
Towards Zero-Shot Functional Compositionality of Language Models

Anonymous ACL submission

Abstract
Large Pre-trained Language Models (PLM)001
have become the most desirable starting point002
in the field of NLP, as they have become re-003
markably good at solving many individual004
tasks. Despite such success, in this position pa-005
per, we argue (with a touch of empirical results)006
that current paradigms of working with PLMs007
are neglecting a critical aspect of modeling hu-008
man intelligence. Functional compositionality009
– the ability to compose learned tasks – has been010
a long-standing challenge in the field of AI (and011
many other fields) as it is considered one of012
the hallmarks of human intelligence. An illus-013
trative example of such is cross-lingual sum-014
marization, where a bilingual person (English-015
French) could directly summarize an English016
document into French sentences without having017
to translate the English document or summary018
into French explicitly. We discuss why this mat-019
ter is an important open problem that requires020
further attention from the field. Then, through021
various experiments on composite tasks, we022
show how far we are currently from attaining023
such human-level generalizability. Finally, we024
suggest several research directions that could025
push the field towards zero-shot functional com-026
positionality of language models.027

1 Introduction028

Recently developed large Pre-trained Language029

Models (PLM) (Devlin et al., 2019; Brown030

et al., 2020; Raffel et al., 2020) or Founda-031

tion Models (Bommasani et al., 2021) have not032

only achieved state-of-the-art performance through033

transfer learning in various benchmarks like034

GLUE (Wang et al., 2018) and SuperGLUE (Wang035

et al., 2019a), but have also shown dramatic036

improvements in few-shot and zero-shot learn-037

ing (Alex et al., 2021; Liu et al., 2022).038

It is clear that we have come a long way, but039

we are still far from achieving human-level gener-040

alizability. In particular, we argue that one reason041

for such is that there has not been enough focus042

𝐸𝑛𝑔𝑙𝑖𝑠ℎ
𝐷𝑜𝑐.
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Figure 1: Function compositional representation of
Cross-lingual Summarization. Dashed edges are not
covered in this work. Sequentially conducting f (sum-
marization) and g (translation) corresponds to the tradi-
tional pipeline architecture, while compositional models
should follow the diagonal g ◦ f edge.

on how humans naturally compose tasks or func- 043

tions that they learned (Singh, 1991; Li et al., 2020). 044

In this position paper, inspired by composite func- 045

tions from mathematics, we introduce a perspective 046

called functional compositionality. This is a differ- 047

ent concept from the traditional discussions about 048

the semantic compositionality of human language, 049

where atomic meanings are composed to create 050

new semantics (Liang, 2013; Pasupat and Liang, 051

2015; Kim and Linzen, 2020)1. Instead, our scope 052

of functional compositionality refers to end-to-end 053

chaining of two different text-to-text transforma- 054

tions, just like function composition from mathe- 055

matics. As many NLP tasks can be reformulated as 056

text-to-text tasks (Raffel et al., 2020; Brown et al., 057

2020; Alex et al., 2021), we believe this is not a 058

small scope. 059

The most illustrative example is Cross-Lingual 060

Summarization (XLS) (Wang et al., 2022). As 061

shown in Figure 1, bilingual people should nat- 062

urally be able to compose their skills of summa- 063

rization and translation in order to summarize an 064

English document into a French sentence, without 065

1We will cover this more in Section 2.
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requiring specialized training to do so. What we066

expect from large versatile PLMs is also similar. A067

model that can summarize English documents and068

translate English to French should be able to cre-069

ate French summary sentences or even summarize070

French documents without explicit supervision of071

such tasks2.072

However, as we will show later, this is not possi-073

ble yet in an end-to-end fashion. As an alternative,074

we explore to teach PLMs how to compose tasks.075

Our key assumption is that the knowledge to com-076

pose tasks within a restricted set can be transferred077

to unseen combinations. This gives a potential di-078

rection toward human-level generalizability, but079

there is still a long way to go.080

In this work, we attempt to answer how far are081

current text-to-text PLMs from zero-shot functional082

compositionality. Our findings can be summarized083

as such:084

• Current PLMs have difficulty in composing085

text-to-text functions end-to-end by zero-shot.086

• However, they were able to “Learn to Com-087

pose (L2C)” when explicitly trained to do so088

on StylePTB (Lyu et al., 2021).089

• The L2C method also showed potential to090

work well with recent parameter-efficient091

fine-tuning methods, but struggled in trans-092

ferring the learned task-composing skills to093

other more difficult benchmarks like WikiLin-094

gua (Ladhak et al., 2020).095

Through this work, we aim to shed light to a new096

research direction for large PLMs that have been097

previously neglected in order to advance towards098

human-level generalizability.099

2 Background and Related Work100

Compositionality has been a long-standing chal-101

lenge in AI and has been well-studied in other102

many fields, such as theory of computation, linguis-103

tics, philosophy, and mathematics. we first cover104

existing work on semantic compositions (or com-105

positional semantics), then introduce the concept106

of functional compositions and its distinction from107

semantic compositions, and discuss its benefits and108

importance. Also, we discuss the scope of function109

we consider in this paper.110

2We use the terms function and task interchangeably.

2.1 Semantic Compositions 111

The principle of compositionality (Pelletier, 1994) 112

has been widely studied in many fields, In compo- 113

sitional semantics (Janssen and Partee, 1997), the 114

meanings of words or phrases are determined by 115

combining the meanings of their sub-words or sub- 116

phrases, and this principle usually holds only when 117

syntactic factors play in the increased complexity 118

of a sentence (Szabó, 2004). As such, this field 119

has often been studied in semantic parsing where 120

complex syntactic rules play a major role in natural 121

language understanding (Liang, 2013; Pasupat and 122

Liang, 2015; Yin et al., 2021; Gupta et al., 2018; 123

Oren et al., 2020; Kim and Linzen, 2020; Szpek- 124

tor et al., 2020; Parthasarathi et al., 2020). Mean- 125

while, there was no consensus on whether neural 126

networks are able to generalize compositionally. 127

Hence, Hupkes et al. (2020) discusses this subject 128

in depth by presenting a set of definitions and tests 129

that is grounded on a vast amount of linguistic and 130

philosophical literature, using probabilistic context- 131

free grammar datasets. Another very good example 132

can also be found in visual recognition (Misra et al., 133

2017; Wang et al., 2019b; Naeem et al., 2021; Pu- 134

rushwalkam et al., 2019; Logeswaran et al., 2021; 135

Cohen et al., 2021; Nayak et al., 2022). Here, if 136

a model understands the meaning of the phrases 137

“grey elephant” and “blue bottle”, they test if it also 138

generalizes to new vision-language concepts like 139

“blue elephant”. 140

2.2 Functional Compositions 141

Inspired by closed-form composite functions from 142

mathematics, we define a functional composition 143

as the end-to-end chaining of any two tasks. Fig- 144

ure 1 illustrates this concept very well: instead of 145

taking two side edges (like a pipeline) to conduct 146

cross-lingual summarization, a functionally compo- 147

sitional model should take the diagonal edge. Just 148

like a closed-form composite function, we should 149

be able to compute only once while the output is 150

the same as sequentially applying all functions. 151

This problem has been somewhat discussed in 152

various kinds of literature. Task decomposition has 153

been a big problem in reinforcement learning lit- 154

erature (Sahni et al., 2017; Devin et al., 2019; Li 155

et al., 2020; Lee et al., 2018; Mendez et al., 2021). 156

Zero-shot cross-lingual transfer is directly related 157

to our definition of functional composition even 158

though it was never really discussed in-depth (Con- 159

neau and Lample, 2019; Conneau et al., 2020; Zhao 160
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and Schütze, 2021; Ansell et al., 2021; Barbieri161

et al., 2021; Wu et al., 2022; Gritta et al., 2022).162

Recently, a compositional style transfer dataset163

has been released (Lyu et al., 2021). Finally, ag-164

gregation of entire network parameters (Madotto165

et al., 2020; Choshen et al., 2022) and adaptive in-166

tegration of task-specific parameters (Pfeiffer et al.,167

2021; Zhang et al., 2022) can also be viewed as an168

instance of functional compositions.169

2.3 Why functional compositionality?170

The most obvious benefits of functional composi-171

tions would be the behavioral stability of end-to-172

end models and more efficient inference during173

deployment than pipelines. More importantly, if a174

model can (functional) compositionally generalize,175

this means that collecting expensive datasets like176

WikiLingua (Ladhak et al., 2020) for XLS may no177

longer be necessary. Ideally, we can train a model178

only on the more abundant datasets of the decom-179

posed tasks.180

We believe the impact of this matter is very181

timely as our definition is not just limited to text182

sequences. The demand for multi-modal language183

models has been rapidly increasing in both the in-184

dustry and research community, and there have al-185

ready been many successful cases in various tasks:186

Dall-E 2 (Ramesh et al., 2022) and StableDiffu-187

sion (Rombach et al., 2022) for realistic text-to-188

image synthesis, and Make-A-Video (Singer et al.,189

2022) for text-to-video synthesis. However, such190

models often require a significantly large amount of191

multi-modal paired data (and model size) that often192

drastically exceeds academic budgets. Therefore,193

expanding these models to languages other than En-194

glish would require a tremendous amount of data195

and model parameters. Furthermore, many multi-196

modal tasks that were solved through pipelines197

have recently been tackled with end-to-end mod-198

els, such as Machine Translation directly on im-199

ages (Jain et al., 2021) or on Speech (Jia et al.,200

2019) from Google. We believe creating models201

that generalize well to functional compositions will202

allow what is mentioned at a much lower cost.203

2.4 Scope of Function204

In this paper, we narrow down the scope of function205

to a text-to-text function with no side effects: the in-206

put is text and so is the output. Recent works (Raf-207

fel et al., 2020; Brown et al., 2020; Sanh et al.,208

2021) build unified learning frameworks by casting209

various NLP functions as a text-to-text functions.210

This would include most of the well-known text 211

generation tasks like machine translation, text sum- 212

marization, style transfer, conversation, etc. These 213

text-to-text functions allow us using a consistent 214

training objective for various NLP functions. As a 215

future direction, we can also trivially extend this 216

definition to any sequence-to-sequence tasks like 217

Automatic Speech Recognition or text-to-image 218

tasks or even Image Captioning – as we can con- 219

sider an image as a sequence of patches (Dosovit- 220

skiy et al., 2020). 221

3 Methods 222

Firstly, we train the PLMs on the atomic tasks. Af- 223

ter learning the atomic tasks, we explore their zero- 224

shot functional compositionality without learning 225

the target composite task. 226

Here, we mainly conduct our experiments on the 227

prompt-based language models such as T5 (Raffel 228

et al., 2020) and GPT (Brown et al., 2020) due to 229

their recent successes. We finetune such language 230

models with PROMPT-Tuning that was suggested 231

in T5 (Raffel et al., 2020). As a variant of PROMPT- 232

Tuning, we also compare the PREFIX-Tuning (Li 233

and Liang, 2021) which is a parameter-efficient 234

way of tuning only adaptable prefixes for each layer 235

while freezing language model itself. Meanwhile, 236

PIPELINE is the most straightforward implementa- 237

tion of functional composition with language mod- 238

els, which might be an upper-bound of the func- 239

tional composition in ideal situation. 240

In this section, we first describe how each 241

method (PROMPT, PREFIX, and PIPELINE) per- 242

forms a composite task. 243

3.1 Prompt-based Fine-tuning (PROMPT) 244

In (Lester et al., 2021; Han et al., 2021), to spec- 245

ify which task the model should perform, a task- 246

specific (text) prefix is added to the original in- 247

put sequence before feeding it to the model. Sup- 248

pose we have a language model parameterized by 249

ϕ. Normally, prompting is done by pre-pending a 250

series of tokens, Z, to the input X , such that the 251

model maximizes the likelihood of the correct Y , 252

or Prϕ(Y |[Z;X]). Specifically, we train PROMPT 253

model on the atomic tasks3, sharing the parameters 254

across the tasks. 255

Prompt Composition A natural way of ma- 256

nipulating prompt-based PLMs to perform a se- 257

3The list of prompts are specified in Appendix (Table 10).
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quence of tasks is to give a semantically com-258

posed prompt of target atomic tasks to the259

PLMs, hoping the model can perform the func-260

tional composition of the tasks corresponding261

to the composed prompts. Specifically, we auto-262

matically generate such prompts with template-263

based concatenations4, such as “{prompt1}264

then {prompt2}:”, “{prompt2} after265

{prompt1}”, or “{prompt1}+{prompt2}”.266

3.2 Prefix Tuning (PREFIX)267

One question that naturally comes up with the idea268

of PROMPT is whether we can learn compositional-269

ity in conjunction with recent parameter-efficient270

fine-tuning methods (Pfeiffer et al., 2021; Liu et al.,271

2022) of large language models. Prefix tuning (Li272

and Liang, 2021) is one of those successful meth-273

ods. To learn a specific atomic task t, it keeps lan-274

guage model parameters ϕ frozen, but tunes a small275

continuous task-specific vector Pt (called prefix)276

and a multi-layer perceptron MLPθt parameterized277

by θt. Then, the hidden representation hi of i-th278

token at each layer, is computed as follows:279

hi =

{
MLPθt(Pt[i, :]), if i ∈ idxt,

LMϕ(zi, h<i), otherwise,
(1)280

where idxt denotes the indices of prefix vectors in281

the given sequence, and zi is i-th input token. Fur-282

ther details can be found in (Li and Liang, 2021).283

Prefix Composition Inspired by AdapterFu-284

sion (Pfeiffer et al., 2021), we explore non-285

destructive compositions with task-specific param-286

eters, by using a self-attention layer. Specifically,287

suppose there are two atomic tasks, t1 and t2,288

and corresponding prefix vectors Pt1 and Pt2 . Let289

t1 + t2 denote the new task, composition of t1290

and t2. To get a new prefix vectors, we use self-291

attention (Vaswani et al., 2017) as illustrated in Ap-292

pendix (Figure 4), e.g., Pt1+t2 = Attnη([Pt1 ;Pt2 ])293

where we have additional parameters η that will294

learn how to compose the tasks. Because they self-295

attention parameter η is randomly initialized, this296

type of composition cannot be done without train-297

ing.298

4We also explore a manual writing of the prompts,
like “remove all prepositional phrases and
change to future tense” for style transfer and
“summarize into French:” for cross-lingual summa-
rization. However, we empirically found that the template-
based concatenations outperformed the manual writings. We
posit that such counter-intuitive behavior stems from the large
diversity of natural language instructions, making it harder to
focus on learning how to compose the tasks.

One modification from the original implemen- 299

tation is that we share a single MLP encoder 300

for multiple atomic tasks by parameter sharing 301

(θt1 = θt2 = θ). Intuitively, it can be thought of as 302

separating the roles of previous prefix tuning into 303

learning how to perform a task (by Pt) and how to 304

distribute the task vector to different transformer 305

layers (by MLPθ). 306

3.3 Pipeline (PIPELINE) 307

As a natural implementation of purely mathe- 308

matical functional composition, we implement 309

PIPELINE method of serving two different models 310

sequentially, following a certain order. As pipeline 311

requires no extra learning cost to mix various tasks, 312

it has been preferred as strong baselines, still in- 313

troduced in composite tasks such as TRANSLATE- 314

TEST in XNLI (Conneau et al., 2018). However, 315

its limitations are also clear: 1) calling multiple 316

models in a sequence is computationally expen- 317

sive, 2) the errors can be accumulated between the 318

sub-tasks, and 3) further training on the target com- 319

posite task cannot be performed in an end-to-end 320

manner. 321

Furthermore, it is noteworthy that pipelines are 322

sensitive to the order of sub-tasks. For instance, 323

from StylePTB data (Table 6), consider doing 324

a composition of PPR (removing prepositional 325

phrases) and PTA (voice switch from passive to 326

active) styles to a sentence “1,214 cars were sold 327

last year by luxury automakers in the U.S.”. Then, 328

a pipeline (PPR → PTA) of first deleting the prepo- 329

sitional phrase “by luxury automakers in the U.S.” 330

before voice change can be problematic as the re- 331

sulting sentence is missing the subject, such that 332

it cannot be rewritten into active voice. On the 333

other hand, the other pipeline of reverse order 334

(PTA → PPR) can easily lead to the proper sen- 335

tence “Luxury automakers sold 1,214 cars last 336

year.”. In some cases, the order can be even re- 337

stricted because some of component tasks do not 338

exist: We can summarize-then-translate, but cannot 339

translate-then-summarize (Figure 1), as document- 340

level translation is very challenging. We will further 341

explore such order sensitivity of PIPELINE in later 342

(Section 5.1). 343

4 Experiment Setting 344

4.1 Dataset 345

We first evaluate functional compositionality of 346

PLMs on the recently released compositional style- 347
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Target: A+B Strategy Description Seen Tasks

Zero-Shot
TWO ATOMICS the minimal subset of atomic tasks A, B
ALL ATOMICS all atomic tasks + [C, D, E, ... ]

Zero-Shot
(L2C)

UNSEEN BOTH
all compositions that does not include
any component of the target + [C+D, C+E, D+E ... ]

UNSEEN ONE (A)
all compositions that does not include
one component of the target, A + [B+C, D+B, ... ]

HOLD-1-OUT all compositions other than the target + [E+A, A+D, ... ]

Full-Shot FULL all compositions + [A+B]

Table 1: Training strategies regarding data usage with descriptions. There are totally six options, and each row
stands for one option. As shown in the last column, the set of seen tasks is accumulated from the top to the bottom.
Therefore, the set of training data strictly increases as the row goes down.

transfer dataset, StylePTB5 (Lyu et al., 2021)348

which is built upon Penn TreeBank (Marcinkiewicz,349

1994). As illustrated in Table 6, each task in350

StylePTB is either a syntactic or semantic style351

transfer of a single sentence such as changing the352

tense or removing certain phrases. It is notewor-353

thy that StylePTB serves composite tasks: For ex-354

ample, given two atomic tasks of changing styles,355

TFU (to future tense) and PTA (to active voice), a356

model is tasked to change the two styles at once,357

TFU+PTA (to future tense in active voice). For358

our experiments, we use the Compositional359

Datasets partition of StylePTB. It consists of360

all composite tasks and their atomic components,361

excluding every atomic task that is not composed.362

As a result, we use 9 atomic tasks, and 22 valid363

composite tasks.364

We also experiment with cross-lingual abstrac-365

tive summarization on the WikiLingua (Ladhak366

et al., 2020)6, which gathered multi-lingual guides367

and their summary from the WikiHow website.368

We introduce this task for special purpose: to ver-369

ify whether learned task-composing skill within370

StylePTB is generalizable to a combination of more371

realistic and difficult tasks, rather than doing itself372

better. Out of 10 language pairs in WikiLingua, we373

only use two that the basic T5 can already translate:374

English to French (en-fr) and English to German375

(en-de) (Raffel et al., 2020)7.376

4.2 Training Strategies377

One of the most important considerations is that,378

how many and which atomic/composite tasks are379

5https://github.com/lvyiwei1/StylePTB
6https://github.com/esdurmus/Wikilingua
7We use the official data splits for StylePTB dataset. How-

ever, for the WikiLingua dataset, we randomly divide the
dataset with an 8:1:1 ratio, using them for train, valid, and
test splits respectively because the data splits are not provided
publicly for French and German.

required to learn how to compose the tasks, or 380

how a training strategy affects the transferability 381

of functional compositionality. Here, as illustrated 382

in Table 1, for a target composite task (A + B), 383

we design several training strategies, in increasing 384

order of the number of seen composite tasks, which 385

can highlight the effects of dataset construction: 386

• TWO ATOMICS shows only the two atomic 387

tasks, thus the most realistic settings in our ex- 388

periments. The model is evaluated on a unique 389

composition of the two atomic tasks. 390

• ALL ATOMICS shows all atomic tasks but 391

without any composite tasks. In comparison 392

with TWO ATOMICS, this strategy will high- 393

light the impact of the number of seen atomic 394

tasks. 395

• UNSEEN BOTH provides all atomic tasks and 396

some composite tasks, where composite tasks 397

that share any atomic tasks with the target 398

composition are excluded. 399

• UNSEEN ONE (A) is similar to UNSEEN 400

BOTH, but only excludes the composite tasks 401

that include the atomic task A of target com- 402

position. 403

• HOLD-1-OUT includes all composite tasks 404

except only the target composite task. By com- 405

paring with UNSEEN BOTH and UNSEEN 406

ONE, we can check the impact of knowing 407

how the atomic tasks are used in other com- 408

posite tasks during training. 409

• FULL includes all atomic tasks and all com- 410

posite tasks. 411

We divide the strategies into three big categories: 412

1) Zero-Shot, 2) Zero-Shot (L2C), and 3) Full- 413

Shot, where Zero-Shot doesn’t allow any compos- 414

ite tasks in training, while Zero-Shot (L2C) allows 415
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some composite tasks except the target compos-416

ite task. Full-Shot provides the target composite417

task in training, which can be used as an upper418

bound performance. Each composition methods419

(PROMPT, PREFIX, and PIPELINE) can be trained420

with the training strategies. However, as mentioned421

in Section 3, PREFIX cannot apply Zero-Shot, and422

PIPELINE cannot apply Zero-Shot (L2C) and Full-423

Shot.424

5 Results and Discussion425

We perform intensive experiments to answer five426

research questions (RQ), where each of them is a427

title of following subsections.428

5.1 RQ1: Can PLMs compose tasks?429

We first evaluate whether T5 can compose the430

already acquired functions on StylePTB dataset,431

where the results are presented in Table 2. Overall,432

we empirically confirmed that T5 struggles to com-433

pose already acquired functions, where the Zero-434

shot PROMPT fails drastically in some cases, which435

is consistent with the results in Table 4. Though436

there are some successful cases of showing compa-437

rable performance with Full-shot models, it gives438

only a partial answer to our first research question439

of asking functional compositionality to language440

models.441

On the other hand, it is noteworthy that442

PIPELINE shows the second-best score among443

the methods, which drops only 0.01 points from444

PROMPT of full-shot training on average, even out-445

performing in some tasks like “ARR+PFB” task. It446

demonstrates that PIPELINE is the strongest zero-447

shot baseline as mentioned above. However, it is448

manually composed by humans and the models still449

cannot how to compose such tasks.450

5.2 RQ2: Can PLMs learn how to compose?451

Zero-shot (L2C) results show that a language452

model can learn how to compose tasks, by training453

a some number of compositions and then gener-454

alize the mixing mechanism to unseen combina-455

tions of atomic tasks. Compared to Zero-shot, the456

Zero-shot (L2C) PROMPT performance improves457

over 100%, and drops around 10% compared to458

Full-shot PROMPT setting. It is noteworthy that the459

Zero-shot (L2C) setting does not provide any train-460

ing data for the target task. We can also see that the461

same approach considerably well works for GPT2,462

but not as drastic.463

Finally, Zero-shot (L2C) PREFIX shows that 464

this observation is also valid for such a parameter- 465

efficient model architecture. However, there is a 466

significant performance drop compared to PROMPT 467

in general. Another observation in Figure 2 is that 468

PROMPT converges faster than PREFIX. One possi- 469

ble explanation is that learning to compose is diffi- 470

cult enough to require full power of large PLMs. 471

5.3 RQ3: Important factors for L2C? 472

Number of seen composite tasks As mentioned 473

in Section 5.2, language models can learn how to 474

compose if it is trained with an adequate set of 475

atomic tasks and their combinations. However, it 476

is infeasible to train all combinations, which is 477

exponentially many, so there comes up with the 478

question on how many is enough. 479

We provide extra detail for the experiment to 480

evaluate the effect of the number of composite 481

tasks on Zero-shot (L2C) performance. We first 482

randomly shuffle the list of 22 composite tasks in 483

StylePTB. Cutting until the first n = 0, 2, 4, . . . el- 484

ements of the list, we get a sequence of increasing 485

pool of composite tasks, S0 ≤ S2 ≤ . . . ≤ S20. 486

For each n, we basically train the model with Sn 487

and evaluate tasks in Sn. However, for demonstra- 488

tion, we bound n by 14 and show evaluation results 489

on the complement set of S14, containing 8 tasks, 490

to see the trend8. 491

Figures 2 and ?? indicate that increasing the 492

number of composite tasks for L2C significantly 493

increases the performance as we expected. We grad- 494

ually increase the number of trained compositions 495

from 0 to 14 as described above. Figure ?? has 496

individual results per task while Figure 2 shows 497

averaged results among 8 unseen composite tasks. 498

Choice of seen composite tasks We observed 499

that more seen composite tasks in training data in- 500

crease the ability to generalize to unseen composite 501

tasks. However, the scenario of adding more tasks 502

totally depends on the permutation of the task se- 503

quence. Assuming that not only the number of seen 504

composite tasks but also the choice matters, we 505

conduct an ablation study. We adopt more logical 506

data restriction strategies described in Section 4.2. 507

Following the rules, for each target composition 508

out of the 22, an increasing sequence of training 509

datasets is built. Then, models are tuned differently 510

depending on those strategies and evaluated on the 511

target task. The general effect of each strategy on 512

8See Appendix for the full results
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Model
Target Composition (number of samples)

Avg.PPR+PTA
(959)

TPR+PBF
(162)

TFU+PPR
(4492)

PPR+ATP
(1330)

ARR+PFB
(178)

TFU+PTA
(2967)

TFU+ATP
(2455)

TFU+PFB
(233)

Full-shot PROMPT 0.9625 0.9375 0.8912 0.8440 0.6471 0.8880 0.8340 0.8261 0.8759
PREFIX 0.8750 0.9375 0.8796 0.7660 0.4706 0.8533 0.7992 0.8261 0.8399

Zero-shot PIPELINE 0.9750 0.9375 0.8750 0.8156 0.8824 0.8687 0.8263 0.8261 0.8655
PROMPT 0.0375 0.7500 0.7593 0.0142 0.2353 0.0695 0.4054 0.8261 0.3931

Zero-shot
(L2C)

PROMPT 0.9500 0.9375 0.8912 0.1206 0.7059 0.8610 0.8378 0.8696 0.7957
PROMPT (GPT-2) 0.5000 0.8750 0.5532 0.3333 0.1176 0.5753 0.4324 0.6957 0.5089
PREFIX 0.6250 0.8750 0.8519 0.2695 0.4706 0.7066 0.6564 0.8696 0.6982

Table 2: The exact match (EM) scores in StylePTB. Full-shot models are trained with both all atomic tasks and all
composite tasks. Zero-shot models learn all atomic tasks only. Zero-shot (L2C) models learn all atomic tasks and
all composite tasks, except the target composite task (HOLD-1-OUT). Scores are weighted by test sample size of
each task to take average. Zero-shot (L2C) models achieve better performance than Zero-shot models, showing the
possibility of learning to compose tasks. We evaluate the exact match (EM) scores for each task and take average
across tasks using test sample sizes as weights. See appendix for the full report including 22 composite tasks.

Zero-shot composition ability is evaluated by aver-513

aging out the result through all target tasks.514

The result is shown in Table 3. Most of the cases,515

the EM score increases with the level of compos-516

ite task disclosure. Such monotonicity is clearer in517

the average EM score. Note that the mean score of518

UNSEEN ONE (FIRST) and UNSEEN ONE (SEC-519

OND) is still lower than the score of HOLD-1-OUT520
9. We observe same trend even with the controlled521

training data size. Details are found in appendix.522

5.4 RQ4: Can learned task-composing skills523

be transferred to other difficult524

benchmarks?525

One may ask whether the functional composition-526

ality can be transferred to other benchmarks. If the527

model truly learns how to compose, it can com-528

pose any unseen combination of atomic tasks even529

from different domain. In our setting, this general530

question is reduced as whether a T5 model that ad-531

ditionally learned Zero-shot (L2C) from StylePTB532

can compose two pre-trained tasks, summarization533

and translation.534

Table 4 shows that for that case Zero-shot (L2C)535

performance is almost same with Zero-shot. This536

result indicates that learned task-composing skills537

is transferable to a limited set of compositions. 5.3538

supports this observation more. This limitation mo-539

tivates a new research direction for large PLMs to540

achieve human-level generalizability.541

9For those tasks where full-shot is worse than zero-shot,
dataset errors made during synthetic generation might let ad-
ditional data not beneficial beyond certain amount.

Figure 2: Zero-shot (L2C) average EM scores with re-
spect to number of seen composite tasks. We add two
new composite tasks at once and evaluate performance
of two models, PROMPT and PREFIX, on a fixed set of
8 unseen tasks.

5.5 RQ5: Do larger LMs have more 542

functional compositionality? 543

In our preliminary experiments, we observe 544

a very slight chance of GPT-3 (Brown et al., 545

2020) performing functional compositions in a 546

zero-shot manner. For example, when we give 547

a manually written prompt “What is the 548

one-sentence French translation 549

of {text}? Please answer in one 550

sentence:”, GPT-3 outputs the French sum- 551

mary of the given text. However, such observations 552

require a bunch of manual prompt tuning. Further- 553

more, they cannot generalize to other instances, 554

showing just broken results of performing one of 555

the atomic tasks, yielding an English summary 556

or French translation. It is thus recommended to 557

further explore the ability of recent extremely large 558

language models, from GPT-3 (Brown et al., 2020) 559

to Megatron-Turing (Smith et al., 2022). 560
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Training Strategy
Target Composition (number of samples)

Avg.PPR+PTA
(959)

TPR+PBF
(162)

TFU+PPR
(4492)

PPR+ATP
(1330)

ARR+PFB
(178)

TFU+PTA
(2967)

TFU+ATP
(2455)

TFU+PFB
(233)

TWO ATOMICS 0.0125 0.0625 0.5394 0.0071 0.0000 0.0000 0.0425 0.7391 0.2137
ALL ATOMICS 0.0375 0.7500 0.7593 0.0142 0.2353 0.0695 0.4054 0.8261 0.3931
UNSEEN BOTH 0.4250 0.9375 0.8565 0.2199 0.1765 0.7838 0.7220 0.8261 0.7061
UNSEEN ONE (FIRST) 0.7875 0.8750 0.9028 0.0142 0.0000 0.8340 0.8533 0.8261 0.7618
UNSEEN ONE (SECOND) 0.9000 0.9375 0.8773 0.5603 0.8824 0.7838 0.7490 0.8696 0.8003
HOLD-1-OUT 0.9500 0.9375 0.8912 0.1206 0.7059 0.8610 0.8378 0.8696 0.7957
FULL 0.9625 0.9375 0.8912 0.8440 0.6471 0.8880 0.8340 0.8261 0.8759

Table 3: The exact match (EM) scores in StylePTB, especially focused on comparing training strategies while model
is fixed with PROMPT. The results for all composite tasks are in Appendix Figure 3. Rows are sorted in strictly
increasing order in terms of training data. Average score is weighted by test sample size of each task.

Model
XLS (En-De) XLS (En-Fr)

ROUGE-4 ROUGE-L ROUGE-4 ROUGE-L
Fine-tune 0.0314 0.3263 0.0445 0.3556
Pipeline 0.0320 0.3235 0.0390 0.3368
Zero-shot 0.0043 0.1705 0.0110 0.2232
Zero-shot (L2C) 0.0043 0.1698 0.0113 0.2243

Table 4: Cross-lingual summarization results in English-
to-French & English-to-German WikiLingua XLS (Lad-
hak et al., 2020). We trained t5-base (Raffel et al.,
2020) on English Summarization and the above trans-
lations with prompts in a multi-task learning manner.
Note that the “Zero-shot” and “Pipeline” are trained
only with the atomic tasks (translation and summariza-
tion), while “Fine-tune” model is also further trained
with direct cross-lingual summaries. Details about train-
ing strategies are listed in the Table 1.

6 Future Directions561

Pre-training with Pipeline We see great poten-562

tial for future work utilizing pipeline-based pseudo-563

labels in the context of functional compositional-564

ity. Given the positive results we have observed in565

terms of noisy few-shot training, we are interested566

in pre-training language models that can learn how567

to compose seen tasks. As recent language models568

have achieved better and better performances on569

various single (or, component) tasks, pre-training570

will benefit from pipeline systems.571

Decomposition in Pre-training As studied572

(Lyu et al., 2021), even a well-defined task573

can be decomposed into multiple sub-tasks.574

For example, reading comprehension requires575

recognizing named entities or events in the text,576

resolving coreferences of them, and selecting577

an answer among them. However, recent pre-578

training strategies, specifically T5, treat it as579

an atomic task, simply forming an input text580

as “question: {question} context:581

{context}”. In this paper, we argue that giving582

procedural information of each task in T5-style pre- 583

training, like “entity recognition, 584

coreference resolution, and 585

answer ranking for answering the 586

question: {question} context: 587

{context}”, would be helpful to equip language 588

models with functional compositionality and 589

explainability (Kojima et al., 2022). 590

7 Conclusion 591

In this paper, we explore whether PLMs can com- 592

pose the functions that they already learned. Our 593

empirical results suggest that 1) PLMS cannot com- 594

pose as it is, 2) but it can be partially learned (L2C), 595

and 3) the learned task-composing skill is not trans- 596

ferable to other benchmark, from style transfer to 597

cross-lingual summarization. From the results, we 598

suggest several future research directions to explore 599

further generalization of its ability to other tasks 600

(e.g., bias-free generation and cross-lingual classi- 601

fication) and training stages (e.g., pre-training and 602

few-shot fine-tuning). 603

8 Limitations 604

A recent extremely large language models, such 605

as GPT-3 and Megatron, are not thoroughly cov- 606

ered in this paper due to limitations in resources. 607

For simplicity, we limited our work to composi- 608

tions of “pure functions” meaning that there are 609

no side-effects generated by the functions. Thus, 610

it is difficult to immediately apply our approach 611

to all NLP pipelines (e.g. Task-oriented Dialogue 612

Systems, classical NLP pipelines, etc.). Further- 613

more, we limited our experiments to “text-to-text” 614

models so that it is easier to define compositions as 615

the input and output types are equivalent. Consid- 616

ering these jointly restricted our scope of work to a 617

certain set of problems. 618
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A Training Details935

For experiments, we follow the hyper-parameters936

from huggingface T5 10. Specifically, we train937

t5-base with a batch size of 16 for StylePTB938

dataset. We train the model with a learning rate of939

5e − 5 using the AdamW optimizer until conver-940

gence. For learning objectives, we cast all the tasks941

into a “text-to-text” format and train them with a942

maximum likelihood objective:943

max
ϕ

logPrϕ(Y |X), (2)944

where X and Y denote the input and output token945

sequences, and ϕ is the set of model parameters.946

To avoid catastrophic forgetting of atomic tasks,947

the training is done in a multi-task manner with a948

mixed-task batch. The average time for training is949

1 hour.950

For the WikiLingua dataset, we follow the hyper-951

parameter settings from (Chi et al., 2021). For our952

experiments, we start training on t5-base with953

a batch size of 32. The average time for training is954

24 hours.955

We use GTX 2080ti × 4 for training our models.956

For PREFIX, we additionally train approximately957

48M parameters with T5-base.958

We do a single run for evaluation/training.959

B Result with Controlled training data960

size961

We observe same trend even with the controlled962

training data size. Table 5 shows the result. All963

training strategies that belong to Zero-shot (L2C)964

are compared, while a randomly sampled subset965

of fixed size is used as a training dataset for each966

option. We can confirm that the EM score still in-967

creases following the level of composite task dis-968

closure.969

10https://huggingface.co/docs/transformers/model_doc/t5

Figure 3: Average EM scores for variants of training
strategies with PROMPT methods.
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Training Strategy
Target Composition (number of samples)

Avg.PPR+PTA
(959)

TPR+PBF
(162)

TFU+PPR
(4492)

PPR+ATP
(1330)

ARR+PFB
(178)

TFU+PTA
(2967)

TFU+ATP
(2455)

TFU+PFB
(233)

UNSEEN BOTH 0.4250 0.9375 0.8565 0.2199 0.1765 0.7838 0.7220 0.8261 0.7061
UNSEEN ONE (FIRST) 0.8875 0.9375 0.8750 0.0922 0.0588 0.8533 0.7992 0.8261 0.6662
UNSEEN ONE (SECOND) 0.9000 0.9375 0.8796 0.4823 0.7059 0.8224 0.7722 0.8696 0.8040
UNSEEN ONE (AVG) 0.8937 0.9375 0.8773 0.2872 0.3824 0.8378 0.7857 0.8478 0.7837
HOLD-1-OUT 0.7875 1.0000 0.9005 0.3050 0.7059 0.8340 0.8147 0.8261 0.7953

Table 5: The exact match (EM) scores in StylePTB, especially focused on comparing training strategies while the
number of training samples is fixed. The model is fixed with PROMPT. Rows are sorted in strictly increasing order
in terms of training data. Average score is weighted by test sample size of each task.

Category Change Abbreviation Description # of samples (train/valid/test)

Syntax

Tense
TFU To future tense 9279 / 1013 / 1006
TPR To present tense 5564 / 645 / 643
TPA To past tense 4684 / 511 / 502

Voice
ATP Active to passive 2533 / 278 / 284
PTA Passive to Active 2533 / 278 / 284

PP Front Back
PFB PP front to back 426 / 23 / 26
PBF PP back to front 426 / 23 / 27

Semantic ADJ/ADV Removal ARR ADJ or ADV Removal 4639 / 273 / 276
PP Removal PPR PP Removal 14123 / 986 / 1013

Table 6: StylePTB dataset distribution.

Model
Target Composition (number of samples)

PPR+PTA
(959)

TPR+PBF
(162)

TFU+PPR
(4492)

PPR+ATP
(1330)

ARR+PFB
(178)

TFU+PTA
(2967)

TFU+ATP
(2455)

TFU+PFB
(233)

Full-shot PROMPT 0.9625 0.9375 0.8912 0.8440 0.6471 0.8880 0.8340 0.8261
PREFIX 0.8750 0.9375 0.8796 0.7660 0.4706 0.8533 0.7992 0.8261

Zero-shot PIPELINE 0.9750 0.9375 0.8750 0.8156 0.8824 0.8687 0.8263 0.8261
PROMPT 0.0375 0.7500 0.7593 0.0142 0.2353 0.0695 0.4054 0.8261

Zero-shot
(L2C)

PROMPT 0.9500 0.9375 0.8912 0.1206 0.7059 0.8610 0.8378 0.8696
PROMPT (GPT-2) 0.5000 0.8750 0.5532 0.3333 0.1176 0.5753 0.4324 0.6957
PREFIX 0.6250 0.8750 0.8519 0.2695 0.4706 0.7066 0.6564 0.8696

TPR+ATP
(1561)

TPA+PBF
(61)

ARR+PBF
(178)

TFU+PBF
(245)

TPR+PFB
(171)

TFU+ARR
(2166)

TPR+PTA
(2163)

TPA+ARR
(1444)

Full-shot PROMPT 0.8333 1.0000 0.6471 0.8333 0.9412 0.7904 0.8830 0.7500
PREFIX 0.8086 1.0000 0.7647 0.9167 0.7647 0.6419 0.8511 0.7285

Zero-shot PIPELINE 0.8333 1.0000 0.9412 0.8750 0.8824 0.7773 0.8936 0.7881
PROMPT 0.3210 0.6667 0.1765 0.5000 0.9412 0.0393 0.1064 0.0464

Zero-shot
(L2C)

PROMPT 0.8457 1.0000 0.7647 0.8333 0.8824 0.7511 0.7926 0.8146
PROMPT (GPT-2) 0.4568 0.8333 0.4706 0.8333 0.5882 0.3231 0.6383 0.6755
PREFIX 0.7407 1.0000 0.4706 0.8750 0.8824 0.6157 0.6702 0.6556

TPA+PFB
(70)

TPA+PTA
(1617)

TPA+PPR
(658)

TPA+PPR
(1926)

TPR+PPR
(3054)

TPR+ARR
(1260)

Avg
(29350)

Full-shot PROMPT 1.0000 0.9357 0.7692 0.9135 0.8733 0.7500 0.8585
PREFIX 1.0000 0.8714 0.6923 0.8757 0.8288 0.6364 0.8103

Zero-shot PIPELINE 1.0000 0.8571 0.6769 0.8973 0.8527 0.7727 0.8488
PROMPT 1.0000 0.0571 0.0769 0.7622 0.7397 0.0379 0.3492

Zero-shot
(L2C)

PROMPT 1.0000 0.8286 0.4615 0.9081 0.8630 0.7197 0.8027
PROMPT (GPT-2) 0.7143 0.5500 0.2308 0.7027 0.6610 0.5227 0.5394
PREFIX 1.0000 0.6429 0.3077 0.8378 0.8151 0.6515 0.7002

Table 7: The exact match (EM) scores in StylePTB. Full-shot models are trained with both all atomic tasks and all
composite tasks. Zero-shot models learn all atomic tasks only. Zero-shot (L2C) models learn all atomic tasks and
all composite tasks, except the target composite task. Scores are weighted by test sample size of each task to take
average. We evaluate the exact match (EM) scores for each task and take average across tasks using test sample
sizes as weights.
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Training Strategy
Target Composition (number of samples)

PPR+PTA
(959)

TPR+PBF
(162)

TFU+PPR
(4492)

PPR+ATP
(1330)

ARR+PFB
(178)

TFU+PTA
(2967)

TFU+ATP
(2455)

TFU+PFB
(233)

TWO ATOMICS 0.0125 0.0625 0.5394 0.0071 0.0000 0.0000 0.0425 0.7391
ALL ATOMICS 0.0375 0.7500 0.7593 0.0142 0.2353 0.0695 0.4054 0.8261
UNSEEN BOTH 0.4250 0.9375 0.8565 0.2199 0.1765 0.7838 0.7220 0.8261
UNSEEN ONE (FIRST) 0.7875 0.8750 0.9028 0.0142 0.0000 0.8340 0.8533 0.8261
UNSEEN ONE (SECOND) 0.9000 0.9375 0.8773 0.5603 0.8824 0.7838 0.7490 0.8696
HOLD-1-OUT 0.9500 0.9375 0.8912 0.1206 0.7059 0.8610 0.8378 0.8696
FULL 0.9625 0.9375 0.8912 0.8440 0.6471 0.8880 0.8340 0.8261

Training Strategy
Target Composition (number of samples)

TPR+ATP
(1561)

TPA+PBF
(61)

ARR+PBF
(178)

TFU+PBF
(245)

TPR+PFB
(171)

TFU+ARR
(2166)

TPR+PTA
(2163)

PTA+ARR
(1444)

TWO ATOMICS 0.2901 0.0000 0.1176 0.5833 0.8824 0.0044 0.0000 0.0066
ALL ATOMICS 0.3210 0.6667 0.1765 0.5000 0.9412 0.0393 0.1064 0.0464
UNSEEN BOTH 0.7901 1.0000 0.1765 0.8333 1.0000 0.4454 0.7074 0.5497
UNSEEN ONE (FIRST) 0.8395 1.0000 0.1176 0.8750 0.9412 0.7555 0.7447 0.6821
UNSEEN ONE (SECOND) 0.7840 1.0000 0.5294 0.7917 0.9412 0.5852 0.7287 0.5894
HOLD-1-OUT 0.8457 1.0000 0.7647 0.8333 0.8824 0.7511 0.7926 0.8146
FULL 0.8333 1.0000 0.6471 0.8333 0.9412 0.7904 0.8830 0.7500

Training Strategy
Target Composition (number of samples)

Avg.TPA+PFB
(70)

TPA+PTA
(1617)

TPA+ATP
(658)

TPA+PPR
(1926)

TPR+PPR
(3054)

TPR+ARR
(1260)

TWO ATOMICS 0.7143 0.0000 0.0154 0.0919 0.2466 0.0076 0.1539
ALL ATOMICS 0.0375 0.7500 0.7593 0.0142 0.2353 0.0695 0.3492
UNSEEN BOTH 1.0000 0.7357 0.4154 0.8630 0.8459 0.5530 0.6980
UNSEEN ONE (FIRST) 1.0000 0.8429 0.5077 0.9189 0.8733 0.7500 0.7796
UNSEEN ONE (SECOND) 1.0000 0.7500 0.4154 0.8865 0.8356 0.4394 0.7506
HOLD-1-OUT 1.0000 0.8286 0.4615 0.9081 0.8630 0.7197 0.8028
FULL 1.0000 0.9357 0.7692 0.9135 0.8733 0.7500 0.8585

Table 8: The exact match (EM) scores in StylePTB, especially focused on comparing training strategies while model
is fixed with PROMPT. The results for all composite tasks are in Appendix Figure 3. Rows are sorted in strictly
increasing order in terms of training data. Average score is weighted by test sample size of each task.

Target Composition (number of samples)
Avg.PPR+PTA

(959)
PPR+ATP

(1330)
TFU+PTA

(2967)
TFU+ATP

(2455)
TPR+PTA

(1561)
TPR+ATP

(2163)
TPA+PTA

(1617)
TPA+ATP

(658)

VOICE FIRST 0.9750 0.8156 0.8263 0.8687 0.8333 0.8936 0.8571 0.6769 0.8527
VOICE LATER 0.0250 0.0142 0.7799 0.7954 0.7963 0.5904 0.3000 0.4462 0.5555

Table 9: The exact match (EM) scores of PIPELINE with different order of computation. 8 target tasks in this table
is the set of all compositions that includes a component task from Voice category, PTA or ATP. Two annotations
VOICE FIRST or VOICE LATER specify the order of components to be applied. For example, VOICE FIRST option
with a target task PPR+PTA means we perform PTA first, and then do PPR later.

Figure 4: The overall architecture of prefix composition.
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Dataset Type Task Prompt

StylePTB

Atomic

PPR PPR:

PTA PTA:

ATP ATP:

TFU TFU:

TPR TPR:

TPA TPA:

ARR ARR:

PBF PBF:

PFB PFB:

Composition

PPR+ATP PPR + ATP:

PPR+PTA PPR + PTA:

TFU+ATP TFU + ATP:

TFU+PTA TFU + PTA:

TPR+ATP TPR + ATP:

TPR+PTA TPR + PTA:

TPA+ATP TPA + ATP:

TPA+PTA TPA + PTA:

TFU+PPR TFU + PPR:

TPR+PPR TPR + PPR:

TPA+PPR TPA + PPR:

ARR+PFB ARR + PFB:

ARR+PBF ARR + PBF:

TFU+ARR TFU + ARR:

TPA+ARR TPA + ARR:

TPR+ARR TPR + ARR:

TFU+PBF TFU + PBF:

TFU+PFB TFU + PFB:

TPA+PFB TPA + PFB:

TPA+PBF TPA + PBF:

TPR+PBF TPR + PBF:

TPR+PFB TPR + PFB:

WikiLingua
Atomic

Summarization summarize:

Translation (en-fr) translate_en_fr:

Translation (en-de) translate_en_de:

Composition
XLS (en-fr) summarize + translate_en_fr:

XLS (en-de) summarize + translate_en_de:

Table 10: Prompt for language model.
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