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Abstract

We assemble here a complete pipeline for modelling uncertainty in the finite,
discrete-state setting of offline reinforcement learning (RL). First, we use methods
from Bayesian RL to capture the posterior uncertainty in environment model pa-
rameters given the available data. Next, we determine exact values for the return
distribution’s standard deviation, taken as the measure of uncertainty, for given
samples from the environment posterior to decompose the agent’s uncertainty into
epistemic and aleatoric uncertainties. This allows us to build an RL agent that
quantifies both types of uncertainty and utilises its uncertain belief to inform its
optimal policy through a novel stochastic gradient-based optimisation process. We
illustrate the uncertainty quantification and Bayesian value optimisation perfor-
mance of our agent in simple, interpretable gridworlds and confirm its scalability
by applying it to a clinical decision support system (AI Clinician) which makes
real-time recommendations for sepsis treatment in intensive care units, and address
the limitations that arise with inference for larger-scale MDPs by proposing a
sparse, conservative dynamics model.

1 Introduction

In safety-critical machine learning applications, accurately quantifying confidence and uncertainty in
decision outcomes becomes imperative for regulatory and trust reasons [Chua et al., 2022, Kendall
and Gal, 2017]. In general, uncertainties that such systems face can be epistemic, arising from limited
data availability, or aleatoric, originating from inherent environmental randomness. Uncertainty
quantification is particularly relevant and challenging in Reinforcement Learning (RL) systems as
uncertainty in decisions’ outcomes compounds in sequential decision-making. The task of disentan-
gling these uncertainties gains importance in real-world decision-making scenarios that are either
discrete state in nature or arise where continuous environmental variables are clustered into a finite
number of discrete states [Komorowski et al., 2018, Dufour and Prieto-Rumeau, 2012]. In such cases,
a coarse representation of the environment can introduce aleatoric uncertainty due to information lost
in compressing an environment into a finite number of states. In this work, we provide a thorough
analysis of uncertainty in these finite-state environments. Utilising inference schemes from classic
Bayesian RL, we account for epistemic uncertainty via a Bayesian dynamics model with exact infer-
ence, assigning posterior probabilities to potential environments [Duff, 2002]. Aleatoric uncertainty
is quantified by analytically solving linear equations for higher return distribution moments [Sobel,
1982]. Our contribution, on the uncertainty quantification side, is combining these ingredients to
derive overall aleatoric and epistemic standard deviations. We compare the computational complexity
and accuracy of our method with prior work. On the control under uncertainty side, we propose a
novel stochastic gradient-based method for policy optimisation that accounts for model dynamics
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uncertainty. We empirically demonstrate its superior optimisation performance and scalability over
previous methods [Dimitrakakis, 2011], providing results on gridworlds with varying offline dataset
sizes. Finally, our methods find application in clinical decision support systems (CDSS), which
leverage vast patient data sets to train RL algorithms for treatment suggestions [Gottesman et al.,
2019, Li et al., 2020]. We analyse a setup used for sepsis treatment [Komorowski et al., 2018], where
patients’ condition and treatment options were clustered into finite states and actions, originally
tackled by applying dynamic programming methods [Bellman, 1957]. We enhance this approach
with uncertainty quantification and uncertainty-aware control. We investigate the scalability of our
methods in such practical environments and address additional challenges, particularly in choosing a
dynamics prior, which we tackle by including domain-specific conservatism in the dynamics model.

2 Related Work

This section reviews uncertainty treatment in offline RL. We focus on epistemic uncertainty in Robust
and Adaptive MDP settings, aleatoric uncertainty for risk-averse policy suggestion, and recent work
quantifying both types of uncertainty.

Robust and Adaptive MDPs. A simple model-based approach for an MDP uses relative visitation
frequencies as the ground truth transition probabilities. This can introduce bias and result in policies
that generalise poorly [Mannor et al., 2007, Wiesemann et al., 2013, Chow et al., 2015]. To address
this, a Bayesian approach is often employed to account for uncertainty in ambiguous transition
dynamics, a common method in Bayesian RL [Ghavamzadeh et al., 2015]. Bayesian dynamics
models used in Bayes-Adaptive MDPs (BAMDPs) [Duff, 2002, Guez et al., 2012] maintain the
current belief in transition dynamics and enable optimal ‘offline’ planning of adaptable ‘online’ policy
rollouts. However, these models may be intractable beyond simple MDPs [Poupart et al., 2006, Lee
et al., 2018, Zintgraf et al., 2021].

In high-risk offline settings, exploration is undesirable. For instance, in the clinical decision support
system suggested in [Komorowski et al., 2018], novel actions are avoided by only selecting actions
above a minimum visitation threshold. Therefore, we focus on optimal memoryless, stationary (non-
adaptive) policies depending only on the state [Delage and Mannor, 2010]. Finding such policies that
are robust to the worst-case realisation of uncertain dynamics can often lead to overly conservative
policies, making average value optimization across a distribution of MDPs a better alternative [Nilim
and Ghaoui, 2003, Iyengar, 2005, Xu and Mannor, 2006]. This will be the problem formulation we
will be tackling in our work, while requiring that our methods scale to medium-sized (approximately
103 states) MDPs in data regimes where significant uncertainty is still present, in order for them to
be applicable to real-world tasks. The work in [Dimitrakakis, 2011] provides a method to find such
policies, but scalability to larger MDPs is not addressed. We propose using stochastic gradient-based
policy value function optimization to overcome this limitation.

Risk-averse policies. Accounting for inherent environmental stochasticity is often desirable. Using
the distributional RL framework [Bellemare et al., 2017], policies are often informed by return distri-
bution properties other than its mean to select risk-averse actions [Dabney et al., 2018, Clements et al.,
2019]. However, optimal policies for such statistical functionals are generally neither memoryless
nor time-consistent [Sobel, 1982, Bellemare et al., 2023]. Therefore, we focus on using the mean of
the return distribution to guide the agent’s policy.

Aleatoric and Epistemic Uncertainty in RL for Healthcare. Several recent efforts have tried
to model both types of uncertainties. In healthcare, Joshi et al. [2021] used a Bayesian dynamics
model and Monte Carlo trajectory sampling to model uncertainties and determine when to defer
treatment. In contrast, Festor et al. [2021] trained an ensemble of distributional deep neural networks
(DNNs) to learn the return distribution, effectively learning a ’distribution over distributions’ of the
return. Our work aims to improve uncertainty representation by replacing DNNs with exact dynamic
programming methods and substituting the epistemic uncertainty from DNN parameter disagreement
with the epistemic uncertainty due to uncertainty in transition dynamics.

3 Background

Dynamic Programming We work in the Markov Decision ProcessM (MDP) framework [Puter-
man, 2014] given by a tuple (S,A, r, P, γ, ρ), where S andA are the (assumed finite) state and action
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spaces respectively, r : S → R is the reward function, P : S ×A → P(S) the transition kernel (P
denoting a probability distribution over the corresponding set), γ ∈ [0, 1) a discount factor and ρ
the distribution over initial states. Given a policy π : S → P(A), the return of an episode starting
from state s is a random variable given by Gπ(s) =

∑∞
t=0 γ

tRt, where Rt = r(st, at), at ∼ π(·|st),
st ∼ P (·|st−1, at−1) given that s0 = s. We will be taking reward as known and deterministic given
state throughout, which a natural modelling step for MDPs where a certain state is associated with a
particular reward and in practice is common when constructing MDPs.

The expected value of G is called the value function V π(s) = EGπ(s), and it can be shown that with
this definition, V satisfies the Bellman equation

V π(s) = r(s) + γ
∑
a,s′

P (s′|s, a)π(a|s)V π(s′). (1)

Dynamic programming methods, such as value iteration, can evaluate V and provide the policy that
optimises V [Sutton and Barto, 2018]. It can be shown that the value of any arbitrary policy is

v(π) = (I− γT(π))−1r, (2)

with v and r |S|-dimensional vectors with ith element being V π(si) and r(si) respectively (for s the
ith state in S) and T(π) the policy-dependent transition matrix with element i, j given by

Ti,j =
∑
a

π(a|si)P (sj |si, a). (3)

The term (I − γT(π))−1 can be interpreted as successor features, in terms of which the analytic
solution for value has a simple form [Dayan, 1993]. For clarity we have highlighted here the
dependence of T on π and note that r does not depend on policy as we are working with state-
dependent rewards.

Return Distribution The most common approach to analysing the return distribution, referred
to as distributional RL, involves applying distributional Bellman operators [Bellemare et al., 2017]
which, in the finite-state setting, compute the return distribution arbitrarily accurately for a given
MDP (assuming a sufficiently expressive parametrisation) [Bellemare et al., 2023]. However, we
pursue a different path to usual distributional RL, as for our purposes we only require the first two
moments of the return distribution. These can be determined exactly in closed-form for a given MDP
without resorting to the full distributional RL framework.

Methods analogous to those developed to evaluate the value of policies by solving the Bellman value
equation (Eq. 1) can be extended to determine more general properties of the return distribution. For
example, it can be shown that the variances of the return random variable Gπ(s) satisfy an analogous
set of linear Bellman equations, with solution given in vector form by Sobel [1982]:

var(π) = (I− γ2T(π))−1r(var)(π), (4)

where the vector of variances var has element i corresponding to the variance at state si and r(var) is
the vector with element i being

r(var)
i (π) =

∑
j

Pπ(sj |si)(r(si) + γV π(sj))
2 − V π(si)

2, (5)

where Pπ(s′|s) =
∑

a π(a|s)P (s′|s, a).

Bayesian Dynamics Model The dynamics model we employ is standard in Bayesian RL, and is
equivalent to the one used in BAMDPs [Ghavamzadeh et al., 2015, Poupart et al., 2006] with an
unchanging belief and similar to the one proposed in Joshi et al. [2021], but stationary. By modelling
the belief over dynamics parameters of the MDP, this line of work effectively captures the uncertainty
due to not being able to narrow down what the true underlying MDP is: with a finite number of
transitions, there may be a number of potential MDPs that may have generated the observations,
to which we can assign posterior probabilities by using Bayes’ rule. For our purposes, we take the
reward function of the MDP as known (and deterministic), ultimately because in our applications we
will define reward directly as a deterministic function of state, but treat the dynamics of the world as
unknown.
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Let θs
′

s,a be a parameter representing the probability of transitioning to state s′ given action a at state
s, and consider a dataset of observed transitions (s, a, r, s′) ∈ D. The likelihood of the parameters
given an observed transition from s, a to s′ is thus p(s′|s, a) = θs

′

s,a. Next, we specify a conjugate
Dirichlet prior on θ, so that for each state-action the resulting posterior probability is also Dirichlet.
Assuming a symmetric Dirichlet prior with parameter αp, the posterior distribution satisfies

p({θsis,a|si ∈ S}|D) ∝
∏
j

(θsjs,a)
nj+αp−1, (6)

with ns being the number of times s, a transitioned to state s′ and the proportionality constant is
given (in closed form) by the multivariate Beta function [Kotz et al., 2004].

When the number of possible outcomes, in this case next states, is large then inference on the
Dirichlet parameters can be very data-inefficient when a generic maximum-entropy prior parameter
is employed and assigns a disproportionate amount of posterior probability to unobserved outcomes.
To mitigate this, one may scale the prior parameter inversely to the number of outcomes, as done in a
BAMDP context in Guez et al. [2012], or induce sparsity in the possible outcomes by modelling the
belief of feasible next states through a hierarchical Bayesian model [Friedman and Singer, 1998]. We
will address this same issue by employing a sparse Dirichlet model.

Aleatoric and Epistemic Uncertainty In order to quantify and distinguish between epistemic
uncertainty due to ambiguity in MDPsM given limited data and aleatoric uncertainty in the return
G, we use the common decomposition formula that arises after applying the law of total variance
[Kendall and Gal, 2017, Joshi et al., 2021] to the return G:

VarG(s) = VarMEGM(s)︸ ︷︷ ︸
epistemic

+EMVarGM(s)︸ ︷︷ ︸
aleatoric

, (7)

where we have made clear that the dependence on the return random variable G is conditioned on the
MDPsM, so that the inner expectations and variances are marginalising over returns for a given MDP
and the outer expectations and variances are marginalising over distributions of MDPs. The epistemic
variance term captures the overall variance in the expected returns due to ambiguity in the MDPs and
the aleatoric variance term is an estimate of the intrinsic variance averaged over the posterior MDP
distribution. Equations 2 and 4 allow us to determine EGM(s) = V (s) and VarGM(s) exactly,
while averages and variances over the MDPs can be approximated through Monte Carlo sampling
of the posterior over MDPs. In the limit of infinite data, the epistemic variance should tend to 0
as the probability mass of the posterior focuses in on a specificM, but the aleatoric term will not
necessarily behave similarly.

Bayesian Objective Beyond evaluating uncertainty, having a belief over the possible range of
dynamics that an MDP can exhibit can allow us to account for this uncertain belief when carrying
out control. Thus, we seek to find a policy that maximises the value objective under the Bayesian
dynamics posterior belief

max
π

∑
s

ρ(s)EM∼p(·|D)V
π
M(s), (8)

where the Bayesian value of each state EM∼p(·|D)V
π
M(s) has been marginalised with respect to the

initial state distribution ρ. This approach is consistent with previous literature that establishes the
benefits of optimising this objective for decision-making in uncertain MDPs [Nilim and Ghaoui,
2003, Iyengar, 2005, Xu and Mannor, 2006]. Thus, this objective will be the performance metric we
will use to evaluate the performance of different algorithms.

4 Methods

4.1 Uncertainty quantification

Some proposed approaches for jointly estimating aleatoric and epistemic uncertainty in discrete-space
MDPs either overlook uncertainty in the transition model [Festor et al., 2021] or rely on extensive
Monte Carlo sampling [Joshi et al., 2021]. As a consequence, the former does not scale consistently
with additional data (see Appendix B for empirical evidence for this claim) and we can introduce
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improvements in the latter for the infinite-horizon MDP case by using closed-form expressions for
the first two moments of the return distribution.

We present in Algorithm 1 a way to estimate the value, aleatoric and epistemic variances in Eq. 7. Its
computational complexity scales as O(|S|3) per dynamics sample due to requiring an |S|×|S|matrix
inversion for each of the NM dynamics samples. In contrast, methods that rely on Monte Carlo return
samples to estimate aleatoric and epistemic return will require a larger number of Dirichlet samples
and large simulation trajectory lengths to achieve comparable accuracy, but no matrix inversion.
We investigate this trade-off quantitatively in Appendix A and conclude that the larger number of
samples required for a full Monte Carlo-style evaluation (similar to Joshi et al. [2021]) is not worth
the additional sampling overhead for the MDPs we are considering (|S| < 1000). Note in principle
one could also use some iterative policy evaluation scheme [Sutton and Barto, 2018] to solve for
the first and second moments of the return distribution, in so doing sacrificing accuracy to avoid
calculating a matrix inverse.

Algorithm 1 Bayesian Value, Epistemic and Aleatoric Uncertainty Evaluation

Require: Policy π, state si, posterior distribution over transition parameters p(M|D)
θs

′

sa{1:NM} ← NM transition matrix samples from p(M|D)
for s ∈ S, s′ ∈ S do
{Tss′}{1:NM} ←

∑
a π(a|s)θs

′

sa {1:NM} ▷ NM action-marginalised transition matrices
end for
for t = 1 to NM do

vt ← (I− γTt(π))
−1r ▷ Eq. 2 for sampled dynamics

∀sk ∈ S, V π(sk)← element k of vt

∀sk ∈ S, r(var)
k (π)←

∑
j{Tsksj}t(r(sk) + γV π(sj))

2 − V π(sk)
2

vart ← (I− γ2Tt(π))
−1r(var)(π) ▷ Equation 4

vt ← element i of vt

vart ← element i of vart
end for
bayes_value← 1

NM

∑NM

t=1 vt

aleatoric_var← 1
NM

∑NM

t=1 vart

epistemic_var← 1
NM−1

∑NM

t=1(vt − bayes_value)2

return bayes_value, aleatoric_var, epistemic_var

4.2 Policy improvement

Algorithm 2 shows the gradient-based approach we suggest to optimise Eq. 8. We approach the
optimisation by taking stochastic gradient steps of the value objective with respect to a parametrised
stochastic policy, which is possible thanks to the analytic form for value for given parameter samples.
In contrast to other methods [Komorowski et al., 2018, Dimitrakakis, 2011] this does not introduce
bias due to a finite number of transition samples: by re-sampling from the posterior every gradient
step, we remove the bias that would occur by picking a smaller finite sample, and we note that
all standard stochastic gradient optimisation guarantees regarding computational complexity or
convergence to a local optimum will apply. For example, one can show that appropriate learning rate
scheduling, this convergence is guaranteed almost surely [Bottou, 1998] (although we empirically
found that convergence was also achieved with a constant learning rate). Note that since γ < 1, all
quantities (values, variances) are bounded for any policy as well as continuous and differentiable with
respect to policy parameters and that convergence to the Bayes-optimal policy does not depend on
dataset or MDP size.

5 Results

Here we present some illustrative results on gridworld environments as well as on a clinical dataset.
The gridworld experiments demonstrate the salient features of our methods in the case where a
ground-truth MDP can be easily investigated and modified, while the application to clinical data

5



Algorithm 2 Stochastic Gradient Policy Optimisation

Require: Initial deterministic π, posterior distribution over transition parameters p(M|D), initial
policy softness parameter η, learning rate α
∀s ∈ S, a ∈ A, zsa ← log(η/(|A| − 1))
∀s ∈ S, zsπ(s) ← log(1− η) ▷ Set initial policy parametrisation
while not converged do
∀s ∈ S, a ∈ A, letπ(a|s)← exp(zsa)∑′

a exp(zsa′ )

θs
′

sa{1:n} ← n minibatch samples from p(M|D)
for s ∈ S, s′ ∈ S do
{Tss′}{1:NM} ←

∑
a π(a|s)θs

′

sa {1:NM} ▷ NM action-marginalised transition matrices
end for
v1:NM

← (I− γT1:NM
)−1r ▷ Eq. 2 for sampled dynamics

L = −
∑

i ρ · vi ▷ Marginalise over MDP posterior and initial state distribution
∀s ∈ S, a ∈ A, zsa ← zsa − α ∂L

∂zsa
▷ Policy parameters step towards improving value

end while
∀s ∈ S, a ∈ A, π(a|s)← exp(zsa)∑′

a exp(zsa′ )

return π

confirms its applicability to MDPs with practical use. We first examine uncertainty evaluation for
a specific policy and then consider policy improvement. We then apply the same methods to the
MIMIC-III dataset [Johnson et al., 2016], and present results on the impact that carrying out Bayesian
policy improvement has on this dataset.

5.1 Gridworld

We consider a gridworld with stochastic transitions: at each step there is a probability prand of being
pushed down regardless of action taken. Otherwise, the agent moves up, down, left or right by one
square determined by the action. The observed transitions dataset D is generated by repeatedly
spawning an agent in a non-terminal random state and carrying out a random action. Experiments are
ran on the gridworld visualised in Fig. 1a. The results presented here are for datasets, with datasets
always being a proper subset of any one of the larger datasets to ensure that the latter are strictly more
informative.

Uncertainty Quantification We first highlight the main differences compared to recent methods
that have been suggested to quantify aleatoric and epistemic uncertainty. To focus on this particular
feature, we consider the policy evaluation problem, comparing how results from our Bayesian
approach differ from others when evaluating the uncertainty for the policy that is optimal under
the MLE dynamics parameter estimates. We see that our uncertainty quantification in Algorithm
1 scales consistently with varying dataset size (epistemic uncertainty always becomes small) and
intrinsic stochasticity (higher prand corresponds to higher aleatoric uncertainty). In contrast, we find
that the approach in Festor et al. [2021] always leads to low epistemic uncertainty at the end of
training, as the lack of knowledge of the underlying MDP is not modelled, and thus does not scale
consistently with data. In Appendix B we visualise how this quantity evolves during training with
different datasets after adapting the algorithm to carry out SARSA policy evaluation on the same,
fixed policy and observe that it always tends to be small regardless of how informative the dataset is
by the end of training. Additionally, as discussed in section 4.1, the computation of aleatoric and
epistemic uncertainty through closed-form moments as in Algorithm 1 achieves better accuracy for
similar computation compared to previous methods that carry out aleatoric and epistemic uncertainty
quantification in discrete MDPs.

Bayesian Policy Improvement An optimal memoryless policy that accounts for the model uncer-
tainty will be maximising the average value across the MDP posterior given in Eq. 8. We compare
the performance on this objective of our Algorithm 2 (Gradient policy), the optimal policy for naive
visitation frequencies (MLE-optimal policy), the optimal policy for the expected (marginalised),
referred to as Nominal [Dimitrakakis, 2011, Delage and Mannor, 2010], MDP (Nominal-optimal pol-
icy) and the Multi-Sample Backwards Induction (MSBI policy) algorithm suggested in Dimitrakakis
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[2011]. The latter comes with theoretical guarantees of near-optimality; however, the number of
samples from the transition matrix posterior required for such guarantees for our setup are of the
order of magnitude (ϵ(1− γ))

−3 ≈ 1014 using γ = 0.999 and an error tolerance on the value of
ϵ = 0.01, which is a computationally intractable number of samples to store and process for transition
matrices. Thus, we use a number of samples (NM = 32768) that roughly matches the computation
time of the gradient-optimised policy (30-60s depending on dataset without GPU acceleration for the
gridworld experiments). In Algorithm 2, we choose our initial policy to be a softened version of the
Nominal-optimal policy. Just like the MLE-optimal policy, the required amount of computation is
one round of value iteration [Sutton and Barto, 2018] and is therefore a computationally negligible
addition to the algorithm. The initial MSBI policy is also taken to be the Nominal-optimal policy for
a fairer comparison.

We empirically find that the gradient-optimised policy consistently outperforms this version of MSBI,
for the particular MDPs and dynamics parameter distributions we are considering, as well as the
MLE- and Nominal-optimal policies especially in lower data regimes when optimising the Bayesian
posterior value objective. Results for a sample state and dataset are presented in Fig. 2a for different
dataset sizes. The corresponding relative performances of our method against both MLE-optimal and
MSBI on the Bayesian objective over 50 sets of generated datasets are presented in Fig. 2b and 2d
with error bars (standard deviations), confirming that our method consistently outperforms the other
two over a larger number of randomly-generated datasets.

5.2 Clinical Data

We apply Algorithm 2 to the MIMIC-III dataset, as in Komorowski et al. [2018] and Festor et al.
[2021], using the same state clustering of 752 states and 25 actions. Two terminal states represent
patient recovery and death. As in Komorowski et al. [2018], actions at any state with fewer than 5
visits in the dataset are excluded. A patient’s recovery gives a reward of 1, death gives 0, and no
intermediate rewards are used. This ensures that state value corresponds approximately to probability
of survival when γ ≈ 1 (γ = 0.999).

Bayesian inference with Dirichlet distributions with a large number of possible outcomes (next states)
is problematic, as mentioned in section 3 [Friedman and Singer, 1998], and careful thought must be
given to what prior to employ. First we consider a Bayesian model selection approach: we assume

(a) Gridworld
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Figure 1: Fig. 1a shows the gridworld used in the experiments. The terminal states are the failure
states (cliff) marked as F in red, and the goal state marked as G in green. The agent can move up,
down, left, or right (or remain stationary if it hits the boundary of the grid). The transition dynamics
have intrinsic stochasticity controlled by the probability prand, which is the probability of pushing the
agent down regardless of action taken. Offline training datasets were created by randomly sampling
actions at random non-terminal states. State ⋆ is chosen as an exemplar state to plot state-dependent
uncertainties. In Fig. 1b, the plot shows the epistemic (blue) and aleatoric (red) standard deviations
as a function of training dataset size, with different levels of intrinsic stochasticity indicated by solid,
dashed, and dotted lines.
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(d) Gradient vs MSBI

Figure 2: Fig. 2a shows the average return (‘Value’) as a function of dataset size for a single set
of generated datasets, averaged across the Bayesian posterior, as in the objective in Eq. 8. We
compare the performance on this objective of four methods: (i) MLE-optimal policy with naive
transition probabilities, (ii) the optimal policy for the expected (nominal) MDP, (iii) MSBI policy
from Dimitrakakis [2011], and (iv) our proposed gradient-optimized policy. Higher values indicate
better performance at equal dataset sizes. The example gridworld has prand = 0.25. As value will be
dataset-dependent, we show the average and standard deviation between the difference in Bayesian
value in Figs. 2b, 2c and 2d, where values above the red dashed line signify an improvement. These
plots report the average and standard deviation across 50 generated datasets for each dataset size.

all possible states are reachable and symmetric. This allows us to optimise the model evidence with
respect to the unique parameter αp of the prior, in the hope that specifying a prior which is more in
line with the observations will lead to better inference (see Appendix C for details). As expected, the
optimal αp is found to be much smaller than 1, αp = 0.072, giving less weight after inference to the
prior than the maximum-entropy αp = 1 prior does. However, this approach still fails to accurately
model our belief, which can be seen by considering the following scenario: suppose the patient is in a
bad state and has two options, namely (a) try a treatment that has been attempted many times with
rare success or (b) try a treatment that has always gone wrong, but has been tried a small number
of times so has high uncertainty in the outcome. Option (b) is clearly not appealing, but the agent’s
posterior will still place significant probability mass on unobserved states in the presence of a small
number of transitions, thus highly encouraging the agent to take the less visited action and assigning
it a disproportionately high value. Upon inspection, this is exactly what is happening in the outlier
state in Fig. 3a (at approximate coordinates (0.6, 0.8)), and the value given by this Bayesian posterior
is likely unreasonable.

To address this, we introduce conservatism by considering only observed states and the death state
as next possible states, thus ensuring a more conservative prior. Inducing conservatism in offline
RL with datasets that do not adequately cover the full state-action space is in line with literature
[Agarwal et al., 2020, Kumar et al., 2019], and conservative MDP models have found success in
continuous offline RL by modulating reward [Yu et al., 2020, Kidambi et al., 2020] or dynamics [Guo
et al., 2022], somewhat analogously to what is being proposed here. By only including observed
or negative outcomes, the agent is unable to place probability mass on unsupported next-states
and therefore use high uncertainty to inflate the value of poorly visited actions in bad states. The
scarcity of outcomes allows for meaningful inference using a maximum-entropy prior with αp = 1,
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Figure 3: Values of each state under the Bayesian policy and the MLE-optimal policy in the clinical
MDP. Each state is represented by its corresponding Bayesian and MLE values, and points above the
diagonal indicate superior performance of the Bayesian policy on the Bayesian objective. The left
plot (a) demonstrates the impact of different dynamics model priors on performance when employing
Bayesian model selection with an optimal parameter of αp = 0.072. The right plot (b) shows the
results when using a prior selected through a conservative sparse dynamics model.

and a high-entropy prior is favorable from a conservatism standpoint. It encourages the agent to
select actions that have sufficient support to offset the high prior probability mass assigned to the
death state. The Bayesian values inferred with this setup are presented in Fig. 3b. Fig. 3 shows
the possible improvement, according to the Bayesian posterior value, of employing the Bayesian
gradient-optimised policy compared to the MLE-optimal policy used in Komorowski et al. [2018],
resulting in higher probability of survival (according to the dynamics model). In particular, we
note that employing the gradient-optimised policy improves the value, and therefore corresponding
approximate probability of survival, by about 2.1% when averaged across states, with a maximum
improvement on a particular state of 17.8%, according to the conservative Bayesian dynamics model.

6 Limitations

Our methods apply to a specific category of Markov Decision Processes (MDPs) with finite states
and known reward structures. We have shown these are capable of handling moderately-sized MDPs
that carry practical real-world application possibilities in section 5.2), yet it is unclear exactly how
large the MDPs tackled can be before these approaches become computationally intractable. One key
limitation of our proposed methods is its sensitivity of the resulting policy and inferred values on
the dynamics model prior used, especially when data is inadequate for effective inference across all
dynamics priors. For example, we observe that the effects of having a sparse or evidence-optimised
model can be significant on both the inferred policy and the associated values (see Fig. 3) and exactly
how to best include or combine these elements to select a prior that achieves consistently good
performance on the ground-truth MDPs is an important question and one that we defer to future work.

7 Conclusion

We have proposed a framework for estimating aleatoric and epistemic uncertainty in the outcome of
discretised state space policies and use it for control, including an example to application in the domain
of clinical decision support systems. Specifically, the setup analysed here is relevant to the setup
presented in one of the key exemplars of offline RL [Komorowski et al., 2018] in clinical decision
support systems. In comparison to previous frameworks estimating such uncertainties in RL with finite
states there are two main improvements. 1. we do not require function approximators and therefore
entirely bypass complications, numerical inaccuracies or uncertainties that may be introduced during
the training of these. 2. by employing a Bayesian dynamics model, the quantification for epistemic
uncertainty meaningfully scales with additional data, which is not a feature of some previous ensemble
methods for aleatoric and epistemic uncertainty quantification, such as Clements et al. [2019], Festor
et al. [2021], where parametric training uncertainty is the only modelled uncertainty and dynamics
uncertainty is neglected. Additionally, the stationarity of the dynamics model employed enables us to
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compute standard deviations of the return distribution analytically without requiring Monte Carlo
trajectory sampling, as done in Joshi et al. [2021], resulting in more accurate and computationally
efficient evaluations.

On the control side, we can account for epistemic uncertainty in the optimisation of a policy and,
as highlighted by earlier work [Sobel, 1982], address aleatoric uncertainty by suggesting it should
be handled by reshaping the reward rather than doing non-expectation-based optimisation. While
previous methods to carry out memoryless Bayesian policy optimisation exist [Dimitrakakis, 2011],
the computational overhead to attain the theoretical guarantees in these is intractable for our setup.
Therefore, we propose a computationally scalable approach that outperforms its feasible counterpart
based on empirical evaluations. Our approach has relevance to the analysis of MDPs with more
general uncertainty in dynamics parameters [Xu and Mannor, 2006, Delage and Mannor, 2010]
particularly when practical computational considerations take precedence over theoretical guarantees.
We have introduced pessimism in the face of uncertainty, a common and necessary ingredient in
offline RL [Kidambi et al., 2020, Yu et al., 2020, An et al., 2021] especially when the dataset does
not adequately span the full state-action space [Agarwal et al., 2020], in the form of a conservative
dynamics model. This draws an analogy to conservatism in the face of uncertainty commonly used in
continuous control offline RL.

On the application side, the methods presented here could be employed for a variety of purposes, such
as enhancing possible treatment strategies’ interpretability to decision-makers through uncertainty
quantification, for example by splitting states and treatment options into varying groups of outcome
uncertainty (see Appendix D for an example visualisation). In large MDPs, we caution against using
naive symmetrical Dirichlet priors for dynamics modelling, as used for example in Duff [2002], Guez
et al. [2012], when data is finite and limited. Instead, we suggest exploring better prior modelling
techniques such as sparse or hierarchical [Friedman and Singer, 1998] Bayesian models, which
could be combined with evidence-based Bayesian model selection, to improve epistemic uncertainty
quantification and control robustness.
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A Probabilistic evaluation bounds

Here we provide a quantitative investigation into the choice of method to evaluate the quantities of
interest for a given policy, including a comparison of the probabilistic bounds on the errors due to
finite numbers of samples. We compare the efficiency required to achieve an evaluation within a
certain accuracy ε with a minimum probability 1 − δ for methods that (i) carry out Monte Carlo
sampling for every evaluation step and (ii) (ours, Algorithm 1) carry out an exact calculation of
the return distribution moments and then Monte Carlo evaluation with samples from the dynamics
posterior. The quantity we investigate in detail is the Bayesian value at a given state for a given policy
(appearing in Eq. 8 for a given policy and state), and since aleatoric and epistemic uncertainties are
calculated in very similar fashion, the conclusions regarding Bayesian value estimation will also carry
through to the uncertainty quantification case.

A.1 Exact moments

The quantity of interest we wish to approximate is

V̂ = EM(VM(s)), (9)

where the expectation is taken over the Dirichlet posterior of MDP dynamics parameters. For a given
set of dynamics parametersM, we have access to the closed form expression for the first moment of
the return distribution VM(s) (in terms of policy, dynamics and reward) as presented in Eq. 2.

We assume a bounded reward |r| ≤ rmax and employ the well-known form of the Hoeffding inequality
Hoeffding [1994] valid for the random variable Sn =

∑n
i=1 Xi with Xi bounded and i.i.d. such that

E(Sn) = µ:

P(|Sn − µ| ≤ ϵ) ≥ 1− 2 exp

(
− 2ϵ2

n∆2

)
(10)

with ∆ being the size of the interval on which X can take values.

In context, we take Xi =
1

NM
Vi as the closed-form expression for the value of the ith of the NM

dynamics samples, so µ = V̂ . From the boundedness assumption on the reward, we can also bound
|Vi| ≤ rmax

1−γ = Vmax and ∆ ≤ 2Vmax/NM . We require enough samples so that with probability at least

1− δ the error in our approximation of V̂ is within ϵ of the true value. By the Hoeffding inequality,
we can ensure this is the case by choosing NM such that

δ ≤ 2 exp

(
−NM ϵ2

2V 2
max

)
, (11)

which corresponds to the smallest integer NM such that

NM ≥ log

(
2

δ

)(
2V 2

max

ϵ2

)
. (12)

A.2 Monte-Carlo sampling

The alternative method to using closed-form expressions for the moments of the return distribution
given an MDP sample would be to in turn approximate these through Monte Carlo samples, as done
in Joshi et al. [2021]. To do so, given the infinite horizon nature of the MDPs we are considering, we
would have to accumulate rewards over a roll-out with a finite number of steps T , thus incurring in
some error, which can be bounded above by γTVmax. Note that the tightness of this bound will depend
entirely on the reward structure of the MDP, and that this is not a source of error that can be reduced
by repeatedly sampling transitions. For the purposes of the analysis presented, we will be generous in
mostly ignoring the computational cost associated with sampling trajectories for a given MDP. In
practice, sampling from a categorical distribution (i.e. sampling the trajectories for a given MDP) is
significantly faster than sampling from a Dirichlet distribution (i.e. sampling the transition matrix),
so we incorporate the overall computational cost of trajectory sampling into the modest condition
that T cannot be arbitrarily large, but assume infinite trajectory sampling capability otherwise. This
assumption allows us to determine the value for the ith given MDP arbitrarily accurately up to this
error, so that the distance between the true value Vi to the accumulated finite sum of rewards V ′

i will
be bounded by |Vi − V ′

i | ≤ γTVmax.
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Thus, we can consider the distance∣∣∣∣∣V̂ − 1

NM

∑
i

V ′
i

∣∣∣∣∣ ≤
∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣+
∣∣∣∣∣ 1

NM

∑
i

Vi −
1

NM

∑
i

V ′
i

∣∣∣∣∣ (13)

≤

∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣+ γTVmax, (14)

so that if ∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣+ γTVmax ≤ ϵ, (15)

with probability at least 1− δ, then the distance to the original estimate also satisfies∣∣∣∣∣V̂ − 1

NM

∑
i

V ′
i

∣∣∣∣∣ ≤ ϵ. (16)

with at least probability 1− δ.

As such, we apply the Hoeffding inequality in the form

P

(∣∣∣∣∣V̂ − 1

NM

∑
i

Vi

∣∣∣∣∣ ≤ ϵ− γTVmax

)
≥ 1− 2 exp

(
−N2

M (ϵ− γTVmax)
2

2V 2
max

)
. (17)

Note that this also imposes a minimum horizon truncation of T > log(ϵ/Vmax)/ log γ. Explicitly
including the probability threshold δ now corresponds to finding an NM such that

δ ≤ 2 exp

(
−N2

M (ϵ− γTVmax)
2

2V 2
max

)
, (18)

so

NM ≥ log

(
2

δ

)
2V 2

max

(ϵ− γTVmax)2
. (19)

This bound corresponds to a worsening by a factor of (1− γTVmax/ε)
−2 in the number of samples

required to get comparable accuracy to the method that uses exact moments. For example, for the
gridworld setup considered (γ = 0.999, rmax = 1 and positing ϵ = 0.001) would require an order
of magnitude of T ≈ 105 for every rolled out trajectory, (of which we are assuming to be able to
carry out an arbitrarily large number to obtain this bound) at which point the contribution of the
trajectory sampling to the bottleneck would be severe and require a completely different bound to
take it into account. Thus, for the regime we consider, choosing to compute exact moments does save
computation towards the computational bottleneck of taking samples from a Dirichlet posterior.

Note that aleatoric and epistemic uncertainty will behave similarly: aleatoric variance is an analogous
expectation over the second instead of first moment (which we again can have in closed-form or can
estimate through Monte Carlo samples) and the bound will be analogous. Similarly, for epistemic
variance the error in return due to truncated trajectories will compound when calculating the variance
over expected returns, and again we expect a similarly greater number of samples for NM .

B Policy uncertainty evaluation

The policy we present and compare results for is the policy that optimises the maximum likelihood
estimate (MLE) of the transition dynamics MDP, where transition probability is taken to be the
relative frequency of observed transitions, which we refer to as the MLE-optimal policy.

Running SARSA policy evaluation on the methods proposed in Festor et al. [2021] explicitly shows
that the epistemic uncertainty in the dynamics transition is not captured by the ensemble method
used. Fig. 4 shows that with this setup, epistemic uncertainty correlates with loss but is independent
of amount of data observed. This is visible as the curves collapse to small epistemic uncertainty
values irrespective of data set size even though the amount of data in the smallest data set size (25) is
smaller than the total number of transitions of the MDP (80). This is because it captures information
on parametric training uncertainty but not of the dynamics model uncertainty.
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Figure 4: Plot of the epistemic uncertainty and loss as a function of training timestep demonstrating
that epistemic is not accurately tracked by previous methods. Epistemic standard deviation (top row,
red data) is quantified here over 10k time steps, corresponding to the agent carrying out transitions
over many episodes. The corresponding ensemble quantile regression loss (bottom row, blue data) at
each training timestep is shown below. Here we show as examplar the results for fixed policy using
ensemble methods with a MLE-dynamics model for different number of observed transitions in the
dataset generated by the gridworld with prand = 0.5. The value that the epistemic standard deviation
converges to is always small for all visited states and independent of dataset size as the only notion of
uncertainty captured in this setup is one of parametric uncertainty and not MDP uncertainty.

C Bayesian model selection

To determine the prior that for the dynamics model with results presented in Fig. 3a, we carry out
Bayesian model selection by minimising the negative log-marginal likelihood of the data with respect
to the parameter αp. To remain consistent with the limitation that only actions observed at least
5 times in the data should be employed at each state, we only use the data for such state-action
transitions when determining the optimal αp.

For each state-action, the full form of the Dirichlet prior in terms of αp is Friedman and Singer [1998]

p({θsjs,a|si ∈ S}) =
Γ(|S|αp)

Γ(αp)|S|

∏
j

(θsjs,a)
αp−1, (20)

where Γ is the gamma function. The likelihood is

p(D|θ) =
∏
j

(θsjs,a)
nj , (21)

with nj being the number of observed transitions from state-action s, a to state sj . Hence, the model
evidence is

p(D) =
∫

dθp(D|θ)p(θ) (22)

=
Γ(|S|αp)

Γ(αp)|S|

∏
j Γ(αp + nj)

|S|

Γ(|S|αp +Ns,a)
, (23)

with Ns,a being the number of observed transitions from state-action s, a. Since transitions are
independent across state-actions, taking the negative logarithm of this quantity and summing across
all state-actions results in the overall negative log-marginal likelihood for the dataset in terms of αp.
The resulting function of αp is visualised in Fig.5 and attains a minimum value at approximately
αp = 0.072.
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Figure 5: Negative log-marginal likelihood for clinical data dynamics model against parameter αp of
the prior.

D State uncertainty visualisation

In Fig. 6 we show how the MIMIC-III states aleatoric and epistemic uncertainties are related. The
values are computed using the same conservative dynamics model of Fig. 3b.

0.00 0.05 0.10 0.15 0.20
Epistemic uncertainty

0.0

0.1

0.2

0.3

0.4

0.5

Al
ea

to
ric

 u
nc

er
ta

in
ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ba
ye

sia
n 

va
lu

e

Figure 6: States plotted according to their epistemic and aleatoric standard deviations. Each dot
represents a state, with its colour corresponding to its average value according to the Bayesian
posterior.

As expected for the particular reward structure of the MDP considered, aleatoric uncertainty and
average Bayesian value are strongly related: since the return variable is approximately binomial
(approximately 1 for success and 0 for failure) its mean and variance are related straightforwardly.
Note this will not be true for MDPs with more general return structures.
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