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Abstract

Event extraction is typically modeled as a001
multi-class classification problem where event002
types and argument roles are treated as atomic003
symbols. These approaches are usually lim-004
ited to a set of pre-defined types. We propose005
a novel event extraction framework that uses006
event types and argument roles as natural lan-007
guage queries to extract candidate triggers and008
arguments from the input text. With the rich009
semantics in the queries, our framework ben-010
efits from the attention mechanisms to better011
capture the semantic correlation between the012
event types or argument roles and the input013
text. Furthermore, the query-and-extract for-014
mulation allows our approach to leverage all015
available event annotations from various on-016
tologies as a unified model. Experiments on017
ACE and ERE demonstrate that our approach018
achieves state-of-the-art performance on each019
dataset and significantly outperforms existing020
methods on zero-shot event extraction. We021
will make all the programs publicly available022
once the paper is accepted.023

1 Introduction024

Event extraction (Grishman, 1997; Chinchor and025

Marsh, 1998; Ahn, 2006) is a task to identify and026

type event triggers and participants from natural027

language text. As shown in Figure 1, married and028

left are triggers of two event mentions of the Marry029

and Transport event types respectively. Two argu-030

ments are involved in the left event mention: she is031

an Artifact, and Irap is the Destination.032

Traditional studies usually model event extrac-033

tion as a multi-class classification problem (Mc-034

Closky et al., 2011; Li et al., 2013; Chen et al.,035

2015; Yang and Mitchell, 2016; Nguyen et al.,036

2016; Lin et al., 2020), where a set of event types037

are first defined, and then supervised machine learn-038

ing approaches will detect and classify each can-039

didate event mention or argument into one of the040

target types. However, each event type or argument041
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Figure 1: An example of event annotation.

role is treated as an atomic symbol, ignoring their 042

rich semantics in these approaches. Several studies 043

explore the semantics of event types by leveraging 044

the event type structures (Huang et al., 2018), seed 045

event mentions (Bronstein et al., 2015; Lai and 046

Nguyen, 2019), or question answering (QA) (Du 047

and Cardie, 2020; Liu et al., 2020). However, these 048

approaches are still designed for and thus limited 049

to a single target event ontology1, such as ACE or 050

ERE (Song et al., 2015). 051

With the existence of multiple ontologies and the 052

challenge of handling new emerging event types, it 053

is necessary to study event extraction approaches 054

that are generalizable and can use all available 055

training data from distinct event ontologies.2 To 056

this end, we propose a new event extraction frame- 057

work following a query-and-extract paradigm. Our 058

framework represents event types and argument 059

roles as natural language queries with rich seman- 060

tics. The queries are then used to extract the corre- 061

sponding event triggers and arguments by leverag- 062

ing our proposed attention mechanism to capture 063

their interactions with input texts. Specifically, (1) 064

for trigger detection, we formulate each event type 065

as a query based on its type name and a short list 066

of prototype triggers, and make binary decoding 067

of each token based on its query-aware embedding; 068

(2) for argument extraction, we put together all 069

argument roles defined under each event type as 070

a query, followed by a multiway attention mecha- 071

nism to extract all arguments of each event mention 072

1An ontology is defined as a collection of event types and
argument roles for a particular domain.

2For argument extraction, the QA-based approaches have
certain potential to generalize to new ontologies, but require
high-quality template questions. As shown in our experiments,
their generalizability is limited compared to ours.
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[SEP]
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[SEP]
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Figure 2: Architecture overview. Each cell in Argument Role Score Matrix indicates the probabilities of an entity
being labeled with an argument role. The arrows in Multiway Attention module show four attention mechanisms:
(a) entity to argument roles, (b) argument role to entities, (c) entity to entities, (d) argument role to argument roles.

with one-time encoding, with each argument pre-073

dicted as binary decoding.074

Our approach can naturally handle various on-075

tologies as a unified model – compared to previ-076

ous studies (Nguyen and Grishman, 2016; Wadden077

et al., 2019; Lin et al., 2020), our binary decod-078

ing mechanism directly works with any event type079

or argument role represented as natural language080

queries, thus effectively leveraging cross-ontology081

event annotations and making zero-shot predic-082

tions. Moreover, compared with the QA-based083

methods (Du and Cardie, 2020; Liu et al., 2020;084

Li et al., 2020) that can also conduct zero-shot ar-085

gument extraction, our approach does not require086

creating high-quality questions for argument roles087

or multi-time encoding for different argument roles088

separately, thus being more accurate and efficient.089

We evaluate our approach on two public bench-090

mark datasets, ACE and ERE, and demonstrate091

state-of-the-art performance in the standard super-092

vised event extraction and the challenging transfer093

learning settings that generalize to new event types094

and ontologies. Notablely, on zero-shot transfer to095

new event types, our approach outperforms a strong096

baseline by 16% on trigger detection and 26% on097

argument detection. The overall contributions of098

our work are:099

• We refine event extraction as a query-and-extract100

paradigm, which is more generalizable and efficient101

than previous top-down classification or QA-based102

approaches. 103

• We design a new event extraction model that lever- 104

ages rich semantics of event types and argument 105

roles, improving accuracy and generalizability. 106

• We establish new state-of-the-art performance on 107

ACE and ERE in supervised and zero-shot event 108

extraction and demonstrate our framework as an 109

effective unified model for cross ontology transfer. 110

2 Our Approach 111

As Figure 2 shows, given an input sentence, we 112

first identify the candidate triggers for each event 113

type by taking it as a query to the sentence. Each 114

event type, such as Attack, is represented with a 115

natural language text, including its type name and 116

a shortlist of prototype triggers, such as invaded 117

and airstrikes, which are selected from the training 118

examples. Then, we concatenate the input sen- 119

tence with the event type query, encode them with 120

a pre-trained BERT encoder (Devlin et al., 2019), 121

compute the attention distribution over the sequen- 122

tial representation of the event type query for each 123

input token, and finally classify each token into a 124

binary label, indicating it as a trigger candidate of 125

the specific event type or not. 126

To extract the arguments for each candidate trig- 127

ger, we follow a similar strategy and take the set 128

of pre-defined argument roles for its corresponding 129

event type as a query to the input sentence. We 130

use another BERT encoder to learn the contextual 131
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representations for the input sentence and the query132

of the argument roles. Then, we take each entity133

of the input sentence as a candidate argument and134

compute the semantic correlation between entities135

and argument roles with multiway attention, and136

finally classify each entity into a binary label in137

terms of each argument role.138

2.1 Trigger Detection139

Event Type Representation A simple and intu-140

itive way of representing an event type is to use141

the type name. However, the type name itself can-142

not accurately represent the semantics of the event143

type due to the ambiguity of the type name and144

the variety of the event mentions of each type. For145

example, Meet can refer to an organized event or146

an action of getting together or matching. Inspired147

by previous studies (Bronstein et al., 2015; Lai and148

Nguyen, 2019), we use a short list of prototype149

triggers to enrich the semantics of each event type.150

Specifically, for each event type t, we collect a151

set of annotated triggers from the training exam-152

ples. For each unique trigger word, we compute its153

frequency from the whole training dataset as fo and154

its frequency of being tagged as an event trigger155

of type t as ft, and then obtain a probability ft/fo,156

which will be used to sort all the annotated trig-157

gers for event type t. We select the top-K3 ranked158

words as prototype triggers {τ1, τ2, . . . , τK}.159

Finally, each event type will be represented with160

a natural language sequence of words, consisting161

of its type name and the list of prototype triggers162

T = {t, τ t1, τ t2, . . . , τ tK}. Taking the event type163

Attack as an example, we finally represent it as164

Attack invaded airstrikes overthrew ambushed.165

Context Encoding Given an input sentence166

W = {w1, w2, . . . , wN}, we take each event type167

T = {t, τ t1, τ t2, . . . , τ tK} as a query to extract the168

corresponding event triggers. Specifically, we first169

concatenate them into a sequence as follows:170

[CLS][EVENT][SEP] w1 ... wN [SEP] t τ t1 ... τ
t
K [SEP]171

where [SEP] is a separator from the BERT en-172

coder (Devlin et al., 2019). Following (Liu et al.,173

2020), we use a special symbol [EVENT] to em-174

phasis the trigger detection task.175

Then we use a pre-trained BERT encoder to176

encode the whole sequence and get contextual177

representations for the input sentence W =178

3In our experiments, we set K = 4.

{w0,w2, ...,wN} as well as the event type T = 179

{t, τ t
0, τ

t
1, ..., τ

t
K}.4 180

Enriched Contextual Representation Given a 181

query of each event type, we aim to automatically 182

extract corresponding event triggers from the input 183

sentence. To achieve this goal, we need to capture 184

the semantic correlation of each input token to the 185

event type. Thus we apply attention mechanism 186

to learn a weight distribution over the sequence of 187

contextual representations of the event type query 188

and get an event type aware contextual representa- 189

tion for each token: 190

AT
i =

1

T

|T |∑
j=1

αij · Tj , where αij = cos(wi, Tj), 191

where Tj is the contextual representation of the 192

j-th token in the sequence T = {t, τ t1, τ t2, . . . , τ tK}. 193

cos(·) is the cosine similarity function between 194

two vectors. AT
i denotes the event type t aware 195

contextual representation of token wi. 196

In addition, the prediction of event triggers also 197

depends on the occurrence of a particular context. 198

For example, according to ACE event annotation 199

guidelines (Linguistic Data Consortium, 2005), to 200

qualify as a Meet event, the meeting must be known 201

to be “face-to-face and physically located some- 202

where”. To capture such context information, we 203

further apply in-context attention to capture the 204

meaningful contextual words for each input token: 205

AW
i =

1

N

N∑
j=1

α̃ij ·wj , where α̃ij = ρ(wi, wj) , 206

where ρ(.) is the attention function and is computed 207

as the average of the self-attention weights from 208

the last m layers of BERT.5 209

Event Trigger Detection With the event type 210

oriented attention and in-context attention mecha- 211

nisms, each token wi from the input sentence will 212

obtain two enriched contextual representationsAW
i 213

and AT
i . We concatenate them with the original 214

contextual representation wi from the BERT en- 215

coder, and classify it into a binary label, indicating 216

it as a candidate trigger of event type t or not: 217

ỹti = Uo · ([wi; A
W
i ; AT

i ;Pi]) , 218

4We use bold symbols to denote vectors.
5We set m as 3 as it achieved the best performance.
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where [; ] denotes concatenation operation, Uo is219

a learnable parameter matrix for event trigger de-220

tection, and Pi is the one-hot part-of-speech (POS)221

encoding of word wi. We optimize the following222

objective for event trigger detection223

L1 = −
1

|T ||N |
∑
t∈T

|N |∑
i=1

yti · log ỹti ,224

where T is the set of target event types andN is the225

set of tokens from the training dataset. yti denotes226

the groundtruth label vector.227

2.2 Event Argument Extraction228

After detecting event triggers for each event type,229

we further extract their arguments based on the230

pre-defined argument roles of each event type.231

Context Encoding Given a candidate trigger r232

from the sentence W = {w1, w2, . . . , wN} and233

its event type t, we first obtain the set of pre-234

defined argument roles for event type t as Gt =235

{gt1, gt2, ..., gtD}. To extract the corresponding argu-236

ments for r, similar as event trigger detection, we237

take all argument roles Gt as a query and concate-238

nate them with the original input sentence239

[CLS] w1 w2 ... wN [SEP] gt1 g
t
2 ... g

t
D [SEP]240

where we use the last [SEP] separator to denote241

Other category, indicating the entity is not an argu-242

ment. Then, we encode the whole sequence with243

another pre-trained BERT encoder (Devlin et al.,244

2019) to get the contextual representations of the245

sentence W̃ = {w̃0, w̃2, ..., w̃N}, and the argu-246

ment rolesGt = {gt0, gt1, ..., gtD, gt[Other]}.247

As the candidate trigger r may span multiple248

tokens within the sentence, we obtain its contex-249

tual representation r as the average of the con-250

textual representations of all tokens within r. In251

addition, as the arguments are usually detected252

from the entities of sentence W , we apply a BERT-253

CRF model, which is optimized on the same train-254

ing set as event extraction to identify the entities255

E = {e1, e2, ..., eM}. As each entity may also256

span multiple tokens, following the same strategy,257

we average the contextual representations of all258

tokens within each entity and obtain the entity con-259

textual representations as E = {e1, e2, ..., eM}.260

Multiway Attention Given a candidate trigger r261

of type t and an entity ei, for each argument role262

gtj , we need to determine whether the underlying263

relation between r and ei corresponds to gtj or not, 264

namely, whether ei plays the argument role of gtj 265

in event mention r. To do this, for each ei, we first 266

obtain a trigger-aware entity representation as 267

hi = Uh · ([ei; r; ei ◦ r]) , 268

where ◦ denotes element-wise multiplication oper- 269

ation. Uh is a learnable parameter matrix. 270

In order to determine the semantic correlation be- 271

tween each argument role and each entity, we first 272

compute a similarity matrix S between the trigger- 273

aware entity representations {h1,h2, ...,hM} and 274

the argument role representations {gt0, gt1, ..., gtD} 275

Sij =
1√
d
σ(hi, g

t
j) , 276

where σ denotes dot product operator, d denotes 277

embedding dimension of gt, and Sij indicates the 278

semantic correlation of entity ei to a particular ar- 279

gument role gtj given the candidate trigger r. 280

Based on the correlation matrix S, we further 281

apply a bidirectional attention mechanism to get an 282

argument role aware contextual representation for 283

each entity and an entity-aware contextual repre- 284

sentation for each argument role as follows: 285

Ae2g
i =

D∑
j=1

Sij · gtj , Ag2e
j =

M∑
i=1

Sij · hi , 286

In addition, previous studies (Hong et al., 2011; 287

Li et al., 2013; Lin et al., 2020) have revealed that 288

the underlying relations among entities or argument 289

roles are also important to extract the arguments. 290

For example, if entity e1 is predicted as Attacker 291

of an Attack event and e1 is located in another 292

entity e2, it’s very likely that e2 plays an argument 293

role of Place for the Attack event. To capture the 294

underlying relations among the entities, we further 295

compute the self-attention among them 296

µij =
1√
d
σ(hi, hj) , µ̃i = Softmax(µi) , 297

Ae2e
i =

M∑
j=1

µ̃ij · hj , 298

Similarly, to capture the underlying relations 299

among argument roles, we also compute the self- 300

attention among them 301

vjk =
1√
d
σ(gtj , g

t
k) , ṽj = Softmax(vj) , 302

Ag2g
j =

D∑
k=1

ṽjk · gtk . 303
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Event Argument Predication Finally, for each304

candidate event trigger r, we determine whether an305

entity ei plays an argument role of gtj in the event306

mention by classifying it into a binary class:307

z̃tij = Ua · ([hi; g
t
j ; A

e2g
i ; Ag2e

j ; Ae2e
i ; Ag2g

j ]),308

where Ua is a learnable parameter matrix for ar-309

gument extraction. And z̃t is argument role score310

matrix for event type t. The training objective is to311

minimize the following loss function:312

L2 = −
1

|A||E|

|A|∑
j=1

|E|∑
i=1

zij log z̃ij ,313

where A denotes the collection of possible argu-314

ment roles, and E is the set of entities we need to315

consider for argument extraction. zij denotes the316

ground truth label vector. During test, an entity will317

be labeled as a non-argument if the prediction for318

Other category is 1. Otherwise, it can be labeled319

with multiple argument roles.320

3 Experiments321

3.1 Experimental Setup322

We perform experiments on two public bench-323

marks, ACE05-E+6 and ERE-EN (Song et al.,324

2015)7. ACE defines 33 event types while ERE325

includes 38 types, among which there are 31 over-326

lapped event types. We use the same data split of327

ACE and ERE as (Wadden et al., 2019; Lin et al.,328

2020; Du and Cardie, 2020) for supervised event329

extraction. For zero-shot event extraction, we use330

the top-10 most popular event types in ACE as seen331

types for training and treat the remaining 23 event332

types as unseen for testing, following Huang et al.333

(2018). In our experiments, we use random seeds334

and report averaged scores of each setting. More335

details regarding the data statistics and evaluation336

are shown in Appendix A.337

We further design two more challenging and338

practical settings to evaluate how well the approach339

could leverage resources from different ontologies:340

(1) cross-ontology direct transfer, where we only341

use the annotations from ACE or ERE for train-342

ing and directly test the model on another event343

6https://catalog.ldc.upenn.edu/
LDC2006T06

7Following Lin et al. (2020), we merge LDC2015E29,
LDC2015E68, and LDC2015E78 as the ERE dataset.

ontology. This corresponds to the domain adapta- 344

tion setting in transfer learning literature; (2) joint- 345

ontology enhancement, where we take the annota- 346

tions from both ACE and ERE as the training set 347

and test the approaches on ACE or ERE ontology 348

separately. This corresponds to the multi-domain 349

learning setting in transfer learning literature. In- 350

tuitively, an approach with good transferability 351

should benefit more from the enhanced training 352

data from other ontologies. We follow the same 353

train/dev/test splits of ACE and ERE as supervised 354

event extraction. 355

3.2 Supervised Event Extraction 356

Table 1 shows the supervised event extraction re- 357

sults of various approaches on ACE and ERE 358

datasets. Though studies (Yang and Mitchell, 2016; 359

Liu et al., 2020, 2018; Sha et al., 2018; Lai et al., 360

2020; Veyseh et al., 2020) have been conducted 361

on the ACE dataset, they follow different set- 362

tings8, especially regarding whether the Time and 363

Value arguments are considered and whether all 364

Time-related argument roles are viewed as a sin- 365

gle role. Following several recent state-of-the-art 366

studies (Wadden et al., 2019; Lin et al., 2020; Du 367

and Cardie, 2020), we do not consider Time and 368

Value arguments. Our approach significantly out- 369

performs most of the previous comparable baseline 370

methods, especially on the ERE dataset9. Next, 371

we take BERT_QA_Arg, a QA_based method, as 372

the main baseline as it shares similar ideas to our 373

approach to compare their performance. 374

Specifically, for trigger detection, all the base- 375

line methods treat the event types as symbols and 376

classify each input token into one of the target types 377

or Other. So they heavily rely on human annota- 378

tions and do not perform well when the annota- 379

tions are not enough. For example, there are only 380

31 annotated event mentions for End_Org in the 381

ACE05 training dataset, so BERT_QA_Arg only 382

achieves 35.3% F-score. In comparison, our ap- 383

proach leverages the semantic interaction between 384

the input tokens and the event types. Therefore it 385

still performs well when the annotations are lim- 386

ited, e.g., it achieves 66.7% F-score for End_Org. 387

In addition, by leveraging the rich semantics of 388

event types, our approach also successfully detects 389

event triggers that are rarely seen in the training 390

8Many studies did not describe their argument extraction
setting in detail.

9Appendix D describes several remaining challenges iden-
tified from the prediction errors on ACE05 dataset.

5

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06


Model ACE05-E+ ERE-EN

Trigger Ext. Argument Ext. Trigger Ext. Argument Ext.

DYGIE++ (Wadden et al., 2019) 67.3∗ 42.7∗ - -
BERT_QA_Arg (Du and Cardie, 2020) 70.6∗ 48.3∗ 57.0 39.2
OneIE (Lin et al., 2020) 72.8 54.8 57.0 46.5
Text2Event (Lu et al., 2021) 71.8 54.4 59.4 48.3
FourIE (Nguyen et al., 2021) 73.3 57.5 57.9 48.6

Our Approach 73.6 (0.2) 55.1 (0.5) 60.4 (0.3) 50.4 (0.3)

Table 1: Event extraction results on ACE05-E+ and ERE-EN datasets (F-score, %). ∗ indicates scores obtained
from their released codes. The performance of BERT_QA_Arg is lower than that reported in (Du and Cardie,
2020) as they only consider single-token event triggers. Each score of our approach is the mean of three runs and
the variance is shown in parenthesis.

Model Trigger Ext. Arg Ext. (GT)

BERT_QA_Arg† 31.6 17.0

Our Approach 47.8 43.0

Table 2: Zero-shot F-scores on 23 unseen event types.
†: adapted implementation from (Du and Cardie, 2020).
GT indicates using gold-standard triggers as input.

dataset, e.g., ousting and purge of End-Position,391

while BERT_QA_Arg misses all these triggers. A392

more detailed discussion about the impact of seed393

triggers is in Appendix B.394

For argument extraction, our approach shows395

more consistent results than baseline methods. For396

example, in the sentence “Shalom was to fly on397

to London for talks with British Prime Minister398

Tony Blair and Foreign Secretary Jack Straw”, the399

BERT_QA_Arg method correctly predicts Tony400

Blair and Jack Straw as Entity arguments of the401

Meet event triggered by talks, but misses Shalom.402

However, by employing multiway attention, espe-403

cially the self-attention among all the entities, our404

approach can capture their underlying semantic405

relations, e.g., Shalom and Tony Blair are two per-406

sons to talk, so that it successfully predicts all the407

three Entity arguments for the Meet event.408

3.3 Zero-Shot Event Extraction409

As there are no fully comparable baseline methods410

for zero-shot event extraction, we adapt one of the411

most recent states of the arts, BERT_QA_Arg (Du412

and Cardie, 2020), which is expected to have413

specific transferability due to its QA formulation.414

However, the original BERT_QA_Arg utilizes a415

generic query, e.g., “trigger” or “verb”, to classify416

each input token into one of the target event types417

or Other, thus is not capable of detecting event418

mentions for any new event types during the test.419

We adapt the BERT_QA_Arg framework by taking420

each event type instead of the generic words as a421

query for event detection. Note that our approach 422

utilizes the event types as queries without prototype 423

triggers for zero-shot event extraction. 424

As Table 2 shows, our approach significantly 425

outperforms BERT_QA_Arg under zero-shot event 426

extraction, with over 16% F-score gain on trigger 427

detection and 26% F-score gain on argument ex- 428

traction. Comparing with BERT_QA_Arg, which 429

only relies on the self-attention from the BERT 430

encoder to learn the correlation between the in- 431

put tokens and the event types or argument roles, 432

our approach further applies multiple carefully de- 433

signed attention mechanisms over BERT contex- 434

tual representations to better capture the semantic 435

interaction between event types or argument roles 436

and input tokens, yielding much better accuracy 437

and generalizability. 438

We further pick 13 unseen event types and an- 439

alyze our approach’s zero-shot event extraction 440

performance on each of them. As shown in Fig- 441

ure 3, our approach performs exceptionally well on 442

Marry, Divorce, Trial-Hearing, and Fine, but worse 443

on Sue, Release-Parole, Charge-Indict, Demon- 444

strate, and Declare-Bankruptcy, with two possible 445

reasons: first, the semantics of event types, such 446

as Marry, Divorce, is more straightforward and 447

explicit than other types, such as Charge-Indict, 448

Declare-Bankruptcy. Thus our approach can bet- 449

ter interpret these types. Second, the diversity of 450

the event triggers for some types, e.g., Divorce, is 451

much lower than other types, e.g., Demonstrate. 452

For example, among the 9 Divorce event trig- 453

gers, there are only 2 unique strings, i.e., divorce 454

and breakdowns, while there are 6 unique strings 455

among the 7 event mentions of Demonstrate. 456

3.4 Cross Ontology Transfer 457

For cross-ontology transfer, we develop two varia- 458

tions of BERT_QA_Arg as baseline methods: (1) 459

BERT_QA_Argmulti, which is the same as the orig- 460
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Source Target BERT_QA_Argmulti BERT_QA_Argbinary† Our Approach

Trigger Ext. Argument Ext. Trigger Ext. Argument Ext. Trigger Ext. Argument Ext.

ERE ACE 48.9 (48.9) 18.5 (18.5) 50.8 (50.8) 20.9 (20.9) 53.9 (52.6) 30.2 (29.6)
ACE ACE 70.6 48.3 72.2 50.4 73.6 55.1
ACE+ERE ACE 70.1 47.0 71.3 49.8 74.4 56.2

ACE ERE 47.2 (47.2) 18.0 (18.0) 47.2 (45.0) 17.9 (17.1) 55.9 (46.3) 31.9 (26.0)
ERE ERE 57.0 39.2 56.7 42.9 60.4 50.4
ACE+ERE ERE 57.0 38.6 54.6 37.1 63.0 52.3

Table 3: Cross ontology transfer between ACE and ERE datasets (F-score %). The scores in parenthesis indicate
the performance on the ACE and ERE shared event types.

Figure 3: Zero-shot event extraction on each unseen
event type. The number in parenthesis indicates # gold
event mentions of each unseen type in the test set.

inal implementation and use multi-classification to461

detect event triggers. (2) BERT_QA_Argbinary, for462

which we apply the same query adaptation as Sec-463

tion 3.3 and use multiple binary-classification for464

event detection. For joint-ontology enhancement,465

we combine the training datasets of ACE and ERE466

and optimize the models from scratch.10467

Table 3 shows the cross-ontology transfer results468

in both direct transfer and enhancement settings.469

Our approach significantly outperforms the base-470

line methods under all the settings. Notably, for471

direct transfer, e.g., from ERE to ACE, by compar-472

ing the F-scores on the whole test set with the per-473

formance on the ACE and ERE shared event types474

(F-scores shown in parenthesis), our approach not475

only achieves better performance on the shared476

event types but also extracts event triggers and argu-477

ments for the new event types in ACE. In contrast,478

the baseline methods hardly extract any events or479

arguments for the new event types. Moreover, by480

combining the training datasets of ACE and ERE481

for joint-ontology enhancement, our approach’s482

performance can be further boosted compared with483

using the annotations of the target event ontology484

only, demonstrating the superior transfer capability485

10Another intuitive training strategy is to train the model on
the source and target ontologies sequentially. Our pilot study
shows that this strategy performs slightly worse.

across different ontologies. For example, ACE in- 486

cludes a Transport event type while ERE defines 487

two more fine-grained types Transport-Person and 488

Transport-Artifact. By adding the annotations of 489

Transport-Person and Transport-Artifact from ERE 490

into ACE, our approach can capture the underly- 491

ing semantic interaction between Transport-related 492

event type queries and the corresponding input to- 493

kens and thus yield 1.5% F-score gain on the Trans- 494

port event type of ACE test set. In contrast, both 495

baseline methods fail to be enhanced with addi- 496

tional annotations from a slightly different event 497

ontology without explicitly capturing semantic in- 498

teraction between event types and input tokens. Ap- 499

pendix C provides a more in-depth comparison be- 500

tween our approach and the baseline approaches. 501

3.5 Ablation Study 502

We further evaluate the impact of each attention 503

mechanism on event trigger detection and argu- 504

ment extraction. As Table 4 shows, all the attention 505

mechanisms show significant benefit to trigger or 506

argument extraction, especially on the ERE dataset. 507

The Event Type Attention and Multiway Atten- 508

tion show the most effects to trigger and argument 509

extraction, which is understandable as they are de- 510

signed to capture the correlation between the input 511

texts and the event type or argument role-based 512

queries. We also notice that, without taking entities 513

detected by the BERT-CRF name tagging model 514

as input, but instead considering all the tokens as 515

candidate arguments11, our approach still shows 516

competitive performance for argument extraction 517

compared with the strong baselines. More ablation 518

studies are discussed in Appendix E. 519

3.6 Pros and Cons of Type-oriented Decoding 520

The advantages of our type-oriented binary decod- 521

ing include: (1) it allows the model to better lever- 522

11We take consecutive tokens predicted with the same argu-
ment role as a single argument span.
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Model ACE ERE

Trigger

Our Approach 73.6 60.4
w/o Seed Trigger 72.2 58.2
w/o In-Context Attention 72.3 57.9
w/o Event Type Attention 71.1 56.9

Arg.

Our Approach 55.1 50.4
w/o Entity Detection 53.0 47.6
w/o Multiway Attention 53.4 42.8
w/o Entity Self-attention 53.7 48.3
w/o Arg Role Self-attention 54.1 47.7

Table 4: Results of various ablation studies. Each score
is the average of three runs for each experiment.

age the semantics of event types which have been523

proved effective for both supervised and zero-shot524

event extraction; (2) it allows the approach to lever-525

age all available event annotations from distinct on-526

tologies, which is demonstrated in zero-shot event527

extraction and cross-ontology transfer; (3) in prac-528

tice, new event types and annotations could emerge529

incessantly, and it is not possible to always train a530

model for all the event types. Our approach has the531

potential to be continuously updated and extract532

events for any desired event types.533

We also admit that binary decoding usually in-534

creases the computation cost. We design two strate-535

gies to mitigate this issue: (1) More than 69% of536

the sentences in the training dataset do not con-537

tain any event triggers, so we randomly sample538

20% of them for training. (2) Our one-time ar-539

gument encoding and decoding strategies extract540

all arguments of each event trigger at once. It541

is more efficient than the previous QA-based ap-542

proaches, which only extract arguments for one543

argument role at once. With these strategies, for544

trigger detection, our approach takes 80% more545

time for training and 19% less for inference com-546

pared with BERT_QA_Arg which relies on multi-547

class classification, while for argument extraction,548

our approach takes 36% less time for training and549

inference than BERT_QA_Arg. Even on a more550

fine-grained event ontology MAVEN (Wang et al.,551

2020), which consists of 168 event types, for trig-552

ger extraction, our approach roughly takes 20%553

more time for training and twice the time for infer-554

ence compared with BERT_QA_Arg, with slightly555

better performance than the state of the art (Wang556

et al., 2021)12.557

12Our approach achieves 68.8% F-score on MAVEN. We do
not discuss more as MAVEN only contains trigger annotations.

4 Related Work 558

Traditional event extraction studies (McClosky 559

et al., 2011; Li et al., 2013; Chen et al., 2015; Cao 560

et al., 2015; Feng et al., 2016; Yang and Mitchell, 561

2016; Nguyen et al., 2016; Wadden et al., 2019; Lin 562

et al., 2020; Wang et al., 2021) usually detect event 563

triggers and arguments with multi-class classifiers. 564

Unlike all these methods that treat event types and 565

argument roles as symbols, our approach considers 566

them queries with rich semantics and leverages the 567

semantic interaction between input tokens and each 568

event type or argument role. 569

Several studies have explored the semantics of 570

event types based on seed event triggers (Bronstein 571

et al., 2015; Lai and Nguyen, 2019; Zhang et al., 572

2021) or event type structures (Huang et al., 2018). 573

However, they can hardly be generalized to argu- 574

ment extraction. Question answering based event 575

extraction (Du and Cardie, 2020; Liu et al., 2020; 576

Li et al., 2020; Lyu et al., 2021) can take advan- 577

tage of the semantics of event types and the large- 578

scale question answering datasets. Compared with 579

these methods, there are two different vital designs, 580

making our approach perform and be generalized 581

better than these QA-based approaches: (1) our 582

approach directly takes event types and argument 583

roles as queries. In contrast, previous QA-based ap- 584

proaches rely on templates or generative modules 585

to create natural language questions. (2) QA-based 586

approaches can only detect arguments for one ar- 587

gument role at once, while our approach extracts 588

all arguments of an event trigger with one-time en- 589

coding and decoding, which is more efficient and 590

leverages the implicit relations among the candi- 591

date arguments or argument roles. 592

5 Conclusion and Future Work 593

We refine event extraction with a query-and-extract 594

paradigm and design a new framework that lever- 595

ages rich semantics of event types and argument 596

roles and captures their interactions with input texts 597

using attention mechanisms to extract event trig- 598

gers and arguments. Experimental results demon- 599

strate that our approach achieves state-of-the-art 600

performance on supervised event extraction and 601

shows prominent accuracy and generalizability to 602

new event types and across ontologies. In the fu- 603

ture, we will explore better representations of event 604

types and argument roles and combine them prompt 605

tuning approach further to improve the accuracy 606

and generalizability of event extraction. 607
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as different instances while the previous studies829

just keep one annotated type for each trigger span.830

For example, in the ERE-EN dataset, a token “suc-831

ceeded” in the sentence “Chun ruled until 1988832

, when he was succeeded by Roh Tae - woo , his833

partner in the 1979 coup .” triggers a End-Position834

event of Chun and a Start-Position of Roh. Previ-835

ous classification based approaches did not predict836

multiple types for each candidate trigger.837

Dataset Split # Events # Arguments

ACE05-E+
Train 4419 7932
Dev 468 892
Test 424 689

ERE-EN
Train 7232 12832
Dev 619 1100
Test 652 1228

Table 5: Data statistics for ACE2005 and ERE datasets.

Zero-Shot Event Extraction To evaluate the838

transfer capability of our approach, we use the top-839

10 most popular event types in ACE05 as seen840

types for training and treat the remaining 23 event841

types as unseen for testing, following Huang et al.842

(2018). The top-10 training event types include843

Attack, Transport, Die, Meet, Sentence, Arrest-Jail,844

Transfer-Money, Elect, Transfer-Ownership, End-845

Position. We use the same data split as supervised846

event extraction but only keep the event annotations847

of the 10 seen types for training and development848

sets and sample 150 sentences with 120 annotated849

event mentions for the 23 unseen types from the850

test set for evaluation.851

Implementation For fair comparison with pre-852

vious baseline approaches, we use the same pre-853

trained bert-large-uncased model for fine-854

tuning and optimize our model with BertAdam.855

We optimize the parameters with grid search: train-856

ing epoch 10, learning rate ∈ [3e-6, 1e-4], train-857

ing batch size ∈ {8, 12, 16, 24, 32}, dropout rate858

∈ {0.4, 0.5, 0.6}. Our experiments run on one859

Quadro RTX 8000. For trigger detection, the aver-860

age runtime is 3.0 hours. For argument detection,861

the average runtime is 1.3 hours. We use Spacy to862

generate POS tags.863

Evaluation Criteria For evaluation of super-864

vised event extraction, we use the same criteria865

as (Li et al., 2013; Chen et al., 2015; Nguyen et al.,866

2016; Lin et al., 2020) as follows:867

• Trigger: A trigger mention is correct if its 868

span and event type matches a reference trig- 869

ger. Each candidate may act as triggers for 870

multiple event occurrences. 871

• Argument: An argument prediction is correct 872

only if the event trigger is correctly detected. 873

Meanwhile, its span and argument role need 874

to match a reference argument. An argument 875

candidate can be involved in multiple events 876

as different roles. Furthermore, within a single 877

event extent, an argument candidate may play 878

multiple roles. 879

B Impact of Seed Triggers 880

To investigate the impact of seed triggers on event 881

trigger extraction, we take the supervised event 882

extraction ACE dataset as a case study, where we 883

divide the triggers in the evaluation dataset into two 884

groups: overlapped triggers with the seeds or non- 885

overlapped ones with the seeds. Then, we compare 886

the performance of our approach with and with- 887

out using seed triggers as part of the event type 888

representations. As Table 6 shows, by incorpo- 889

rating the seed triggers as part of the event type 890

representations, our approach achieves better per- 891

formance on both overlapped and non-overlapped 892

triggers, demonstrating the benefit of seed triggers 893

on representing event types. As the total number of 894

overlapped triggers (34) is much lower than that of 895

non-overlapped triggers (390), we view the impact 896

of seed triggers on overlapped and non-overlapped 897

triggers as comparable. On the other hand, by com- 898

paring our approach without using seed triggers 899

with the BERT_QA_Arg baseline, our approach 900

also achieves much better performance which is 901

mostly due to the attention mechanism we used 902

which can better capture the semantic consistency 903

between the input tokens and the event type query 904

which just consists of the event type name. 905

C In-depth Comparison for Cross 906

Ontology Transfer 907

To deeply investigate the reason that our approach 908

performs better than QA-based baselines from 909

cross ontology transfer, we conducted ablation 910

study by removing the seed triggers from the event 911

type queries of our approach, as shown in Table 7. 912

The BERT_QA_Argmulti utilizes a generic query, 913

e.g., what’s the trigger, and classify each input to- 914

ken into one of the target types. It’s essentially 915

11



Overlapped Triggers Non-overlapped Triggers

OneIE (Lin et al., 2020) 88.2 71.0
BERT_QA_Arg (Du and Cardie, 2020) 72.2 70.9

Our Approach w/o Seed Triggers 88.9 70.8
Out Approach w/ Seed Triggers 97.2 71.3

Table 6: Impact of seed triggers on supervised trigger extraction on ACE (F-score, %)

a multiclass classifier but just taking a query as916

the prompt. The BERT_QA_Argbinary utilizes each917

event type as the query to extract the correspond-918

ing event mentions. Comparing the two baseline919

methods, BERT_QA_Argbinary works slightly bet-920

ter than BERT_QA_Argmulti, especially on ACE,921

demonstrating the benefit of type-oriented binary922

decoding mechanism. The only difference be-923

tween BERT_QA_Argbinary and our approach with-924

out seed triggers is the learning of enriched con-925

textual representations. The comparison of their926

scores demonstrates the effectiveness of the atten-927

tion mechanisms designed for trigger extraction. Fi-928

nally, by incorporating the seed triggers into event929

type representations, our approach is further im-930

proved significantly for all the settings. These in-931

depth comparisons demonstrate the effectiveness932

of both seed triggers and the attention mechanisms933

in our approach for transferring annotations from934

old types to the new types.935

D Remaining Challenges for Supervised936

Event Extraction937

We sample 200 supervised trigger detection and ar-938

gument extraction errors from the ACE test dataset939

and identify the remaining challenges.940

Lack of Background Knowledge Background941

knowledge, as well as human commonsense knowl-942

edge, sometimes is essential to event extraction.943

For example, from the sentence “since the intifada944

exploded in September 2000, the source said”, with-945

out knowing that intifada refers to a resistance946

movement, our approach failed to detect it as an947

Attack event mention.948

Pronoun Resolution Extracting arguments by949

resolving coreference between entities and pro-950

nouns is still challenging. For example, in the fol-951

lowing sentence “Attempts by Laleh and Ladan to952

have their operation elsewhere in the world were953

rejected, with doctors in Germany saying one or954

both of them could die”, without pronoun resolu-955

tion, our approach mistakenly extracted one, both956

and them as Victims of the Die event triggered by 957

die, while the actual Victims are Ladan and Laleh. 958

Ambiguous Context The ACE annotation guide- 959

lines (Linguistic Data Consortium, 2005) provide 960

detailed rules and constraints for annotating events 961

of all event types. For example, a Meet event must 962

be specified by the context as face-to-face and phys- 963

ically located somewhere. Though we carefully de- 964

signed several attention mechanisms, it is difficult 965

for the machines to capture such context features 966

accurately. For example, from the sentence “The 967

admission came during three-day talks in Beijing 968

which concluded Friday, the first meeting between 969

US and North Korean officials since the nuclear 970

crisis erupted six months ago.”, our approach failed 971

to capture the context features that the talks is not 972

an explicit face-to-face meet event, and thus mis- 973

takenly identified it as a Meet event mention. 974

E More Ablation Studies of Supervised 975

Event Extraction 976

The entity recognition model is based on a pre- 977

trained BERT (Devlin et al., 2019) encoder with 978

a CRF (Lafferty et al., 2001; Passos et al., 2014) 979

based prediction network. It’s trained on the same 980

training dataset from ACE05 before event extrac- 981

tion, and the predictions are taken as input to argu- 982

ment extraction to indicate the candidate argument 983

spans. Table 8 shows the comparison of the entity 984

extraction performance between our BERT-CRF 985

approach and the baselines. 986

To understand the factors that affect argument 987

extraction and decompose the errors propagated 988

along the learning process (from predicted triggers 989

or predicted entities), we conduct experiments that 990

condition on given ground truth labels for those 991

factors. Specifically, we investigate three settings: 992

1) given gold entity, 2) given gold event trigger, 993

and 3) given both gold entity and event trigger. The 994

experimental results is shown in Table 9. 995
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Source Target BERT_QA_Argmulti † BERT_QA_Argbinary † Our Approach
w/o Seed Triggers w/ Seed Triggers

ERE ACE 48.9 50.8 53.8 53.9
ACE ACE 70.6 72.2 72.2 73.6
ACE+ERE ACE 70.1 71.3 72.2 74.4

ACE ERE 47.2 47.2 48.7 55.9
ERE ERE 57.0 56.7 58.2 60.4
ACE+ERE ERE 57.0 54.6 56.2 63.0

Table 7: Cross ontology transfer results for queries without seed triggers, between ACE and ERE datasets (F-score
%)

Model F1

OneIE 89.6
FourIE 91.1

BERT+CRF 89.3

Table 8: Performance of Entity Extraction (F-score, %)

Given Information ACE ERE

None 55.1 50.2
GE 59.7 (+4.6) 59.5 (+9.3)
GT 68.7 (+13.6) 67.2 (+17.0)
GT & GE 74.2 (+19.1) 72.2 (+22.0)

Table 9: Performance of argument extraction condition-
ing on various input information: gold trigger (GT),
and gold entities (GE). (F-score, %)

13


