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Abstract

In the articulatory synthesis task, speech is syn-
thesized from input features containing infor-
mation about the physical behavior of the hu-
man vocal tract. This task provides a promising
direction for speech synthesis research, as the
articulatory space is compact, smooth, and in-
terpretable. Current works have highlighted the
potential for deep learning models to perform
articulatory synthesis. However, it remains un-
clear whether these models can achieve the
efficiency and fidelity of the human speech
production system. To help bridge this gap,
we propose a time-domain articulatory syn-
thesis methodology and demonstrate its effi-
cacy with both electromagnetic articulography
(EMA) and synthetic articulatory feature inputs.
Our model is both computationally efficient
and highly intelligible, achieving a transcrip-
tion word error rate (WER) of 7.14% for the
EMA-to-speech task. Through interpolation
experiments, we also highlight the generaliz-
ability and interpretability of our approach.

1 Introduction

Speech synthesis has seen rapid development in
recent years with deep learning based techniques.
These models have shown success in tasks like
text-to-speech (TTS) (Wang et al., 2017; Hayashi
etal., 2021; Prenger et al., 2019), speech-to-speech
translation (S2ST) (Tjandra et al., 2019; Jia et al.,
2019; Inaguma et al., 2020), voice conversion (VC)
(Polyak et al., 2021; Wu et al., 2021a; Sisman et al.,
2020), and more (Anumanchipalli et al., 2019; Yu
et al., 2019; Gaddy and Klein, 2021). Moreover,
this technology has yielded impactful technologies
like speech synthesis aids for people with blind-
ness or paralysis (Karmel et al., 2019; Angrick
et al., 2019; Anumanchipalli et al., 2019). While
speech synthesizers have already shown promising
results for assistive tasks in healthcare and other
challenging domains, technologies like brain-to-
speech devices are still nascent and require new

algorithms in order to be deployed as high-fidelity,
open-vocabulary synthesizers. To this end, our
work focuses on devising a deep speech synthesis
methodology that is computationally efficient, real-
time, and high-fidelity. We propose a time-domain
articulatory synthesis approach that is suitable for
attaining these three properties and empirically
validate our method on two distinct articulatory
modalities, EMA and a synthetic articulatory space.
Our deep learning models also exhibit valuable
interpretability properties, which we demonstrate
through interpolation experiments.

We proceed by discussing speech synthesis in
the context of deep learning and articulatory synthe-
sis in Section 2. In Section 3, we describe our deep
articulatory models and time-domain methodol-
ogy. Then, we discuss the two articulatory datasets
chosen for our empirical studies and their respec-
tive modalities in Section 4. With these datasets,
we conduct computational efficiency, interpolation,
and synthesis quality studies, discussed in Sections
5, 6, and 7, respectively. We then provide further
analyses with respect to phoneme confusability in
Section 8. Finally, we summarize our results and
propose future directions in Section 9. Audio sam-
ples and additional related information are all avail-
able at https://articulatorysynthesis.github.io.

2 Speech Synthesis

2.1 Deep Speech Synthesis

Currently, state-of-the-art speech synthesis algo-
rithms use deep learning (Hayashi et al., 2021;
Anumanchipalli et al., 2019; Jia et al., 2021; Polyak
et al., 2021; Gaddy and Klein, 2021). While ex-
isting methods can generate high-fidelity speech,
they tend to be computationally expensive and dif-
ficult to interpret and generalize (Nekvinda and
Dusek, 2020; Zhang et al., 2019). We attribute
underspecification to the primary cause of these
issues, as speech data is very high dimensional


https://articulatorysynthesis.github.io

and current algorithms lack sufficient inductive
biases. To help bridge this gap, we devise deep
articulatory synthesis techniques that exhibit suit-
able computational efficiency, generalizability, and
interpretability properties by behaving more simi-
larly to the human speech production process than
existing methods.

2.2 Articulatory Synthesis

Articulatory synthesis generally refers to the task
of synthesizing speech from articulatory features,
i.e., features containing information about the phys-
ical behavior of the human vocal tract (Fant, 1991;
Rubin et al., 1981; Scully, 1990). We identify two
primary research directions in articulatory synthe-
sis: 1. modelling the human vocal tract (Fant,
1995; Iskarous et al., 2003; Birkholz, 2013a), and
2. learning the mapping from articulatory fea-
tures to speech through a statistical means (Aryal
and Gutierrez-Osuna, 2016; Bocquelet et al., 2014;
Chen et al., 2021). The former direction, due to
its focus on computational modelling, has yielded
articulatory synthesizers that are interpretable and
relatively space-efficient but computationally slow.
On the other hand, the latter direction has yielded
methods that are much faster but have worse inter-
pretability and memory efficiency. Ideally, speech
synthesizers should have low space and time com-
plexities, which would enable many impactful real-
time applications. For example, such systems could
allow patients with paralysis or aphasia to commu-
nicate naturally at any moment in time. Thus, we
focus on making methods in the second research
direction more memory-efficient in this work. Ad-
ditionally, we highlight how statistical articula-
tory synthesis methods could also be highly in-
terpretable, thus containing all of the benefits of
articulatory synthesizers built using physical mod-
elling.

We also focus on the statistical research direc-
tion in this work because of the transferability of
our methodology to all forms of speech synthesis.
Current state-of-the-art speech synthesis systems
rely on an intermediate speech representation, typi-
cally a spectrum or a learned representation (Kong
et al., 2020; Morrison et al., 2022; Badlani et al.,
2021; Kim et al., 2021; Elias et al., 2021). Induc-
tive biases offer one potential way of making these
models efficient, generalizable, and interpretable as
mentioned in Section 2.1. Constraining these inter-
mediate representations to an articulatory feature

space is one way to impose such an inductive bias,
especially since there is a limited set of articulator
configurations that can completely specify all pos-
sible human speech. The resulting model would
then need to perform an articulatory-to-speech map-
ping, of which the behavior is relatively unknown
to our knowledge. This work aims to bridge this
gap by studying the efficiency, generalizability, in-
terpretability, and fidelity of such a mapping using
two distinct articulatory modalities, EMA and a
synthetic one generated using a vocal tract model,
detailed in Section 4.

While deep EMA-to-speech models have been
previously studied, as far as we are aware (Taguchi
and Kaburagi, 2018; Stone et al., 2020; Liu et al.,
2018), current models are not highly intelligible,
achieving a transcription WER of around 30%
on open-vocabulary tasks (Taguchi and Kaburagi,
2018). In this work, we build an EMA-to-speech
model that achieves a transcription WER of 7.14%
and perform detailed error analyses on the synthe-
sized utterances. We also extend this approach
to building a speech synthesizer using a synthetic
articulatory modality. This model is efficient, high-
fidelity, and interpretable, which has previously
been unattained to our knowledge. We detail these
models and our proposed time-domain articulatory
synthesis methodology in Section 3 below.

3 Deep Articulatory Models

3.1 Frequency- and Time-Domain Modeling

Similarly to the state-of-the-art speech synthesis
works discussed in Section 2, current deep articula-
tory synthesis works rely on synthesizing an inter-
mediate spectrum representation, from which wave-
forms are generated (Csap’o et al., 2020; Georges
et al., 2020). Since this behavior is not present in
the human speech production process, we propose
a model that directly maps articulatory features to
waveforms in this work. Since this model does
not explicitly rely on a frequency-based interme-
diate, we refer to this approach as a time-domain
one. This modification noticeably improves model
efficiency while achieving comparable intelligibil-
ity on our two datasets, as discussed in Sections
5 and 7. We proceed to discuss our spectrum-
intermediate baseline in Section 3.2 and our two
time-domain methods in Sections 3.3 and 3.4.



3.2 Spectrum-Intermediate Baseline

For our baseline deep learning model, we build
on the state-of-the-art articulatory synthesis archi-
tecture proposed by Gaddy and Klein (Gaddy and
Klein, 2021). Namely, we map articulatory fea-
tures to spectrums using a six-layer Transformer
(Vaswani et al., 2017) prepended with three resid-
ual convolution blocks. To map spectrums to
waveforms, we use HiFi-GAN (Kong et al., 2020),
which havs been shown to perform better than the
WaveNet vocoder used by Gaddy and Klein (Gaddy
and Klein, 2021). For our spectrum representation,
we use Mel spectrograms instead of MFCCs, as
done in the HiFi-GAN paper and most deep speech
synthesis works (Kong et al., 2020; Wang et al.,
2017; Hayashi et al., 2021).

We also modify the loss function used by Gaddy
and Klein (Gaddy and Klein, 2021). To avoid re-
quiring phoneme annotations to train the model, we
omit the phonemic loss. We instead improve model
performance by adding the adversarial loss used
by HiFi-GAN (Kong et al., 2020). Since our data
in this work has sequences of articulatory features
that are pre-aligned with waveforms, we also do not
need the dynamic time warping loss. We refer to
this resulting baseline as the spectrum-intermediate
(Spec.-Int.) model below.

In all of our experiments, we train the Trans-
former model using the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 3.0 x 10~5 for
both the generator and the discriminators, a batch
size of 32, and loss balancing coefficients match-
ing those used with the original HiFi-GAN model
(Kong et al., 2020). Our discriminator architec-
tures and HiFi-GAN spectrum-to-speech vocoder
parameters also match those of Kong et al. (Kong
et al., 2020), and our Transformer has a hidden
dimension of 1024 and a dropout rate of 0.2.

3.3 Time-Domain HiFi-GAN

For our first time-domain model, we feed our ar-
ticulatory input features directly into HiFi-GAN
(Kong et al., 2020), keeping the architecture and
loss functions the same while changing the input
modality. To our knowledge, directly feeding ar-
ticulatory inputs into a deep vocoder architecture
has not yielded any successful results previously.
However, we observe that this model is compa-
rable to our baseline, as discussed in Section 7.
Moreover, removing the need for an articulatory-
to-spectrum architecture noticeably improves com-

putational efficiency, as discussed in Section 5. For
all of our experiments, we optimize this model us-
ing the same hyperparameters as the HiFi-GAN
spectrum-to-speech vocoder used in the Section
3.2 baseline above.

3.4 NSF-CAR Model

For our second time-domain model, we build on the
neural source-filter (NSF) architecture (Wang et al.,
2019). Since articulatory features can be divided
into source- and filter-related attributes (Birkholz,
2013a), we experiment with this architecture in
order to study whether explicitly modelling this
separation could improve articulatory synthesis per-
formance.

Similarly to our baseline, we use the loss func-
tion from HiFi-GAN to improve synthesis fidelity.
We also leverage autoregression to improve the
pitch and periodicity of model outputs and make
our model a streaming-based one. Namely, we
incorporate the autoregressive encoder from CAR-
GAN (Morrison et al., 2022) into our model, con-
catenating its output with each vector in the condi-
tion module input sequence. We replace the convo-
lutions in the NSF condition module with GBlock
layers (Morrison et al., 2022), which we found to
further improve model performance. Figure 7 in
the Appendix depicts the architecture of our gener-
ator.

To our knowledge, neural source filter mod-
els are currently only used for building vocoders
that map spectrums to speech (Wang et al., 2019;
Georges et al., 2020). In this work, we leverage
source-filter modelling to perform articulatory syn-
thesis without relying on an intermediate spectrum
representation.

3.5 WSOLA

As observed by Morrison et al. (Morrison et al.,
2022), simply concatenating the output chunks gen-
erated through an autoregressive process yields arti-
facts at the concatenation points. Thus, during eval-
uation, we join outputs using an approach based
on WSOLA. Namely, we overlap-and-add adjacent
output chunks at intersections with maximum cross-
correlation, sliding the chunks up to a distance of
one pitch period. We calculate a pitch period by
multiplying the sampling rate with the reciprocal
of the last FO value in the first chunk input. Figure
1 depicts one such WSOLA operation.



Figure 1: WSOLA-based method for concatenating
waveforms.

4 Datasets

4.1 Electromagnetic Articulography (EMA)

For our first task, we perform EMA-to-speech us-
ing the MNGUO dataset (Richmond et al., 2011),
which contains 67 minutes of single-speaker speech
recorded at 16 kHz annotated with 12-dimensional
EMA features recorded at 200 Hz. We use the
train-test split provided in the original work, which
has 1,129 utterances for training and 60 for test-
ing. Among the 1,129 training utterances, we set
off a random size-60 subset for validation. Since
EMA on its own does not contain voicing infor-
mation, we concatenate estimated FO sequences
extracted using CREPE (Kim et al., 2018; Morri-
son et al., 2022) to the EMA features, forming a
13-dimensional input feature.

4.2 Synthetic Articulatory Features

Since EMA data does not contain enough manner
information to perfectly reconstruct the original
speech, we also experiment with synthetic articu-
latory data that does. Namely, we use the vocal
tract model from Birkholz et al. (Birkholz, 2013a)
to create a single-speaker corpus of pseudo-words,
each composed of two to three vowel and conso-
nant sounds. Our training set has 10,000 such
utterances, and our validation set has 250, total-
ing a few hours of speech. For our evaluation set,
we use the Birkholz vocal tract model outputs cor-
responding to the first 99 phoneme sequences in
the CMU US KAL Diphone database (Lenzo and
Black, 2000). All waveforms have a sampling rate
of 44100 Hz and articulatory features are recorded
every 110 samples. We refer to this dataset as the
Birkholz-Pseudoword (Birk.-Pseudo.) dataset be-

low. In this dataset, our articulatory features are
30-dimensional.

S Computational Efficiency

Computational efficiency during training is essen-
tial for low-resource speech synthesis tasks like
brain-to-speech and other articulatory synthesis
tasks where data collection is expensive. During
inference, computational efficiency is essential for
building real-time speech synthesizers, e.g., for
brain-to-speech. We observe that our time-domain
articulatory synthesis model has some suitable com-
putational efficiency properties compared to the
frequency-domain baseline. As shown in Table 1,
our model is able to train twice as fast as the base-
line on a single RTX 2080 Ti GPU for the task with
synthetic articulatory data. While our model syn-
thesizes utterances slower than the baseline due to
the nature of autoregression (Morrison et al., 2022),
we observe that generation on a CPU is still faster
than real-time.

Compared to the baseline, our time-domain mod-
els are much more memory efficient, as detailed
in Table 2. Our models are able to use over 8
to 20 times less number of parameters than the
baseline due to their ability to directly map artic-
ulatory features to speech. Namely, while current
articulatory synthesis models like our baseline rely
on two components, one to output spectrums and
another to convert spectrums to waveforms, our
time-domain models only contain one. We note
that the real-time and memory efficient properties
of our time-domain models make them a viable
choice for streaming, on-device tasks.

Data Birk.-Pseudo. EMA-MGNU0
NSF-CAR 34 81
HiFi-GAN 8 9
Spec.-Int. 68 80

Table 1: Total training time for each model in hours.

Model Birk.-Pseudo. EMA-MGNU0
NSF-CAR 4.4 %109 4.2 %109
HiFi-GAN  14.2 % 10° 12.6 % 106
Spec.-Int. 98.7 % 106 94.0 % 106

Table 2: Number of parameters of each model.



Figure 2: Vowel interpolation. The top row contains the
synthesized samples between the "ta" and "tu" sounds,
the middle row "tu" and "ti", and the bottom row "ti"
and "ta".

6 Interpolation

6.1 Vowel Interpolation

To study the generalizability of our time-domain
model, we perform interpolation experiments. First,
to analyze how well our model generalizes across
vowel sounds, we perform vowel interpolation.
Namely, we interpolate between the "ta" and "tu"
sounds, "tu" and "ti", and "ti" and "ta" using the
synthetic articulatory data. We generate the ar-
ticulatory features for "ta", "tu", and "ti" using
the code provided by Birkholz et al., similarly to
our approach for creating the synthetic articula-
tory dataset described above. For each of the three
pairs of sounds, we perform a linear interpolation
between the two articulatory features, generating
seven evenly spaced weighted combinations. The
figures below are generated using outputs from our
NSF-CAR model, and we observe similar trends
with our time-domain HiFi-GAN as well, which
we include in the supplementary website linked in
Section 1.

Figure 2 contains the mel-spectrograms of the
generated speech from our model for each of these
combined articulatory features. Our model is able
to generalize to the unseen articulatory features
between the three sounds. Moreover, the transi-
tions between spectrum values in each interpola-
tion are smooth, suggesting that our network is able
to model the continuity of articulator movements,
at least with respect to vowels.

6.2 Consonant Interpolation

We also study the generalizability of our model
with respect to consonants. To study how well
our model generalizes across types of consonant
sounds, we fix the place of articulation and inter-
polate between consonant types. Namely, we inter-
polate between the alveolar consonants "ra", "na",
and "la", using the same methodology as our vowel
interpolation experiment in Section 6.1.

Figure 3 depicts the mel-spectrograms of synthe-
sized interpolation samples from our time-domain
articulatory synthesis model. Similarly to our
vowel interpolation results, we observe that our
model generalizes to the unseen samples between
the three consonants and exhibits smooth genera-
tion. Specifically, these results indicate that our
model can smoothly transition between nasal, ap-
proximant, and lateral approximant consonants,
similarly to the human speech production process.

Figure 3: Alveolar consonant interpolation. The top
row contains the synthesized samples between the "ra"
and "na" sounds, the middle row "na" and "la", and the
bottom row "la" and "ra".

To study how well our model generalizes across
place of articulation, we fix the consonant type and
interpolate between two places. Namely, we inter-
polate between the approximant consonants "ra"
and "ja", using the same aforementioned method-
ology. Figure 4 depicts these results. As with
our alveolar consonant interpolation results, we ob-
serve that our model generalizes to unseen samples
and produces smooth transitions between synthe-
sized interpolation samples here.

To quantify how the synthesized utterances



change across the interpolation, we create two plots
studying changes in the magnitudes of different
bands of the mel-spectrogram. Namely, our first
graph plots the magnitude of each mel-spectrogram
frequency vector across the seven utterances, going
left to right in the interpolation. Our second plot
does the same with time vectors, i.e., columns in
the mel-spectrograms. We compute the magnitude
of each vector using the L.1 norm, which is just a
sum here since mel-spectrogram values are non-
negative. To improve readability in both plots, we
omit vectors that on average change less than 0.3 in
magnitude between adjacent interpolation samples.

As shown in the bottom row of Figure 4, the
vector magnitude lines are generally monotonic and
almost linear in many cases when going left to right
in the interpolation. This supports our hypothesis
that our model has learnt to transition smoothly
between consonants when synthesizing articulatory

features.
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Figure 4: Approximate consonant interpolation. 7op
row: synthesized samples between the "ra" and "ja"
sounds. Bottom row left: frequency vector magnitudes
for each spectrum. Bottom row right: time vector mag-
nitudes for each spectrum.

6.3 Interpretability

We note that these interpolation results also high-
light the interpretability of articulatory features.
Namely, we are able to simply take an element-
wise weighted sum of two same-length sequences
of articulatory features in order to create the ut-
terance corresponding to articulator movements in
between the two gestures. For example, to create
the "te" sound, we would just need to synthesize
the average of the articulatory feature sequences
for "ti" and "ta". To our knowledge, this degree of
interpretability is not supported by other speech rep-
resentations like spectrums or deep-learning-based

ones.

7 Synthesis Quality

7.1 Fidelity

Since MCD serves as an objective measure of syn-
thesis quality (Black, 2019), we first measure syn-
thesis fidelity using this metric. As detailed in Ta-
ble 3, we observe that our time-domain articulatory
synthesis approach achieves performance compa-
rable to the frequency-domain baseline. Namely,
our approach performs noticeably better than the
baseline on the synthetic articulatory dataset and
slightly worse on the EMA-to-speech task. Given
these results, we attribute the performance drop
of our model on the EMA task to information loss
within in the input data. Namely, the model appears
to confuse phonemes due to the lack of manner in-
formation in the EMA inputs, which can be heard
in the accompanying samples. We discuss this
phoneme confusion in more detail below.

Model MCD
Birk.-Pseudo EMA-MGNU0
NSF-CAR 3.36 +0.28 5.44 + 0.67
HiFi-GAN 2.90+0.22 4.814+0.76
Spec.-Int.  5.15 4+ 0.48 4.75 4+ 0.81

Table 3: MCD for each model on Birkholz and EMA
data.

7.2 Automatic Speech Recognition

To evaluate the intelligibility of our synthesis ap-
proach, we conduct open-vocabulary transcription
experiments for the EMA-to-speech task with our
time-domain HiFi-GAN model described in Sec-
tion 3.3. First, we perform an objective evaluation
using deep automatic speech recognition (ASR)
models. Specifically, we use DeepSpeech! (Han-
nun et al., 2014) as done by Gaddy and Klein
(Gaddy and Klein, 2021) as well as the ESPnet
Conformer ASR model trained on LibriSpeech?
(Guo et al., 2021; Panayotov et al., 2015). We use
these models to transcribe the synthesis outputs
of our model on the entire MNGUO evaluation set
described in Section 4.1 and calculate the average
word error rates (WERSs) and character error rates
(CERs). Since some utterances in the evaluation
set contain proper nouns, we also compute ASR

"https://github.com/mozilla/DeepSpeech
Zhttps://zenodo.org/record/4604066#. YeNA0i2z2CM
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metrics on all of the evaluation set utterances com-
posed entirely of common nouns, which form a
32-utterance subset.

Table 4 summarizes our ASR results. On the
common-noun subset, our model achieves a charac-
ter error rate of 10.7% with the ESPnet ASR model,
indicating that our model is able to synthesize intel-
ligible speech. The consistent differences between
the WER and CER values as well as the entire set
and common-noun subset performances suggests
that these ASR metrics may be underestimating
intelligibility, as also observed by Gaddy and Klein
(Gaddy and Klein, 2021). Thus, we also evalu-
ate the intelligibility of our model though human
evaluations, as discussed in Section 7.3 below.

ASR Model WER CER
All Com. All Com.

ESPnet 329 192 179 10.7

DeepSpeech 41.3 329 20.2 15.5

Table 4: ASR. entire evaluation set (All) and common
noun subset (Com.).

7.3 Human Evaluation

To further understand the intelligibility of our time-
domain articulatory synthesis approach, we also
perform open-vocabulary transcription tests with
human listeners, evaluating our same time-domain
HiFi-GAN model (Section 3.3) used in our Section
7.2 ASR experiments above. Namely, we randomly
select ten utterances from our EMA corpus evalua-
tion set, choosing among the 32 sentences without
proper nouns. Based on the transcriptions from
six English-speaking listeners, our model achieves
an average WER of 7.14%, indicating that our
model is able to produce intelligible speech. To
our knowledge, this value is noticeably lower than
prior results, which are around 30.1% (Taguchi
and Kaburagi, 2018). This suggests that our time-
domain articulatory synthesis methodology is a
suitable approach for efficiently performing speech
synthesis while achieving high intelligibility.

8 Phoneme Confusion

To further study the phonological errors made by
our model, we analyze the phonemes that our
EMA-to-speech model confused during synthe-
sis. Namely, we study phoneme confusability for
our time-domain HiFi-GAN model (Section 3.3)
through the transcriptions, both from the ASR ones

described in Section 7.2 and the human ones de-
scribed in Section 7.3. For each transcribed ut-
terance, we convert the graphemes to a phoneme
sequence using Phonemizer’ (Bernard and Titeux,
2021) and their eSpeak NG backend,* and repeat
this grapheme-to-phoneme conversion with the
ground truth texts. We identify the phoneme confu-
sion pairs using sclite,’ which aligns each predicted
sequence with the respective ground truth and then
records the substitution errors.

For our human evaluation analysis, we use all
of the transcripts from the six listeners, i.e., 60 ut-
terances. Figure 5 depicts the resulting phoneme
confusion pairs. We plot these confusion pairs on
an International Phonetic Alphabet (IPA) chart that
extends the one from Gaddy and Klein to more
phonemes (Gaddy and Klein, 2021), indicating
pairs with a higher frequency of substitution errors
using darker lines. We also populate this IPA chart
with our confusion pairs from the ASR transcrip-
tions in Figure 6, for which we use the texts tran-
scribed by the ESPnet model for the entire MNGUO
evaluation set, as discussed in Section 7.2. We omit
the phoneme pairs that are only confused once in
Figure 6 in order to improve readability.

From these two IPA charts, we observe that the
most of the word substitution errors are due to plo-
sive or vowel confusions. Since the primary vowel
confusions in Figure 5 differ from those in Figure 6,
we hypothesize that vowel confusability for human
evaluators mainly resulted from the substitution
of vowels to form logical, grammatically correct
words and phrases. The automatic transcribers may
not have as much of such bias and we observe
that the primary confused vowel pairs are relatively
close to each other with our ASR-based results,
reinforcing this hypothesis. One potential reason
for the plosive substitutions is that plosives gener-
ally have a shorter duration than other consonant
types like fricatives (Alwan et al., 2011) and thus
may be more readily confusable. Among the plo-
sives, "p", "b", "t", and "d" may have been easier to
confuse than "k" and "g" for the human evaluators
because the latter two plosives have longer voice
onset times, a pattern also observed by Birkholz
(Birkholz, 2013b). From Figure 6, we also observe
that multiple voiced-unvoiced pairs are confused.
We hypothesize that this is because the only voic-

3https://github.com/bootphon/phonemizer
*https://github.com/espeak-ng/espeak-ng
Shttps://github.com/usnistgov/SCTK
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Figure 5: Phoneme confusability based on human tran-
scriptions. Phoneme pairs that are confused more fre-
quently have darker lines.

ing information that our EMA-to-speech model
receives as input is the estimated FO sequence, as
described in Section 4.1.

9 Conclusion and Future Directions

In this work, we study ways to build deep articula-
tory synthesizers that are efficient and high-fidelity.
Based on computational efficiency evaluations, we
observe that our proposed time-domain methodol-
ogy is suitable for achieving time and space com-
plexities that are noticeably lower than the baseline
spectrum-intermediate approach. Our interpolation
study also highlights the generalizability and inter-
pretability of our approach. Through MCD, ASR,
and human transcription experiments, we demon-
strate that our model is also highly intelligible,
achieving a transcription word error rate (WER)
of 7.14% for the EMA-to-speech task. Moving
forward, we plan to test our methodology on other
modalities like electromyography (EMG) (Gaddy
and Klein, 2021) and real-time magnetic resonance
imaging (RT-MRI) (Lim et al., 2021). We also plan
to extend our approach to multi-speaker and multi-
lingual settings (Richmond et al., 2011; Lim et al.,
2021; Wu et al., 2021b).
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Figure 7: Model architecture of our NSF-CAR generator.
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