
Unveiling Source of Performance Variance on
Search-based Compiler Optimization

Pranati Modumudi, Xiyou Zhou, and Sunghyun Park, OctoML

Abstract—To squeeze out the performance in the post-Moore
era, the compiler auto-tuning approach has been widely studied
and productized. Despite its superior efficiency in compiler
optimization problems, performance variance in final tuning
output has long been an issue for search-based auto-tuning
methods. It poses a challenge to research reproducibility and
production stability. In general, the causes of such performance
variance come from many aspects across different system layers.
In addition to generic causes, we observe that auto-tuners add
unique sources of variance, including the use of different search
methods and cost models.

In this work, we specifically focus on the performance vari-
ance originating from the nature of auto-tuning. Based on our
observation, we set three major hypotheses on the search method,
cost model, and hardware characteristics. Then, we validated our
hypotheses through experiments with a production auto-tuner
and a representative set of machine learning workloads. Our
preliminary result suggests impactful factors to consider in future
investigations.

I. INTRODUCTION

As the performance from hardware innovations is stagnat-
ing due to the end of Moore’s Law [10], leveraging latent
opportunities in compiler optimization space is becoming
more critical. However, the ever-increasing complexity in
hardware and software stacks makes even the most advanced
compilers fail to deliver the best optimization settings for
individual workloads from time to time. It strongly motivates
the recent efforts in auto-tuning approach in both industry and
academia [1], [6], [8], [9], [11], [12], [14]–[16].

Most auto-tuning techniques are essentially an iterative
feedback-directed search in the optimization space - promising
candidates are generated, evaluated, and reflected upon to
generate even more promising candidates for future tuning
trials. Evaluation is usually conducted by the actual compila-
tion and run-time measurement for the sake of high accuracy.
However, due to its expensive cost, recent studies introduce
various cost models that can select good candidates without
the actual measurement [2], [5], [13]. One popular approach
is to train a learning-based cost model on-the-fly by using
the run-time samples collected during the tuning process. And
then, auto-tuning methods can use this cost model to filter
out discouraging candidates cheaply and evaluate only the
promising ones with the actual measurement. In addition,
to effectively explore the extremely huge and complicated
optimization search space, these auto-tuning methods adopt
intelligent search methods to make the best use of the feed-
back from the evaluation. Evolutionary search [16], multi-
armed bandit [14], ensemble search [1] and reinforcement
learning [6], [9] are representative examples.

Overall, the auto-tuning approach has successfully demon-
strated its strong performance and is widely deployed in the
industry [6], [11], [12], [15], [16]. However, performance
variance in the final tuning outcome has been problematic and
one of the major challenges to reproducibility and production
stability of auto-tuning methods. The source of variance can be
diverse and laid across the multiple system layers ranging from
hardware to software stacks (e.g., non-deterministic behavior
of hardware, interrupt from the operating system, etc.). Also,
auto-tuning approach adds another source of variance. For
example, since most search methods are randomization-based,
the search pattern may differ across tuning runs.

To address this problem, we investigate the representative
root causes for the performance variance. Specifically, this
work focuses on the unique sources of variance that orig-
inated from the nature of the auto-tuning approach. Based
on our experience with production auto-tuners, we set three
hypotheses on the search method, cost model, and hardware
property. Then, we conduct experiments to verify each of the
hypotheses. Given the importance of the problem, we believe
our preliminary result is a meaningful step forward to attack
a long-standing concern in auto-tuners.

The contributions of this paper are as follows:
• We discuss the unique source of performance variance in

the popular auto-tuning approach and set three hypotheses
to assess their influence.

• We analyze our hypotheses with the production auto-
tuner and the representative machine learning workloads
on different hardware devices.

• Future works outline our next steps to address this
enormous challenge in the auto-tuning approach.

II. POTENTIAL SOURCES OF PERFORMANCE VARIANCE IN
COMPILER AUTO-TUNERS

Figure 1 illustrates the overarching workflow of the popular
auto-tuning approach with a learning-based cost model [2],
[5], [16]. Once users provide the tuning budget (e.g., number
of candidate trials), auto-tuners repeatedly perform four steps
using its three major components: search method, cost model,
and measurer. First off, a search method, such as evolutionary
search [7], generates a set of promising candidates and queries
the cost model to predict the competency between candidates
and filter out non-promising ones. Then, the measurer takes the
filtered candidates and evaluates them on the actual hardware.
It accompanies the compilation that applies the optimization
setting in each candidate and the run-time measurement of
the resulting executable. Once the run-time performance is

1



Fig. 1: Representative auto-tuning workflow with three major
components: search method, cost model and measurer. Within
the predefined tuning budget (e.g., number of candidate trials,
wall-clock time), these components in the auto-tuner repeat
the four steps by working together closely.

collected, it will be provided as feedback to both the search
method and cost model. The search method will use the run-
time performance as the feedback to generate more promising
candidates in the next iteration (e.g., mutation and cross-
over in the evolutionary search [7]). On the other hand, the
cost model will use the run-time performance for its training
process.

Because every component interacts very closely with each
other, a slight difference in the behavior of one component
may lead to quite different outcomes across tuning runs.
For example, popular search methods [1], [6], [7] leverage
random search to a certain extent for their statistical efficiency,
especially at the beginning of the tuning process. Also, unfor-
tunately, some source of non-determinism is inevitable - it
is impossible to completely eliminate run-time noise during
the measurement. Therefore, in this work, we focus on three
aspects that we may be able to improve in the future auto-tuner
design.

A. Hypothesis 1: search method may generate imbalanced
training data for the cost model.

We observe the potential dilemma between the search
method and the cost model. In order to find out the best
candidates, the search method exploits the previous feedback
to effectively cut down the search space and focus on the
narrowed promising space. Ironically, this may imply the
generation of biased training data for the cost model.

B. Hypothesis 2: instability of cost model accuracy may affect
final performance variance.

Since the cost model is constructed online, it is not clear
if training data collected during the tuning process is enough
to make the cost model’s accuracy mature and stable enough.
Also, the cost model would populate the different training data
across the tuning runs due to the randomness in the search
method. Hypothesis 1 adds another source of instability in its
accuracy.

C. Hypothesis 3: certain hardware and its target-specific
optimization may inherently have higher run-time variance
than others.

Non-determinism in hardware behavior incurs some run-
time noise in the measurer and results in noisy feedback
that may guide the search in a biased direction. If certain
hardware is intrinsically noisier, the auto-tuner may consider
this factor in its strategy of utilizing feedback. Also, different
hardware targets use different sets of optimizations and some
of the optimizations (e.g., memory optimization) might be
more susceptible to such variance.

III. EVALUATION

A. Experiment Setup

1) Auto-tuner: For experiments, we investigate the new
auto-tuning technology based on TVM [4] called MetaSched-
ule. While following the auto-tuning workflow in Figure 1,
MetaSchedule is designed to provide a convenient tuning
experience with both template-based search [5] and template-
free search [1].

MetaSchedule takes a set of customizable schedule rules
where each schedule rule defines the decision space of com-
piler optimization(s). Before the search kicks off, its space
generator will use those rules to express the valid search
space for each workload. By default, MetaSchedule provides
schedule rules for CPU and GPU targets that apply important
compiler optimizations, such as vectorization, multi-level loop
tiling, loop unrolling and etc. Please note that MetaSchedule
operates in the later compilation pipeline so the tensor layout,
operator fusion, and lowering decisions are already handled
from the earlier stages.

To effectively traverse the tremendous search space,
MetaSchedule adopts the search strategy that identifies its
promising subspace and generates good candidates. For exam-
ple, the evolutionary search strategy [7] examines the results of
candidates from the previous trials to choose the performant
settings and utilizes them to generate even more promising
ones by applying techniques like a crossover. A random search
strategy is also a popular option as it explores every direction
of the search space in a uniform way without leveraging any
feedback during the tuning process.

In order to maximize auto-tuning efficiency, MetaSchedule
constructs to disregard the unpromising candidates by pre-
dicting their performance XGBoost [3] model based on the
extracted workload features.

2) Workloads: We select five representative tensor pro-
grams to conduct experiments, covering most compute-
intensive subgraphs in end-to-end model tuning. The work-
loads are as follows:

• C2D: 2-D Convolution, NHWC layout
• C3D: 3-D Convolution, NHWC layout
• GMM: Batch Matrix Multiplication
• T2D: Transposed 2-D Convolution, NHWC layout
• TBG: Transposed Batch Matrix Multiplication

2



0 500 1000 1500 2000
Trial

0

500

1000

1500

2000

2500

G
FL

O
P

S
C2D

Strategy
EvoSearch
RandomSearch

0 500 1000 1500 2000
Trial

0

500

1000

1500

2000

2500

3000

G
FL

O
P

S

C3D

Strategy
EvoSearch
RandomSearch

0 500 1000 1500 2000
Trial

200

400

600

800

1000

G
FL

O
P

S

GMM

Strategy
EvoSearch
RandomSearch

0 500 1000 1500 2000
Trial

0

500

1000

1500

2000

2500

3000

3500

G
FL

O
P

S

T2D

Strategy
EvoSearch
RandomSearch

0 500 1000 1500 2000
Trial

0

200

400

600

800

1000

1200

G
FL

O
P

S

TBG

Strategy
EvoSearch
RandomSearch

(a) Examine Hypothesis 1 on CPU: Comparison of evolutionary search (default search method in MetaSchedule, denoted in EvoSearch) and
random search. Random search shows more stable results across tuning runs despite its lower performance.

0 500 1000 1500 2000
Trial

0

500

1000

1500

2000

2500

G
FL

O
P

S

C2D

CostModel
XGBoost
w/o CostModel

0 500 1000 1500 2000
Trial

0

500

1000

1500

2000

2500

3000

G
FL

O
P

S

C3D

CostModel
XGBoost
w/o CostModel

0 500 1000 1500 2000
Trial

200

400

600

800

1000

G
FL

O
P

S

GMM

CostModel
XGBoost
w/o CostModel

0 500 1000 1500 2000
Trial

0

500

1000

1500

2000

2500

3000

3500

G
FL

O
P

S

T2D

CostModel
XGBoost
w/o CostModel

0 500 1000 1500 2000
Trial

0

200

400

600

800

1000

1200

G
FL

O
P

S

TBG

CostModel
XGBoost
w/o CostModel

(b) Examine Hypothesis 2 on CPU: Comparison of evolutionary search with XGBoost [3] (default cost model in MetaSchedule) and
evolutionary search without cost model (no filtering step in Figure 1). Variance seems lower when the cost model is disabled. Interestingly,
final performance is pretty close on GMM and TBG. On C3D, the search without any cost model even outperforms the one with the cost
model.

0 500 1000 1500 2000
Trial

0

2000

4000

6000

8000

10000

G
FL

O
P

S

C2D

Device
CPU
GPU

0 500 1000 1500 2000
Trial

0

2000

4000

6000

8000

10000

12000

14000

G
FL

O
P

S

C3D

Device
CPU
GPU

0 500 1000 1500 2000
Trial

200

400

600

800

1000

1200

1400

G
FL

O
P

S

GMM

Device
CPU
GPU

0 500 1000 1500 2000
Trial

0

1000

2000

3000

4000

5000

G
FL

O
P

S

T2D

Device
CPU
GPU

0 500 1000 1500 2000
Trial

0

1000

2000

3000

4000

G
FL

O
P

S

TBG

Device
CPU
GPU

(c) Examine Hypothesis 3: Comparison of the variance between CPU and GPU experiments. In every workload, the CPU showed more
stable performance despite its lower performance.

Fig. 2: Our preliminary experiments to validate our hypotheses. We plotted their tuning progress by targeting five representative
deep learning workloads and collecting the best performance in GFLOPS at each trial in the tuning budget. AWS instances
of c5.9xlarge (36 Intel Xeon Platinum 8223CL vCPUs) and p3.2xlarge (NVIDIA V100 GPU) are used for CPU and
GPU experiments correspondingly. The shaded area shows the performance variance (standard variation) at each trial.

3) Hardware: For experiments, we used AWS EC2
cloud machines. CPU experiments were conducted on
c5.9xlarge machine with 36 Intel(R) Platinum 8223CL
CPU @ 3.00GHz vCPUs. GPU experiments were conducted
on p3.2xlarge machine with an NVIDIA V100 GPU.

For the stable measurement, we separate autotun-
ing from measurement - a single AWS Cloud machine
(c5.12xlarge) is assigned to proceed with the main tuning
process and trigger measurement on the remote slave machines
via TVM’s RPC module. This approach also parallelizes the
repeated measurement across the slave machines and speeds
up the overall tuning time significantly.

B. Experimental Result

Figure 2 presents our preliminary results. With a tuning
budget of 2,000 trials of candidate evaluation (with measurer),

we stamped the performance of the best candidate identified
up until each trial and plotted them to show the tuning
progress. As the performance metric, GFLOPS is chosen
given its standardness. To quantify the performance variance,
we launched five independent tuning jobs and measure their
standard deviation at trial. Overall, we observed that tuning
jobs experience high variance during early phases and stabilize
their performance as the tuning proceeds. However, in some
tuning workloads, such as T2D, the variance gets larger. Our
future study will examine this further by looking into its kernel
implementation and assigning more trials.

• Hypothesis 1: search method may generate imbalanced
training data for the cost model.

To validate this hypothesis, we compare the tuning

3



progress between evolutionary search (EvoSearch) and
random search. Since random search explores search
space without any feedback, it would generate the most
balanced training data that can be collected during the
tuning process. Figure 2a presents the experimental result.
Since random search does not exploit any feedback
from previous trials, it generally shows worse perfor-
mance than evolutionary search. However, it consistently
demonstrates its stability by exhibiting less performance
variance across workloads. Especially, random search
showcases significantly better stability in C3D, T2D and
TBG. Future work will experiment different ratios of
feedback exploitation and random search.

• Hypothesis 2: instability of cost model accuracy may
affect final performance variance.

For comparison, we conduct tuning runs with an XG-
Boost cost model and without it (pure measurement).
Without any cost model, all promising candidates gen-
erated by evolutionary search will be evaluated with
measurer (See Figure 1). Note that these two experiments
had an equal number of measurements during each tuning
instance (i.e., 1 trial = 1 measurement), so the overall
tuning time stays similar as overhead in the measurer
usually dominates the overall tuning time. Figure 2b
presents the result.
Overall, we could stabilize the performance variance
by disabling the cost model. With the cost model, the
variance on most workloads (i.e., All but GMM) does
not improve and gets worse often. We suspect this might
be attributed to the unstable cost model accuracy with the
online training approach. Future work will try pre-trained
cost model to see its impact.

• Hypothesis 3: certain hardware and its target-specific
optimization may inherently have higher run-time
variance than others.

Figure 2c exhibits default MetaSchedule tuning (i.e., evo-
lutionary search with cost model) on two separate hard-
ware architectures – CPU (Intel Xeon Platinum 8223CL)
and GPU (NVIDIA V100) machines. Although GPU
shows higher performance throughput in every workload,
it generally presents worse variance. Especially, variance
in T2D is significant.
Such difference in hardware performance variance could
be attributed to the difference during search space con-
struction - some schedule rules for compiler optimiza-
tion could be hardware-specific, especially layout-related
rules. Additionally, we suspect that the different memory
architectures in CPU and GPU may result in distinct
performance sensitivity on tensor program compilation.
Minor changes in GPU memory access patterns may
bring an enormous performance difference compared to
CPU. Future work will set up the identical optimization
search space to different hardware and further explore

their characteristics.

IV. FUTURE DIRECTION AND CONCLUSION

This work investigates the performance variance problem
in the production compiler auto-tuning approach. By focusing
on the causes of such variance that originates from the nature
of auto-tuning, we suggest three potential factors to consider
to alleviate the performance variance in the future design of
auto-tuners: Firstly, the search method may need to balance
the statistical efficiency of the search process and the quality
of training data to construct the cost model. Future studies will
examine the ratio of randomly generated candidates and see
its impact on the balance of training data and try to develop
a better search method that can provide high performance
with less variance. Secondly, we may need to take a deeper
look at the training progress of the cost model. If a standard
tuning budget is insufficient to reach stable accuracy, we may
consider offline tuning or transfer learning. Last but not least,
we show that certain hardware architecture and its target-
specific compiler optimizations can be inherently noisier than
others. Our future investigation will design more sophisticated
experiment settings to observe the impact of each optimization
and the behavior of underlying hardware components.

REFERENCES

[1] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible frame-
work for program autotuning,” in Proceedings of the 23rd international
conference on Parallel architectures and compilation, 2014, pp. 303–
316.

[2] R. Baghdadi, M. Merouani, M.-H. Leghettas, K. Abdous, T. Arbaoui,
K. Benatchba et al., “A deep learning based cost model for automatic
code optimization,” Proceedings of Machine Learning and Systems,
vol. 3, pp. 181–193, 2021.

[3] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen
et al., “Xgboost: extreme gradient boosting,” R package version 0.4-2,
vol. 1, no. 4, pp. 1–4, 2015.

[4] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“TVM: An automated End-to-End optimizing compiler for deep
learning,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 578–594. [Online]. Available: https:
//www.usenix.org/conference/osdi18/presentation/chen

[5] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy, “Learning to optimize tensor programs,” Ad-
vances in Neural Information Processing Systems, vol. 31, 2018.

[6] C. Cummins, B. Wasti, J. Guo, B. Cui, J. Ansel, S. Gomez, S. Jain,
J. Liu, O. Teytaud, B. Steiner et al., “Compilergym: Robust, performant
compiler optimization environments for ai research,” in 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2022, pp. 92–105.

[7] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and
C. Gagné, “Deap: Evolutionary algorithms made easy,” The Journal of
Machine Learning Research, vol. 13, no. 1, pp. 2171–2175, 2012.

[8] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois et al.,
“Milepost gcc: Machine learning enabled self-tuning compiler,” Inter-
national journal of parallel programming, vol. 39, no. 3, pp. 296–327,
2011.

[9] A. Haj-Ali, N. K. Ahmed, T. Willke, Y. S. Shao, K. Asanovic, and
I. Stoica, “Neurovectorizer: End-to-end vectorization with deep rein-
forcement learning,” in Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization, 2020, pp. 242–255.

[10] J. Hennessy and D. Patterson, “A new golden age for computer archi-
tecture: Domain-specific hardware/software co-design, enhanced.”

4



[11] B. Jeon, S. Park, P. Liao, S. Xu, T. Chen, and Z. Jia, “Collage:
Automated integration of deep learning backends,” arXiv preprint
arXiv:2111.00655, 2021.

[12] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken,
“Taso: optimizing deep learning computation with automatic generation
of graph substitutions,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, 2019, pp. 47–62.

[13] S. Kaufman, P. Phothilimthana, Y. Zhou, C. Mendis, S. Roy, A. Sabne,
and M. Burrows, “A learned performance model for tensor processing
units,” Proceedings of Machine Learning and Systems, vol. 3, pp. 387–
400, 2021.

[14] S. Park, S. Latifi, Y. Park, A. Behroozi, B. Jeon, and S. Mahlke,
“Srtuner: Effective compiler optimization customization by exposing
synergistic relations,” in 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 2022, pp. 118–130.

[15] P. M. Phothilimthana, A. Sabne, N. Sarda, K. S. Murthy, Y. Zhou,
C. Angermueller, M. Burrows, S. Roy, K. Mandke, R. Farahani et al., “A
flexible approach to autotuning multi-pass machine learning compilers,”
in 2021 30th International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE, 2021, pp. 1–16.

[16] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, K. Sen et al., “Ansor: Generating {High-Performance} tensor
programs for deep learning,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 863–879.

5


