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Abstract

In the articulatory synthesis task, speech is syn-001
thesized from input features containing infor-002
mation about the physical behavior of the hu-003
man vocal tract. This task provides a promising004
direction for speech synthesis research, as the005
articulatory space is compact, smooth, and in-006
terpretable. Current works have highlighted the007
potential for deep learning models to perform008
articulatory synthesis. However, it remains un-009
clear whether these models can achieve the010
efficiency and fidelity of the human speech011
production system. To help bridge this gap,012
we propose a time-domain articulatory syn-013
thesis methodology and demonstrate its effi-014
cacy with both electromagnetic articulography015
(EMA) and synthetic articulatory feature inputs.016
Our model is both computationally efficient017
and highly intelligible, achieving a transcrip-018
tion word error rate (WER) of 7.14% for the019
EMA-to-speech task. Through interpolation020
experiments, we also highlight the generaliz-021
ability and interpretability of our approach.022

1 Introduction023

Speech synthesis has seen rapid development in024

recent years with deep learning based techniques.025

These models have shown success in tasks like026

text-to-speech (TTS) (Wang et al., 2017; Hayashi027

et al., 2021; Prenger et al., 2019), speech-to-speech028

translation (S2ST) (Tjandra et al., 2019; Jia et al.,029

2019; Inaguma et al., 2020), voice conversion (VC)030

(Polyak et al., 2021; Wu et al., 2021a; Sisman et al.,031

2020), and more (Anumanchipalli et al., 2019; Yu032

et al., 2019; Gaddy and Klein, 2021). Moreover,033

this technology has yielded impactful technologies034

like speech synthesis aids for people with blind-035

ness or paralysis (Karmel et al., 2019; Angrick036

et al., 2019; Anumanchipalli et al., 2019). While037

speech synthesizers have already shown promising038

results for assistive tasks in healthcare and other039

challenging domains, technologies like brain-to-040

speech devices are still nascent and require new041

algorithms in order to be deployed as high-fidelity, 042

open-vocabulary synthesizers. To this end, our 043

work focuses on devising a deep speech synthesis 044

methodology that is computationally efficient, real- 045

time, and high-fidelity. We propose a time-domain 046

articulatory synthesis approach that is suitable for 047

attaining these three properties and empirically 048

validate our method on two distinct articulatory 049

modalities, EMA and a synthetic articulatory space. 050

Our deep learning models also exhibit valuable 051

interpretability properties, which we demonstrate 052

through interpolation experiments. 053

We proceed by discussing speech synthesis in 054

the context of deep learning and articulatory synthe- 055

sis in Section 2. In Section 3, we describe our deep 056

articulatory models and time-domain methodol- 057

ogy. Then, we discuss the two articulatory datasets 058

chosen for our empirical studies and their respec- 059

tive modalities in Section 4. With these datasets, 060

we conduct computational efficiency, interpolation, 061

and synthesis quality studies, discussed in Sections 062

5, 6, and 7, respectively. We then provide further 063

analyses with respect to phoneme confusability in 064

Section 8. Finally, we summarize our results and 065

propose future directions in Section 9. Audio sam- 066

ples and additional related information are all avail- 067

able at https://articulatorysynthesis.github.io. 068

2 Speech Synthesis 069

2.1 Deep Speech Synthesis 070

Currently, state-of-the-art speech synthesis algo- 071

rithms use deep learning (Hayashi et al., 2021; 072

Anumanchipalli et al., 2019; Jia et al., 2021; Polyak 073

et al., 2021; Gaddy and Klein, 2021). While ex- 074

isting methods can generate high-fidelity speech, 075

they tend to be computationally expensive and dif- 076

ficult to interpret and generalize (Nekvinda and 077

Dušek, 2020; Zhang et al., 2019). We attribute 078

underspecification to the primary cause of these 079

issues, as speech data is very high dimensional 080
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and current algorithms lack sufficient inductive081

biases. To help bridge this gap, we devise deep082

articulatory synthesis techniques that exhibit suit-083

able computational efficiency, generalizability, and084

interpretability properties by behaving more simi-085

larly to the human speech production process than086

existing methods.087

2.2 Articulatory Synthesis088

Articulatory synthesis generally refers to the task089

of synthesizing speech from articulatory features,090

i.e., features containing information about the phys-091

ical behavior of the human vocal tract (Fant, 1991;092

Rubin et al., 1981; Scully, 1990). We identify two093

primary research directions in articulatory synthe-094

sis: 1. modelling the human vocal tract (Fant,095

1995; Iskarous et al., 2003; Birkholz, 2013a), and096

2. learning the mapping from articulatory fea-097

tures to speech through a statistical means (Aryal098

and Gutierrez-Osuna, 2016; Bocquelet et al., 2014;099

Chen et al., 2021). The former direction, due to100

its focus on computational modelling, has yielded101

articulatory synthesizers that are interpretable and102

relatively space-efficient but computationally slow.103

On the other hand, the latter direction has yielded104

methods that are much faster but have worse inter-105

pretability and memory efficiency. Ideally, speech106

synthesizers should have low space and time com-107

plexities, which would enable many impactful real-108

time applications. For example, such systems could109

allow patients with paralysis or aphasia to commu-110

nicate naturally at any moment in time. Thus, we111

focus on making methods in the second research112

direction more memory-efficient in this work. Ad-113

ditionally, we highlight how statistical articula-114

tory synthesis methods could also be highly in-115

terpretable, thus containing all of the benefits of116

articulatory synthesizers built using physical mod-117

elling.118

We also focus on the statistical research direc-119

tion in this work because of the transferability of120

our methodology to all forms of speech synthesis.121

Current state-of-the-art speech synthesis systems122

rely on an intermediate speech representation, typi-123

cally a spectrum or a learned representation (Kong124

et al., 2020; Morrison et al., 2022; Badlani et al.,125

2021; Kim et al., 2021; Elias et al., 2021). Induc-126

tive biases offer one potential way of making these127

models efficient, generalizable, and interpretable as128

mentioned in Section 2.1. Constraining these inter-129

mediate representations to an articulatory feature130

space is one way to impose such an inductive bias, 131

especially since there is a limited set of articulator 132

configurations that can completely specify all pos- 133

sible human speech. The resulting model would 134

then need to perform an articulatory-to-speech map- 135

ping, of which the behavior is relatively unknown 136

to our knowledge. This work aims to bridge this 137

gap by studying the efficiency, generalizability, in- 138

terpretability, and fidelity of such a mapping using 139

two distinct articulatory modalities, EMA and a 140

synthetic one generated using a vocal tract model, 141

detailed in Section 4. 142

While deep EMA-to-speech models have been 143

previously studied, as far as we are aware (Taguchi 144

and Kaburagi, 2018; Stone et al., 2020; Liu et al., 145

2018), current models are not highly intelligible, 146

achieving a transcription WER of around 30% 147

on open-vocabulary tasks (Taguchi and Kaburagi, 148

2018). In this work, we build an EMA-to-speech 149

model that achieves a transcription WER of 7.14% 150

and perform detailed error analyses on the synthe- 151

sized utterances. We also extend this approach 152

to building a speech synthesizer using a synthetic 153

articulatory modality. This model is efficient, high- 154

fidelity, and interpretable, which has previously 155

been unattained to our knowledge. We detail these 156

models and our proposed time-domain articulatory 157

synthesis methodology in Section 3 below. 158

3 Deep Articulatory Models 159

3.1 Frequency- and Time-Domain Modeling 160

Similarly to the state-of-the-art speech synthesis 161

works discussed in Section 2, current deep articula- 162

tory synthesis works rely on synthesizing an inter- 163

mediate spectrum representation, from which wave- 164

forms are generated (Csap’o et al., 2020; Georges 165

et al., 2020). Since this behavior is not present in 166

the human speech production process, we propose 167

a model that directly maps articulatory features to 168

waveforms in this work. Since this model does 169

not explicitly rely on a frequency-based interme- 170

diate, we refer to this approach as a time-domain 171

one. This modification noticeably improves model 172

efficiency while achieving comparable intelligibil- 173

ity on our two datasets, as discussed in Sections 174

5 and 7. We proceed to discuss our spectrum- 175

intermediate baseline in Section 3.2 and our two 176

time-domain methods in Sections 3.3 and 3.4. 177
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3.2 Spectrum-Intermediate Baseline178

For our baseline deep learning model, we build179

on the state-of-the-art articulatory synthesis archi-180

tecture proposed by Gaddy and Klein (Gaddy and181

Klein, 2021). Namely, we map articulatory fea-182

tures to spectrums using a six-layer Transformer183

(Vaswani et al., 2017) prepended with three resid-184

ual convolution blocks. To map spectrums to185

waveforms, we use HiFi-GAN (Kong et al., 2020),186

which havs been shown to perform better than the187

WaveNet vocoder used by Gaddy and Klein (Gaddy188

and Klein, 2021). For our spectrum representation,189

we use Mel spectrograms instead of MFCCs, as190

done in the HiFi-GAN paper and most deep speech191

synthesis works (Kong et al., 2020; Wang et al.,192

2017; Hayashi et al., 2021).193

We also modify the loss function used by Gaddy194

and Klein (Gaddy and Klein, 2021). To avoid re-195

quiring phoneme annotations to train the model, we196

omit the phonemic loss. We instead improve model197

performance by adding the adversarial loss used198

by HiFi-GAN (Kong et al., 2020). Since our data199

in this work has sequences of articulatory features200

that are pre-aligned with waveforms, we also do not201

need the dynamic time warping loss. We refer to202

this resulting baseline as the spectrum-intermediate203

(Spec.-Int.) model below.204

In all of our experiments, we train the Trans-205

former model using the Adam optimizer (Kingma206

and Ba, 2015) with a learning rate of 3.0∗10−5 for207

both the generator and the discriminators, a batch208

size of 32, and loss balancing coefficients match-209

ing those used with the original HiFi-GAN model210

(Kong et al., 2020). Our discriminator architec-211

tures and HiFi-GAN spectrum-to-speech vocoder212

parameters also match those of Kong et al. (Kong213

et al., 2020), and our Transformer has a hidden214

dimension of 1024 and a dropout rate of 0.2.215

3.3 Time-Domain HiFi-GAN216

For our first time-domain model, we feed our ar-217

ticulatory input features directly into HiFi-GAN218

(Kong et al., 2020), keeping the architecture and219

loss functions the same while changing the input220

modality. To our knowledge, directly feeding ar-221

ticulatory inputs into a deep vocoder architecture222

has not yielded any successful results previously.223

However, we observe that this model is compa-224

rable to our baseline, as discussed in Section 7.225

Moreover, removing the need for an articulatory-226

to-spectrum architecture noticeably improves com-227

putational efficiency, as discussed in Section 5. For 228

all of our experiments, we optimize this model us- 229

ing the same hyperparameters as the HiFi-GAN 230

spectrum-to-speech vocoder used in the Section 231

3.2 baseline above. 232

3.4 NSF-CAR Model 233

For our second time-domain model, we build on the 234

neural source-filter (NSF) architecture (Wang et al., 235

2019). Since articulatory features can be divided 236

into source- and filter-related attributes (Birkholz, 237

2013a), we experiment with this architecture in 238

order to study whether explicitly modelling this 239

separation could improve articulatory synthesis per- 240

formance. 241

Similarly to our baseline, we use the loss func- 242

tion from HiFi-GAN to improve synthesis fidelity. 243

We also leverage autoregression to improve the 244

pitch and periodicity of model outputs and make 245

our model a streaming-based one. Namely, we 246

incorporate the autoregressive encoder from CAR- 247

GAN (Morrison et al., 2022) into our model, con- 248

catenating its output with each vector in the condi- 249

tion module input sequence. We replace the convo- 250

lutions in the NSF condition module with GBlock 251

layers (Morrison et al., 2022), which we found to 252

further improve model performance. Figure 7 in 253

the Appendix depicts the architecture of our gener- 254

ator. 255

To our knowledge, neural source filter mod- 256

els are currently only used for building vocoders 257

that map spectrums to speech (Wang et al., 2019; 258

Georges et al., 2020). In this work, we leverage 259

source-filter modelling to perform articulatory syn- 260

thesis without relying on an intermediate spectrum 261

representation. 262

3.5 WSOLA 263

As observed by Morrison et al. (Morrison et al., 264

2022), simply concatenating the output chunks gen- 265

erated through an autoregressive process yields arti- 266

facts at the concatenation points. Thus, during eval- 267

uation, we join outputs using an approach based 268

on WSOLA. Namely, we overlap-and-add adjacent 269

output chunks at intersections with maximum cross- 270

correlation, sliding the chunks up to a distance of 271

one pitch period. We calculate a pitch period by 272

multiplying the sampling rate with the reciprocal 273

of the last F0 value in the first chunk input. Figure 274

1 depicts one such WSOLA operation. 275
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Figure 1: WSOLA-based method for concatenating
waveforms.

4 Datasets276

4.1 Electromagnetic Articulography (EMA)277

For our first task, we perform EMA-to-speech us-278

ing the MNGU0 dataset (Richmond et al., 2011),279

which contains 67 minutes of single-speaker speech280

recorded at 16 kHz annotated with 12-dimensional281

EMA features recorded at 200 Hz. We use the282

train-test split provided in the original work, which283

has 1,129 utterances for training and 60 for test-284

ing. Among the 1,129 training utterances, we set285

off a random size-60 subset for validation. Since286

EMA on its own does not contain voicing infor-287

mation, we concatenate estimated F0 sequences288

extracted using CREPE (Kim et al., 2018; Morri-289

son et al., 2022) to the EMA features, forming a290

13-dimensional input feature.291

4.2 Synthetic Articulatory Features292

Since EMA data does not contain enough manner293

information to perfectly reconstruct the original294

speech, we also experiment with synthetic articu-295

latory data that does. Namely, we use the vocal296

tract model from Birkholz et al. (Birkholz, 2013a)297

to create a single-speaker corpus of pseudo-words,298

each composed of two to three vowel and conso-299

nant sounds. Our training set has 10,000 such300

utterances, and our validation set has 250, total-301

ing a few hours of speech. For our evaluation set,302

we use the Birkholz vocal tract model outputs cor-303

responding to the first 99 phoneme sequences in304

the CMU US KAL Diphone database (Lenzo and305

Black, 2000). All waveforms have a sampling rate306

of 44100 Hz and articulatory features are recorded307

every 110 samples. We refer to this dataset as the308

Birkholz-Pseudoword (Birk.-Pseudo.) dataset be-309

low. In this dataset, our articulatory features are 310

30-dimensional. 311

5 Computational Efficiency 312

Computational efficiency during training is essen- 313

tial for low-resource speech synthesis tasks like 314

brain-to-speech and other articulatory synthesis 315

tasks where data collection is expensive. During 316

inference, computational efficiency is essential for 317

building real-time speech synthesizers, e.g., for 318

brain-to-speech. We observe that our time-domain 319

articulatory synthesis model has some suitable com- 320

putational efficiency properties compared to the 321

frequency-domain baseline. As shown in Table 1, 322

our model is able to train twice as fast as the base- 323

line on a single RTX 2080 Ti GPU for the task with 324

synthetic articulatory data. While our model syn- 325

thesizes utterances slower than the baseline due to 326

the nature of autoregression (Morrison et al., 2022), 327

we observe that generation on a CPU is still faster 328

than real-time. 329

Compared to the baseline, our time-domain mod- 330

els are much more memory efficient, as detailed 331

in Table 2. Our models are able to use over 8 332

to 20 times less number of parameters than the 333

baseline due to their ability to directly map artic- 334

ulatory features to speech. Namely, while current 335

articulatory synthesis models like our baseline rely 336

on two components, one to output spectrums and 337

another to convert spectrums to waveforms, our 338

time-domain models only contain one. We note 339

that the real-time and memory efficient properties 340

of our time-domain models make them a viable 341

choice for streaming, on-device tasks. 342

Data Birk.-Pseudo. EMA-MGNU0
NSF-CAR 34 81
HiFi-GAN 8 9
Spec.-Int. 68 80

Table 1: Total training time for each model in hours.

Model Birk.-Pseudo. EMA-MGNU0
NSF-CAR 4.4 ∗ 106 4.2 ∗ 106
HiFi-GAN 14.2 ∗ 106 12.6 ∗ 106
Spec.-Int. 98.7 ∗ 106 94.0 ∗ 106

Table 2: Number of parameters of each model.
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Figure 2: Vowel interpolation. The top row contains the
synthesized samples between the "ta" and "tu" sounds,
the middle row "tu" and "ti", and the bottom row "ti"
and "ta".

6 Interpolation343

6.1 Vowel Interpolation344

To study the generalizability of our time-domain345

model, we perform interpolation experiments. First,346

to analyze how well our model generalizes across347

vowel sounds, we perform vowel interpolation.348

Namely, we interpolate between the "ta" and "tu"349

sounds, "tu" and "ti", and "ti" and "ta" using the350

synthetic articulatory data. We generate the ar-351

ticulatory features for "ta", "tu", and "ti" using352

the code provided by Birkholz et al., similarly to353

our approach for creating the synthetic articula-354

tory dataset described above. For each of the three355

pairs of sounds, we perform a linear interpolation356

between the two articulatory features, generating357

seven evenly spaced weighted combinations. The358

figures below are generated using outputs from our359

NSF-CAR model, and we observe similar trends360

with our time-domain HiFi-GAN as well, which361

we include in the supplementary website linked in362

Section 1.363

Figure 2 contains the mel-spectrograms of the364

generated speech from our model for each of these365

combined articulatory features. Our model is able366

to generalize to the unseen articulatory features367

between the three sounds. Moreover, the transi-368

tions between spectrum values in each interpola-369

tion are smooth, suggesting that our network is able370

to model the continuity of articulator movements,371

at least with respect to vowels.372

6.2 Consonant Interpolation 373

We also study the generalizability of our model 374

with respect to consonants. To study how well 375

our model generalizes across types of consonant 376

sounds, we fix the place of articulation and inter- 377

polate between consonant types. Namely, we inter- 378

polate between the alveolar consonants "ra", "na", 379

and "la", using the same methodology as our vowel 380

interpolation experiment in Section 6.1. 381

Figure 3 depicts the mel-spectrograms of synthe- 382

sized interpolation samples from our time-domain 383

articulatory synthesis model. Similarly to our 384

vowel interpolation results, we observe that our 385

model generalizes to the unseen samples between 386

the three consonants and exhibits smooth genera- 387

tion. Specifically, these results indicate that our 388

model can smoothly transition between nasal, ap- 389

proximant, and lateral approximant consonants, 390

similarly to the human speech production process. 391

Figure 3: Alveolar consonant interpolation. The top
row contains the synthesized samples between the "ra"
and "na" sounds, the middle row "na" and "la", and the
bottom row "la" and "ra".

To study how well our model generalizes across 392

place of articulation, we fix the consonant type and 393

interpolate between two places. Namely, we inter- 394

polate between the approximant consonants "ra" 395

and "ja", using the same aforementioned method- 396

ology. Figure 4 depicts these results. As with 397

our alveolar consonant interpolation results, we ob- 398

serve that our model generalizes to unseen samples 399

and produces smooth transitions between synthe- 400

sized interpolation samples here. 401

To quantify how the synthesized utterances 402
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change across the interpolation, we create two plots403

studying changes in the magnitudes of different404

bands of the mel-spectrogram. Namely, our first405

graph plots the magnitude of each mel-spectrogram406

frequency vector across the seven utterances, going407

left to right in the interpolation. Our second plot408

does the same with time vectors, i.e., columns in409

the mel-spectrograms. We compute the magnitude410

of each vector using the L1 norm, which is just a411

sum here since mel-spectrogram values are non-412

negative. To improve readability in both plots, we413

omit vectors that on average change less than 0.3 in414

magnitude between adjacent interpolation samples.415

As shown in the bottom row of Figure 4, the416

vector magnitude lines are generally monotonic and417

almost linear in many cases when going left to right418

in the interpolation. This supports our hypothesis419

that our model has learnt to transition smoothly420

between consonants when synthesizing articulatory421

features.422

Figure 4: Approximate consonant interpolation. Top
row: synthesized samples between the "ra" and "ja"
sounds. Bottom row left: frequency vector magnitudes
for each spectrum. Bottom row right: time vector mag-
nitudes for each spectrum.

6.3 Interpretability423

We note that these interpolation results also high-424

light the interpretability of articulatory features.425

Namely, we are able to simply take an element-426

wise weighted sum of two same-length sequences427

of articulatory features in order to create the ut-428

terance corresponding to articulator movements in429

between the two gestures. For example, to create430

the "tE" sound, we would just need to synthesize431

the average of the articulatory feature sequences432

for "ti" and "ta". To our knowledge, this degree of433

interpretability is not supported by other speech rep-434

resentations like spectrums or deep-learning-based435

ones. 436

7 Synthesis Quality 437

7.1 Fidelity 438

Since MCD serves as an objective measure of syn- 439

thesis quality (Black, 2019), we first measure syn- 440

thesis fidelity using this metric. As detailed in Ta- 441

ble 3, we observe that our time-domain articulatory 442

synthesis approach achieves performance compa- 443

rable to the frequency-domain baseline. Namely, 444

our approach performs noticeably better than the 445

baseline on the synthetic articulatory dataset and 446

slightly worse on the EMA-to-speech task. Given 447

these results, we attribute the performance drop 448

of our model on the EMA task to information loss 449

within in the input data. Namely, the model appears 450

to confuse phonemes due to the lack of manner in- 451

formation in the EMA inputs, which can be heard 452

in the accompanying samples. We discuss this 453

phoneme confusion in more detail below. 454

Model MCD
Birk.-Pseudo EMA-MGNU0

NSF-CAR 3.36± 0.28 5.44± 0.67
HiFi-GAN 2.90± 0.22 4.81± 0.76
Spec.-Int. 5.15± 0.48 4.75± 0.81

Table 3: MCD for each model on Birkholz and EMA
data.

7.2 Automatic Speech Recognition 455

To evaluate the intelligibility of our synthesis ap- 456

proach, we conduct open-vocabulary transcription 457

experiments for the EMA-to-speech task with our 458

time-domain HiFi-GAN model described in Sec- 459

tion 3.3. First, we perform an objective evaluation 460

using deep automatic speech recognition (ASR) 461

models. Specifically, we use DeepSpeech1 (Han- 462

nun et al., 2014) as done by Gaddy and Klein 463

(Gaddy and Klein, 2021) as well as the ESPnet 464

Conformer ASR model trained on LibriSpeech2 465

(Guo et al., 2021; Panayotov et al., 2015). We use 466

these models to transcribe the synthesis outputs 467

of our model on the entire MNGU0 evaluation set 468

described in Section 4.1 and calculate the average 469

word error rates (WERs) and character error rates 470

(CERs). Since some utterances in the evaluation 471

set contain proper nouns, we also compute ASR 472

1https://github.com/mozilla/DeepSpeech
2https://zenodo.org/record/4604066#.YeNA0i2z2CM

6

https://github.com/mozilla/DeepSpeech
https://zenodo.org/record/4604066#.YeNA0i2z2CM


metrics on all of the evaluation set utterances com-473

posed entirely of common nouns, which form a474

32-utterance subset.475

Table 4 summarizes our ASR results. On the476

common-noun subset, our model achieves a charac-477

ter error rate of 10.7% with the ESPnet ASR model,478

indicating that our model is able to synthesize intel-479

ligible speech. The consistent differences between480

the WER and CER values as well as the entire set481

and common-noun subset performances suggests482

that these ASR metrics may be underestimating483

intelligibility, as also observed by Gaddy and Klein484

(Gaddy and Klein, 2021). Thus, we also evalu-485

ate the intelligibility of our model though human486

evaluations, as discussed in Section 7.3 below.487

ASR Model WER CER
All Com. All Com.

ESPnet 32.9 19.2 17.9 10.7
DeepSpeech 41.3 32.9 20.2 15.5

Table 4: ASR. entire evaluation set (All) and common
noun subset (Com.).

7.3 Human Evaluation488

To further understand the intelligibility of our time-489

domain articulatory synthesis approach, we also490

perform open-vocabulary transcription tests with491

human listeners, evaluating our same time-domain492

HiFi-GAN model (Section 3.3) used in our Section493

7.2 ASR experiments above. Namely, we randomly494

select ten utterances from our EMA corpus evalua-495

tion set, choosing among the 32 sentences without496

proper nouns. Based on the transcriptions from497

six English-speaking listeners, our model achieves498

an average WER of 7.14%, indicating that our499

model is able to produce intelligible speech. To500

our knowledge, this value is noticeably lower than501

prior results, which are around 30.1% (Taguchi502

and Kaburagi, 2018). This suggests that our time-503

domain articulatory synthesis methodology is a504

suitable approach for efficiently performing speech505

synthesis while achieving high intelligibility.506

8 Phoneme Confusion507

To further study the phonological errors made by508

our model, we analyze the phonemes that our509

EMA-to-speech model confused during synthe-510

sis. Namely, we study phoneme confusability for511

our time-domain HiFi-GAN model (Section 3.3)512

through the transcriptions, both from the ASR ones513

described in Section 7.2 and the human ones de- 514

scribed in Section 7.3. For each transcribed ut- 515

terance, we convert the graphemes to a phoneme 516

sequence using Phonemizer3 (Bernard and Titeux, 517

2021) and their eSpeak NG backend,4 and repeat 518

this grapheme-to-phoneme conversion with the 519

ground truth texts. We identify the phoneme confu- 520

sion pairs using sclite,5 which aligns each predicted 521

sequence with the respective ground truth and then 522

records the substitution errors. 523

For our human evaluation analysis, we use all 524

of the transcripts from the six listeners, i.e., 60 ut- 525

terances. Figure 5 depicts the resulting phoneme 526

confusion pairs. We plot these confusion pairs on 527

an International Phonetic Alphabet (IPA) chart that 528

extends the one from Gaddy and Klein to more 529

phonemes (Gaddy and Klein, 2021), indicating 530

pairs with a higher frequency of substitution errors 531

using darker lines. We also populate this IPA chart 532

with our confusion pairs from the ASR transcrip- 533

tions in Figure 6, for which we use the texts tran- 534

scribed by the ESPnet model for the entire MNGU0 535

evaluation set, as discussed in Section 7.2. We omit 536

the phoneme pairs that are only confused once in 537

Figure 6 in order to improve readability. 538

From these two IPA charts, we observe that the 539

most of the word substitution errors are due to plo- 540

sive or vowel confusions. Since the primary vowel 541

confusions in Figure 5 differ from those in Figure 6, 542

we hypothesize that vowel confusability for human 543

evaluators mainly resulted from the substitution 544

of vowels to form logical, grammatically correct 545

words and phrases. The automatic transcribers may 546

not have as much of such bias and we observe 547

that the primary confused vowel pairs are relatively 548

close to each other with our ASR-based results, 549

reinforcing this hypothesis. One potential reason 550

for the plosive substitutions is that plosives gener- 551

ally have a shorter duration than other consonant 552

types like fricatives (Alwan et al., 2011) and thus 553

may be more readily confusable. Among the plo- 554

sives, "p", "b", "t", and "d" may have been easier to 555

confuse than "k" and "g" for the human evaluators 556

because the latter two plosives have longer voice 557

onset times, a pattern also observed by Birkholz 558

(Birkholz, 2013b). From Figure 6, we also observe 559

that multiple voiced-unvoiced pairs are confused. 560

We hypothesize that this is because the only voic- 561

3https://github.com/bootphon/phonemizer
4https://github.com/espeak-ng/espeak-ng
5https://github.com/usnistgov/SCTK
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Figure 5: Phoneme confusability based on human tran-
scriptions. Phoneme pairs that are confused more fre-
quently have darker lines.

ing information that our EMA-to-speech model562

receives as input is the estimated F0 sequence, as563

described in Section 4.1.564

9 Conclusion and Future Directions565

In this work, we study ways to build deep articula-566

tory synthesizers that are efficient and high-fidelity.567

Based on computational efficiency evaluations, we568

observe that our proposed time-domain methodol-569

ogy is suitable for achieving time and space com-570

plexities that are noticeably lower than the baseline571

spectrum-intermediate approach. Our interpolation572

study also highlights the generalizability and inter-573

pretability of our approach. Through MCD, ASR,574

and human transcription experiments, we demon-575

strate that our model is also highly intelligible,576

achieving a transcription word error rate (WER)577

of 7.14% for the EMA-to-speech task. Moving578

forward, we plan to test our methodology on other579

modalities like electromyography (EMG) (Gaddy580

and Klein, 2021) and real-time magnetic resonance581

imaging (RT-MRI) (Lim et al., 2021). We also plan582

to extend our approach to multi-speaker and multi-583

lingual settings (Richmond et al., 2011; Lim et al.,584

2021; Wu et al., 2021b).585

References586

Abeer Alwan, Jintao Jiang, and Willa Chen. 2011. Per-587
ception of place of articulation for plosives and frica-588

p b t d k g

m n N

R

f v T D s z S Z h

Ù Ã

ô j

l

u

o
U

O2

A

@

i
I

e

1

E 3
5æ a

Figure 6: Phoneme confusability based on ASR tran-
scriptions. Phoneme pairs that are confused more fre-
quently have darker lines.

tives in noise. Speech communication, 53(2):195– 589
209. 590

Miguel Angrick, Christian Herff, Emily Mugler, 591
Matthew C Tate, Marc W Slutzky, Dean J Krusienski, 592
and Tanja Schultz. 2019. Speech synthesis from ecog 593
using densely connected 3d convolutional neural net- 594
works. Journal of neural engineering, 16(3):036019. 595

Gopala K Anumanchipalli, Josh Chartier, and Edward F 596
Chang. 2019. Speech synthesis from neural decoding 597
of spoken sentences. Nature, 568(7753):493–498. 598

Sandesh Aryal and Ricardo Gutierrez-Osuna. 2016. 599
Data driven articulatory synthesis with deep neural 600
networks. Computer Speech & Language, 36:260– 601
273. 602

Rohan Badlani, Adrian Łancucki, Kevin J Shih, Rafael 603
Valle, Wei Ping, and Bryan Catanzaro. 2021. One 604
tts alignment to rule them all. arXiv preprint 605
arXiv:2108.10447. 606

Mathieu Bernard and Hadrien Titeux. 2021. Phonem- 607
izer: Text to phones transcription for multiple lan- 608
guages in python. Journal of Open Source Software, 609
6(68):3958. 610

Peter Birkholz. 2013a. Modeling consonant-vowel coar- 611
ticulation for articulatory speech synthesis. PloS one, 612
8(4):e60603. 613

Peter Birkholz. 2013b. Modeling consonant-vowel coar- 614
ticulation for articulatory speech synthesis. PloS one, 615
8:e60603. 616

Alan W Black. 2019. CMU wilderness multilingual 617
speech dataset. In ICASSP, pages 5971–5975. IEEE. 618

8

https://doi.org/10.21105/joss.03958
https://doi.org/10.21105/joss.03958
https://doi.org/10.21105/joss.03958
https://doi.org/10.21105/joss.03958
https://doi.org/10.21105/joss.03958
https://doi.org/10.1371/journal.pone.0060603
https://doi.org/10.1371/journal.pone.0060603
https://doi.org/10.1371/journal.pone.0060603


Florent Bocquelet, Thomas Hueber, Laurent Girin,619
Pierre Badin, and Blaise Yvert. 2014. Robust articu-620
latory speech synthesis using deep neural networks621
for bci applications. In 15th Annual Conference of622
the International Speech Communication Association623
(Interspeech 2014).624

Yu-Wen Chen, Kuo-Hsuan Hung, Shang-Yi Chuang,625
Jonathan Sherman, Wen-Chin Huang, Xugang Lu,626
and Yu Tsao. 2021. Ema2s: An end-to-end multi-627
modal articulatory-to-speech system. In 2021 IEEE628
International Symposium on Circuits and Systems629
(ISCAS), pages 1–5. IEEE.630

Tam’as G’abor Csap’o, Csaba Zaink’o, L. Viktor T’oth,631
Gábor Gosztolya, and Alexandra Mark’o. 2020.632
Ultrasound-based articulatory-to-acoustic mapping633
with waveglow speech synthesis. In Interspeech.634

Isaac Elias, Heiga Zen, Jonathan Shen, Yu Zhang, Jia635
Ye, R. J. Skerry-Ryan, and Yonghui Wu. 2021. Par-636
allel tacotron 2: A non-autoregressive neural tts637
model with differentiable duration modeling. ArXiv,638
abs/2103.14574.639

Gunnar Fant. 1991. What can basic research contribute640
to speech synthesis? Journal of Phonetics, 19(1):75–641
90.642

Gunnar Fant. 1995. The lf-model revisited. transforma-643
tions and frequency domain analysis. Speech Trans.644
Lab. Q. Rep., Royal Inst. of Tech. Stockholm, 2(3):40.645

David Gaddy and Dan Klein. 2021. An improved model646
for voicing silent speech. In Proceedings of the 59th647
Annual Meeting of the Association for Computational648
Linguistics and the 11th International Joint Confer-649
ence on Natural Language Processing (Volume 2:650
Short Papers), pages 175–181, Online. Association651
for Computational Linguistics.652

Marc-Antoine Georges, Pierre Badin, Julien Diard, Lau-653
rent Girin, Jean-Luc Schwartz, and Thomas Hueber.654
2020. Towards an articulatory-driven neural vocoder655
for speech synthesis. In International Seminar on656
Speech Production.657

Pengcheng Guo, Florian Boyer, Xuankai Chang,658
Tomoki Hayashi, Yosuke Higuchi, Hirofumi In-659
aguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-660
Romero, Jiatong Shi, et al. 2021. Recent devel-661
opments on espnet toolkit boosted by conformer.662
In ICASSP 2021-2021 IEEE International Confer-663
ence on Acoustics, Speech and Signal Processing664
(ICASSP), pages 5874–5878. IEEE.665

Awni Y. Hannun, Carl Case, Jared Casper, Bryan666
Catanzaro, Gregory Frederick Diamos, Erich Elsen,667
Ryan J. Prenger, Sanjeev Satheesh, Shubho Sen-668
gupta, Adam Coates, and A. Ng. 2014. Deep speech:669
Scaling up end-to-end speech recognition. ArXiv,670
abs/1412.5567.671

Tomoki Hayashi, Ryuichi Yamamoto, Takenori672
Yoshimura, Peter Wu, Jiatong Shi, Takaaki673
Saeki, Yooncheol Ju, Yusuke Yasuda, Shinnosuke674

Takamichi, and Shinji Watanabe. 2021. Espnet2-tts: 675
Extending the edge of tts research. arXiv preprint 676
arXiv:2110.07840. 677

Hirofumi Inaguma, Shun Kiyono, Kevin Duh, Shigeki 678
Karita, Nelson Yalta, Tomoki Hayashi, and Shinji 679
Watanabe. 2020. ESPnet-ST: All-in-one speech 680
translation toolkit. In Proceedings of the 58th An- 681
nual Meeting of the Association for Computational 682
Linguistics: System Demonstrations, pages 302–311, 683
Online. Association for Computational Linguistics. 684

Khalil Iskarous, Louis Goldstein, Douglas H Whalen, 685
Mark Tiede, and Philip Rubin. 2003. Casy: The hask- 686
ins configurable articulatory synthesizer. In Inter- 687
national Congress of Phonetic Sciences, Barcelona, 688
Spain, pages 185–188. 689

Ye Jia, Michelle Tadmor Ramanovich, Tal Remez, and 690
Roi Pomerantz. 2021. Translatotron 2: Robust di- 691
rect speech-to-speech translation. arXiv preprint 692
arXiv:2107.08661. 693

Ye Jia, Ron Weiss, Fadi Biadsy, Wolfgang Macherey, 694
Melvin Johnson, Zhifeng Chen, and Yonghui Wu. 695
2019. Direct speech-to-speech translation with a 696
sequence-to-sequence model. In Interspeech, pages 697
1123–1127. 698

A Karmel, Anushka Sharma, Muktak pandya, and Dik- 699
sha Garg. 2019. Iot based assistive device for deaf, 700
dumb and blind people. Procedia Computer Sci- 701
ence, 165:259–269. 2nd International Conference 702
on Recent Trends in Advanced Computing ICRTAC 703
-DISRUP - TIV INNOVATION , 2019 November 704
11-12, 2019. 705

Jaehyeon Kim, Jungil Kong, and Juhee Son. 2021. 706
Conditional variational autoencoder with adversarial 707
learning for end-to-end text-to-speech. In Proceed- 708
ings of the 38th International Conference on Machine 709
Learning, volume 139 of Proceedings of Machine 710
Learning Research, pages 5530–5540. PMLR. 711

Jong Wook Kim, Justin Salamon, Peter Li, and 712
Juan Pablo Bello. 2018. Crepe: A convolutional 713
representation for pitch estimation. In 2018 IEEE 714
International Conference on Acoustics, Speech and 715
Signal Processing (ICASSP), pages 161–165. IEEE. 716

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 717
method for stochastic optimization. In 3rd Inter- 718
national Conference on Learning Representations, 719
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 720
Conference Track Proceedings. 721

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020. 722
Hifi-gan: Generative adversarial networks for ef- 723
ficient and high fidelity speech synthesis. In Ad- 724
vances in Neural Information Processing Systems, 725
volume 33, pages 17022–17033. Curran Associates, 726
Inc. 727

Kevin Lenzo and Alan Black. 2000. Diphone collection 728
and synthesis. ICSLP. 729

9

https://doi.org/10.18653/v1/2021.acl-short.23
https://doi.org/10.18653/v1/2021.acl-short.23
https://doi.org/10.18653/v1/2021.acl-short.23
https://doi.org/10.18653/v1/2020.acl-demos.34
https://doi.org/10.18653/v1/2020.acl-demos.34
https://doi.org/10.18653/v1/2020.acl-demos.34
https://doi.org/10.21437/Interspeech.2019-1951
https://doi.org/10.21437/Interspeech.2019-1951
https://doi.org/10.21437/Interspeech.2019-1951
https://doi.org/https://doi.org/10.1016/j.procs.2020.01.080
https://doi.org/https://doi.org/10.1016/j.procs.2020.01.080
https://doi.org/https://doi.org/10.1016/j.procs.2020.01.080
https://proceedings.mlr.press/v139/kim21f.html
https://proceedings.mlr.press/v139/kim21f.html
https://proceedings.mlr.press/v139/kim21f.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2020/file/c5d736809766d46260d816d8dbc9eb44-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c5d736809766d46260d816d8dbc9eb44-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c5d736809766d46260d816d8dbc9eb44-Paper.pdf


Yongwan Lim, Asterios Toutios, Yannick Bliesener,730
Ye Tian, Sajan Lingala, Colin Vaz, Tanner Sorensen,731
Miran Oh, Sarah Harper, Weiyi Chen, Yoonjeong732
Lee, Johannes Töger, Mairym Llorens Monteserin,733
Caitlin Smith, Bianca Godinez, Louis Goldstein,734
Dani Byrd, Krishna Nayak, and Shrikanth Narayanan.735
2021. A multispeaker dataset of raw and recon-736
structed speech production real-time mri video and737
3d volumetric images. Scientific Data, 8.738

Zheng-Chen Liu, Zhen-Hua Ling, and Li-Rong Dai.739
2018. Articulatory-to-acoustic conversion using740
blstm-rnns with augmented input representation.741
Speech Communication, 99:161–172.742

Max Morrison, Rithesh Kumar, Kundan Kumar, Prem743
Seetharaman, Aaron Courville, and Yoshua Bengio.744
2022. Chunked autoregressive gan for conditional745
waveform synthesis. In Submitted to ICLR 2022.746
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Figure 7: Model architecture of our NSF-CAR generator.
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