
GSparsity: Unifying Network Pruning and Neural
Architecture Search by Group Sparsity

Avraam Chatzimichailidis1,2,3 Arber Zela4 Janis Keuper1,5 Yang Yang1

1
Department of High Performance Computing, Fraunhofer ITWM, Germany

2
Department for Scienti�c Computing, TU Kaiserslautern, Germany

3
Fraunhofer Center Machine Learning, Germany

4
Department of Computer Science, University of Freiburg, Germany

5
Institute for Machine Learning and Analytics, O�enburg University, Germany

Abstract In this paper, we propose a uni�ed approach for network pruning and one-shot neural ar-

chitecture search (NAS) via group sparsity. We �rst show that group sparsity via the recent

Proximal Stochastic Gradient Descent (ProxSGD) algorithm achieves new state-of-the-art re-

sults for �lter pruning. Then, we extend this approach to operation pruning, directly yielding

a gradient-based NAS method based on group sparsity. Compared to existing gradient-based

algorithms such as DARTS, the advantages of this new group sparsity approach are threefold.

Firstly, instead of a costly bilevel optimization problem, we formulate the NAS problem as

a single-level optimization problem, which can be optimally and e�ciently solved using

ProxSGD with convergence guarantees. Secondly, due to the operation-level sparsity, dis-

cretizing the network architecture by pruning less important operations can be safely done

without any performance degradation. Thirdly, the proposed approach �nds architectures

that are both stable and performant on a variety of search spaces and datasets.

1 Introduction
Network pruning (see, e.g., [3] for an overview) and neural architecture search (NAS; see, e.g., [12]

for an overview) are important sub�elds of deep learning, but so far they have evolved largely

separately (a few exceptions are [41; 9]). In this work, we propose to unify these two �elds via the

framework of group sparsity, allowing us to use the latest advances in network pruning directly for

gradient-based one-shot NAS with provable guarantees.

Key to the proposed framework is that the one-shot NAS approach [4; 2; 28] uses a large

supernet in which all candidate operations are assumed to be active. Identifying a small subnet as

the �nal architecture for inference could be formulated as pruning away the rest of the supernet.
The group sparsity approach allows us to prune on the level of entire �lters or even entire

operations, as well as to use network pruning for NAS in our Group Sparsity (GSparsity) approach.

Contributions. Our overarching contribution is a uni�ed approach, based on the concept of group

sparsity, for both network pruning and NAS:

• Group sparsity via the recent convergent Proximal Stochastic Gradient Descent (ProxSGD; [36])

algorithm achieves better results for �lter pruning (than previous heuristic proximal algorithms).

• We extend the group sparsity approach to allow pruning entire operations by grouping all

trainable parameters of each operation.

• We show that this approach renders the architecture parameters typical of most one-shot methods

super�uous, casting the NAS problem as a standard single-level optimization problem, which

can be solved optimally by the convergent ProxSGD algorithm.

• We show that GSparsity converges to a group-sparse solution, where the weights of non-important

groups are zero. As a result, while previous methods su�er from substantial performance

degradation in the discretization step, our approach avoids any such performance degradation.

AutoML Conference 2022 Workshop Track © 2022 the authors, released under CC BY 4.0

mailto:avraam.chatzimichailidis@itwm.fraunhofer.de
mailto:zelaa@cs.uni-freiburg.de
mailto:janis.keuper@hs-offenburg.de
mailto:yang.yang@itwm.fraunhofer.de
https://creativecommons.org/licenses/by/4.0/

2 Background and Related Work

Network pruning. At a fundamental level, it is usually possible to prune some weights while the

network’s performance still remains the same, leading to a sparse neural network [13], though

is that it is not known in advance which weights could be pruned. Kernel/channel pruning is

meant to bring a more structured sparsity pattern. It amounts to pruning all weights in the same

kernel/channel in a convolution layer simultaneously and popular approaches are based on the

concept of group sparsity, see, e.g., [32; 26; 16; 19; 23].

As group sparsity is based on the nonsmooth !2,1-norm regularization, the resulting training

problem is nonsmooth and cannot be solved by standard stochastic gradient descent (SGD) algorithm.

In this paper, we apply the ProxSGD algorithm to solve the nonsmooth optimization problem

e�ciently and optimally and the performance is better than previous methods, which either rely on

stochastic subgradient descent algorithms that converge very slowly to a sparse solution (see [36]),

or use heuristic proximal-type algorithms [37; 42; 1] which do not have a guaranteed convergence.

Neural architecture search. As an algorithmic solution to designing new architectures, NAS has

been developed to automate the architecture search process. The one-shot approach of NAS [4; 2; 28]

based on weight sharing enables us to search on a large supernet and �nd a promising small subnet.

The DARTS approach in [25] formulates the one-shot NAS problem as a di�erentiable op-

timization problem that can be solved by stochastic algorithms. However, several limitations

are still prevalent, including performance degradation after discretizing the architecture parame-

ters [39; 40; 31]. Secondly, by framing the problem as a bilevel optimization problem [7], several

approximations have to be de�ned, without any convergence guarantees taken into account. Lastly,

as shown in [39] the behaviour of DARTS is not robust across search spaces.

3 The Proposed Group Sparsity Approach

In this section, we present the uni�ed group-sparsity approach for both network pruning and NAS.

Let the vectorw consist of the trainable parameters of the neural network. It is decomposed

into subvectorsw = (w:) :=1 such thatw: represents a group of weights (such as all weights in the

same �lter or convolution layer), and denotes the total number of (non-overlapping) groups. We

formulate the network training as an optimization problem, which aims at minimizing the loss

function 5 augmented by the group sparsity regularization onw :

minimize

w

1

|X|
∑
x∈X

5 (w, x) +
 ∑
:=1

`: ‖w: ‖2 , (1)

where x is a training example from the training dataset X (with |X| denoting the number of training

examples). Besides, The !2 norm de�ned as ‖w ‖2 ,
√
w)w is a nonsmooth convex function.

The regularization

∑
:=1

`: ‖w: ‖2 in (1) is usually referred to as the !2,1 norm (or the mixed

norm), and it is a natural generalization of !1 norm when w: is a vector. The advantage of the

!2,1-norm regularization is that it can promote a group-sparse neural network, in the sense that

most groups will be zero and hence can be removed from the neural network without incurring any

performance loss. Group sparsity is a structured sparsity that can be better exploited by hardware.

Since the loss function 5 is nonconvex and the !2,1-norm regularization is nonsmooth, the

training problem (1) is a nonsmooth nonconvex optimization problem. We adopt the ProxSGD

algorithm proposed in [36], as it converges fast and provably to a stationary point. A description of

the ProxSGD algorithm is given in Appendix A.

3.1 From Network Pruning to NAS

Depending on the speci�c task at hand, a group could be a kernel or �lter inside a convolution

layer. It could also be an operation (or a concatenation of several suboperations): an operation with

2

Cell 1

3×3 SepConv: w1,1

3×3 DilConv: w1,2

Identity w1,3

Pooling w1,4

Cell 2

3×3 SepConv: w2,1

3×3 DilConv: w2,2

Identity w2,3

Pooling w2,4

Cell 3

3×3 SepConv: w3,1

3×3 DilConv: w3,2

Identity w3,3

Pooling w3,4

(a) Supernet in Search: Cell 1 and Cell 3 are of the same type and Cell 2 is of a di�erent type (Operations in the

same color shall be preserved or removed simultaneously.)

f(w) + µ

(∥∥∥∥∥

[
w1,1

w3,1

] ∥∥∥∥∥
2

+

∥∥∥∥∥

[
w1,2

w3,2

] ∥∥∥∥∥
2

+

∥∥∥∥∥

[
w1,3

w3,3

] ∥∥∥∥∥
2

+

∥∥∥∥∥

[
w1,4

w3,4

] ∥∥∥∥∥
2

+ ‖ w2,1 ‖2 + ‖ w2,2 ‖2 + ‖ w2,3 ‖2 + ‖ w2,4 ‖2
)

(b) De�nition of groups in Search (The regularization gains {`: } are assumed to be identical for all groups.)

Figure 1: Illustrative example of applying the group sparsity approach to NAS

trainable parameters can be removed if all of its parameters are 0. For operations without trainable

parameters an additional scaling factor is added to the output of that operation For example, the

3×3 SepConv and Identity in Figure 1(a) can be removed ifw1,1 = 0 andF1,3 = 0, respectively.

Except for operations with no trainable parameters, the proposed formulation (1) does not need

the architecture parameter. Its implications are twofold. Firstly, (1) is a single-level optimization

problem and it is much easier to solve than the otherwise costly bilevel optimization problem.

Secondly, it is no longer necessary to split the training dataset into two parts, one used to update the

architecture parameters and the other for the network weights. The group sparsity regularization

in (1) will also alleviate over�tting from which bilevel optimization may su�er.

4 Experiments

In this section, we perform extensive experiments to demonstrate the performance of the proposed

algorithm compared to state-of-the-art algorithms. All experiments are performed on a single node

using a GTX 1080 Ti GPU with 11 GB of memory. Our code is available at https://github.com/
cc-hpc-itwm/GSparsity, along with the logs of all runs (of both our method and others).

4.1 Filter Pruning

We perform �lter pruning for ResNet-50 [14] on ImageNet 2012. To this end, we put all parameters of

the same �lter into one group. This allows pruning of individual �lters inside di�erent convolutions.

The experimental setup can be found in Appendix B.

algorithm top-1 acc MACs code available?

baseline (reported) 76.13 100% (4.12G) Y

SSS [17] (reported) 74.18 68.55% Y (MXNet)

ThiNet-70 [27] (reported) 72.04 63.21% Y (Ca�e)

GSparsity (ours, ` = 0.02) 75.21 63.11% (2.60G) Y

GSparsity (ours, ` = 0.05) 74.33 50.00% (2.06G) Y

FPGM [15] (reported/reproduced) 74.83/69.69 46.50%/49.03% (2.02G) Y

Hinge [22](reported) 74.70 46.55% N

RRBP [43] (reported) 73.00 45.45% N

ResRep [8] (reproduced) 0.10 45.15% (1.86G) Y

GAL [21] (reported) 72.80 44.98% N

GSparsity (ours, ` = 0.07) 74.00 44.42% (1.83G) Y

GSparsity (ours, ` = 0.1) 73.34 42.23% (1.74G) Y

Table 1: Filter pruning of ResNet-50 on ImageNet 2012.

3

https://github.com/cc-hpc-itwm/GSparsity
https://github.com/cc-hpc-itwm/GSparsity

Results. The performance of the baseline (unpruned) ResNet-50 and various �lter pruning methods

is summarized in Table 1. ResNet50 has 25.56M parameters and 4.12GMACs, and the pretrained

network achieves an accuracy of 76.13%.

4.2 Operation Pruning

In this experiment, we conduct operation pruning by the proposed GSparsity algorithm, where

each group consists of all parameters of the same operation. The experimental setup used for

operation pruning is detailed in Appendix D.

Results. We see from Table 2 that when operations are pruned away such that 38.40% of weights

are pruned, the network’s retrained accuracy (97.45%) is almost identical to the unpruned baseline

(97.50%). When 60.46% of weights are pruned, the retrained accuracy is 97.09%, i.e., 0.41% worse

than the unpruned baseline. We also show in Table 2 the accuracy before and after the operations

(with an !2 norm smaller than a given threshold, namely, 1e-6, 1e-3 or 0.5) are pruned. We readily

see that the proposed GSparsity approach does not incur any discretization error, even when the

pruning threshold is only modestly small (such as 1e-3). Comparing the accuracies before and after

retraining, we see that retraining can further enhance the performance of the pruned network.

`
accuracy

before pruning

accuracy after pruning accuracy after retraining inference

time

1e-6 1e-3 0.5 accuracy parameters

0 97.50 - - - - 100% 7.13s

0.0001 96.50 96.50 96.50 92.08 97.45 78.25% 6.73s

0.0002 96.46 96.46 96.46 75.50 97.44 61.60% 6.40s

0.0005 96.36 96.36 96.36 13.34 97.32 52.09% 6.24s

0.002 96.47 96.47 96.47 10 97.09 39.54% 4.96s

0.004 96.48 96.48 96.48 10 96.84 32.80% 4.43s

Table 2: Operation pruning: The accuracy before/after operation pruning (but before retraining, with

pruning thresholds 1e-6, 1e-3 and 0.5) and after retraining (with pruning threshold 1e-6).

4.3 Neural Architecture Search

In this subsection, we conduct NAS by GSparsity and compare it with state-of-the-art di�erentiable

algorithms. We follow the NAS best practice checklist [24] and we refer the reader to the appendix

for further information on the hyperparameters used during the experiments. To study the robust-

ness of our method and various baselines, we run each method 3 times; we then evaluate each of

the 3 resulting architectures 3 times and report means and standard deviations over the 9 results.

4.3.1 DARTS Search Space.
Search and evaluation settings. The Search is carried out on a small supernet with 16 initial

channels and consists of 8 stacked cells, which is trained for 50 epochs on the full training set using

ProxSGD. We use similar settings as DARTS [25] for Evaluation: 36 initial channels and SGD with

momentum (now without the !2,1-norm regularization) for 600 epochs. We stack 14 cells so that

the network size is comparable to other methods.

Results on CIFAR-10 and CIFAR-100. The comparison between the proposed GSparsity and recent

NAS algorithms is outlined in Table 3.
1

We see that the GSparsity approach has the highest average

accuracy with low standard deviation. We conclude that the performance of GSparsity is both good

and stable. Similar observations are drawn from experiments on CIFAR-100 [18]. The GSparsity

method achieves the highest average accuracy of all methods, see Appendix for more details.

We also compare to the approach where scaling factors are appended to the operations and then

pruned (instead of weights). It turns out that directly pruning weights yields better results. We refer

the reader to the appendix for details, as well as for results on ImageNet-2012 and NAS-Bench-201.

1
It would be interesting to compare with HAPG [33], but the authors’ implementation is not available yet.

4

CIFAR-10 CIFAR-100

accuracy search cost accuracy search cost

DARTS (2nd) 96.98 ± 0.13 1.46 days 73.40 ± 7.79 1.33 days

P-DARTS 97.05 ± 0.20 0.25 day 83.46 ± 0.24 0.34 day

PC-DARTS 97.13 ± 0.16 0.13 day 82.57 ± 0.71 0.15 day

DrNAS 96.95 ± 0.08 0.83 day 83.15 ± 0.23 0.90 day

GDAS [10] 96.63 ± 0.12 0.18 day 80.99 ± 0.34 0.36 day

ISTA-NAS [35] 96.64 ± 0.15 0.03 day 82.25 ± 0.77 0.03 day

GAEA [20] 96.12 ± 0.29 0.22 day 79.10 ± 0.89 0.22 day

GSparsity (ours) 97.17 ± 0.11 0.42 day 83.56 ± 0.34 0.78 day

Table 3: NAS on DARTS search space for CIFAR-10/-100. All results are reproduced from their authors’

implementations.

4.3.2 Robustness of GSparsity. Experiments in [39] show that DARTS performs poorly on di�erent

search spaces that only allow a subset of operations from the original DARTS search space. In this

subsection, we test GSparsity on the S1, S2 and S4 2
spaces from [39].

The search and evaluation settings are the same as for the DARTS search space, except that

ScheduledDropPath has a maximum drop probability of 0.2 in Evaluation. Note that [39] proposed

several methods to robustify DARTS, which require computing the Hessian of the validation loss

w.r.t. the architecture parameters, thus imposing an additional overhead to Search. GSparsity does

not rely on such heuristics and therefore has much lower runtime and memory requirements.

Search Space DARTS* DARTS-ES* GSparsity (ours)

S1 95.34 ± 0.71 96.95 ± 0.07 96.94 ± 0.14
S2 95.58 ± 0.40 96.59 ± 0.14 97.40 ± 0.11
S4 93.05 ± 0.18 95.83 ± 0.21 97.36 ± 0.12

Table 4: Performance of DARTS, DARTS-ES and the

proposed GSparsity on CIFAR-10 (*Results

taken from Table 1 of [39]).

Table 4 evaluates the performance of GSpar-

sity on these search spaces, comparing it against

DARTS and DARTS-ES (DARTS with early stop-

ping from [39]). GSparsity performs amongst

the best on all three search spaces, and substan-

tially better than DARTS-ES on S2 and S4, with

up to 1.53% absolute test accuracy improvement

on S4. DARTS-ES in turn clearly outperforms

DARTS on all spaces. This veri�es the robustness of the proposed GSparsity algorithm.

5 Conclusion

In this paper, we proposed to use group sparsity in order to bridge the gap between network

pruning and di�erential one-shot NAS. The proposed formulation is �exible and can be tailored

for kernel/�lter pruning, operation pruning and NAS. We use ProxSGD to solve the nonsmooth

nonconvex optimization problem optimally, and achieve new state-of-the-art results for �lter

pruning. By tackling NAS from a pruning perspective, we are able to formulate it as a single-

level optimization problem that can be solved optimally by ProxSGD. Experiments show that the

proposed GSparsity method reaches superior and robust performance on �lter pruning, can address

operation pruning, and yields state-of-the-art and robust results in NAS on various datasets and

search spaces, without su�ering from over�tting or from performance degradation after discretizing

the architecture. In future work, we would like to further enhance the performance of GSparsity by

directly searching on the full supernet, possibly employing techniques from PC-Darts [34] or the

progressive learning approach from DrNAS [5].

2
The search space S3 in [39] is {3×3 SepConv, Identity, Zero}. We do not consider it as we would implicitly get the

operation Zero from S2 when none of {3×3 SepConv, Identity} is selected.

5

6 Reproducibility Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [No]

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

(b) Did you include complete proofs of all theoretical results? [No]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] The code for the training pipeline is publicly available at

https://github.com/cc-hpc-itwm/GSparsity.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] The logs of all our runs during the search and evaluation phase, complete with

hyperparameters for our NAS method as well as random seeds are publicly available.

(c) Did you include scripts and commands that can be used to generate the �gures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes]

(d) Did you ensure su�cient code quality such that your code can be safely executed and the

code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, �xed

hyperparameter settings, and how they were chosen)? [Yes] See appendix and logs for more

details

(f) Did you ensure that you compared di�erent methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes]

(g) Did you run ablation studies to assess the impact of di�erent components of your approach?

[Yes] See the appendix for an ablation study that tests the performance of the GSparsity

with respect to `

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]

(i) Did you compare performance over time? [No]

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes]

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] NAS-Bench-

201

6

https://automl.cc/ethics-accessibility/
https://github.com/cc-hpc-itwm/GSparsity

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] See Section 4.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes] See appendix for an in-depth explanation

of how the regularization parameter was chosen.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [No]

(c) Did you include any new assets either in the supplemental material or as a url? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] No data from other people is used.

(e) Did you discuss whether the data you are using/curating contains personally identi�able

information or o�ensive content? [N/A] No data from other people is used.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7

References
[1] Alvarez, J. M. and Salzmann, M. (2016). Learning the number of neurons in deep networks. In Advances

in Neural Information Processing Systems, pages 2270–2278.

[2] Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. (2018). Understanding and simplifying

one-shot architecture search. In International Conference on Machine Learning.

[3] Blalock, D., Ortiz, J. J. G., Frankle, J., and Guttag, J. (2020). What is the state of neural network pruning?

[4] Brock, A., Lim, T., Ritchie, J., and Weston, N. (2018). SMASH: One-shot model architecture search

through hypernetworks. In International Conference on Learning Representations.

[5] Chen, X., Wang, R., Cheng, M., Tang, X., and Hsieh, C.-J. (2021). DrNAS: Dirichlet neural architecture

search. In International Conference on Learning Representations.

[6] Chen, X., Xie, L., Wu, J., and Tian, Q. (2019). Progressive di�erentiable architecture search: Bridging the

depth gap between search and evaluation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1294–1303.

[7] Colson, B., Marcotte, P., and Savard, G. (2007). An overview of bilevel optimization.

[8] Ding, X., Hao, T., Tan, J., Liu, J., Han, J., Guo, Y., and Ding, G. (2021). Resrep: Lossless cnn pruning

via decoupling remembering and forgetting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4510–4520.

[9] Dong, X. and Yang, Y. (2019a). Network pruning via transformable architecture search. In Advances in
Neural Information Processing Systems, volume 32, pages 1–12.

[10] Dong, X. and Yang, Y. (2019b). Searching for a robust neural architecture in four gpu hours. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11] Dong, X. and Yang, Y. (2020). NAS-Bench-201: Extending the scope of reproducible neural architecture

search. In International Conference on Learning Representations.

[12] Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. Journal of Machine
Learning Research, 20(55):1–21.

[13] Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). Learning both weights and connections for e�cient

neural networks. In Advances in Neural Information Processing Systems, pages 1135–1143.

[14] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. CoRR,

abs/1512.03385.

[15] He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. (2019). Filter pruning via geometric median for deep

convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition.

[16] Huang, G., Liu, S., Maaten, L. V. D., and Weinberger, K. Q. (2018). CondenseNet: An E�cient DenseNet

Using Learned Group Convolutions. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 2752–2761.

[17] Huang, Z. and Wang, N. (2018). Data-driven sparse strcture selection for deep neural networks. In

Proceedings of the European Conference on Computer Vision, pages 304–320.

[18] Krizhevsky, A. (2012). Learning multiple layers of features from tiny images. University of Toronto.

[19] Li, J., Qi, Q., Wang, J., Ge, C., Li, Y., Yue, Z., and Sun, H. (2019a). OICSR: Out-in-channel sparsity

regularization for compact deep neural networks. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 7039–7048.

8

[20] Li, L., Khodak, M., Balcan, M.-F., and Talwalkar, A. (2020a). Geometry-aware gradient algorithms for

neural architecture search. arXiv preprint arXiv:2004.07802.

[21] Li, Y., Gu, S., Mayer, C., Gool, L. V., and Timofte, R. (2019b). Towards optimal structured CNN pruning

via generative adversarial learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2790–2799.

[22] Li, Y., Gu, S., Mayer, C., Gool, L. V., and Timofte, R. (2020b). Group sparsity: The hinge between �lter

pruning and decomposition for network compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8018–8027.

[23] Li, Y., Gu, S., Mayer, C., Van Gool, L., and Timofte, R. (2020). Group sparsity: The hinge between �lter

pruning and decomposition for network compression. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8015–8024.

[24] Lindauer, M. and Hutter, F. (2020). Best practices for scienti�c research on neural architecture search.

Journal of Machine Learning Research, 21(243):1–18.

[25] Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Di�erentiable architecture search. In International
Conference on Learning Representations.

[26] Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017). Learning e�cient CNN through network

slimming. In International Conference on Machine Learning (ICML), pages 2736–2744.

[27] Luo, J.-H., Wu, J., and Lin, W. (2017). ThiNet: A �lter level pruning method for deep neural network

compression. In Proceedings of the International Conference on Computer Vision, pages 5058–5066.

[28] Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). E�cient neural architecture search via

parameter sharing. In International Conference on Machine Learning.

[Sovrasov] Sovrasov, V. Flops counter for convolutional networks in pytorch framework.

[30] Su, X., You, S., Wang, F., Qian, C., Zhang, C., and Xu, C. (2021). BCNet: Searching for network width

with bilaterally coupled network. In Proceedings of CVPR 2021.

[31] Wang, R., Cheng, M., Chen, X., Tang, X., and Hsieh, C.-J. (2021). Rethinking architecture selection in

di�erentiable NAS. In International Conference on Learning Representations.

[32] Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). Learning Structured Sparsity in Deep Neural

Networks.

[33] Wu, Y., Liu, A., Huang, Z., Zhang, S., and Van Gool, L. (2021). Neural architecture search as sparse

supernet. In 2021 AAAI Conference on Arti�cial Intelligence.

[34] Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G. J., Tian, Q., and Xiong, H. (2020). PC-DARTS: Partial

channel connections for memory-e�cient di�erentiable architecture search. In International Conference
on Learning Representations, volume 1, pages 1–13.

[35] Yang, Y., Li, H., You, S., Wang, F., Qian, C., and Lin, Z. (2020a). Ista-nas: E�cient and consistent neural

architecture search by sparse coding. Advances in Neural Information Processing Systems, 33.

[36] Yang, Y., Yuan, Y., Chatzimichailidis, A., van Sloun, R. J. G., Lei, L., and Chatzinotas, S. (2020b). ProxSGD:

Training structured neural networks under regularization and constraints. In International Conference on
Learning Representations.

[37] Yoon, J. and Hwang, S. J. (2017). Combined group and exclusive sparsity for deep neural networks. In

34th International Conference on Machine Learning, ICML 2017, volume 8, pages 6031–6039.

9

[38] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society. Series B (Methodological), 68(1):49–67.

[39] Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., and Hutter, F. (2020a). Understanding and

robustifying di�erentiable architecture search. In International Conference on Learning Representations.

[40] Zela, A., Siems, J., and Hutter, F. (2020b). NAS-Bench-1Shot1: Benchmarking and dissecting one-shot

neural architecture search. In International Conference on Learning Representations.

[41] Zhang, X., Huang, Z., Wang, N., Xiang, S., and Pan, C. (2021). You Only Search Once: Single Shot

Neural Architecture Search via Direct Sparse Optimization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 43(9):2891–2904.

[42] Zhou, H., Alvarez, J. M., and Porikli, F. (2016). Less is more: Towards compact CNNs. In Proceedings of
European Conference on Computer Vision, pages 662–677.

[43] Zhou, Y., Zhang, Y., Wang, Y., and Tian, Q. (2019). Accelerate CNN via recursive Bayesian pruning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3306–3315.

[44] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures for scalable

image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

10

Algorithm 1 The ProxSGD Algorithm for Problem (1)

Initialization: w (0), v (−1) = 0, C = 0,) , {d (C), n (C)})C=0
for C = 0 : 1 :) do

1. Compute the gradient g(C) based on the minibatch M(C): g(C) = 1

|M(C) |
∑

x∈M(C) ∇w 5 (w (C), x) .

2. Update the momentum: v (C) = (1 − d (C))v (C − 1) + d (C)g(C).

3. Compute the proximal mapping: for : = 1, . . . , ,

Prox˜̀: (C) ‖w: ‖2 (w̃: (C)) =
(
1 − ˜̀: (C)
‖w̃: (C)‖2

)+
w̃: (C), (2)

where w̃: (C) , w: (C) − v: (C)/g: (C) and ˜̀: (C) , `:/g: (C).

4. Update the weight: w: (C + 1) = (1 − n (C))w: (C) + n (C) Prox˜̀: (C) ‖w: ‖2 (w̃: (C)), : = 1, . . . , .

end for

A The ProxSGD Algorithm

The details of ProxSGD are summarized in Algorithm 1. In Step 1, the instantaneous gradient g
based on the minibatch is computed. In Step 2, the momentum v is updated, where d (C) is the

learning rate for the momentum. In Step 3, the proximal mapping is computed. In Step 4, the

weight vectorw is updated, where n (C) is the learning rate for the weight. Note that g: (C) in Step 3

is a positive scalar that can make the learning rate n (C) adaptive to each group : . This is best seen

when `: = 0, as the weight update in Step 4 becomesw: (C + 1) = w: (C) − n (C)
g: (C) v: (C).

In contrast to the proximal algorithm used in [23] and [41], ProxSGD has a guaranteed conver-

gence to a stationary point of (1). It converges much faster to a group sparse solution than stochastic

subgradient algorithms, hence eliminating the performance degradation due to the discretization

step in DARTS (i.e., setting operations with a small norm to 0).

There are di�erent ways to choose `: , and the choice di�ers across di�erent experiments. A

straightforward choice for `: is some ` that is identical for all groups: `: = `, ∀: . Sometimes it

might be bene�cial to normalize the regularization gain ` by the size of the group:

`: =
`√
|w: |

, ∀:, (3)

or `: = ` ·
√
|w: |, ∀:. There is no theoretical justi�cation that favors one over another (see [38]),

and we empirically �nd that `: = `,∀: works well when the sizes of the groups are not very

di�erent, as in operation pruning. This is, however, not the case for NAS, and we �nd that the

normalization speci�ed in (3) yields the best result.

B Filter Pruning

Experiment setup. Firstly we determine which �lters to prune away by training ResNet-50-with the

!2,1-norm regularization (`: = `/
√
|w: |)-by ProxSGD for 90 epochs, with the following hyperparam-

eters: initial learning rate 0.001 (which is linearly decayed by 10 every 30 epochs) and momentum

0.9. Furthermore, g: (C) in (2) is de�ned as g: (C) = mean

(√
r (C)/(1 − VC)

)
+ X (V = 0.999, X = 10

−8
),

and r (C) is the aggregate squared gradient updated iteratively as r (C) = r (C − 1)V + (1 − V)g(C)2.
ResNet-50 consists of 4 bottleneck layers, and bottleneck layer 1/2/3/4 consists of 3/4/6/3 blocks,

and a block consists of three conv layers. We prune the �lters of the �rst two layers only in each

block so that the output of the last conv layer would have the same dimension as the residual layer.

11

Note that our objective is to reduce the multiple-accumulate operations (MACs). The second and

third bottleneck layers constitute 60.83% of the total MACs, although they have only 35.55% of the

total parameters. Therefore, to push more �lters in the these layers to be 0, we set the regularization

gain to be `: = `/
√
|w: |, which is further doubled if it is in the second/third bottleneck layers.

After training with ProxSGD is completed, we prune (rather than mask) the zero �lters from

the model. As the convergence of iterative algorithms to an optimal solutionw★
is in the sense that

‖w (C) −w★‖ ≤ 2 for an arbitrarily small but strictly positive 2 , we prune the �lters whose !2 norm

is smaller than 10
−6

. Then we retrain the pruned network -without the !2,1-norm regularization-

for 90 epochs by SGD with momentum with an initial learning rate 0.1 (which is linearly decayed

by 10 every 30 epochs), momentum 0.9 and batch size 256.

We remark that for many pruning methods, the code for ResNet-50 and ImageNet 2012 is not

available in the repository (including TAS [9] and BCNet [30] which are not listed in Table 1). It is

thus impossible to verify their results. Besides, it is not clear how the MACs are measured, making

a fair comparison di�cult. As an example, FPGM in Table 1 reported 46.50% of the original MACs,

but it is 49.03% according to our calculator [Sovrasov].

B.1 Filter Pruning Ablation Study

In the experiment of �lter pruning in Sec. 4.1, we test as an ablation study the performance of the

GSparsity with respect to `, and the results are summarized in Table 5. We can clearly see that the

MACs and top-1 acc is a monotonic function of `, so the appropriate value of ` achieving a target

sparsity level can be found e�ciently by the bisection search.

`
top-1 acc

after search

top-1 acc

after retrain

MACs Params

0.01 73.99 76.01 3.22G 22.70M

0.02 73.81 75.21 2.60G 17.08M

0.03 73.49 74.93 2.36G 15.59M

0.04 72.23 74.35 2.17G 14.67M

0.05 73.00 74.33 2.06G 14.03M

0.06 72.83 74.10 1.97G 13.56M

0.07 73.01 74.00 1.92G 13.22M

0.08 72.73 73.62 1.83G 12.86M

0.09 72.47 73.41 1.77G 12.51M

0.10 72.45 73.34 1.74G 12.36M

Table 5: GSparsity and �lter pruning: Ablation study.

C ResNet-50 Structure after Pruning

In this section the resulting network structure of ResNet-50 after �lter pruning is summarized. The

structure of the unpruned ResNet-50 network is shown in Table 6. It consists of 4 layers, where

each layer contains a certain number of blocks. Each block contains three di�erent convolutions.

In the experiments from Section 4.1, the ResNet-50 model is trained on ImageNet-2012 using

GSparsity. Table 7 depicts the resulting networks, which have been trained using GSparsity with

` ∈ {0.02, 0.05, 0.07, 0.10}. Note that we removed the �lter height and width from each cell in Table

7 in order to save space.

D Operation pruning - Experiment setup

As a base network to be pruned, we choose one of the networks found in DARTS [25]: DARTS-V2,

which has 3.3M parameters. To perform operation pruning, a group should consist of all trainable

parameters of the same operation. For example, the dilated convolution operation consists of

12

Layers Blocks Conv1 Conv2 Conv3

Layer 1

Block 1 1 × 1, 64 3 × 3, 64 1 × 1, 256
Block 2 1 × 1, 64 3 × 3, 64 1 × 1, 256
Block 3 1 × 1, 64 3 × 3, 64 1 × 1, 256

Layer 2

Block 1 1 × 1, 128 3 × 3, 128 1 × 1, 512
Block 2 1 × 1, 128 3 × 3, 128 1 × 1, 512
Block 3 1 × 1, 128 3 × 3, 128 1 × 1, 512
Block 4 1 × 1, 128 3 × 3, 128 1 × 1, 512

Layer 3

Block 1 1 × 1, 256 3 × 3, 256 1 × 1, 1024
Block 2 1 × 1, 256 3 × 3, 256 1 × 1, 1024
Block 3 1 × 1, 256 3 × 3, 256 1 × 1, 1024
Block 4 1 × 1, 256 3 × 3, 256 1 × 1, 1024
Block 5 1 × 1, 256 3 × 3, 256 1 × 1, 1024
Block 6 1 × 1, 256 3 × 3, 256 1 × 1, 1024

Layer 4

Block 1 1 × 1, 512 3 × 3, 512 1 × 1, 2048
Block 2 1 × 1, 512 3 × 3, 512 1 × 1, 2048
Block 3 1 × 1, 512 3 × 3, 512 1 × 1, 2048

Table 6: The structure of the unpruned ResNet-50 network that is used for training on ImageNet-2012.

Each cell contains the �lter height × �lter height as well as the number of output channels.

` = 0.02 ` = 0.05 ` = 0.07 ` = 0.10

Layers Blocks Conv1 Conv2 Conv3 Conv1 Conv2 Conv3 Conv1 Conv2 Conv3 Conv1 Conv2 Conv3

Layer 1

Block 1 14 32 256 7 33 256 7 32 256 5 31 256

Block 2 54 63 256 44 56 256 43 57 256 36 50 256

Block 3 56 64 256 44 64 256 40 64 256 33 63 256

Layer 2

Block 1 72 127 512 42 110 512 32 102 512 24 88 512

Block 2 14 51 512 9 45 512 8 50 512 6 40 512

Block 3 60 93 512 34 72 512 32 58 512 30 54 512

Block 4 97 124 512 59 121 512 51 118 512 41 116 512

Layer 3

Block 1 221 253 1024 161 238 1024 138 236 1024 124 222 1024

Block 2 81 160 1024 51 130 1024 42 118 1024 39 105 1024

Block 3 101 202 1024 64 176 1024 57 170 1024 52 161 1024

Block 4 108 102 1024 61 160 1024 52 160 1024 40 143 1024

Block 5 91 158 1024 54 130 1024 42 117 1024 34 100 1024

Block 6 137 204 1024 92 178 1024 80 160 1024 72 150 1024

Layer 4

Block 1 512 512 2048 512 512 2048 500 512 2048 468 512 2048

Block 2 461 510 2048 224 491 2048 172 464 2048 133 429 2048

Block 3 44 70 2048 11 5 2048 10 4 2048 9 3 2048

Table 7: Final structure of ResNet-50 after training with GSparsity on the ImageNet-2012 dataset. This

Table depicts the resulting output channels of the di�erent convolutions for four di�erent

values of `. Please refer to Table 6 for the structure of the unpruned network. The �lter height

and width have been omitted in this Table to save space.

four suboperations: ReLU, Conv2d(C_in,C_in), Conv2d(C_in, C_out), BatchNorm2d(C_out). The

group should consist of the trainable parameters of all suboperations.

We �rst use ProxSGD to train DARTS-V2 -with the !2,1-norm regularization- on CIFAR-10,

where the regularization gain is identical for all groups. We consider various values of ` ∈
{0.0001, 0.0002, 0.0005, 0.002, 0.004} to get di�erent sparsity levels. After training with ProxSGD is

�nished, we prune the operations whose !2 norm is smaller than 10
−6

. The pruned network will

be retrained -without the !2,1-norm regularization- by SGD with momentum, and the retrained

accuracy will be reported in the following.

E CIFAR-10 and CIFAR-100 on DARTS Search Space

In the experiment of neural architecture search in Sec. 4.3, the DARTS search space consists of the

following operations: 3×3 MaxPooling, 3×3 AvgPooling, Identity, 3×3 SepConv, 5×5 SepConv, 3×3

DilConv, and 5×5 DilConv.

13

We train the supernet during the search phase using the ProxSGD optimizer (with !2,1-norm

regularization) with a learning rate of 0.001 (without learning rate scheduler), momentum 0.8 and

g: (C) = 1. During evaluation, we train the network using SGD with learning rate 0.025, momentum

parameter 0.9, weight decay 3e-4, an auxiliary tower with weight 0.4, cutout regularization with

length 16 and ScheduledDropPath [44] with the maximum drop probability 0.3.

We tune the regularization gain ` in a similar way as the bisection method. Firstly, we try

values of ` spanning a big range (such as ` =0.1, 1, 10, 100) to determine a small range in which the

desirable ` (i.e., the desired sparsity level) lies. Then the bisection method is repeated in the small

range, for example [50, 100]. We can typically �nd an appropriate ` within 10 trials. We remark

that to reduce the e�ort to tune `, a seemingly obvious way is to use a small ` and only keep the

top : operations with the largest !2 norm. However, this discretization step would incur notable

performance degradation. Therefore, searching for the appropriate ` will reduce the performance

degradation due to disretization and it is not an extra burden compared to other methods. The

regularization gain `: is chosen according to (3) with ` = 60.

One of the three architectures we found with GSparsity on CIFAR-10 is shown in Figure 2.

c_{k-2}

0
sep_conv_3x3

sep_conv_5x5

1

sep_conv_5x5

2
sep_conv_5x5

3

sep_conv_5x5

c_{k-1}
sep_conv_3x3

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

c_{k}

(a) Normal cell found by GSparsity for the CIFAR-10

dataset.

c_{k-2} 0sep_conv_5x5

1

sep_conv_5x5

c_{k-1}
sep_conv_5x5

sep_conv_5x5

c_{k}

2

3

(b) Reduction cell found by GSparsity for the

CIFAR-10 dataset.

Figure 2: Example of one architecture on CIFAR-10 found by GSparsity. We remove the restriction on

the number of operations per node. In order to match the network size to other methods we

stack less cells when evaluating the architecture.

CIFAR-100 uses the same search-space as CIFAR-10, the only di�erence being the output of

the network is set to 100 in order to deal with the increased number of classes. During the search-

phase, the 8-cell supernet is trained for 100 epochs using the ProxSGD optimizer with !2,1-norm

regularization. We use a learning rate of 0.001 (without learning rate scheduler), momentum 0.8

and g: (C) = 1. The regularization gain `: is chosen according to (3) with ` = 120.

Figure 3 shows the normal and reduction cell of one of the three architectures that we found

with the GSparsity method.

We note that the accuracies of the baselines, albeit reproduced by using the authors’ original

implementations, are generally worse than reported in the respective papers. One reason is that

we consider the average performance based on all architectures (instead of the best architecture

w.r.t. validation performance, as done by many recent papers)
3
.

Accuracy of the best performing architecture. As previously mentioned, this paper deviates from

the commonly used practice of only reporting the average accuracy of the model with the best

performance. In Table 8 we used the results obtained from Table 3 to �nd the best performing

3
However, the performance of the best architecture we could reproduce is still notably worse than originally reported.

14

c_{k-2}

0

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

1sep_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

3sep_conv_5x5

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

dil_conv_5x5 c_{k}

dil_conv_5x5

sep_conv_5x5

(a) Normal cell found by GSparsity for the CIFAR-100

dataset.

c_{k-2}

0

sep_conv_5x5 1
sep_conv_5x5

3sep_conv_5x5

c_{k-1}
sep_conv_5x5

sep_conv_5x5

c_{k}

2

(b) Reduction cell found by GSparsity for the

CIFAR-100 dataset.

Figure 3: Example of one architecture on CIFAR-100 found by GSparsity. We remove the restriction

on the number of operations per node. In order to match the network size to other methods,

we stack less cells when evaluating the architecture.

architecture for each method on CIFAR-10 and CIFAR-100. On CIFAR-10, we observe that PC-

DARTS is able to reach the highest accuracy with 97.38 ± 0.08, followed closely by P-DARTS with

97.25 ± 0.07 and our proposed method GSparsity with 97.24 ± 0.03. On CIFAR-100, our proposed

method is able to �nd the best performing architecture, which reaches an average accuracy of 84.04

± 0.28, followed by P-DARTS with 83.62 ± 0.19.

CIFAR-10 Accuracy CIFAR-100 Accuracy

DARTS (2nd) 97.09 ± 0.09 81.05 ± 0.23

P-DARTS 97.25 ± 0.07 83.62 ± 0.19

PC-DARTS 97.38 ± 0.08 83.38 ± 0.20

DrNAS 96.98 ± 0.07 83.41 ± 0.18

GDAS 96.77 ± 0.11 81.41 ± 0.40

ISTA-NAS 96.86 ± 0.02 83.17 ± 0.17

GAEA 96.57 ± 0.04 80.34 ± 0.05

GSparsity (ours) 97.24 ± 0.03 84.04 ± 0.28

Table 8: Accuracy of the best architecture found by di�erent NAS methods for the DARTS space.

Each method has been run three times, and each of those three architectures that have been

found have been evaluated three times. This table summarizes the performance of the best

architecture out of the three that have been search by each method, contrary to Table 3, which

shows the average accuracy of all three architectures.

Pruning weights vs. pruning switches. We have also compared to the approach where scaling

factors (which act as a switch) are appended to the operations and then pruned (instead of weights).

It turns out that the magnitudes of the scaling factors are very sensitive to the value of ` and they

are either all active or all zero. For example,

• when ` = 3.66, all scaling factors are active, see the plot of operations at epoch 50, at log-search-

switch/*-mu_3.66_div_0.5_time_20211002-145316/

• when ` = 3.67, all scaling factors are zero, see the plot of operations at epoch 50, at log-search-

switch/*-mu_3.67_div_0.5_time_20211002-145443/

• when ` = 3.69, all scaling factors are active, see the plot of operations at epoch 50, at log-search-

switch/*-mu_3.69_div_0.5_time_20211002-145456/

15

Therefore, it is more bene�cial to directly prune the weights.

F ImageNet-2012 on DARTS Search Space

In the experiment of neural architecture search on ImageNet 2012 in Sec. 4.3, the DARTS search

space consists the same operations as for CIFAR-10 and CIFAR-100.

The search and evaluation network on ImageNet 2012 di�ers from the network used to search

and evaluate CIFAR-10/-100 and is similar to the network used in [5], [6] and [34]. We use three

convolutions with stride 2 in order to downscale the spatial resolution of the ImageNet samples to

28 × 28.

During search, we train on 10% of the ImageNet 2012 samples. We use ProxSGD with !2,1-norm

regularization and train the network for 50 epochs. Similar to the CIFAR dataset, we used the

bisection method to tune the regularization gain `. We used `=43 for the network trained directly

on ImageNet-2012. The model was trained in parallel on 4 Titan GPUs.

We changed the optimizer during the searching process compared to prior NAS experiments.

We use g: (C) = mean

(√
r (C)/(1 − VC)

)
+ X . Here, we take the mean over all the elements in the

group. The aggregate squared gradient r (C) is updated iteratively for each element inside the group

as r (C) = r (C − 1)V + (1 − V)g(C)2. In our experiments we used V=0.1.

During evaluation, we scale the network to 14 cells with 48 initial channels, following previous

works ([5], [6], [34]). The network is trained for 250 epochs using the SGD optimizer with momen-

tum. We use an initial learning rate of 0.5, which we decay down to 0 using a cosine annealing

scheduler, momentum 0.9, a batch-size of 512 and a weight decay value of 3e-5. We use label

smoothing and an auxiliary tower with auxiliary weight of 0.4.

Note that because ImageNet 2012 is computationally demanding, we were only able to run

each method once. The results are summarized in Table 9. We observe that PC-DARTS is able to

achieve the highest top-1 accuracy of 75.69%, followed by our approach, which reached 75.51%.

We reproduce DrNAS using the authors’ implementation, but the accuracy we could reproduce is

65.25%, and it is notably below the one reported in [5]. It takes PC-DARTS and GSparsity roughly

the same time to search for an architecture: 3.1 and 3.3 GPU days, respectively. DrNAS takes the

longest with 7.3 GPU days.

top-1 acc top-5 acc search cost params

DARTS* 71.09 89.83 2.9 days 5.54M

P-DARTS* 74.11 91.73 0.3 days 3.67M

GSparsity* (ours) 75.29 92.42 0.5 days 6.29M

PC-DARTS 75.71 92.68 3.1 days 5.57M

DrNAS 65.25 86.23 7.3 days 3.33M

GSparsity (ours) 75.51 92.60 3.3 days 6.22M

Table 9: NAS on DARTS search space for ImageNet 2012 (*Architecture has been searched on CIFAR-10

or CIFAR-100). All results are reproduced from their authors’ implementations.

F.0.1 NAS-Bench-201 Search Space.
We now evaluate our GSparsity method on the tabular NAS benchmark NAS-Bench-201 [11].

Architecture space and search settings. NAS-Bench-201 employs a �xed cell-based structure

similar to DARTS, and we refer to [11] for more details about the network.

To search for a single cell structure, the operation of the same type in di�erent cells are put

into the same group (cf. Figure 1). Then we train the network with ProxSGD for 100 epochs using

the full training set. The regularization gain `: follows (3) where ` = 200.

Evaluation settings. The architectures found in the Search phase are simply queried from the

NAS-Bench-201 database to obtain validation/test accuracy. We queried the mean performance for

16

CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

DARTS (1st) 49.27 ± 13.4 59.84 ± 7.84 38.57 ± 0.00 38.97 ± 0.00 18.87 ± 0.00 18.41 ± 0.00

DARTS (2nd) 58.78 ± 13.4 65.38 ± 7.84 38.57 ± 0.00 38.97 ± 0.00 18.87 ± 0.00 18.41 ± 0.00

P-DARTS 64.72 ± 19.1 71.43 ± 14.2 38.57 ± 0.00 38.97 ± 0.00 28.03 ± 13.0 27.72 ± 13.2

GAEA 83.31 ± 1.31 83.18 ± 1.20 54.94 ± 0.26 54.88 ± 0.17 29.31 ± 3.19 28.42 ± 3.31

PC-DARTS 89.46 ± 1.05 93.06 ± 0.99 67.19 ± 1.36 67.76 ± 1.00 40.57 ± 0.77 40.84 ± 0.85

DrNAS 90.20 ± 0.00 93.76 ± 0.00 67.84 ± 1.74 67.62 ± 1.69 40.78 ± 0.00 41.44 ± 0.00
GSparsity (ours) 90.20 ± 0.00 93.76 ± 0.00 70.71 ± 0.00 71.11 ± 0.00 40.78 ± 0.00 41.44 ± 0.00

Table 10: NAS on NAS-Bench-201 search space (reproduced from their authors’ implementations).

each architecture and in the table report mean/standard deviation across this mean performance

for the architectures resulting from 3 Search runs.

Results. Table 10 shows that GSparsity performs amongst the best for all three datasets on the

NAS-Bench-201 search space. DrNAS performs similar to GSparsity, �nding the same architectures

on CIFAR-10 and ImageNet-16-120.

G Convergence of ProxSGD vs. SGD

We compare the convergence of ProxSGD and SGD with !2,1-regularization in the NAS setting. For

this experiment we set the weight decay to a �xed value of ` = 50 and we search for a network

architecture using our GSparsity method. For SGD we search for a variety of learning rates and

choose the best performing hyperparameters. The momentum stays �xed at< = 0.9. The results

are summarized in Figure 4.

Figure 4: Neural architecture search using SGD and ProxSGD (denoted by GSparsity).

We observe that GSparsity outperforms SGD with a lower training objective and a higher

validation accuracy. The biggest di�erence is observed in the cell architecture, which is depicted in

Figure 5 for SGD and Figure 6 for ProxSGD.

17

c_{k-2}

0
max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

3

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

(a) Normal cell with 96 non-zero operations.

c_{k-2}

0

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

dil_conv_3x3

dil_conv_5x5

2

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

dil_conv_3x3

dil_conv_5x5

3

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

(b) Reduction cell with 95 non-zero operations.

Figure 5: Normal and reduction cell for ` = 50 trained with SGD.

18

c_{k-2}

0

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

3

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

(a) Normal cell with 44 non-zero operations.

c_{k-2}

0

sep_conv_5x5

1

sep_conv_5x5

2

sep_conv_5x5

3

sep_conv_5x5

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5sep_conv_5x5

sep_conv_5x5 c_{k}

sep_conv_5x5

(b) Reduction cell with 11 non-zero operations.

Figure 6: Normal and reduction cell for ` = 50 trained with ProxSGD.

We see that while GSparsity is able to converge to a sparse solution, with 44 non-zero operations

in the normal cell and 11 operations in the reduction cell, SGD does not converge to a sparse solution.

There are 96 remaining operations in the normal cell and 95 remaining operations in the reduction

cell.

H GSparsity and NAS: Ablation Study

In order to see the e�ect of the regularization parameter ` on the structure of the �nal network, we

depict the found architecture for ` ∈ [0.1, 1, 10, 50, 100, 200, 500, 1000] in Figures (7)-(14). During

training of each model with GSparsity, the learning rate has been kept at a �xed value of ;A = 0.001.

One can observe that the number of non-zero operations decreases monotonically with the value

of `. For ` = 0.1, the number of non-zero operations in the normal cell is 98, and in the reduction

cell there are 64 operations. On the other hand, for a very large value of ` the network prunes all

of the operations in both cells, as can be seen in Figure 14 for ` = 1000. For small values of `, the

resulting number of operations is more sensitive for changes in its value. For example, going from

` = 0.1 to ` = 1, a change of only Δ` = 0.9, the total number of non-zero operations is reduced by

42. But going from ` = 100 to ` = 200 only reduces the number of non-zero operations by 10.

19

c_{k-2}

0

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

(a) Normal cell with ` = 0.1. There are 98 non-

zero operations in this cell after pruning.

c_{k-2}

0
skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

(b) Reduction cell with ` = 0.1. There are 64 non-

zero operations in this cell after pruning.

Figure 7: Resulting network structure after training with GSparsity with ` = 0.1 and �xed ;A = 0.001.

20

c_{k-2}

0
sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5
dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

(a) Normal cell with ` = 1. There are 56 non-zero

operations in this cell after pruning.

c_{k-2}

0
skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

(b) Reduction cell with ` = 1. There are 64 non-

zero operations in this cell after pruning.

Figure 8: Resulting network structure after training with GSparsity with ` = 1 and �xed ;A = 0.001.

21

c_{k-2}

0
sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5
dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

(a) Normal cell with ` = 10. There are 56 non-zero

operations in this cell after pruning.

c_{k-2}

0
skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

(b) Reduction cell with ` = 10. There are 64 non-

zero operations in this cell after pruning.

Figure 9: Resulting network structure after training with GSparsity with ` = 10 and �xed ;A = 0.001.

c_{k-2}

0

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

3

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

(a) Normal cell with ` = 50. There are 44 non-zero

operations in this cell after pruning.

c_{k-2}

0

sep_conv_5x5

1

sep_conv_5x5

2

sep_conv_5x5

3

sep_conv_5x5

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5sep_conv_5x5

sep_conv_5x5 c_{k}

sep_conv_5x5

(b) Reduction cell with ` = 50. There are 11 non-

zero operations in this cell after pruning.

Figure 10: Resulting network structure after training with GSparsity with ` = 50 and �xed ;A = 0.001.

22

c_{k-2}

0

sep_conv_5x5

1
sep_conv_5x5

2

sep_conv_5x5

3

sep_conv_5x5

c_{k-1}
sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5 sep_conv_5x5

sep_conv_5x5

c_{k}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

(a) Normal cell with ` = 100. There are 14 non-

zero operations in this cell after pruning.

c_{k-2}

0

sep_conv_5x5

1sep_conv_5x5

c_{k-1} sep_conv_5x5

c_{k}

2

3

(b) Reduction cell with ` = 100. There are 3 non-

zero operations in this cell after pruning.

Figure 11: Resulting network structure after training with GSparsity with ` = 100 and �xed ;A = 0.001.

c_{k-2}

0

sep_conv_5x5 1
sep_conv_5x5

2sep_conv_5x5

c_{k-1}
sep_conv_5x5

sep_conv_5x5

c_{k}

3

(a) Normal cell with ` = 200. There are 5 non-zero

operations in this cell after pruning.

c_{k-2}
0

sep_conv_5x5

c_{k-1}
sep_conv_5x5 c_{k}

1

2

3

(b) Reduction cell with ` = 200. There are 2 non-

zero operations in this cell after pruning.

Figure 12: Resulting network structure after training with GSparsity with ` = 200 and �xed ;A = 0.001.

c_{k-2}
0

sep_conv_5x5

c_{k-1}
sep_conv_5x5 c_{k}

1

2

3

(a) Normal cell with ` = 500. There are 2 non-zero

operations in this cell after pruning.

c_{k-2}

c_{k-1} 3max_pool_3x3

avg_pool_3x3

0

1

2

c_{k}

(b) Reduction cell with ` = 500. There are 2 non-

zero operations in this cell after pruning.

Figure 13: Resulting network structure after training with GSparsity with ` = 500 and �xed ;A = 0.001.

23

c_{k-2}

c_{k-1}

0

1

2

3

c_{k}

(a) Normal cell with ` = 1000. There are 0 non-

zero operations in this cell after pruning.

c_{k-2}

c_{k-1}

0

1

2

3

c_{k}

(b) Reduction cell with ` = 1000. There are 0

non-zero operations in this cell after pruning.

Figure 14: Resulting network structure after training with GSparsity with ` = 1000 and �xed ;A = 0.001.

24

	Introduction
	Background and Related Work
	The Proposed Group Sparsity Approach
	From Network Pruning to NAS

	Experiments
	Filter Pruning
	Operation Pruning
	Neural Architecture Search
	DARTS Search Space
	Robustness of GSparsity

	Conclusion
	Reproducibility Checklist
	The ProxSGD Algorithm
	Filter Pruning
	Filter Pruning Ablation Study

	ResNet-50 Structure after Pruning
	Operation pruning - Experiment setup
	CIFAR-10 and CIFAR-100 on DARTS Search Space
	ImageNet-2012 on DARTS Search Space
	NAS-Bench-201 Search Space

	Convergence of ProxSGD vs. SGD
	GSparsity and NAS: Ablation Study

