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Abstract

In recent years, NLP models have dramatically
improved by utilizing user data, enabling com-
mercial products such as chat bots and smart
voice agents. However, data collected for train-
ing such models may suffer from sampling bi-
ases, conditioned on the dataset collection pro-
tocol. Additionally, a practitioner may not al-
ways obtain datasets of the desired volumes,
particularly given the emerging privacy con-
siderations (e.g. relying on a user to donate
their data for model-building purposes). In
this paper, we simulate various scenarios under
which one may obtain biased training datasets
for the task at hand. We build baselines simu-
lating various biased data sampling conditions
and present observations such a biased data
collection that obtains data-points away from
class centroids offer more value. We also test
two sets of data augmentation algorithms: (i)
pseudo-labeled data through semi-supervised
learning, assuming availability of unlabeled
data and, (ii) data augmentation through syn-
thetic data generation. We observe that while
the best performing data augmentation method
depends on the biased setting and the dataset,
simple data augmentation algorithms (such as
Easy Data Augmentation) are still largely ef-
fective.

1 Introduction

Data collection is an integral part of training any
ML system and the data collection protocol can
significantly impact the performance of the ML
model. While, arguably, an unrestricted access
to the data source for unbiased data collection in
large volumes is desirable, it may not always be
the case. For example, under certain conditions,
data collection protocols may dictate separate data
collection per label of interest (e.g., requesting a
study group to generate variants of music request
to build a spoken language understanding model,
which otherwise also supports other non-music re-
quests). Similarly, data collection may be restricted

to offer only a biased sub-sample of the data (e.g.,
in another scenario, while building a spoken lan-
guage understanding system, a biased section of
user population may donate their data). Addition-
ally, gathering labeled data in large volumes may
not always be feasible given increasing emphasis
on user data privacy. In this work, we study the
impact of such biases introduced during the dataset
collection protocol on the model performance.

Researchers have investigated biases in training
datasets (Tommasi et al., 2015), and its impact on
the model performance. However, impact of var-
ious types of sampling biases in NLU modeling
is not well studied. Particularly, given current ad-
vances in NLU modeling, where task-specific mod-
els are fine-tuned on top of pre-trained models, the
impact of sampling biases has not been evaluated.

We simulate settings that mimic different kinds
of biases that can be introduced during data collec-
tion. In addition to a random downsampling, our
simulations introduce biases under data collection
protocols that either collect data independently the
supported set of labels or, collect data for all the
labels together. Furthermore, we simulate these
biases in a low data volume setup when only tens
or hundreds of data-points are available for each
class. We focus on biases in low data settings as the
impact of biases is expected to be more pronounced
and, low availability of data is an increasing realis-
tic scenario in building industrial ML systems given
emerging privacy considerations (Bender and Fried-
man, 2018). Furthermore, we benchmark two sets
of data augmentation methods: (i) semi-supervised
learning assuming availability of unlabeled data
and, (ii) synthetic data generation, to assess their
value in recovering from low-data and biased train-
ing data. We discuss observations such as while
the best performing data augmentation method is
a function of the bias setting, simple method such
as Easy Data Augmentation (Wei and Zou, 2019)
generally perform well.



2 Related Works

2.1 Bias in Dataset Collection

The quality and real-world utility of datasets used
to train and evaluate machine learning models is
highly sensitive to biases in the processes used to
create them (Bender and Friedman, 2018). Bias can
appear in all parts of the dataset-creation pipeline,
including the curation methods used to select which
examples to include in a dataset (Zhou et al., 2021;
Tommasi et al., 2015), the design of the annotation
guidelines and prompts (Schwartz et al., 2017), the
subjective judgements made by individual anno-
tators (Geva et al., 2019; Wich et al., 2020; Gu-
rurangan et al., 2018), and the decisions about
how to split a dataset into training, validation, and
test sets (Zhou et al., 2021). Models trained on
these biased datasets may then learn to exploit
dataset-specific artifacts (Gururangan et al., 2018;
Tsuchiya, 2018), achieving strong performance on
similarly-biased test sets, but not generalizing well
to other examples from the task’s real-world data
distribution.

In recent years, there have been many related ef-
forts to mitigate the effects of these hidden dataset
biases through improved dataset creation and anno-
tation procedures (Geva et al., 2019; Schwartz et al.,
2017; Wich et al., 2020; Zhou et al., 2021; Stasaski
et al., 2020; Bender and Friedman, 2018), data
augmentation methods (Zhou and Bansal, 2020;
Park et al., 2018; Min et al., 2020; Shinoda et al.,
2021), and bias-aware learning algorithms (Jiang
and Nachum, 2020; Clark et al., 2020; He et al.,
2019; Li and Vasconcelos, 2019; Khosla et al.,
2012; Zhao et al., 2017). In this work, we pro-
pose novel methods to create biased datasets from
existing, publicly-available datasets through selec-
tive downsampling. We then use these methods
to 1) create several benchmark text classification
datasets with different types of bias; 2) evaluate the
performance of several techniques to mitigate these
biases, including semi-supervised learning (Ouali
et al., 2020), off-the-shelf data augmentation tech-
niques (Wei and Zou, 2019), and paraphrase gener-
ation with large language models (Witteveen and
Andrews, 2019). We further elaborate on the state
of research in data augmentation methods used in
this paper below.

Semi-supervised learning In many ML appli-
cations, it is relatively easy to collect unlabeled
data points from public sources such as the Inter-
net, while high quality human labels are harder and

more expensive to obtain in large scale (Zhu, 2005).
In these cases, semi-supervised learning (Van En-
gelen and Hoos, 2020) is a commonly employed
strategy where a large unlabeled set of data sam-
ples are used along with a small labeled set. The
unlabeled data can be used either in pre-training,
as a part of the training objective, or by generating
new pseudo-labels for the unlabeled samples, fol-
lowed by direct augmentation to the training data
(Van Engelen and Hoos, 2020). Of these, pseudo-
labeling (Lee et al., 2013) is considerably simple as
it needs minimal changes to existing training rou-
tines, and is frequently used in literature (Triguero
et al., 2015). Generating the labels can be done
using a seed model initially trained only on the
labeled dataset, or by clustering the labeled and
unlabeled samples and assigning majority labels
obtained from the labeled examples. In this work,
we experiment with both strategies.

Data generation by distorting existing data
This form of augmentation is commonly applied
in computer vision where images or frames are
cropped, flipped or their RGB channels suitably
noised. However, simple alterations such as these
may not translate well to NLP and have been re-
ported to create meaningless utterances (Liu et al.,
2020). More recent works instead try to gener-
ate new data by introducing word level changes
(Kobayashi, 2018; Wang and Yang, 2015), by gen-
erating semantically similar paraphrases (Gupta
et al., 2018a), or by employing large language mod-
els such as GPT-2 to generate new utterances (Liu
et al., 2020). Easy Data Augmentation (EDA) (Wei
and Zou, 2019) introduces word level distortions
and includes four simple operations (synonym re-
placement, random insertion, swap and deletion)
to generate new data, and has found considerable
acceptance due to its simplicity. In this work, we
experiment with both EDA and paraphrase based
data augmentations to generate new data.

3 Creating datasets with sampling biases

Conditioned on the dataset collection protocol or
other aforementioned factors, different biases may
creep into the obtained data. We discuss three such
scenarios below.

Scenario 1: Unbiased data collection. In this
scenario, the practitioner is capable of sampling
data from the real world distribution. This scenario
is likely, for example, when the practitioner has
unrestricted access to the process governing data



generation.

Scenario 2: Biased data collection per-class. In
certain scenarios, practitioners are obligated to
gather data per class. For example, in an indus-
trial setting, one may launch ML models with a
pre-defined class support (e.g. a model that classi-
fier utterances into PlayMusicIntent and GetWeath-
erlntent). To launch models with the given class
support, the practitioner may be required to collect
representative utterances per class (by requesting
paid users to make either requests to play music
or get weather to get coverage for PlayMusicIntent
and GetWeatherIntent, respectively). The distribu-
tion of such utterances within each class, however,
may not conform to the real-world distribution.
Scenario 3: Biased data collection across
classes. In this scenario, the practitioner first col-
lects data for the pre-defined class support and then
trains a model on the collected data. However, they
are not able to collect data as per the real world dis-
tribution. For example, given the full class support,
the practitioners may only be able to get represen-
tative datapoints from a set of users who agree to
donate their data.

We further introduce operating with reduced data
volumes in all the scenarios above as motivated ear-
lier. We also note that we enforce that at least one
data point is available per class in each simulation.
This is important as unconstrained severe under-
sampling may lead to a reduced class support, as
datapoints from some classes may not be sampled.
We discuss our setup for simulating above scenar-
ios in the next section.

3.1 Simulating dataset collection

Motivated by the aforementioned scenarios, we
discuss simulations to mimic them below.

Scenario 1: Uniform random down-sampling.
In this method, we randomly downsample the
available dataset to a fraction of its original size.
This method is expected to provide a smaller
number of datapoints available, but does not
introduce any bias in the sampled data.

Scenario 2: Class dependent bias injection. In
this bias injection method, we under-sample data-
points per class. In particular, when requesting a set
of users to generate datapoints specific to a class,
they may tend to produce similar set of requests
(e.g. given a task to generate data for PlayMusicln-

tent, a user may provide pop music requests, while
another user may provide classical music requests).
Using this as a motivation, given a class, we obtain
K seed datapoints from amongst the datapoints be-
longing to that class. Given the seed datapoints, we
select utterances proximal to the seeds (as defined
through a chosen embedding space) to obtain the
undersampled data. Following the example above,
each seed can be seen as a prototype of requests
a user makes and the proximal utterances can be
expected to provided by the same user.

We propose multiple ways of selecting the
seed datapoints. In our experiments, we use
the following settings: (i) K = 1, seed close
to class centroid, (i) K = 1, seed away from
class centroid, (iii) K > 1 seeds away from class
centroid and, (iv) K > 1, seeds randomly chosen.
The class centroid is again computed based on all
the available datapoins for the class at hand, as
defined on the chosen embedding space.

Scenario 3: Class agnostic bias injection. In this
method, we obtain K seed datapoints and select
utterances proximal to the seed datapoint without
factoring in the class assignments. This leads to
semantically similar utterances finding prevalence
in the under-sampled data, without considering the
class. This dataset creation mechanism mimics
a scenario where a biased set of datapoints are
selected from the real distribution, which are then
annotated for class labels for training a classifier.

For each of the methods described above, we
operate in an utterance embedding space com-
puted based on the smooth inverse frequency (SIF)
method (Sanjeev Arora, 2017). SIF embeddings
have been shown as a strong, yet simple method
to obtain sentence embeddings. We select seed ut-
terances in the SIF embeddings space and select
proximal utterances based on the L2 norm. We also
note that in the real world the process for biased
data generation is unlikely to be available to the
modeler. Therefore, we do not use SIF based em-
beddings in any of our methods to benchmark im-
provements on the biased data samples. We show
crafted visual demonstrations of the simulations for
selected scenarios in the Figure 1.

3.2 Datasets used

We use three English datasets for our experiments,
as summarized below.

ATIS Intent Classification Dataset (Chen,



Figure 1: This figure demonstrates sampling the data
under different bias settings. Assuming the span of a
chosen class is shown using the blue ellipse, (a) shows
sampling with a single seed (KX = 1) with the seed
selected away from the class centroid. Similarly, (b)
shows sampling with multiple seeds (K > 1) with
seeds away from centroid. (c) shows sampling with
several randomly selected seeds, and (d) shows sam-
pling with seeds selected randomly irrespective of the
class (green ellipse denotes a class separate to the one
denoted by the blue ellipse).

2019): This dataset consists of 4952 utterances
in training set and 878 in test set, split across 18
intents.

Semantic Parsing for Task Oriented Dia-
log using Hierarchical Representations (TOP)
(Gupta et al., 2018b): TOP contains 31279 utter-
ances in the training set and 9042 in test set, across
19 intents.

SNIPS Natural Language Understanding
benchmark (Alice Coucke, 2018): SNIPS
contains 13784 utterances in the training set and
700 in test set, across 7 intents.

3.3 Performance baselines

Given the created datasets, we train intent classi-
fiers on them and report our findings in Table 1.
For the random down-sampling, we obtain datasets
sized to 1%, of its original volume (we report num-
bers on sampling 5% and 10% of the data in the
Appendix X). We continue selecting nearest utter-
ances to the selected seed utterances until we cover
1% of the overall data volume (same heuristic is ap-
plied for sampling 5% and 10% of the traffic). We
fine-tune a BERT base model(110M parameters)
on the available labeled data for all our classifi-
cation tasks. We create 10 versions of datasets
in biased setting and present average performance
across them.

Setting | ATIS | TOP | SNIPS
Random down-sampling, 1% data
Random | 66.52% | 83.50% | 85.81%
Class dependent bias injection, 1% data

(K =1closeto | 70.59% | 73.45% | 68.51%
centroid)

(K = 1 away | 72.30% | 72.22% | 75.22%
from centroid)

(K > 1 away | 80.77% | 77.65% | 80.77%
from centroid)

(K>1) 73.69% | 74.39% | 75.04%

Class independent bias injection, 1% data
(K >1) | 72.21% | 72.76% | 34.40%

Table 1: Baseline results, trained with 1% labelled data

3.4 Observations

We discuss various observations on the baseline
performances below.

1. While random down-sampling performs the
best in TOP and SNIPS, it is the worst perform-
ing baseline in ATIS. We expected that random
down-sampling to perform the best given that it
preserves class distribution across data-samples.
However, this is not the case in the ATIS dataset
sampled down to 1% of its size. We identify that
in a few shot learning scenario, it is hard to sam-
ple data that matches the true distribution. Severe
under-sampling in ATIS leaves room for 1-2 sam-
ples per class, as shown in Table 2. We also ob-
serve that gathering biased data per-class yields
more samples for under-represented classes (e.g.
capacity/distanc), leading to better accuracy. This
implies that during few shot learning, it is better
to have more representative data-points from each
class, as opposed to a more matched class distri-
bution. We observe that as the number of random
samples increase (from 1% to 10%), the perfor-
mance of random baseline improves (please see
Appendix for numbers on datasets with size 5%
and 10%).

2. (K > 1 away from centroid) performs the
best in biased settings. We observe that gathering
diverse set of data per-class that is distant from
class centroid yield the most value in terms of
determining class boundaries. Datapoints away
from centroid are more likely to be close to the
decision boundary and data sampling methods
such as active learning rely on a similar heuristic



Intent/Ratio 10% | 1% | 10% | 1%
abbreviation 11 2 12 3
aircraft 8 1 9 2
airfare 41 5 42 6
airline 15 2 16 3
airport 2 1 3 2
capacity 2 1 3 2
cheapest 1 1 1 1
city 2 1 4 2
distance 3 1 4 2
flight 343 | 35 | 340 | 30
flight_no 2 1 4 2
flight_time 6 1 7 2
ground_fare 2 1 3 2
ground_service | 24 3 25 4
meal 1 1 2 2
quantity 5 1 6 2
restriction 1 1 2 2

Table 2: Number of Utts in each intent of Atis with
random sampling

to gather valuable annotated data.

3. The class independent bias injection setting
(K > 1) severely under-performs for SNIPS.
We observe an average performance of 34.4% for
class independent bias injection in SNIPS (we em-
phasize that this performance is average across 10
samples of the data and thus, not a one off obser-
vation). However, we observe a good recovery in
case of using 5% or 10% of the data (results in
Appedix X). We show the number of datapoints
per class 1% and 10% data volume setting for ran-
dom down sampling and a biased sampling setting
in Table 3 (sampled from one of the 10 versions).
We observe that severe under-sampling in SNIPS
leads to a skew in the training data with intents
like ‘GetWeather’/‘SearchScreeningEvent’ observ-
ing far fewer datapoints (note that these classes
otherwise are fairly frequent as seen in 10% and
5% sampled data). [Check this] This is due to the
fact that this intent while very frequent are tightly
clustered in the embedding space. If a seed is not
chosen close to the cluster, they are likely to be
severely under-represented. In a real world setting,
this setting is analogous to a case where a very
similar set of users may provide most data for a
frequent class, but they refrain from donating their
data.

Table 4 shows the skewed distribution caused

Intent/Ratio 10% | 5% | 1%
AddToPlaylist 28 11 | 10
BookRestaurant 396 | 137 | 79
GetWeather 234 | 164
PlayMusic 50 | 20 1
RateBook 283 | 191 | 36
SearchCreativeWork 83 13 | 11
SearchScreeningEvent | 290 | 147 | 1

Table 3: Number of Utts in each intent of Snips with
cross intent biased sampling

by cross intent biased sampling in Snips, which
originally has same amount data within each intent.

4 Methods for Benchmarking

Given the methods to generate under-sampled
datasets as described above, we benchmark two
broad categories of data augmentation methods on
each baseline: (i) Data augmentation through semi-
supervised learning and, (ii) Data augmentation
through data generation. We describe them below.
(all the computing works take around 1 week of an
AWS p3 instance, with 8 nVidia Tesla V100)

4.1 Semi Supervised Learning

In this setting, we assume availability of unlabeled
datapoints for the dataset at hand. Furthermore, we
assume that the available unlabeled data follows the
real world distribution. We then use two ways of
label-propagation on the unlabeled data to generate
pseudo-labeled data. The pseudo-labeled data is
then augmented with the labeled data to train a
classifier. We expect that the unlabeled data that
follows the real distribution can correct for biases
in the labeled data.

4.1.1 Self-learning based SSL

In this method, we train a seed model on the labeled
data and pseudo-label the unlabeled data with the
seed model. For both, the seed and the model
trained on augmented data, we use a BERT based
pre-trained model trained from ConSert and fine-
tune it on the labeled data.

4.1.2 Clustering based SSL

In this method, we propagate labels from the la-
beled datapoints to neighboring un-labeled data-
points. Similar to (Aharoni and Goldberg, 2020),
we use a pre-trained LM to first produce sentence
embeddings for both labeled and unlabeled data-
points. The unlabeled data helps the model to learn



the overall data pattern in the dataset while the la-
beled data helps the model to label the unlabeled
data. Our proposed method runs clustering with
large amount of unlabelled data and only select
the most confident clusters to ensure the quality
of pseudo-labels. We summarize the steps used in
this method below: (i) We first use an LM (BERT)
to obtain sentence representations. (ii) We use K-
means clustering on the LM representations ob-
tained for labeled and unlabeled data to identify
clusters. We expect that each cluster represents a
set of semantically similar sentences. To ensure
fine granularity of clustering, the number of clus-
ters is set much larger than the number of classes
(e.g., number of domains or intents) (Mahon and
Lukasiewicz, 2021). (iii) We then pseudo-label
unlabeled datapoints in selected clusters based on
the set of labeled datapoints in the cluster. Recent
work showed that pseudo-labels perform poorly
mainly because of low accuracy in clustering (Di-
vam Gupta and Sivathanu, 2020). Consequently,
similar to (Ishii, 2021), we only keep the most
“pure” clusters, as we define next. A pure cluster
has the following properties (a) At least 1% of the
datapoints in a given cluster need to be labeled, (b)
the majority class amongst the labeled datapoints
needs to account for at least 80% of the labeled dat-
apoints. All unlabeled datapoints in each pure clus-
ter is assigned the label same as the majority class
in the respective cluster. Once a set of unlabeled
datapoints are pseudo-labeled, we train a classifier
on the combined set of labeled and pseudo-labeled
data.

4.2 Data augmentation

In this setting, we assume that no unlabeled data is
available for the task of interest and we focus on
generating more data from the labeled data using
the following set of methods.

4.2.1 Easy Data Augmentation

EDA (Wei and Zou, 2019) is a data augmentation
technique that uses synonym replacement/ random
synonym insertion/ random two words swap and
random word removal to synthesize new training
examples. It creates 9 generated utterances per la-
belled utterance using these four techniques. While
the heuristic behind EDA is simple, it has shown
to outperform several strong data generation base-
lines.

4.2.2 Back-translation

Back-translation (BT) (Sennrich et al., 2016) is
a commonly used approach for paraphrasing text:
a machine translation (MT) system is applied to
translate text from the source language to a target
pivot language, then back again. By using n-best in
both directions, BT can produce a large number of
paraphrases. We fine-tune an internal 5B parameter
seq2seq model on WMT 2014 data(Bojar et al.,
2014), using a single model for en—fr and fr—en,
with an instruction prompt to control the language
direction: “Translate to French:” and “Translate
to English:”, respectively. We decode with beam
search using M=10 forward and N=10 backward
translations, to produce up to 100 variations of
each original sentence. After heuristic cleaning
(removing invalid punctuation like “!”” and “?.”) and
de-deduplication, the average number of outputs
per input is 41 for ATIS, 51 for SNIPS, and 36 for
TOP.

4.2.3 In-context Learning

Given the recent emergence of in-context learning
as a way to generate quality data from large
models, we use this as another baseline. We use a
20B parameter language model to generate data by
setting the handful of labeled data for the task at
hand as context. In particular, for each dataset and
each intent, we give the model 3 utterances of that
with a prompt (e.g., in the form Example with
[flight] do you have an
early morning direct flight from
philadelphia to pittsburgh?) and
generate 27 samples of the same intent by
letting the model continue generation after the
final prompt(e.g..Example with [flight]
intent:). For generation, we use nucleus
sampling with p = 0.5,0.7,0.9.

intent:

We augment various baselines discussed in Sec-
tion 3 (that cover up to 1% of the training data) with
data obtained through the semi-supervised learning
and data augmentation methods (results for 5% and
10% settings are presented in Appendix). For SSL
methods, we use data not selected during biased
sampling as the unlabeled data. Same BERT-base
architecture is used for fine-tuning on augmented
datasets and the test set is consistent with the base-
lines presented in Section 3.3. Table 4 summarizes
the results.



Dataset: ATIS

Full data baseline 97.94

Baseline | SSL | Clustering | EDA | Gen_20Bp5 | Gen_20Bp7 | Gen_20Bp9 | Gen_5B
Random down-sampling 66.5 68.1 78.4 82.4 83.6 85.8 87.3 82.5
Class dependent bias injection:
(K = 1 close to centroid) 70.6 70.4 50.3 80.2 77.7 76.9 78.5 78.9
(K =1 away from centroid) 72.3 72.8 46.8 78.7 79.1 80.9 83.7 75
(K > 1 away from centroid) 76.5 81.5 58.8 84 84.7 86.3 85 83.2
(K>1) 76.7 77.6 52.5 80.5 82.4 85.4 86.8 81
Class independent bias injection:
(K >1) 722 [ 73] 725 [786] 81 85.9 86.6 79.9

Dataset: Top

Full data baseline 94.16

Baseline | SSL | Clustering | EDA | Gen_20Bp5 | Gen_20Bp7 | Gen_20Bp9 | Gen_5B
Random down-sampling 83.5 83.8 83.8 86.9 84.5 84.6 84.4 87.5
Class dependent bias injection:
(K =1 close to centroid) 73.5 74 59.3 75.7 67.2 69.9 73.8 75.4
(K = 1 away from centroid) 72.2 72.6 56.8 74.5 70.9 72.9 74.6 73.8
(K > 1 away from centroid) 77.3 78.1 69.4 80.6 73.2 75.6 78.5 78.9
(K >1) 74.9 77.8 63.3 77.8 73 76 79.4 80.1
Class independent bias injection:
(K >1) 728 [734] 721 [ 76 [ 717 76.9 77.6 78.1

Dataset: Snips

Full data baseline 98.86

Baseline | SSL | Clustering | EDA | Gen_20Bp5 | Gen_20Bp7 | Gen_20Bp9 | Gen_5B
Random down-sampling 85.8 88.5 94 91.8 94.1 94.9 94.2 93.8
Class dependent bias injection:
(K =1 close to centroid) 68.5 71.2 86.1 79.8 82.1 85.9 89.7 87.2
(K = 1 away from centroid) 75.2 76.9 83 80.5 81.7 86.9 90.6 85.1
(K > 1 away from centroid) 75.2 82.5 88 87.2 87.1 90.9 92 91
(K>1) 79.3 824 88.2 84.4 90 89.7 93.3 91.8
Class independent bias injection:
(K >1) 344 [339] 735 | 47 [ 561 [ 69 | 695 [ 574

Table 4: Performance(accuracy in test sets) of models, trained with 1% of labelled data and augmented data from

each method

4.3 Observations

Examples of data generated through the data
augmentation methods are shown in Table 5. We
make the following observations from the results.

1. Data generations methods are competi-
tive to SSL methods We observe that the data
generation methods trained on top of models
with large volumes of world knowledge (e.g.
data from web crawl) or simple perturbations
outperform models trained on a combination of
labeled and pseudo-labeled data. We attribute
this observation to the fact that semi-supervised
techniques use for pseudo-labeling techniques are
dependent on the seed set of labeled datapoints.
In absence of a diverse and representative labeled
datapoints, pseudo-labeling unlabelled data can be
challenging.

2. EDA emerges as a strong benchmark

Akin to the claims made in the EDA paper, we
observe that their proposed method performs well
in our baselines. The in-context based methods
beats EDA in the class independent bias injection
method, but otherwise EDA either beats or is fairly
competitive.

3. The clustering method yields value on the
SNIPS dataset, while hurting the performance
in other datasets. While EDA and in-context
learning generally perform the best, clustering
based SSL outperforms other methods in SNIPS.
We, therefore, analyze if a heuristic can capture
when to select clustering based method. We look at
T-SNE and identfy that there must be clean clusters.
We also look at intra-cluster metric.

To analyze the reason behind the performance
difference of the two pseudo labelling meth-
0ods(SSL and clustering), we plot the t-SNE(van der
Maaten and Hinton, 2008) embeddings of some
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Figure 2: (a) Snips t-SNE with ground truth label (b) Snips t-SNE with ssl label (c) TOP t-SNE with ground truth
label (d) TOP t-SNE with ssl label

random sampled utts from these dataset.

Figure 4 and 5 shows the situations in Snips,
where clustering beats SSL. The color of embed-
dings in Figure 4 represents the ground truth label
while in Figure 5 they are the pseudo label given
by SSL. We can see even with well-clustered utts,
SSL mis-labels a lot of them, SSL pseudo label
accuracy is 68.9% for singled seeded sampling, 1%
data retain rate, while in this setting, clustering has
pseudo label accuracy of 87.1%.

However, as Figure 6 and 7 shows the situations
in TOP, where clustering has lower accuracy com-
pared with SSL.. We can see in a dataset where
the utts are not clustered well by intent, clustering
cannot give a good help.

5 Conclusion

This survey gives an overview over data augmen-
tation approaches to mitigate reduced annotation
volumes and biased sampling for intent classifica-
tion in different domains and dataset.
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SSL Search for the George and the Big Bang TV show
this current book is worth five
I want to go to the Freight House in Gabon
Give four points to Leven Thumps and the Gateway to Foo
Find the trailer for Seven Year Itch.
Clustering Find a TV show called Union.

I’m looking for the song called Standing for Something.
Please look up The Immortals television show.
Please get me The National Medical Journal of India game.
Find Half Cut Tea.

EDA show the put yourself in his berth place game
show the inwards put yourself in his place game
his the put yourself in show place game
show the put yourself game his place in
show the put yourself in his place gimpy
Paraphrasing Find me the trailer for The Incredible Hulk
Find me the trailer for The Matrix
How can I get a copy of the book The Art of Playing the Game
Where can I find the trailer for The Man Who Fell to Earth
How can I watch the movie The Secret Garden
In-context Learning Add Put Yourself in His Place to Wish List
Add Put Yourself in His Place to Wishlist
Add the game Put Yourself in His Place
Add the game Put Yourself in His Place to your Web browser.
Add the game Put Yourself in His Place to your Web site.

Table 5: Examples of labeled data generated through various data augmentation methods.

A Example Appendix Setting ATIS | TOP | SNIPS
Random down-sampling, 5% data
Random 85.81% | 90.43% | 96.08%
Class dependent bias injection, 5% data
Setting ATIS TOP | SNIPS (K =1closeto 80.49% | 80.47% | 90.30%
Full data 97.94% | 94.16% | 98.86% centroid)
Random down-sampling, 10% data (K = 1 away 81.47% | 79.15% | 89.40%
Random 88.58% \ 98.08% | 91.69% from centroid)
Class dependent bias injection, 10% data (K > 1 away 86.49% | 84.93% | 90.44%
(K =1closeto 83.68% | 82.85% | 92.35% from centroid)
centroid) (K >1) 86.00% | 83.82% | 89.61%
(K = 1 away 87.70% | 82.95% | 92.85% Class independent bias injection, 5% data
from centroid) (K > 1) 80.84% | 85.88% | 76.80%

(K > 1 away 89.25% | 87.16% | 93.92%

from centroid) Table 7: Baseline results, trained with 5% labelled data

(K > 1). 89'5.3%.7 . 87.'64% 94.28% B Results with 5% and 10% of datasets
Class independent bias injection, 10% data
(K>1 85.55% | 89.30% | 94.12%

Table 6: Baseline results, trained with 10% labelled
data
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Dataset: ATIS

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 88.6% | -0.365% 3.03% 5.3% 5.23% 5.42% 521% 3.01%
Class dependent bias injection:
(K = 1 close to centroid) 83.7% 0.205% -1.37% 3.36% 4.92% 5.57% 5.54% 1.04%
(K = 1 away from centroid) 87.7% | -0.822% -6.36% | -0.308% | 1.82% 1.87% 2.13% -5.74%
(K > 1 away from centroid) 89.1% | -0.0571% | 0.0685% | 2.49% 1.44% 2.53% 3.7% -0.331%
(K>1) 89.3% 1.47% 0.753% 2.68% 2.29% 3.61% 3.47% 1.72%
Class independent bias injection:
(K>1) 85.6% | 0.0114% 4.77% 4.93% 6.08% 6.78% 6.6% ‘ 3.48%

Dataset: Top

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 91.7% 0.144% 0.0155% | 0.772% | -1.41% -1.9% -1.97% ‘ 0.00221%
Class dependent bias injection:
(K =1 close to centroid) 82.9% 0.365% -2.62% 3.67% -0.822% | 0.653% 2.1% 2.64%
(K = 1 away from centroid) 83% 0.408% -3.38% 338% | -0.763% | -0.487% | 1.38% 1.36%
(K > 1 away from centroid) 86.9% 0.449% -2.21% 0.845% | -2.94% 21% | -0.113% | 0.332%
(K>1) 86.6% 0.718% 2% 1.16% -2.87% -2.04% | -0.481% | 0.426%
Class independent bias injection:
(K>1) 89.3% 0.177% 0.195% 1.11% | -0.323% | -0.672% | -1.58% ‘ 1.03%

Dataset: Snips

Baseline SSL Clustering EDA Gen_20B | Gen_5B

Random down-sampling 98.1% | 0.0857% | -0.0714% | 0.329% | 0.214% 0.2% 0.214% ‘ -0.171%
Class dependent bias injection:

(K = 1 close to centroid) 92.4% 1.06% 2.7% 4.4% 3.94% 4.84% 4.91% 3.63%
(K = 1 away from centroid) 92.9% 0.829% 1.43% 3.21% 3.11% 4% 3.74% 2.69%
(K > 1 away from centroid) 94.6% | 0.0857% 1.5% 2.51% 1.94% 2.44% 2.56% 1.97%
(K >1) 94.6% 0.557% 1.27% 2.63% 2.17% 2.59% 2.54% 1.66%
Class independent bias injection:

(K >1) 94.1% [ 0257% | 227% | 31% | 2.69% | 3.1% [ 3.04% [ 271%

Table 8: Relative improvement over the baseline model, trained with 10% labelled data
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Dataset: ATIS

Baseline SSL Clustering EDA Gen_20BpS | Gen_20Bp7 | Gen_20Bp9 | Gen_5B
Random down-sampling 85.8% | -0.525% 4.1% 3.54% 4.04% 5.76% 5.9% 2.51%
Class dependent bias injection:
(K = 1 close to centroid) 80.5% | -0.297% -5.29% 3.82% 7.51% 7.68% 8.06% 1.88%
(K = 1 away from centroid) 81.5% 0.103% -16.5% 1.4% 5.87% 7.47% 7.65% -2.17%
(K > 1 away from centroid) 84.9% 2.07% -4.46% 2.42% 3.39% 4.84% 5.47% 1.23%
(K>1) 87.2% -1.4% -5.32% 1.06% 1.77% 1.54% 2.13% -0.982%
Class independent bias injection:
(K>1) 80.8% | -0.0685% 6.37% 6.53% 7.97% 9.35% 9.47% 5.76%

Dataset: Top

Baseline SSL Clustering EDA Gen_20Bp5 | Gen_20Bp7 | Gen_20Bp9 | Gen_5B
Random down-sampling 90.4% 0.188% | -0.0177% | 1.06% -1.72% -2.21% -2.04% 0.0122%
Class dependent bias injection:
(K =1 close to centroid) 80.5% 0.358% -6.9% 1.75% -3.77% -3.24% 0.094% 0.421%
(K = 1 away from centroid) 79.2% 0.374% -6.7% 2.84% -1.6% -1.01% 0.811% 1.39%
(K > 1 away from centroid) 84.7% 0.661% -4.24% | 0.841% -3.95% -2.24% -0.583% 0.0343%
(K>1) 82.7% 0.679% -6.14% | 0.543% -2.28% -1.74% 1.24% 0.677%
Class independent bias injection:
(K>1) 85.9% 0.222% -0.885% 1.68% -0.5% -0.0221% -1.11% 1.66%

Dataset: Snips

Baseline SSL Clustering EDA Gen_20Bp5 | Gen_20Bp7 | Gen_20Bp9 | Gen_5B
Random down-sampling 96.1% 0.171% 1.2% 2.14% 2.07% 1.89% 1.97% 1.64%
Class dependent bias injection:
(K =1 close to centroid) 90.3% 1.04% 3% 4.1% 5.04% 5.99% 6.27% 4.66%
(K = 1 away from centroid) 89.4% 0.957% 2.73% 4.74% 4.53% 6.26% 6.54% 5.21%
(K > 1 away from centroid) 89.9% 1.84% 3.711% 5.34% 5.47% 5.81% 6.51% 5.31%
(K >1) 90.2% 2.47% 4.06% 5.13% 4.73% 5.84% 5.93% 5.5%
Class independent bias injection:
(K >1) 768% | 0371% | 149% | 12.5% 16.1% 17.3% 16.4% 14.9%

Table 9: Relative improvement over the baseline model, trained with 5% labelled data
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Dataset: ATIS

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 0.00204 | 0.00189 | 0.000155 | 0.000148 | 0.000121 | 1.75e-05
Class dependent bias injection:
(K =1 close to centroid) 0.000798 | 0.000999 | 0.00452 0.00147 | 0.000381 | 0.00284
(K = 1 away from centroid) 0.000198 | 0.000245 0.0178 0.000325 | 0.000185 | 0.0055
(K > 1 away from centroid) 0.000177 | 0.000323 | 0.000737 | 0.000547 | 0.000269 | 0.000595
(K >1) 0.000121 | 0.000219 | 0.000279 | 0.000284 | 0.000438 | 0.000347
Class independent bias injection:
(K>1 0.00115 | 0.00111 | 0.000313 | 0.000267 | 0.000179 | 0.000319

Dataset: Top

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 1.23e-05 | 1.58e-05 | 1.16e-05 | 6.18e-07 | 8.12e-06 | 1.75e-06
Class dependent bias injection:
(K = 1 close to centroid) 0.00054 | 0.000612 | 0.000738 | 0.000157 | 0.000333 | 8.69e-05
(K = 1 away from centroid) 0.000602 | 0.000585 | 0.00143 | 0.000498 | 0.000832 | 0.000813
(K > 1 away from centroid) 0.000151 | 0.000309 | 0.000732 | 0.000168 | 0.000252 | 8.43e-05
(K >1) 0.00013 | 0.000219 | 0.000303 | 4.03e-05 | 0.00016 | 0.000141
Class independent bias injection:
(K >1) 8.13e-05 8e-05 5.1e-05 2.91e-05 | 2.95e-05 | 1.38e-05

Dataset: Snips

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 2.42e-05 | 2.28e-05 | 6.71e-06 | 3.04e-06 | 4.67e-06 | 4.57e-06
Class dependent bias injection:
(K = 1 close to centroid) 0.00206 | 0.00119 | 0.000432 | 8.57e-05 | 0.000291 | 2.02e-05
(K =1 away from centroid) 0.000584 | 0.000758 | 0.000345 | 0.000228 | 0.000262 | 0.000209
(K > 1 away from centroid) 0.000123 | 0.000166 | 9.23e-05 | 3.19e-05 | 7.8e-05 | 2.64e-05
(K>1) 0.000580 | 0.000173 | 0.00014 | 4.61e-05 | 4.74e-05 | 5.57e-05
Class independent bias injection:
(K >1) 0.00262 0.0025 0.000324 | 6.99e-05 | 7.23e-05 | 1.81e-05

Table 10: Variance of results over 10 different runs, trained with 10% labelled data
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Dataset: ATIS

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 0.000714 | 0.000572 | 0.000259 | 2.37e-05 | 2.72e-05 | 3.02e-05
Class dependent bias injection:
(K =1 close to centroid) 0.00128 | 0.00107 0.00565 | 0.000599 | 0.000519 | 0.0043
(K = 1 away from centroid) 0.00175 | 0.00137 0.0285 0.000691 | 0.000185 | 0.00654
(K > 1 away from centroid) 0.000832 | 0.000754 0.003 0.000785 | 0.000735 | 0.000596
(K >1) 0.000432 | 0.000505 | 0.000845 | 0.000529 | 0.00051 | 0.00184
Class independent bias injection:
(K>1 0.0022 0.00221 | 0.000829 | 0.000176 | 0.000281 | 0.000309

Dataset: Top

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 1.48e-05 | 1.34e-05 | 2.19e-05 | 2.42e-06 | 1.62e-05 | 4.26e-06
Class dependent bias injection:
(K = 1 close to centroid) 0.000827 | 0.000816 | 0.00184 | 0.000347 | 0.00116 | 0.00047
(K = 1 away from centroid) 0.00148 | 0.00144 | 0.00555 0.00098 0.0013 0.00257
(K > 1 away from centroid) 0.000427 | 0.000393 | 0.00127 | 0.000423 | 0.000659 | 0.000508
(K >1) 0.000132 | 0.000489 | 0.00078 | 0.000559 | 0.00033 | 0.000393
Class independent bias injection:
(K >1) 8.28e-05 | 9.42e-05 | 0.000149 | 4.15e-05 | 0.000101 | 3.48e-05

Dataset: Snips

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 0.000536 | 0.00046 | 6.37e-05 | 4.98e-06 | 9.16e-06 | 1.12e-05
Class dependent bias injection:
(K = 1 close to centroid) 0.000768 | 0.000614 | 0.000581 | 0.000499 | 0.000529 | 0.000116
(K =1 away from centroid) 0.00104 | 0.000788 | 0.00106 | 0.000408 | 0.000626 | 0.000257
(K > 1 away from centroid) 0.000124 | 0.000918 | 0.000385 | 0.000104 | 0.000267 | 6.91e-05
(K>1) 0.00524 | 0.000203 | 0.00019 | 0.000143 | 0.000318 | 7.71e-05
Class independent bias injection:
(K >1) 0.0153 0.0149 0.00232 0.0047 0.00165 | 0.00355

Table 11: Variance of results over 10 different runs, trained with 5% labelled data
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Dataset: ATIS

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 0.0314 0.0249 0.00123 | 0.000183 | 2.58e-05 | 8.35e-05
Class dependent bias injection:
(K =1 close to centroid) 0.0117 0.0125 0.0204 0.000693 | 0.00622 | 0.00349
(K = 1 away from centroid) 0.00103 | 0.000464 0.0517 0.000679 | 0.00107 | 0.00343
(K > 1 away from centroid) 0.000176 | 0.00122 0.0159 0.000216 | 0.000358 | 0.000931
(K >1) 0.000163 | 0.00645 0.00957 0.00646 | 0.00469 | 0.00498
Class independent bias injection:
(K>1 0.00163 | 0.00114 | 0.00569 | 0.000225 | 0.000391 | 0.000617

Dataset: Top

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 0.000299 | 0.000316 5e-05 7.41e-06 | 4.7e-05 | 1.52e-05
Class dependent bias injection:
(K = 1 close to centroid) 0.000916 | 0.000904 | 0.00683 | 0.000542 | 0.00123 | 0.000852
(K =1 away from centroid) 0.00146 | 0.00138 0.00914 | 0.00214 | 0.00134 | 0.00312
(K > 1 away from centroid) 0.000116 | 0.00148 0.00203 | 0.000689 | 0.000759 | 0.00107
(K >1) 0.000126 | 0.000963 | 0.00262 | 0.00117 | 0.000622 | 0.000568
Class independent bias injection:
(K >1) 0.00165 | 0.00157 0.00171 0.00254 | 0.000505 | 0.00163

Dataset: Snips

Baseline SSL Clustering EDA Gen_20B | Gen_5B
Random down-sampling 0.00187 | 0.00137 | 0.000105 | 0.000651 | 0.000222 | 5.56e-05
Class dependent bias injection:
(K = 1 close to centroid) 0.00469 | 0.00393 0.00171 0.00199 | 0.00869 | 0.000947
(K =1 away from centroid) 0.00403 0.003 0.00141 0.00276 | 0.00336 | 0.000746
(K > 1 away from centroid) 0.000576 | 0.00549 0.00172 | 0.000786 | 0.00283 | 0.000714
(K>1) 0.000271 | 0.00473 0.00175 0.00191 | 0.000665 | 0.000594
Class independent bias injection:
(K >1) 0.0172 0.0172 0.011 0.0272 0.0187 0.0174

Table 12: Variance of results over 10 different runs, trained with 1% labelled data
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