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Abstract

After a period of decrease, interest in word
alignments is increasing again for their useful-
ness in domains such as typological research,
cross-lingual annotation projection and ma-
chine translation. Generally, alignment algo-
rithms only use bitext and do not make use of
the fact that many parallel corpora are multi-
parallel. We propose to use graph neural net-
works (GNNs) and community detection algo-
rithms to exploit the graph structure of multi-
parallel word alignments. Our GNN approach
(i) utilizes information about the meaning, po-
sition and language of the input words, (ii)
incorporates information from multiple paral-
lel sentences, (iii) can remove edges from the
initial alignments, and (iv) provides a predic-
tion model that can generalize beyond the sen-
tences it is trained on. We show that commu-
nity detection algorithms can provide valuable
information for multiparallel word alignment.
We show on three word alignment datasets and
on a downstream task that our method outper-
forms previous work.

1 Introduction

Word alignments are crucial for statistical ma-
chine translation (Koehn et al., 2003) and useful
for many other multilingual tasks such as neu-
ral machine translation (Alkhouli and Ney, 2017;
Alkhouli et al., 2016), typological analysis (Lewis
and Xia, 2008; Ostling, 2015; Asgari and Schiitze,
2017), annotation projection (Yarowsky and Ngai,
2001; Fossum and Abney, 2005; Wisniewski et al.,
2014; Huck et al., 2019), bilingual lexicon induc-
tion (Lample et al., 2018; Artetxe et al., 2018; Shi
et al., 2021) and creation of multilingual embed-
dings (Dufter et al., 2018). The rise of deep learn-
ing initially led to a temporary plateau, but inter-
est in word alignments is now increasing, demon-
strated by several recent publications (Jalili Sabet
et al., 2020; Chen et al., 2020; Dou and Neubig,
2021; Marchisio et al., 2021; Wu and Dredze, 2020;
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Figure 1: Alignment graph for the verse “It will pro-
duce thorns and thistles for you, and you will eat the
plants of the field.” in a 12-way multiparallel corpus.
Colors represent languages. Each English (yellow)
node is annotated with its word. Red dashed lines sever
links that incorrectly connect distinct concepts. We ex-
ploit community detection algorithms to remove inter-
community and add intra-community links.

Imani et al., 2021)

Most prior work on word alignments uses bi-
text, but Imani et al. (2021) exploit the fact that
many parallel corpora are multiparallel (i.e., they
contain more than two parallel corpora). They in-
troduce MPWA (MultiParallel Word Alignment),
a framework that makes use of multiparallelism
for better word alignments. They represent sets of
bilingual word alignments as graphs and cast the
word alignment task as an edge prediction prob-
lem. To exploit the graph structure, they apply two
standard graph algorithms, Adamic-Adar (AdAd)
and non-negative matrix factorization (NMF), and
achieve improved results. However, these standard
graph algorithms are applied to individual multipar-
allel sentences independently and therefore cannot
accumulate knowledge from multiple sentences.
Moreover, their edge predictions are solely based
on the structure of the graph and do not take ad-



vantage of other beneficial signals such as a word’s
language, relative position and word meaning.

In this paper, we propose to use graph neural
networks (GNNs) to exploit the graph structure
of multiparallel word alignments and address the
limitations of prior work. GNNs were proposed
to extend the powerful current generation of neu-
ral network models to processing graph-structured
data (Scarselli et al., 2009) and they have gained
increasing popularity in many domains, such as
social networks (Wu et al., 2020), natural science
(Sanchez-Gonzalez et al., 2018), knowledge graphs
(Hamaguchi et al., 2017), and recommender sys-
tems (He et al., 2020). In contrast to other graph
algorithms, GNNs can incorporate heterogeneous
sources of signal in the form of node and edge
features.

Since the nodes in the graph are words that are
translations of each other, we expect them to create
densely connected regions or communities. Our
analysis of the structure of the multiparallel align-
ment graph confirms this intuition; see Figure 1.
We use the community detection algorithms GMC
and LPC (see below) to find communities and show
that pruning inter-community and adding intra-
community edges is helpful. We use community
information as node features for our GNN.

A limitation of (Imani et al., 2021) is that it only
adds links and does not remove any. We address
this by proposing a new method to infer alignments
from the alignment probability matrix. Our method
predicts new alignment links independently of ini-
tial edges. Therefore it is not limited to adding new
edges to some initial bilingual alignments.

For our experiments, we follow the setup of
Imani et al. (2021). We obtain bilingual alignments
using the statistical word aligner Eflomal (Ostling
and Tiedemann, 2016). We train a GNN model
on the resulting graph with a link prediction objec-
tive. We show improved results for three language
pairs on word alignment (English-French, Finnish-
Hebrew and Finnish-Greek). As a demonstration of
the importance of high-quality alignments, we use
our word alignments to project annotations from
high-resource languages to low-resource languages.
We improve the performance of a part-of-speech
tagger for the Yoruba language by training it over
a high-quality dataset, which is created using anno-
tation projection.

Contributions: i) We propose graph neural net-
works that can incorporate a diverse set of features

for word alignments in multiparallel corpora and
show that GNNs establish a new state of the art
in word alignment. ii) We show that community
detection algorithms improve multiparallel word
alignment. iii) We show that the improved align-
ments improve performance on a downstream task.
iv) We propose a new method to infer alignments
from the alignment probability matrix. v) We will
make our code publicly available.

2 Related Work

Bilingual Word Aligners. Much work on bilin-
gual word alignment is based on probabilistic mod-
els, mostly implementing variants of the IBM mod-
els of Brown et al. (1993): e.g., the aligners Giza++
(Och and Ney, 2003), fast-align (Dyer et al., 2013)
and Eflomal (Ostling and Tiedemann, 2016). They
use statistical similarities between word distribu-
tions in sentence aligned parallel corpora to learn
word alignment models. More recent work, includ-
ing SimAlign (Jalili Sabet et al., 2020), Awesome-
align (Dou and Neubig, 2021), Bidir+CL (Zenkel
et al., 2020), and SHIFT-ATT/SHIFT-AET (Chen
et al., 2020), uses pretrained neural language and
machine translation models. Although neural mod-
els achieve superior performance compared to sta-
tistical aligners, they are only applicable for less
than two hundred high-resource languages that are
supported by multilingual language models like
BERT (Devlin et al., 2019) and XLM-R (Conneau
et al., 2020). This makes statistical models the only
option for the majority of the world’s languages.
Due to its good performance, we use Eflomal as
our initial bilingual aligner.

Multiparallel Corpora. Prior applications of
using multiparallel corpora include reliable transla-
tions from small datasets (Cohn and Lapata, 2007),
and phrase-based machine translation (PBMT) (Ku-
mar et al., 2007). Multiparallel corpora are also
used for language comparison (Mayer and Cysouw,
2012), typological studies (Ostling, 2015; Asgari
and Schiitze, 2017) and PBMT (Nakov and Ng,
2012; Bertoldi et al., 2008; Dyer et al., 2013).

Despite the usefulness of multiparallel corpora,
most past work on word alignment has focused on
bilingual corpora. Ostling (2014)! proposed a word
alignment method specifically designed for multi-
parallel corpora. However, this method is outper-
formed by Eflomal (Ostling and Tiedemann, 2016),
a “biparallel” method from the same author. Re-
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cently, Imani et al. (2021) proposed MPWA (Mul-
tiParallel Word Alignment, see §3), which refines
the graph structure of an initial multiparallel word
alignment using standard graph algorithms. Our
work improves on MPWA.

Graph Neural Networks (GNNs) have been
used to address many problems that are inherently
graph-like such as traffic networks, social networks,
and physical and biological systems (Liu and Zhou,
2020). Their popularity increased rapidly after
the efficient integration of powerful deep learn-
ing techniques, such as convolutional neural net-
works and attention mechanisms, into GNNs (Kipf
and Welling, 2016, 2017; Velickovic et al., 2018).
GNNss achieve impressive performance in many do-
mains, including social networks (Wu et al., 2020),
natural science (Sanchez-Gonzalez et al., 2018),
knowledge graphs (Hamaguchi et al., 2017), and
recommender systems (He et al., 2020). This has
motivated the NLP community to apply GNNs to
tasks such as sentence classification (Huang et al.,
2020), named entity recognition (Luo and Zhao,
2020), question generation (Pan et al., 2020) and
summarization (Fernandes et al., 2019). As far as
we know, our work is the first to apply GNNs to
word alignment.

3 Background

3.1 MPWA

MPWA (MultiParallel Word Alignment) aims to
utilize the synergy between multiple language pairs
to improve bilingual word alignments (Imani et al.,
2021). The rationale is that some of the missing
alignment edges between a source and a target lan-
guage can be recovered by using their alignments
with words in other languages.

The first step in MPWA is to create bilingual
alignments for all language pairs in a multiparal-
lel corpus using a bilingual word aligner. Then
the bilingual alignments for a given multiparallel
sentence are represented as a graph where words
are nodes and initial word alignments are edges.
Figure 1 gives an example: a bilingual alignment
graph for a 12-way multiparallel corpus.

MPWA tries to infer missing alignment links
based on the graph structure, casting the word align-
ment task as an edge prediction problem. Imani
et al. (2021) use two traditional graph algorithms,
Adamic-Adar and non-negative matrix factoriza-
tion, for edge prediction. We replace them here
with more powerful GNNS.

3.2 Community detection (CD)

The nodes in the alignment graph are words that
are translations of each other. If the initial bilin-
gual alignments are of good quality, we expect
these translated words to form densely connected
regions or communities in the graph; see Figure 1.
We expect these communities to be disconnected,
each corresponding to a distinct connected compo-
nent. In other words, ideally, words representing
a concept should be densely connected, but there
should be no links between different concepts.

To examine to what extent this expectation is
met, we count the components in the original
(Eflomal-generated) graph. Table 1 shows that,
for most sentences, the average number of compo-
nents per sentence is less than three. But intuitively,
the number of components (representing the con-
cepts in the sentence) should be roughly equal to
sentence length (or at least the number of content
words). This indicates that there are many links
that incorrectly connect different concepts. To de-
tect such links, we use community detection (CD)
algorithms.

CD algorithms find subnetworks of nodes that
form tightly knit groups that are only loosely con-
nected with a small number of links (Girvan and
Newman, 2002). These algorithms try to max-
imise the modularity measure Newman and Girvan
(2004). Modularity measures how beneficial a di-
vision of a community into two communities is, in
the sense that there are many links within commu-
nities and only a few between them. Given a graph
G with n nodes and m edges, and G’s adjacency
matrix A € R™*™, modularity is defined as:

1 d;d;
mod = m Z <Aij — - > I(ci,c5) (1)
ij

Where d; is the degree of node ¢, and I(c;, ¢;) is 1
if nodes 7 and j are in the same community and 0
otherwise.

We experiment with two CD algorithms:

* Greedy modularity communities (GMC). This
method uses Clauset-Newman-Moore greedy
modularity maximization (Clauset et al.,
2004). GMC begins with each node in its
own community and greedily joins the pair of
communities that most increases modularity
until no such pair exists.

* Label propagation communities (LPC). This
method finds communities in a graph using



FIN-HEB FIN-GRC ENG-FRA
#CC F1  #CC Fy  #CC F1

Eflomal intersection || 2.2 0.404 1.6 0.646 2.2 0.678
GMC 13.7 0.396 10.1 0.375 13.5 0411
LPC 41.5 0.713 37.1 0.754 46.0 0.767
Sentence length Il 25.7 232 27.4

Table 1: Effect of community detection algorithms on
alignment prediction. #CC: average number of con-
nected components. Fj: word alignment performance.
LPC consistently increases the number of components
and increases F].

label propagation (Cordasco and Gargano,
2010). It begins by giving a label to each
node of the network. Then each node’s label
is updated by the most frequent label among
its neighbors in each iteration. LPC’s semi-
synchronous algorithm, which at each step
performs label propagation on a portion of
nodes, quickly converges to a stable labeling.

After detecting communities, we link all
nodes inside a community and remove all inter-
community links. GMC (LPC) on average removes
3% (7%) of the edges. Table 1 reports the average
number of graph components per sentence before
and after runing GMC and LPC, as well as the cor-
responding Fi for word alignment. We see that the
number of communities found is lower for GMC
than for LPC; therefore, LPC identifies more can-
didate links for deletion.” Comparing the number
of communities detected with the average sentence
length, GMC seems to have failed to detect enough
communities to split different concepts properly.
The F} scores confirm this observation and show
that LPC performs well at detecting the communi-
ties we are looking for.

These results indicate that CD algorithms can
provide valuable information. To exploit this in our
GNN model, we add a node’s community informa-
tion as a GNN node feature of that node.

4 Methods
4.1 GNNin MPWA

GNNSs can be used in transductive or inductive set-
tings. In a transductive setting, nodes are repre-
sented as node IDs, and the final model can only
be used for inference over the same graph that it

2LPC may detect more communities than average sentence
length because of null words: words that have no translation
in the other languages, giving rise to separate communities.

is trained on. In an inductive setting, nodes are
represented as feature vectors, and the final model
has the advantage of being applicable to a different
graph in inference. We use the inductive setting.
GNNs can incorporate different sources of signal
in the form of node and edge features. We only use
node features. All are trained (or finetuned) during
GNN training.

4.1.1 Node Features

We use three main types of node features: (i) graph
structural features, (ii) community-based features
and (iii) word content features.

Graph structural features. We use degree,
closeness (Freeman, 1978) , betweenness (Bran-
des, 2001) , load (Newman, 2001) and harmonic
centrality (Boldi and Vigna, 2014) features as addi-
tional information about the graph structure. These
features are continuous numbers, providing infor-
mation about the position and connectivity of the
nodes within the graph. We standardize (i.e., z-
score) each of these features across all nodes in the
graph, and train an embedding of size four for each
feature.>

Community-based features. We use the com-
munity detection algorithms GMC and LPC (see
§3.2) to identify communities in the graph. Then
we take the community membership information
of the nodes as one-hot vectors and learn an em-
bedding of size 32 for each of the two algorithms.

Word content features. We train embeddings
for word position (size 32) and word language (size
20). We learn 100-dimensional multilingual word
embeddings using Levy et al. (2017)’s sentence-
ID method on the 84 PBC languages selected by
Imani et al. (2021). Word embeddings serve as
initialization and are updated during GNN training.

After concatenating these features, each node
is represented by a 236 dimensional vector that is
then fed to the encoder.

4.1.2 Model Architecture

Our model is inspired by the Graph Auto Encoder
(GAE) model of Kipf and Welling (2016) for the
link prediction task. The architecture consists of
an encoder and a decoder.
The encoder is a graph attention network (GAT)
(Velickovié et al., 2018) with two GATConv layers
3Learning a size-four embedding instead of a single num-

ber gives the feature a weight similar to other features — which
have a feature vector of about the same size.
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Figure 2: GNN training. At each training step, node features and alignment links of a multiparallel sentence are
fed to a graph attention network (GAT) that creates hidden representations for all nodes. On the decoder side, at
each step, one batch of alignment links and hidden node representations is used to create positive and negative
samples, which are then processed and classified by a multi-layer perceptron (MLP). Parameters of GAT and MLP
are updated after each training step. After all alignment links are processed in multiple training steps, training
continues with the next multiparallel sentence in the training set. FC = fully connected.

followed by a fully-connected layer. Layers are
connected by RELU non-linearities. A GATConv
layer computes its output x; for a node ¢ from its
input x; as

X; = O[Z'J'WXi + Z OéiJ'WXj,
JEN(G)

2

where W is a weight matrix, N (i) is some neigh-
borhood of node i in the graph, and «; ; is the
attention coefficient indciating the importance of
node j’s features to node i. «; ; is computed as

o — exp (g (aT[Wxi I ij]))
Y Y kenugn exp (g (T [Wx; [ Wxy]))
3)
where -* is transposition and || is concatanation, g
is the LeakyReLU non-linearity, and a is a weight
vector. Given the features for the nodes and their
alignment edges, the encoder creates a contextual-
ized hidden representation for each node.

Based on the hidden representations of two
nodes, the decoder predicts whether a link con-
nects them. The decoder architecture consists of a
fully connected layer, a RELU non-linearity and a
sigmoid layer.

T

Training. Figure 2 displays our GNN model and
the training process. The outer loop iterates over
the multiparallel sentences in the training set. The
training set contains one graph for each sentence;
the graph is constructed using the bilingual align-
ment edges between all language pairs.

Each graph is divided into multiple batches.
Each batch contains a random subset of the graph’s
edges as positive samples. The negative sam-
ples are created as follows: Given a sentence
UIUU3 . . . Up 1N language U and its translation
V10903 . . . Uy, in language V, for each alignment
edge u; : v; in the current batch, two negative
edges u; : v} and uj : v; (j' # j, 7 # i) are
randomly sampled.

For each training batch, the encoder takes the
batch’s whole graph (i.e., node features for all
graph nodes and all graph edges) as input and com-
putes hidden representations for the nodes. On the
decoder side, for each link of the batch, the hidden
representations of the attached nodes are concate-
nated to create the decoder’s input. The decoder’s
target is the link’s class: 1 (resp. 0) for positive
(resp. negative) links. We train with a binary classi-
fication objective:

b 2b
1 _
L=— Zlog(pf) + o5 ZlOg(pi ) @
i=1 i=1

(SR

where b is the batch size and p;r and p, are the
model predictions for the i** positive and negative
samples within the batch. Parameters of the en-
coder and decoder as well as the node-embedding
feature layer are updated after each training step.

4.1.3 Inducing Alignment Edges

When our trained GNN model is used to pre-
dict alignment edges between a source sentence



T = x1,x9,...,Ty, in language X and a target
sentence § = y1, ¥, ..., Yy in language Y, it pro-
duces an alignment probability matrix S* of size
m x | where S;; is the predicted alignment proba-
bility between words x; and y;. Using these values
directly to infer alignment edges is usually subop-
timal; therefore, more sophisticated methods have
been suggested (Ayan and Dorr, 2006; Liang et al.,
2006). Here we propose a new approach: it com-
bines Koehn et al. (2005)’s Grow-Diag-Final-And
(GDFA) with Dou and Neubig (2021)’s probabil-
ity thresholding. We modify the latter to account
for the variable size of the probability matrix (i.e.,
length of source/target sentences). Our method is
not limited to adding new edges to some initial
bilingual alignments, a limitation of prior work. As
we predict each edge independently, some initial
links can be discarded from the final alignment.

We start by creating a set of forward (source-
to-target) alignment edges and a set of backward
(target-to-source) alignment edges. To this end,
first, inspired by probability thresholding (Dou and
Neubig, 2021), we apply softmax to S, and zero
out probabilities below a threshold to get a source-
to-target probability matrix SXY:

SXY = S x (softmax(S) > %) )

Analogously, we compute the target-to-source prob-
ability matrix SY X

SYX = 8T « (softmax(ST) > %) (6)
where « is a sensitivity hyperparameter, e.g., o« = 1
means that we pick edges with a probability higher
than average. We experimentally set o = 2. Next,
from each row of SXY (SYX), we pick the cell
with the highest value (if any exists) and add this
edge to the forward (backward) set.

We create the final set of alignment edges by ap-
plying the GDFA symmetrization method (Koehn
et al., 2005) to forward and backward sets. The
gist of GDFA is to use the intersection of forward
and backward as initial alignment edges and add
more edges from the union of forward and back-
ward based on a number of heuristics. We call this
method TGDFA (Thresholding GDFA).

In addition to the TGDFA alignments, we also
experiment with combining them with the original
bilingual GDFA alignments. We do so by adding

*For inference, we feed all possible alignment links be-
tween source and target to the decoder.

bilingual GDFA edges to the union of forward and
backward before performing the GDFA heuristics.
We refer to these alignments as TGDFA+orig.

4.2 Annotation Projection

Annotation projection automatically creates lin-
guistically annotated corpora for low-resource lan-
guages. A model trained on data with “annotation-
projected” labels can perform better than full un-
supervision. Here, we focus on universal part-of-
speech (UPOS) tagging (Petrov et al., 2012) for the
low resource target language Yoruba; this language
only has a small set of annotated sentences in Uni-
versal Dependencies (Nivre et al., 2020) and has
poor POS results in unsupervised settings (Kon-
dratyuk and Straka, 2019).

The quality of the target annotated corpus de-
pends on the quality of the annotations in the source
languages and the quality of the word alignments
between sources and target. We use the Flair (Ak-
bik et al., 2019) POS taggers for three high resource
languages, English, German and French (Akbik
et al., 2018), to annotate 30K verses whose Yoruba
translations are available in PBC. We then trans-
fer the POS tags from source to target using three
different approaches: (i) We directly transfer an-
notations from English to the target. (ii) For each
word in the target language, we get its alignments in
the three source languages and predict the majority
POS to annotate the target word. (iii) We repeat (ii)
using alignments from our GNN (TGDFA) model
instead of the original bilingual alignments. In all
three approaches, we discard any target sentence
from the POS tagger training data if more than 50%
of its words are annotated with the "X" (other) tag.

We train a Flair SequenceTagger model on the
target annotated data using mBERT embeddings
(Devlin et al., 2019) and evaluate on Yoruba test
from Universal Dependencies.’

5 Experimental Setup
5.1 Word Alignment Datasets

Following Imani et al. (2021), we use PBC as our
multiparallel corpus. PBC contains 1758 editions
of the Bible in 1334 languages, aligned at the verse
level. A verse can contain more than one sentence,
but we take it as one unit since sentence level align-
ments are not available.

For our main evaluation, we use the two word
alignment gold datasets for PBC published by

Shttps://universaldependencies.org/
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FIN-HEB
Prec. Rec. F;

Method ‘

AER | Prec. Rec. F)

FIN-GRC ENG-FRA

AER | Prec. Rec. F; AER

Eflomal (intersection)
Eflomal (GDFA)

0.818 0.269 0.405 0.595
0.508 0.448 0.476 0.524

0.897 0.506 0.647 0.353]0.971 0.521 0.678 0.261
0.733 0.671 0.701 0.300

0.856 0.710 0.776 0.221

WAdJAJ (intersection)
NMF (intersection)

0.781 0.612 0.686 0.314
0.780 0.576 0.663 0.337

0.849 0.696 0.765 0.235
0.864 0.669 0.754 0.248

0.938 0.689 0.794 0.203
0.948 0.624 0.753 0.245

WAdAd (GDFA) 0.546 0.693 0.611 0.389 |0.707 0.783 0.743 0.257 | 0.831 0.796 0.813 0.186
NMF (GDFA) 0.548 0.646 0.593 0.407 | 0.720 0.759 0.739 0.261 | 0.844 0.767 0.804 0.195

GNN (TGDFA) 0.811 0.648 0.720 0.280
GNN (TGDFA+orig) || 0.622 0.683 0.651 0.349

0.845 0.724 0.780 0.220 | 0.926 0.711 0.804 0.192
0.738 0.780 0.758 0.242

0.863 0.789 0.824 0.174

Table 2: Word alignment results on PBC for GNN and baselines. The best result in each column is in bold. GNN
outperforms the baselines as well as the graph algorithms WAdAd and NMF on F; and AER.

Imani et al. (2021): Blinker (Melamed, 1998) and
HELFI (Yli-Jyri et al., 2020).

The HELFI dataset contains the Hebrew Bible,
Greek New Testament and their translations into
Finnish. The Finnish-Hebrew dataset has word
level alignments for 22,291 verses and the Finnish-
Greek dataset for 7,909. We use Imani et al.
(2021)’s train/dev/test splits. The Blinker dataset
provides word level alignments between English
and French for 250 Bible verses.

The graph algorithms used by Imani et al. (2021)
operate on each multiparallel sentence separately.
In contrast, our approach allows for an inductive
setting where a model is trained on a training set
and then evaluated on a separate test set. This
allows our model to learn from multiple training
samples and use its accumulated knowledge on the
new test samples with fast inference. We combine
the verses in training sets of Finnish-Hebrew and
Finnish-Greek for a combined train set size of size
24,159°.

5.2 Initial Word Alignments

We use the Eflomal statistical word aligner to obtain
bilingual alignments. We do not consider SimA-
lign (Jalili Sabet et al., 2020) since it is shown to
perform poorly for languages whose representa-
tions in the multilingual pretrained language model
are of low quality, which includes the target lan-
guages in the HELFI dataset (Imani et al., 2021).
We evaluate on the same subset of 84 languages
as Imani et al. (2021). To train Efiomal for a tar-
get language pair, we use all available translations;
e.g., for a language pair with two and four different
versions of the Bible, Eflomal is trained on all eight
translation pairs.

®Note that we don’t use any gold alignments for training
the GNN. We use these sets only to ensure that our training
sentences are different than test sentences

We use Eflomal asymmetrical alignments post-
processed with the intersection heuristic to get high
precision bilingual alignments as input to the GNN.

5.3 Training Details

We use NetworkX’ for graph structural and
community-based feature extraction; PyTorch Geo-
metric® to construct and train the GNN, and Gen-
sim” to train sentence-ID embeddings. The model’s
hidden layer size is 512 for both GATConv and Lin-
ear layers. We train for one epoch on the train set
— a small portion of the train set is enough to learn
good embeddings (see §6.1.1). For training, we use
a batch size of 400 and learning rate of .001 with
AdamW (Loshchilov and Hutter, 2017).

6 Experiments and Results

6.1 Multiparallel corpus results

Table 2 shows results on Blinker and HELFI for our
GNNss and the baselines: bilingual alignments and
the traditional graph algorithms WAdAd and NMF
from (Imani et al., 2021). Our GNNs provide a
better trade-off between precision and recall, most
likely thanks to their ability to remove edges, and
achieve the best F; and AER on all three datasets,
outperforming WAdAd and NMF.

GNN (TGDFA) achieves the best results
on HELFI (FIN-HEB, FIN-GRC) while GNN
(TGDFA-+orig) is best on Blinker (ENG-FRA). As
argued in (Imani et al., 2021), this is mostly due
to the different ways these two datasets were an-
notated. Most HELFI alignments are one-to-one,
while many Blinker alignments are many-to-many:
phrase-level alignments where every word in a
source phrase is aligned with every word in a target
phrase. This suggests that one can choose between

"https://networkx.org/
8pytorch—geometric .readthedocs.io
‘https://radimrehurek.com/gensim/
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Figure 3: F; of GNN (TGDFA) and GNN
(TGDFA-+orig) on Blinker as a function of train size

GNN (TGDFA) and GNN (TGDFA+orig) based
on the characteristics of the desired alignments.

6.1.1 Effect of Training Set Size

To investigate the effect of training set size, we
train the GNN on subsets of our training data with
increasing sizes. Figure 3 shows results. Perfor-
mance improves fast until around 2,000 verses;
then it stays mostly constant. Indeed, using more
than 6,400 samples does not change the perfor-
mance at all. Therefore, in the other experiments
we use 6,400 randomly sampled verses from the
training set to train GNNs.

6.2 Ablation Experiments

To examine the importance of node features, we
ablate language, position, centrality, community
and word embedding features. Table 3 shows that
removal of graph structural features drastically re-
duces performance. Community features and lan-
guage information are also important. Removal of
word position information and word embeddings
— which store semantic information about words —
has the least effect. Based on these results, it can
be argued that the lexical information contained in
the initial alignments and in the community fea-
tures provides a very strong signal regarding words
relatedness. The novel information that is crucial
is about the overall graph structure which goes be-
yond local word associations, which are captured
by word position and word embeddings.

6.2.1 Annotation Projection

Table 4 presents accuracies for POS tagging in
Yoruba. Unsupervised baseline performance is
50.86%. Supervised training using pseudo-labels

|| FIN-HEB FIN-GRC ENG-FRA

GNN (TGDFA) | 0720 0.780 0.804
— language 0.323 -0.280 -0.370
— position 0.068 -0.045 -0.066
— centrality 0.636 -0.730 -0.772
— community 0.204 -0.238 -0.253
— word-embedding 0.139 -0.103 -0.129
GNN (TGDFA-+orig) || 0.651 0.758 0.824
— language 0.238 -0.077 -0.162
— position 0.088 +0.029 -0.032
— centrality 0.556 -0.530 -0.617
— community 0.156 -0.039 -0.083
— word-embedding 0.135 +0.002 -0.058

Table 3: F for GNNs and A F; for five ablations

Model H Yoruba YTB
Unsupervised (Kondratyuk and Straka, 2019) || 50.86
Eflomal Inter - eng 43.45
Eflomal GDFA - eng 55.13
Eflomal Inter - majority 54.13
Eflomal GDFA - majority 60.27
GNN (TGDFA) - majority 65.74
GNN (TGDFA+orig) - majority 64.55

Table 4: POS tagging with annotation projection for
Yoruba. Apart from “Unsupervised”, all lines show a
sequence tagger trained on pseudo-labels induced by
word alignments. GNN-based pseudo-labels outper-
form prior work by 5%.

mostly outperforms the unsupervised baseline. Pro-
jecting the majority POS labels to Yoruba improves
over projecting English labels. Using the GNN
model to project labels works best and outperforms
Eflomal-GDFA-majority (the unsupervised base-
line) by 5% (15%) absolute improvement.

7 Conclusion and Future Work

We introduced graph neural networks and commu-
nity detection algorithms for multiparallel word
alignment. By incorporating signals from diverse
sources as node features, including community fea-
tures, our GNN model outperformed the baselines
and prior work, establishing new state-of-the-art
results on three PBC gold standard datasets. We
also showed that our GNN model improves down-
stream task performance in low-resource languages
through annotation projection.

We have only used node features to provide sig-
nals to GNNs. In the future, other signals can be
added in the form of edge features to further boost
the performance.
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