate and real-time pose
estimates compared to other hand detectors.

C. Imitation Learning

Imitation learning is a technique to learn a policy from
expert demonstrations. Behavior Cloning (BC), encourages
a model to mimic expert actions by learning over a dataset
in a supervised learning fashion and has been applied to
a wide range of problems [31, 32, 33]. It is well-known
that the performance of models suffers when the test data
distribution shifts away from the training domain, even in
the linear case [34]. DAgger [35] attempts to overcome
this problem by allowing query access to an expert policy
during training, something not necessarily feasible for all
problems. Another approach to imitation is Inverse Rein-
forcement Learning (IRL), where the underlying reward
function is explicitly inferred [36, 37]. Following this, a
policy is trained to maximize this reward function. In the
context of dexterous manipulation, such IRL approaches
often require extensive online training, which is not always
possible for real-robotic applications. Instead, for DIME, we
use a non-parametric, nearest-neighbor approach [18] to map
observations to actions due to its simplicity, bounded action
space, and empirical success on manipulation tasks.
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Fig. 2: Overview of the teleoperation framework in DIME. Given RGB streams of a human operator’s hand, a hand pose detector followed
by a retargeting procedure is used to control the fingertips of the robot’s hand. Visual feedback of the teleoperated actions is then provided
back to the operator for real-time teleoperation.

D. Finetuning Imitation with Reinforcement Learning

While there has been some success in using pure RL
for learning policies for dexterous tasks, they are limited
to simple behaviors [38], by the use of perfect models [39],
or require years of simulated time for a single task [40].
Incorporating external data alongside reinforcement learning
algorithms has been proposed for off-task data [41, 42]
and with expert task-specific data by augmenting off-policy
replay buffers and incorporating additional demonstration-
based loss terms [43, 44]. Most relevant to our work is the
DAPG algorithm [16], which has demonstrated that RL can
be used to finetune behavior cloning imitation policies on a
simulated Adroit hand. Similarly, we have found DAPG to
be a versatile method that is able to solve imitation learning
problems on a simulated Allegro hand.

III. IMITATION FOR DEXTERITY

A. Overview

Our system, ‘Dexterous Imitation Made Easy’ (DIME)
consists of two phases – teleoperation and imitation. In the
teleoperation phase, human operators control a four-fingered
Allegro hand through a visual RGB stream of their hand.
This is achieved by estimating the human’s hand pose, deter-
mining their fingertip locations, and retargeting them to the
robot’s fingertips. The robot then uses an inverse-kinematics
based controller to reach desired fingertip positions. During
this process, the human operator is shown real-time visual
feedback of their actions. This feedback allows the operator
to correct for errors and produce high-quality demonstrations
for dexterous manipulation tasks.

Once a desired number of demonstrations are obtained, we
begin the imitation phase. Here we investigate two settings,
learning in simulation and learning in real. In the simulation
setting, demonstrations are collected by teleoperating a sim-
ulated model of the Allegro hand. While in the real-robot
setting, demonstrations are collected directly on the real Al-
legro hand. Each of these settings affords us the ability to use
different learning algorithms. Simulation learning allows for
sample-complex policy gradient approaches that can correct
for noise in the demonstrations, while real-robot learning
allows for sample-efficient non-parametric approaches. We
do not run policy gradient-based learning on our real robot
due to the sample complexity of such methods along with
preventing accidental damage to the robot. Nevertheless, we

believe that the policy gradient experiments in simulation
show that DIME can be used to accelerate model-free RL as
well. Details of both phases of DIME and their respective
components are presented next.

B. Hand Pose Mapping

To map human hand positions to the robot, we use a
single RGB camera and the MediaPipe hand detector to
extract 2.5D landmarks of an operator’s hand [15]. Rather
than inferring and mapping the rotational state for each joint
on the human hand to the robot, we map directly from 2.5D
space to 3D. Because the model does not output absolute
depth estimates, we choose to ignore the depth and treat
the fingertips as if they were on a plane above the palm.
We then map directly from human hand fingertip locations
in 2D to robot fingertip locations in 3D space, keeping the
robot fingertips at a fixed height above the palm. We map
the index, middle, and ring fingers along the y plane. Since
the Allegro Hand only has four fingers, we use the pinky
finger for finer control. We define a quadrilateral bound with
which the human thumb can be detected and re-mapped to
control the xy movement of the robot thumb.

Our mapping is easy to calibrate and only requires moving
the hand to a sequence of reference positions at the extremes
of the finger positions. We take the positions of both the
human and robot hands at the extrema and linearly interpo-
late to produce desired target 3D positions for intermediate
locations in space. The desired 3D positions are then fed to
a robot controller which is described in the next section.

C. Allegro Hand Controller

Given desired fingertip locations in 3D space, we compute
the required joint angles using a model of the robot and an
inverse kinematics solver. For every joint, we compute the
torque required to compensate for gravity and the control
torque from a PD controller to reach the desired joint
angle. This control loop is run at 300Hz, while desired
positions are streamed at 30Hz. We use ROS [45] to facilitate
communication between the hand detector and robot. This
framework is hence compatible with remote teleoperation
once the remote machine is registered on our ROS network.

D. Demonstration Collection

To collect demonstrations, we run the hand pose detection
and mapping in real-time on a single desktop computer.
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Fig. 3: The demonstration collection process for the three tasks. For each task, the operator’s hand in the upper row is depicted followed by
the corresponding state of the robot’s hand in the lower row. The rightmost column visualizes the operator’s actions during demonstration
collection along with the simulated MuJoCo environments for each task.

We record an image of the Allegro Hand, the state of the
object, and the calculated target fingertip locations at 5 Hz.
To estimate the state of objects we use ROS’s AR tracking
library. The robotic system can hence be described by the 16
joint angles of the Allegro Hand along with the 3D position
and rotation of the object. For state-based imitation, we use
an observation space consisting of the 3D positions of all 4
fingertips and the 3D position of the object with respect to
the wrist joint. For image-based imitation, we use the RGB
images of the Allegro Hand. The action space is the 3D
position of the 4 desired fingertip locations, also relative to
the wrist. We exclude transitions with changes less than 2
centimeters for imitation learning on the robot. This is done
to account for the human operator pausing intermittently
while collecting demonstrations. To study the usefulness
of collected demonstrations, DIME integrates demonstration
collection for both simulated hand control and real hand
control. Examples of demonstrations can be seen in Fig. 3.

Given a set of demonstrations collected through DIME,
our framework for dexterous imitation studies two types
of imitation learning algorithms – RL finetuning for our
simulated hand and non-parametric learning for our real
hand. In the following sections we describe the algorithms.

E. Reinforcement Learning in Simulation
To imitate from demonstrations collected in simula-

tion, we use Demonstration-Augmented Policy Gradients
(DAPG) [16], a powerful imitation based algorithm for
dexterous manipulation. DAPG incorporates demonstrations
into the reinforcement learning procedure, which has been
shown to greatly accelerate learning on a suite of difficult
dexterous manipulation tasks with a 24 degree-of-freedom
Adroit hand. They do so by augmenting the standard policy
gradient with a weighted behavior cloning gradient term,

gaug =
∑

(s,a)∈ρπ

[∇θ log πθ(a|s)Aπ(s, a)]+

∑
(s,a)∈ρD

[∇θ log πθ(a|s)w(s, a)]
(1)

where ρπ, ρD are the state-action distributions generated by
the policy and demonstrations, respectively, and w(s, a) is
an exponential weighting function that decays to zero over
the course of training. The dynamic weighting term allows
the policy to quickly learn actions useful to the task and
the resulting policy is able to solve tasks where standard
RL fails with greater robustness to variations in mass and
geometry than standard RL methods. We choose to use this



Fig. 4: Success curves on simulated control for various RL and behavior cloning approaches with the shaded region indicating ±1 standard
error measured across 10 seeds. For all tasks behavior cloning finetuned with RL (BCRL & DAPG) achieve high success rates.

method due to its simplicity and accelerated learning over
prior policy-gradient approaches [43, 46, 47].

F. Imitation on the Robot

Although DAPG can quickly learn dexterous skills in
simulation, it would still require online training on the order
of several days for real-robot training. Hence to study the
usefulness of DIME for real robots, we turn to more sample-
efficient non-parametric imitation methods. The simplest
method in this class of algorithms is k-nearest neighbors,
which takes the current input, finds the k closest inputs in
the training dataset, and averages the outputs to produce a
prediction [48]. Locally weighted regression is a similar non-
parametric method that weights the outputs by a similarity
metric in the input space and has been used successfully
for state-based [17] (INN) and image-based [18] (VINN)
robot learning tasks. For state-based nearest neighbors, we
use the 15 dimensional observation space containing the 3D
fingertip positions for each of the 4 fingers and the 3D
position of the object. For image-based nearest neighbors,
we use 2048 dimensional feature representations of the input
image obtained from an encoder trained using BYOL [49] on
the images from the demonstrations [18]. We find that using
nearest-neighbor based imitation to select actions provides
a strong baseline for dexterous manipulation tasks using a
small number of demonstrations and minimal hyperparame-
ter tuning.

IV. EXPERIMENTAL EVALUATIONS

In this section, we experimentally evaluate DIME on
dexterous manipulation problems, both in simulation and on
our real Allegro Hand. Our experiments seek to answer two
central questions:

• Can DIME be used to collect high-quality demonstra-
tions for dexterity?

• Can the produced demonstrations be used to train dex-
terous behaviors?

A. Dexterous Manipulation Tasks

We look to tackle three dexterous manipulation tasks that
reflect the challenges present in developing robot dexterity.

1) Flipping: Given a rectangular object placed on the fin-
gers of the Allegro Hand, the hand is tasked to flip the object
to the center of the palm. Solving this task requires precise
coordination between the fingers since uneven movements
result in the object falling off the hand. Performing this task
is counted as a success when the object flips and lands within
2 cm of the palm’s center within 1 minute.

2) Spinning: Given a three-pronged knob attached to a
table, the Allegro hand is tasked to continuously spin the
knob in place. This task is based on the ROBEL bench-
mark [50], and does not include the rotation of the knob in
the observation space on hardware, but does in simulation.
Performing this task is counted as a success when 120
degrees of rotation is achieved in 1 minute.

3) Rotating: Given a cube placed in the center of the
Allegro hand, the hand is tasked to continuously rotate
the cube in the plane. Solving this task requires the robot
to make multi-fingered contacts to both rotate and correct
for deviations of the cube from the center of the hand.
Performing this task is counted as a success when 90 degrees
of rotation is achieved in 1 minute.

In simulation, for each task, a MuJoCo [51] environment
is created with a similar success metric as with the real robot
environment. However, unlike the real environment, a dense
reward function is created for each environment that is linear
with the distance between the object and its target pose.
This reward function is required for optimization using RL.
To ensure reproducibility, our simulated environments and
accompanying demonstrations will be publicly released.

B. Demonstration Collection

For each of our tasks, we first collect 30 demonstrations of
each of them using DIME. Representative examples of these
demonstrations can be seen in Fig. 3. For simulation tasks,
we collect 10 demonstrations for each task. On average we
notice that each demonstration for flipping, spinning, and
rotating requires 30, 120, and 150 seconds to teleoperate
respectively. This indicates that the rotating task is the
hardest among our set of tasks for human operators. We
notice that since we use a single camera, there are often
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Fig. 5: Robot runs for both state-based (INN) and image-based (VINN) non-parametric nearest neighbors along with state-based parametric
behavior cloning (BC) are visualized across the three tasks. INN performs the best across all three tasks, while VINN is able to solve the
flipping and rotating tasks. BC is unable to solve any task and suffers from distributional mismatch [35].

occlusions during teleoperation that can cause inaccuracies
in the MediaPipe hand detector [15]. To address this, human
operators automatically adjust their hands through continu-
ous visual feedback from the teleoperated robot hand.

C. Imitation Learning Algorithms

Given demonstrations collected in simulation and real, we
study the use of the following imitation learning algorithms.

1) Behavior Cloning (BC & VBC): Here, a parametric
neural network model is used to predict actions given states
using supervised training [52, 24]. We experiment with both
vision-based (VBC) and state-based (BC) observations for
real-robot training.

2) Nearest Neighbors (INN & VINN): Here, a non-
parametric model is used to match given observations with
examples in the demonstration [17, 18] as described in
Section III-F. The actions corresponding to the best match
are then applied to the robot. We experiment with both
vision-based (VINN) and state-based (INN) observations for
real-robot training.

3) Proximal Policy Optimization (PPO): Here, a model-
free RL optimizer is used to train policies in simulation [47].
Policies trained with PPO are initialized randomly.

4) Behavior Cloning with RL finetuning (BCRL): Here,
model-free RL is used on top of a behavior-cloned policy
in simulation. This can be viewed as PPO initialized from
BC-trained policies.

5) Demonstration Augmented Policy Gradient (DAPG):
Here, a policy gradient approach is used to train policies
using both a cloning loss similar to BC and an RL loss
similar to PPO. More details on this algorithm are presented
in Section III-E.

The RL-based algorithms, PPO, BCRL, and DAPG are
run only in simulation since running them on the real
robot would require significant training time and could raise
safety issues. For these experiments, we made use of the
MJRL codebase [16]. The hyperparameters for each of these
algorithms are selected through a hyperparameter search.
Implementations, along with tuned hyperparameters of all
imitation algorithms will be publicly released to ensure
reproducibility. Visualization of trained policies across all



tasks can be found on our project website: https://
nyu-robot-learning.github.io/dime

D. Imitation Learning in Simulation

The policies trained with BCRL and DAPG produced
similar results to one another, whereas PPO methods had
more erratic movements. While this erratic behavior afforded
success in the environments with easier tasks (flipping and
spinning), policies from PPO were not able to successfully
rotate the cube placed on the palm. The policies that used
demonstrations were also qualitatively better than the tele-
operated demonstrations, which would often take longer to
record and have more abrupt starts and stops. Both BCRL
and DAPG policies were significantly smoother. An example
of this is that the policy learned for rotating would be able
to pick up and rotate the cube between two fingers, whereas
our demonstrations would keep the block on the palm and
push with the thumb and last finger in opposing directions.

Surprisingly, the PPO policies were able to solve the
spinning task as well as the DAPG policies. Upon visualizing
the policies, we noticed that the PPO policies were successful
because extreme, random movements of the middle and last
finger were enough to spin the handle. Whereas the policies
learned with demonstrations were more ‘human-like’ and
smoother. We further notice that pure behavior cloning (BC)
fails on all tasks. Since the number of demonstrations used
is relatively small [24], BC policies are unable to remain in
the support of demonstration data and fail [35]. In contrast,
RL finetuning on top of the BC policies (BCRL & PPO)
allows the robot to account for states it hasn’t seen in the
demonstrations.

E. Imitation Learning on Real Allegro Hand

Quantitative results of our real robot experiments are pre-
sented in Table I. For each algorithm and each task, we run
the robot for ten trials. Success is determined by the metrics
discussed in Section IV-A. Qualitative visualization of the
runs is depicted in Fig. 5. We notice that non-parametric
nearest neighbors (INN) outperforms parametric behavior
cloning approaches across all tasks. This result is in line with
recent work in non-parametric imitation [18] being superior
to behavior cloning in domains with a limited number of
demonstrations (∼ 30). We note that on the Rotation task,
which is quite difficult to solve even by human operators
through teleoperation, INN achieves a perfect success rate on
90-degree rotation. Performance degrades mildly with larger
rotation angles when the cube moves outside the manipulable
region on the palm.

To further emphasize the usefulness of DIME, we run a
visual imitation learning algorithm VINN [18]. The input
visual information is the RGB robot images shown in Fig. 5.
Here, visual representations are first optimized independently
for each task using the self-supervised BYOL algorithm [49].
Following this, similar to INN, nearest-neighbor matching is
done to select actions. Although the performance of visual
imitation is lower on average than state-based imitation, we
notice strong performances on the flipping and rotation task.

TABLE I: Success rates on our real Allegro hand using DIME.

Method Used Flipping Turning Rotation

90◦ 180◦

INN (State Based) 80% 60% 100% 80%
Behavior Cloning (State Based) 0% 0% 0% 0%

VINN (Image Based) 90% 0% 70% 50%
Behavior Cloning (Image Based) 0% 0% 0% 0%

However, on the spinning task, VINN is unable to learn good
representations due to the visual complexity of the scene. We
believe this is due to the inability of BYOL to learn effective
representations for cluttered scenes with a limited number of
demonstrations.

V. LIMITATIONS AND DISCUSSION

We have presented DIME, a framework to collect and
learn from inexpensive demonstrations. Through experimen-
tal evaluations, we have shown that DIME can solve several
dexterous manipulation tasks with high success rates. How-
ever, we believe that this is just the first step towards training
dexterous robots from inexpensive demonstrations. There
are still two key limitations of this framework. First, our
demonstration collection pipeline requires the specification
of a z-plane. This is because of the inherent depth ambiguity
with RGB cameras. We believe this could be resolved by
utilizing depth information from stereo or depth cameras.
Second, for real-robot experiments, we notice that some
tasks such as spinning do not have high success rates. As
evidenced by our RL experiments in simulation, we believe
that developing new sample-efficient RL finetuning methods
can significantly alleviate this challenge. To encourage future
work on dexterous manipulation we will publicly release
our custom-built hand controllers, demonstration collection
pipeline, demonstration data, and learning algorithms.
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