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Abstract

We investigate the generalization capabilities
of different methods of learning representations
via an extensible synthetic dataset of real-world
chaotic dynamical systems introduced by Gilpin
(2021). We propose an evaluation framework built
on top of this dataset, called ValiDyna, which uses
probes and multi-task learning to study robustness
and out-of-distribution (OOD) generalization of
learned representations across a range of settings,
including changes in losses, architecture, etc. as
well as changes in the distribution of the dynam-
ical systems’ initial conditions and parameters.
Our evaluation framework is of interest for gen-
eralization and robustess broadly, but we focus
our assessment here on evaluating learned repre-
sentations of ecosystem dynamics, with the goal
of using these representations in ecological im-
pact assesments, with applications to biodiversity
conservation and climate change mitigation.

1. Introduction
Chaos is typically defined as extreme sensitivity to initial
conditions; with this property even deterministic systems
become impossible to predict in the limit. However, chaotic
systems do exhibit patterns, such as characteristic shapes
or subsequences; for example the classic butterfly shape of
the Lorentz attractor shown in Fig. 1. This makes chaotic
systems a compelling challenge for representation learning:
can representations be learned which capture such high-level
patterns, making the representations useful for downstream
tasks such as forecasting, generative modelling, infilling,
few-shot transfer learning, etc.? Which losses, architectures,
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Figure 1. A single trajectory from the Lorenz dynamical system.

regularization, and other design choices lead to better repre-
sentations? How can we be sure the learned representations
generalize well, and are not merely picking up on spurious
correlations? How robust are the representations to differ-
ences in initial conditions, environmental settings, or shifts
in distribution? These are some of the questions we seek to
answer using our evaluation framework, ValiDyna.

We are motivated to validate learned reprsentations of dy-
namical systems because we wish to use them in a real-
world setting: for Ecological Impact Assessments (EIAs).
EIAs seek to characterize risks or impacts of environmental
change on ecosystems or society. This lengthy and expen-
sive process is typically done manually by a team of expert
practitioners, and an important component of the process
often (and increasingly) involves computational modelling
of the ecosystem. This is typically done by collecting a
series of environmental measurements, fitting an Ordinary
Differential Equation (ODE) based on previously published
models of similar ecosystems, modeling a proposed change
(or often, a small set of possible changes) to the ecosystem
in terms of changed variables in the ODE, solving the new
ODE(s), and examining the effect on variables of interest
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such as the population levels of keystone species. Repre-
sentation learning could help uncover patterns that transfer
across ecosystems, and provide a ’foundation’ model that
could be adapted to new settings with relatively less data,
enabling computational EIAs to be performed more quickly
and in a wider range of situations.

2. Related Work
Gilpin (2021) present a dataset of ODEs that show chaotic
behaviour under certain conditions. They benchmark ML
models typically used with time series for a variety of
tasks, including forecasting, and also highlight some re-
lationships between model performance and the properties
of the chaotic ODE.

Many works have studied generalization (in particular OOD)
in the context of dynamical systems. Arjovsky (2021) dis-
cuss how generalization relies on assumptions about the
test data, and how they depend on the specifics of the task
(No Free Lunch theorem). They discuss how having multi-
ple training environments allows models to ignore spurious
correlations, and to produce better predictions based on in-
variant features. Yin et al. (2022) propose a framework to
learn contextual dynamics by decomposing fe(x

e
t ) =

dxe
t

dt
into fe = f + ge and regularizing ge in order to maximize
the information in f , which is common to all environments.
Gulrajani & Lopez-Paz (2021) discuss model selection for
Domain Generalization (DG) as non-trivial and integral to
any DG algorithm. They propose model selection algo-
rithms and develop a framework (DomainBed) for testing
domain generalization. Raissi et al. (2019) employ partial
differential equations as a regularization mechanism that
enforces the shape of the neural network output. Lee et al.
(2021) enforce the learning of explicit context features that
are then used by the Reinforcement Learning (RL) agent
to predict the dynamics. Wang et al. (2020) show that ML
techniques generalize badly when the distribution of the
data or the system parameters in the test set are not included
in the train set.

We aim to support works of this nature, by providing a rel-
atively generic and lightweight set of exploratory analyses
and evaluation approaches, together with standards for their
use. Our primary objective is to make this toolbox of practi-
cal use in evaluating learned representations for scientific
applications, like EIAs.

3. The ValiDyna evaluation framework
Our framework is built upon the Pytorch and Pytorch-
Lightning libraries, and emphasizes the use of probes and
multi-task learning for evaluating representations, as well as
simplifying more standard robustness and sensitivity anal-
yses. In summary, it allows evaluation of the following

components:

• Architecture (e.g. RNN, Transformer, N-BEATS)

• Supervised loss (e.g. MSE, Cross-Entropy, MLE)

• Regularization (e.g. Dropout, Zoneout, L2, L1)

• System parameters (e.g. coefficients, scale parameters)

Via the following means:

• Sensitivity/robustness analysis: Perturbation of initial
conditions/system parameters via different noise distri-
butions

• Validation suites: Validating on a set of related test sets
generated via different noise distributions

• Probes: Using a linear layer or another feed-forward
network attached to different layers of the representa-
tion to assess performance at the task defined by that
probe (e.g. classification, forecasting)

• Multi-task performance: Training with multiple objec-
tives, e.g. reconstruction, classification, and forecast-
ing, and tracking performance across all of them

• Transfer/few-shot learning: Pre-training on one task
and then fine-tuning (only on a few examples, for few-
shot learning) on another, and measuring performance

• Generative modelling: Sampling from the learned
model and using various measures of similarity to the
training data distribution

4. Experiments
In this initial study, we demonstrate several components
of the ValiDyna framework, focusing on validating learned
representations for their use in EIAs. First, we discuss the
general setting of our experiments. Next, in section 4.2, we
perform a robustness analysis to random data splits. Then,
we perform a one-shot learning experiment to compare the
quality of representations accross attractors in subsection
4.3. Finally, in subsection 4.4 we assess multi-task perfor-
mance, training for forecasting with a self-supervised task
of environment classification, and vice-versa.

4.1. Setting

We focus on the representation capabilities of ML models
that are often applied to time series:

• Recurrent Neural Networks (RNNs) such as LSTMs
(Hochreiter & Schmidhuber, 1997) and GRUs are
likely the most popular ML architecture applied to
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time series, given that these models can process series
of arbitraty time length.

• The Transformer (Vaswani et al., 2017) is a fully-
attentional model that has shown state-of-the art perfor-
mance in sequence-to-sequence translation tasks, and
has replaced RNNs for many tasks.

• N-BEATS (Oreshkin et al., 2020) achieves state-of-the-
art performance on forecasting tasks, thanks to its use
of neural-basis expansions and double residual con-
nections. Unlike RNNs and Transformers, N-BEATS
needs the number of input and output time steps to be
fixed.

Due to N-BEATS’ limitation of requiring a fixed number of
input time steps, we configure all our models to take input
time series of fixed length Tin, and for the forecasting task
to predict an output time series of fixed length Tout. See
Appendix A for more details on how models are adapted to
a Multi-Task setting.

As not all dynamical systems have the same space dimension
(i.e. vector size per time step), we need to either train a
different model for each possible space dimension, or to
pad low dimensional time series with zeros. We focus on
the chaotic attractors of dimension 3, which are the most
common (100 out of 134 in the dataset).

For the classification task, we train our models to predict the
chaotic dynamical system from which the given trajectory
chunk comes from, using a standard cross-entropy loss. For
the forecasting task, the models predict the next Tout time
steps given the previous Tin ones.

All models are trained with an AdamW optimizer, the learn-
ing rate starts at 0.01, and is divided by 5 whenever the
validation loss stagnates, with 1 epoch of patience. We also
perform early stopping by monitoring the validation loss
with patience 5.

4.2. Robustness Analysis

In this experiment, we measure the effect of the random
train / validation split by performing 5 different ones for the
classification task. The results in Fig. 2 show that some
models, namely the Transformer and N-BEATS, have a huge
variability in performance depending on the data split, and
likely overfit spurrious correlations.

4.3. One-shot Learning

In this experiment, we focus on the attractor called SprottE.
We consider a set of four attractors having similar differen-
tial equations to SprottE, namely SprottA-D, and another
set of four other attractors very different to SprottE.
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Figure 2. Validation loss and accuracy during training for the clas-
sification task, for different model architectures and 5 different
random splits. A running average of length 100 is used for read-
ability. The two RNN models seem to consistently achieve a good
performance; N-BEATS shows more variability and worse results;
the Transformer shows the most variability although it ends up
achieving good results.

Some of our models are pre-trained on one set of attractors
(similar or different) and then SprottE is added, while other
models are trained directly on the corresponding set of five
attractors.

We seek to evaluate how the one-shot performance of the
models on SprottE changes as a function of the other attrac-
tors in the training set, as well as the effect of pre-training on
performance. To measure that, we use metrics that only re-
flect how well the model is doing for SprottE and not for the
other attractors: for the forecasting task, we only measure
the MSE loss for SprottE trajectories; for the classification
task, we measure the classification sensitivity (true positive
rate) and specificity (true negative rate).

The results in Fig. 3 show that the relationship between
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task performance and the one-shot experiment setting is
complicated, and practices leading to good forecasting per-
formance might not be the best ones for classification.

4.4. Multi-Task Transfer-Learning

In this experiment, we seek to evaluate the usefulness of
transfering learned representations from one task to another.
More specifically, we consider the tasks of classification
and forecasting, and we train our models in one, then freeze
the feature extractor weights (see Appendix A) and train the
head corresponding to the other task. With our framework,
this procedure can be simply written as:

# Python 3.9 pseudocode
Model: Type[MultiTaskModel]
model = Model()
classifier = Classifier(model)
classifier.fit(class_data)
model.freeze_featurizer()
forecaster = Forecaster(model)
forecaster.fit(forecast_data)

The results in Fig. 4 suggest that the representations learned
by N-BEATS are not useful accross tasks, presumably be-
cause we are not exploiting the neural basis expansions
to the fullest. However, the representations learned for
classification by the Transformer do transfer well to fore-
casting, allowing for a better performance compared to no
pre-training.

5. Discussion & Conclusions
Experts in various scientific fields are increasingly making
use of learned respresentations. An important barrier to
application for many researchers is the lack of standards
and reusable code for even relatively basic exploration and
evaluation of reprsentation quality and robustness. Our
ValiDyna evaluation framework provides a lightweight set
of tools and standards for assessing learned representations
of dynamical systems in ways relevant to their real-world
use.

We demonstrate preliminary results using the framework
to evaluate representations for use in EIAs, and we believe
ecology and climate change are important areas of applica-
tion where ValiDyna can be useful. ValiDyna provides tools
and evaluation standards that are also useful more broadly in
understanding learned representations of dynamical systems,
for example supporting research in interpretability, empir-
ical exploration of generalization and learning dynamics,
as well as responsible AI practices such as audit trails and
identification of failure modes and undesirable behaviour.
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Figure 3. Classification sensitivity/specificity and forecasting loss
for the SprottE attractor as a function of the other attractors present
in the training set, and whether the models were pre-trained without
SprottE (running average of length 20). Pre-training on a similar
set of attractors seems to yield the best forecasting perfomance,
while pre-training on different attractors results in slightly better
results for classification.
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Figure 4. Training losses for the classification and forecasting task
for different pre-training tasks (running average with window size
200). For both classification and forecasting, all models perform
better when not pre-trained on other tasks. Only the Transformer
seems to achieve a comparable performance with pre-training. We
speculate that the complete freeze of the feature extraction layer
is too unflexible, and better results could be obtained by allowing
some learning to occur at the feature extraction layer.
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A. Adapting Models for Multi-Task Learning
The main challenge of our Multi-Task setup is the need to adapt our model architectures for tasks that they were not
originally built for.

In the case of RNNs, this is not particularly problematic: RNNs are built for feature extraction, and it is easy to feed
these features (i.e. the last hidden outputs) to a classification or forecasting head. However, N-BEATS is designed for
forecasting, so in order to adapt it to other tasks, we split its architecture into a module that is a ”natural” feature extractor
(the neural-basis expansion of each block) and another one that forecasts future time steps. We can then attach a simple
classification head to the feature extractor. The Transformer requires a similar workaround: we consider that its encoder
module is a natural feature extractor, to which we can attach a classification or forecasting head, and so the decoder module
is unused.

Note that the natural number of features of a model (Nnatural) depends on some of its hyper-parameters, for instance it is
equal to the number of hidden layers for an RNN. Thus, in order to be able to set the same number of features (Nfeatures) for
all models (to allow comparisons), we attach to the natural feature extractor a simple linear layer, whose number of output
units is Nfeatures, as shown in Fig. 5.

Natural feature
extractor

Linear layer

Classification head Forecasting head

Multi-Task model

Input data Feature extractor

B x Tin x D

B x Nnatural

B x Nfeatures

B x Nclasses B x Tout x D


Figure 5. The inner structure of Transformer and RNNs adapted to Multi-Task. B is the batch size, D is the space dimension, and T
represents a number of time steps. Nnatural depends on the model hyper-parameters, but Nfeatures can be chosen. The picture is similar for
N-BEATS, but for forecasting the model works normally, without the extra linear layer and forecasting head.

B. Data Processing
All the tasks described in section 4 take only chunks of the given trajectories as input, and not the trajectories themselves.
It is thus useful to formally define Tn

e as a set of trajectories of length n coming from the dynamical system e, and

chunks(T t
e , k) =

⋃
t∈Tn

e

n−k⋃
i=1

(tj)i≤j≤i+k as the set of chunks (or slices) of length k that results from Tn
e .

For in-distrubution generalization tasks, we construct one data set per chaotic dynamical system, consisting of n
trajectories of length l where each initial condition is chosen randomly and close to the original one. Formally,
Tn
e = {Integrate(e.ODE, e.ic+ r, l)}ni=1, where e.ic is the initial condition, and r is uniform in [−ϵ, ϵ[.

For OOD generalization tasks, we can construct training data sets where the initial conditions are picked randomly from
some space quadrant, and test data sets where the initial conditions come from other quadrants. In addition, we can explore
OOD generalization by generating trajectories with different ODE parameters. For instance, the Lorenz system (Lorenz,
1963) depends on the parameters β, σ, ρ, and is known to exhibit chaotic behaviour for β = 8/3, σ = 10, ρ = 28.


