ME-GCN: Multi-dimensional Edge-Embedded Graph Convolutional
Networks for Semi-supervised Text Classification

Anonymous ACL submission

Abstract

Compared to sequential learning models,
graph-based neural networks exhibit excel-
lent ability in capturing global information
and have been used for semi-supervised learn-
ing tasks, including citation network analysis
or text classification. However, most GCNs
are designed with the single-dimensional edge
feature and neglected to utilise the rich
edge information about graphs. In this
paper, we introduce the ME-GCN (Multi-
dimensional Edge-enhanced Graph Convolu-
tional Networks) for semi-supervised text clas-
sification. A text graph for an entire corpus is
firstly constructed to describe the undirected
and multi-dimensional relationship of word-
to-word, document-document, and word-to-
document. The graph is initialised with corpus-
trained multi-dimensional word and document
node representation, and the relations are rep-
resented according to the distance of those
words/documents nodes. Then, the generated
graph is trained with ME-GCN, which consid-
ers the edge features as multi-stream signals,
and each stream performs a separate graph con-
volutional operation. Our ME-GCN can in-
tegrate a rich source of graph edge informa-
tion of the entire text corpus. The results
have demonstrated that our proposed model
has significantly outperformed the state-of-the-
art methods across eight benchmark datasets.

1 Introduction

Deep Learning models, such as Recurrent Neural
Networks (RNN) or Transformer, have performed
well and have been widely used for text classifi-
cation. However, the performance is not always
satisfactory when utilising small labelled datasets.
In many practical scenarios, the labelled dataset is
very scarce as human labelling is time-consuming
and may require domain knowledge. There is a
pressing need for studying semi-supervised text
classification with a relatively small number of la-
belled training data in deep learning paradigm. For

the successful semi-supervised text classification, it
is crucial to maximize effective utilization of struc-
tural and feature information of unlabelled data.

Graph Neural Networks (GNN) have recently
received lots of attention as it can analyse rich
relational structure, prioritize global features ex-
ploitation, and preserve global structure of a graph
in graph embeddings. Due to these benefit, there
have been some successful attempts to revisit semi-
supervised learning with Graph Convolutional Net-
works (GCN) (Kipf and Welling, 2017). TextGCN
(Yao et al., 2019) initialises the whole text corpus
as a document-word graph and applies GCN for
text classification. It shows potential of GCN-based
semi-supervised text classification. Linmei et al.
(2019) worked on semi-supervised short text clas-
sification using GCN with topic-entity, and Liu
et al. (2020) proposed tensorGCN with semantic,
syntactic, and sequential information.

One major problem in those existing GCN-based
text classification models is that edge features are
restricted to be one-dimensional, which are the in-
dication about whether there is edge or not (e.g.
binary connectedness) or often one-dimensional
real-value representing similarities (e.g. pmi, tf-
idf). Instead of being a binary indicator variable
or a single-dimensional value, edge features can
possess rich information and fully incorporated by
using multi-dimensional vectors. Addressing this
problem is likely to benefit several graph-based
classification problems but particularly important
for the text classification task. This is because
the relationship between words and documents can
be better represented in a multi-dimensional vec-
tor space rather than a single value. For example,
word-based vector space models embed the words
in a vector space where similarly defined words
are mapped near to each other. Rather than us-
ing the lexical-based syntactic parsers or additional
resources, words that share semantic or syntactic
relationships will be represented by vectors of sim-

ilar magnitude and be mapped in close proximity
to each other in the word embedding. Using this
multi-dimensional word embedding as node and
edge features, it would be more efficient to analyse
rich relational information and explore global struc-
ture of a graph. Then, what would be the best way
to exploit edge features in a text graph convolu-
tional network? According to the recently reported
articles (Gong and Cheng, 2019; Khan and Blumen-
stock, 2019; Huang et al., 2020; Liu et al., 2020),
more rich information should be considered in the
relations in the graph neural networks.

In this paper, we propose a new multi-
dimensional edge enhanced text graph convolu-
tional networks (ME-GCN), which is most suitable
for the semi-supervised text classification. Note
that the focus of our semi-supervised text classifica-
tion task is on small proportion of labelled text doc-
uments with no other resource, i.e. no pre-trained
word embedding or language model, syntactic tag-
ger or parser.

We construct a single textual large graph from an
entire corpus, which contains words and documents
as nodes. The graph describes the undirected and
multi-dimensional relationship of word-to-word,
document-document, and word-to-document. Each
word and document are initialised with corpus-
trained multi-dimensional word and document em-
bedding, and the relations are represented based
on the semantic distance of those representations.
Then, the generated graph is trained with ME-
GCN, which considers edge features as multi-
stream signals, and each stream performs a sep-
arate graph convolutional operation. We conduct
experiments on several semi-supervised text classi-
fication benchmark datasets. The proposed model
can achieve strong text classification performance
with a small proportion of labelled documents with
no additional resources. The main contributions
are as follows:

1) To the best of our knowledge, this is the first
attempt to apply multi-dimensional edge features
on GNN for text classification.

2) ME-GCN' is proposed to use corpus-trained
multi-dimensional word and document-based edge
features for the semi-supervised text classification.

3) Experiments are conducted on several bench-
mark datasets to illustrate the effectiveness of ME-
GCN for semi-supervised text classification.

! An overview architecture is presented in the Appendix.

2 Related Works

2.1 Semi-supervised text classification

Due to the high cost of human labelling and the
scarcity of fully-labelled data, deep learning based
semi-supervised models have received lots of atten-
tion in text classification. Latent variable models
(Chen et al., 2015) apply topic models by user-
oriented seed information and infer the documents’
labels based on category-topic assignment. The
embedding-based model (Tang et al., 2015; Meng
et al., 2018) utilise seed information to derive text
(word or document) embeddings for documents
and labels for text classification. Yang et al. (2017)
leveraged sequence-to-sequence Variational Au-
toEncoders (VAEs) model on text classification and
sequential labelling. Miyato et al. (2017) utilized
adversarial and virtual adversarial training to the
text domain by applying perturbations to the word
embeddings. Recently, graph convolutional net-
works (GCN) have been popular in semi-supervised
learning as it shows superior global structure un-
derstanding ability.(Kipf and Welling, 2017).

2.2 GNN for Text Classification

Graph Neural Networks have received lots of at-
tention and successfully used in various NLP tasks
(Bastings et al., 2017; Tu et al., 2019; Cao et al.,
2019; Xu et al.). Yao et al. (2019) proposed the Text
Graph Convolutional Networks by applying a basic
GCN (Kipf and Welling, 2017) to the text classifica-
tion task. In their work, a text graph for the whole
corpus is constructed; word and document nodes
are initialised with one-hot representation and edge
features are represented as one-dimensional real
values, such as PMI, TF-IDF. Several studies have
attempted multiple different graph alignments us-
ing knowledge graph or semantic/syntactic graph.
Vashishth et al. (2019) applied GCN to incorpo-
rate syntactic/semantic information for word em-
bedding training. Cao et al. (2019) proposed an
alignment-oriented knowledge graph embedding
for entity alignment. TensorGCN (Liu et al., 2020)
proposed semantic, syntactic, and sequential con-
textual information. In their framework, multi-
ple aspect graphs are constructed from external
resources, and those graph are jointly trained. How-
ever, our model ME-GCN constructs and trains
multi-dimensional node and edge features alone
based on the given text corpus.

3 ME-GCN

We propose the Multi-dimensional Edge-enhanced
Graph Convolutional Networks (ME-GCN) for
semi-supervised text classification. Note that all
graph components are only based on the given text
corpus without using any external resources. We
utilize the GCN as a base component, due to its
simplicity and effectiveness. In this section, we
first give a brief overview of GCN and introduce
details of how to construct our corpus-based textual
graph from a given text corpus. Finally, we present
ME-GCN learning model.

GCN Graph A GCN (Kipf and Welling, 2017)
is a generalised version of the convolutional neural
networks for semi-supervised learning that operates
directly on the graph-structured data and induces
embedding vectors of nodes based on properties
of their neighbourhoods. Consider a graph G =
(V,E,A), where V(|V| = N) is the set of graph
nodes, F is the set of graph edges, and A € RV*N
is the graph adjacency matrix.

3.1 Textual Graph Construction

We first describe how to construct a textual graph
that contains word/document node representation
and multi-dimensional edge features for a whole
text corpus. We apply a straightforward textual con-
struction approach that treats words and documents
as nodes in the graph. Unlike Yao et al. (2019), we
have three types of edges, namely word-document
edge, word-word edge, and document-document
edge with the aim to investigate all possible rela-
tions between nodes. Formally, we define a ME-
GCN graph Gy = (V, E®, ME®), where t
denotes the " dimensional edge, V' (|V| = N) is
the set of graph nodes of word/document, E® are
the set of graph edges, which can be one of the
three types, and M E) is the set of adjacency ma-
trix at the #* dimension. The details of node and
edge features construction are presented as follows.

3.1.1 Textual Node Construction

From an entire textual corpus, we construct word
and document nodes in a graph so that the global
word and document distance can be explicitly mod-
eled and graph convolution can be easily adapted.
ME-GCN considers the word and document nodes
as components for preserving rich information and
representing the global structure of a whole cor-
pus, which can fully support for the successful
semi-supervised text classification. With this in

mind, ME-GCN trains word/node feature by us-
ing a Word2Vec (Mikolov et al., 2013) for word
nodes, and a Doc2Vec (Le and Mikolov, 2014) for
document nodes. For instance, Word2Vec takes as
its input a whole corpus of words, and the trained
word vectors are positioned in a vector space such
that words that share common contexts in the cor-
pus are located in close proximity to one another
in the space. This is well-aligned with the role
of graph neural networks, representing the global
structure of the corpus, and preserving rich seman-
tic information of the corpus. Most importantly,
those word/document embeddings are distributed
representations of text in an 7'-dimensional space
so the distance between words and documents can
be represented as a multi-dimensional vector. For-
mally, the word/document node features in ME-
GCN are initialised as follows. Note that the nega-
tive sampling is applied to reduce the training time.

Word Node Construction We train the
Word2Vec CBOW (Mikolov et al., 2013) using
context words to predict the centre word. Assume
we have a given text corpus consisting of K docu-
ments and U unique words. The input is a set of
context words X;; in document k € K encoded as
one-hot vector of size U. Then the hidden layer H
and output layer Qutput are formulated in equa-
tion (1) and (2), in which Wy« and W%X are
two projection matrix. After training, we extract
the U vectors of dimension 7' from the updated
matrix Wy representing the corresponding U
unique words in the whole corpus.

C

H= ZXikWUXT (1
i=1

Output = HWj ;s 2)

Document Node Construction Doc2Vec CBOW
(Le and Mikolov, 2014) is essentially the same as
Word2Vec. In Doc2Vec, we feed the context words
X1 together with the current document k to the
model, which is also encoded as one-hot vector
based on the document id, and the vector size be-
comes U = U + K. We have the projection matrix
WUxT containing U + K vectors. After training,
those K vectors in the updated W, ;; are used for
representing the corresponding K document.
c
H = DyWy .+ > XaWyr (3)
i=1
Output = H W;X o 4)

3.1.2 Multi-dimensional Edge Construction

In this section, we describe how to construct a
multi-dimensional edge feature in a graph. A
traditional textual graph edge (Yao et al., 2019)
was based on word occurrence in documents
(document-word edges), and word co-occurrence
in the whole corpus (word-word edges), however,
the occurrence information is not enough to extract
how close two pieces of text are in both surface
proximity and meaning. According to Mikolov
et al. (2013); Kusner et al. (2015), the distance
between word/document embeddings learn seman-
tically meaningful representations for words from
local co-occurrences in sentences. Inspired by this,
we utilise the distance between word/document
embeddings to preserve the rich semantic infor-
mation captured edges, which are also presented
as multi-dimensional vectors. To represent all
possible edge types, we propose three types of
edges: word-word edges, document-document
edges, and word-document edges. Our goal is
to incorporate the semantic similarity between in-
dividual node pairs (each unique word and docu-
ment) into multi-dimensional edge features. One
such measure for word/document node similar-
ity is provided by their Euclidean distance in the
Word2Vec or Doc2Vec embedding space. We sep-
arately use each dimension space in the node fea-
ture (Word2Vec/Dec2Vec) for representing each
of the dimension in the multi-dimensional node
edge. Thus, we will have T" dimensional edges
between nodes of 7" dimensional features and each
t € {1,2,...,T} is represented by one dimensional
Euclidean distance calculation in the #** dimen-
sional space. This edge calculation method is ap-
plied to word-word and doc-doc edge features.

Word-Word Edge Feature We draw on the
learned semantics in each feature dimension of
the word embedding of size T to calculate the
edge weight for each dimension. Concretely,
the T-dimensional word-word edge Eq(li.),w].,t €
{1,2,...,T} between word 7 and word j is formu-
lated as in equation (5), in which Wi(t) and Wj(t)
represents the feature value at the dimension ¢ of
the word embedding W; for word i and W for
word j respectively. The denominator calculates
the distance of the two words regarding dimension

t and tanh(~!) is used for normalization.
1
(O
Ewhwj mnh‘wﬂt) - W.(t)] ®)]
i j

Doc-Doc Edge Feature The document-document
edge is constructed in a way similar to the word-
word edge. As is shown in equation (6), the 7'-
dimensional document-document edge E(g) 4 is
calculated based on the normalized Euclidean dis-
tance between the values DZ() and D§) at each
dimension t of the features for document ¢ and j.

EY), =tanh 6)

(t) (t)
D{ ~ D)

7

Word-Doc Edge Feature We use the same calcula-
tion method for a single-dimension word-document
edge as in TextGCN while repeating it for each
dimension ¢. Thus, the 7T-dimensional word-
document edge £, ® nd; is simply represented as the
TF-IDF value of word 1 and document 5. This is
repeated for each dimension ¢, as is formulated in
equation (7). We also found using TF-IDF weight
is better than using term frequency only.

EY 4, = TF-IDF,, 4, 7)

Formally, the multi-dimensional edge weights
between node ¢ and j is defined as follows.

Efuti),wj w;, w; are words

Eé?’dj d;, dj are docs, Wa;na; > u
ME{ = ES) . wiis word, d; is doc 8)

1 i=j

0 otherwise

We noted that the threshold u for the doc-doc edges
is not compulsory but efficient for the better com-
putation. The detailed threshold is in Section 4.3.

3.2 ME-GCN Learning

After constructing the multi-dimensional edge en-
hanced text graph, we focus on applying effective
learning framework to perform GCN on the textual
graph with multi-dimensional edge features.

The traditional GCN learning takes into the ini-
tial input matrix H(®) € RN*% containing N node
features of size dy. Then the propagation through
layers is made based on the rule in equation (9),
which takes into consideration both node features
and the graph structure in terms of connected edges.

HED = f(HO A) = o(AHOWD) (9)
The [and (! —|— 1) represents the two subsequent lay-
ers, A=D" 2 AD~? is the normalized symmetric
adjacency matrix A=A+TI(isan identity ma-
trix for including self-connection), D is the diago-
nal node degree matrix with D(i, i) = 3, A(i, §),
and W e R4xdi1 g a layer-specific train-
able weight matrix for /th layer. d; and d;,1 in-

dicates the node feature dimension for /th layer
and (I + 1)th respectively. o denotes a non-linear
activation function for each layer such as Leaky
ReLu/ReLLU except for the output layer where soft-
max is normally used for the classification.

Our goal is to represent the node representation
by aggregating neighbour information with each
edge features in a multi-stream manner. Hence, we
generalize the traditional GCN learning approach
to perform multi-stream(MS) learning for the multi-
dimensional edge enhanced graph. The overall MS
learning procedure is in equation (10), for each
node feature in H) € RN*% we will apply the
multi-stream GCN learning fasg that formulates ¢
streams of traditional GCN learning through the ¢
dimensions of the connected edge, resulting in the

. . (1+1)
multi-stream hidden feature Ht(lH) € RN*dms

at (I + 1)th layer. Here t € {1,2,...,7} and dlbty
is the multi-stream feature size for each edge di-
mension at this layer. Then a multi-stream aggre-
gation function ¢ ;g is applied over the ¢ streams,
producing the feature matrix H(+1) e RNV*da+1)
that contains the aggregated feature for each node
in N. Here we use concatenation function as
¢ s for the hidden layer in the multi-stream ag-
gregation, leading us to have dj;1 = ¢ x d%ﬁ”.
Specifically, for the output layer, pooling method
is used instead and the details are provided in later
paragraph. Accordingly, the updated propagation
rule is provided in equation (11). Unlike the origi-
nal GCN propagation in equation (9), we have T'
streams of GCN learning in each layer, sharing the
same input ") and propagating based on the T'
adjacency matrices M E®), which involves a set of
layer and stream specific trainable weight matrices
denoted as WW(®) We also tried the shared-stream
learning that shares the trainable weight matrices
across each stream but found that separate stream-
specific trainable weight matrices have better per-
formance. The comparison of the two learning
mechanisms is provided in Section 5.2.

HO fus Ht(l+1) Pus HU+D (10)
HHY = gys(fus(HO, ME®Y)) (11)

— pus(o(MEY HOWO®)Y)

3.2.1 Pooling

Unlike the hidden layers where we use
concatenation to aggregate the node features over
each stream to continue propagation to next layer,

we instead apply the pooling method at the output
layer to further synthesize the multi-stream features
of each node in order to do the final classification.
Equation (12) formulizes max pooling, in which
Ht(lO) € RNXd;?S,t € {1,2,...,T} denotes the
T streams of node features for N nodes at the
output layer [, and here d!©, is the node feature
dimension that equals to the classification label
number C'. Through max pooling, we select
the best valued features over the 7' streams for
each node in NV before the final classification. We
also tried other pooling methods and provide the
comparison in Section 5.2.

poolingmaes = max (Ht(lO)) (12)

1<t<T

4 Evaluation Setup

We evaluate the performance of our ME-GCN on
semi-supervised text classification, and carefully
examine the effectiveness of corpus-based multi-
dimensional edge features.

4.1 Baselines?

We aim to compare ME-GCN with state-of-the-art
semi-supervised text classification models, which
do not use any external resources. Additionally,
we also include four baseline models, which use
pretrained embedding or language model: CNN-
Pretrained, LSTM-Pretrained, BERT, and TMix.
1)TF-IDF+LR, 2)TF-IDF+SVM: Term fre-
quency inverse document frequency for feature en-
gineering with Logistic Regression or SVM with
rbf kernel. 3)CNN-Rand, 4)-Pretrained: Text-
CNN (Kim, 2014) is used as the classifier. Both
CNN-Rand using random initialized word embed-
ding and CNN-Pretrained using pretrained word
embedding are evaluated. We used English Glove-
pretrained and Chinese Word Vectors (Li et al.,
2018) for Chinese dataset-zh. 5)LSTM-Rand,
6)-Pretrained: We apply the same set-up as the
CNN model, but with Long Short-Term Memory
(LSTM). 7)TextGCN: We follow the same hyper-
parameters of the TextGCN (Yao et al., 2019).
8)BERT: BERT (Devlin et al., 2018) is a pre-
trained model which has achieved good perfor-
mance in text classification. We use the BERTgasE
in our experiments (‘bert-base-chinese’ model
from huggingface is used for Chinese). 9)TMix:
TMix(Chen et al., 2020) generates new training
text data by interpolating over labeled text encoded

2 All baseline related links are provided in Appendix D.

Datasets | #Doc # Words #Node # Class Avg. length
20NG 3,000 6,095 9,095 20 249.4
R8 3,000 4,353 7,353 8 84.2
R52 3,000 4,619 7,619 52 104.5

Ohsumed | 3,000 8,659 11,659 23 132.6
MR 10,662 4,501 15,163 2 18.4
Agnews 6,000 5,360 11,360 4 35.2
Twitnltk | 3,000 634 3,634 2 11.5
Waimai(zh) | 11,987 10,979 22,966 2 15.5

Table 1: The summary statistics of datasets

using BERT hidden representation and train on the
generated text data for text classification. We use
the default setting provided in the official github.

4.2 Dataset’

We evaluated our experiments on five widely used
text classification benchmark datasets (Yao et al.,
2019), 20NG, RS8, R52, MR and Ohsumed, and
three additional semi-supervised text classification
datasets (Linmei et al., 2019), Agnews, Twitter nltk
and Waimai. All the data is split based on the ex-
treme low resource text classification enviornment-
1% training and 99% test set. The summary statis-
tics of the datasets can be found in Table 1. For
the data sample selection, we randomly select them
but the class distribution is followed by the original
datasets. 1)20NG is a 20-class news classification
dataset and we select 3,000 samples from the origi-
nal dataset. 2)R8, 3)R52 are from Reuters which
is a topic classification dataset with 8 classes and
52 classes. 3,000 samples from each dataset are
selected. 4MR(Pang and Lee, 2005) is a binary
classification dataset about movie comments and
we use all samples from the dataset. 5)Ohsumed
is a medical dataset with 23 classes, and we select
3,000 samples from the original dataset. 6)Ag-
news(Zhang et al., 2015) is a 4-class news clas-
sification dataset and 6,000 samples are selected.
7)Twitter nltk is a binary classification sentiment
analysis from Twitter, we sampled 1,500 positive
samples and 1,500 test samples from the original
dataset. 8)Waimai is a binary sentiment analy-
sis dataset about food delivery service comments
from a Chinese online food ordering platform. The
dataset is in Chinese and pre-tokenized. We use all
samples from the original dataset.

4.3 Settings

Before training, words occurring no more than 5
times have been excluded. Both word2vec and
Dec2vec are trained on the corpus we get using
gensim package with window_size = 5 and

3Source links for all datasets are provided in Appendix D.

iter = 200. The initial feature dimension for node
and document is set to dy = 25, which is same
to the multi-dimension number for edge features
and multi-stream number 7' in ME-GCN learn-
ing. Different multi-stream numbers are tested and
discussed in 5.3. The threshold v = 5 is used
for document-document edge construction. We
use two-layers of multi-stream GCN learning with
dly, = 25 (thus d"t = 625) for the first multi-
stream GCN layer and d'9, = C(no. of label in the
datasets) for the output layer. In the training pro-
cess, following Liu et al. (2020), we use dropout
rate as 0.5 and learning rate as 0.002 with Adam op-
timizer. The number of epochs is 2000 and 10% of
the training set is used as the validation set for early
stopping when there is no decreasing in validation
set’s loss for 100 consecutive epochs.

5 Results Analysis

5.1 Performance Evaluation

Table 2 presents a comprehensive performance ex-
periment, conducted on the benchmark datasets.
The most bottom row shows the accuracy from our
best models using either max or average pooling.*

Overall, our proposed model significantly out-
performs the baseline models on all eight datasets,
demonstrating the effectiveness of our ME-GCN
on semi-supervised text classification for various
length of text. With in-depth analysis, CNN/LSTM-
Rand is quite low in performance on several
datasets but increases significantly when using pre-
trained embeddings. While TextGCN achieves bet-
ter accuracy than above baselines on most datasets,
the performance is all lower than ME-GCN. This
shows the efficiency of preserving rich informa-
tion using multi-dimensional edge features. The
merit of pre-training stands out with BERT and
TMix, producing better accuracy than the base-
line TextGCN on most datasets. Especially, BERT
achieves the best and second best performance on
MR and Waimai, which are short-text sentiment
analysis datasets. This would be because of the two
aspects of sentiment classification: (1) compared to
topic-specific text classification, sentiment analysis
task may benefit from the pretrained general se-
mantics learned from a large external text; (2) word
order matters for sentiment analysis, which could
be missing in GNNs. Nevertheless, our ME-GCN,
with no external resources, still outperforms those

*The detailed comparison of pooling method variants can
be found in Table 3.

Methods Pretrained | 20NG R8 R52 Ohsumed MR Agnews Twitnltk Waimai(zh)
TFIDF + SVM X 0.2529 0.7246 0.5932 0.1589 0.5884 0.4241 0.5737 0.7521
TFIDF + LR X 0.2633 0.7249 0.6332 0.1798 0.5871 0.5370 0.5791 0.7381
CNN - Rand X 0.0768 0.7219 0.6325 0.1889 0.5641 0.3825 0.5822 0.7784
CNN - Pretrained v 0.2380 0.7428 0.6896 0.2458 0.6005 0.6636 0.6088 0.7926
LSTM - Rand X 0.0545 0.6788 0.4253 0.1319 0.5442 0.3444 0.5458 0.6458
LSTM - Pretrained v 0.0593 0.6919 0.5285 0.0948 0.5933 0.5815 0.6098 0.6663
TextGCN X 0.1188 0.8628 0.4847 0.1612 0.6222 0.7420 0.7806 0.8065
BERT v 0.1347 0.5148 0.6291 0.1464 0.7666 0.7261 0.7024 0.8248
TMix v 0.2286 0.7322 0.6195 0.1721 0.6267 0.8025 0.6111 0.6376
Our ME-GCN X 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Table 2: Test accuracy comparison with baselines on benchmark datasets. The bottom row shows the best test
accuracy from our proposed model using either max pooling or average pooling. The comparison of our model
performance for each dataset using the three pooling methods is provided in Table 3. The second best is underlined.

Pooling Method | 20NG RS R52 Ohsumed MR Agnews Twitnltk Waimai(zh)
Max Pooling 0.2775 0.8473 0.7828 0.2475 0.6811 0.8043 0.8232 0.8393
Avg Pooling 0.2861 0.8679 0.7675 0.2740 0.6658 0.7911 0.8205 0.8303
Min Pooling 0.0424 0.2987 0.2550 0.0294 0.5000 0.2005 0.5000 0.6663

Table 3: Test accuracy of ME-GCN with three different pooling methods, max, average, and min pooling

Learning Methods | 20NG RS R52 Ohsumed MR Agnews Twitnltk Waimai(zh)
Separated Learning | 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393
Shared Learning | 0.1582 0.8016 0.6554 0.2635 0.6575 0.6993 0.7037 0.8137

Table 4: Test accuracy of ME-GCN with two multi-stream learning methods, shared and separated learners.

pertrained models in seven datasets, illustrating
the potential superiority of self-exploration on the
corpus via multi-dimensional edge graph in com-
parison of pretraining on large external resource.

5.2 Learning and Pooling Variant Testing

We compare ME-GCN with three different pooling
approaches (max, average, and min pooling) and
the result is shown in Table 3. Most datasets pro-
duce better results when using max pooling, and
the result with max and average pooling outper-
forms that with min pooling. This is very obvious
because the min pooling captures the minimum
value of each graph component.

We also compare two multi-stream graph learn-
ing methods, including separated and shared stream
learning to examine the effectiveness of ME-GCN
learning with multi-dimensional edge features. Ta-
ble 4 presents that the separated stream learners
significantly outperforms the shared learners. This
shows it is much efficient to learn each dimensional
stream with an individual learning unit and initially
understand the local structure, instead of learning
all global structures at once.

5.3 Impact of Edge Feature Dimension

To evaluate the effect of the dimension size of the
edge features, we tested ME-GCN with different
dimensions. Figure 1 shows the test accuracy of our
ME-GCN model on the four dataset, including RS,

—
0388
3 086
[d
5 084
082 072
avg #: 84.2 avg #: 104.5
180 0.70
10 20 0 0 50 10 Pl 30 a0 50
Edge Feature Dimensions Edge Feature Dimensions
(@) R8 (b) R52
070 090
— —— waimai
068 088
5 066 Z 086
8 8
H H
4 064 4 o84
062 o0&z /
avg #: 18.4 avg #: 15.5
060 0380
0 20 30 0 50 5 0 15 0 5 0
Edge Feature Dimensions Edge Feature Dimensions
(c) MR (d) Waimai(zh)

Figure 1: Test accuracy by varying edge feature dimen-
sions. The bottom right corner shows the average num-
ber of words per document in each corpus.

R52, MR, Waimai(zh). The bottom right corner
for each subgraph includes the average number of
the words per document. We noted that the test
accuracy is related to the average number of words
per document in the corpus. For instance, for ‘MR’
(avg #: 18.4), test accuracy first increases with the
increase of the size of edge feature dimensions,
reaching the highest value at 10; it falls when its
dimension is higher than 15. However, for R8 and
R52 (avg : 84.2 and 104.5), got the highest value at
20 or 25. This is consistent with the intuition that

Word Embedding | 20NG RS R52 Ohsumed MR Agnews Twitnltk Waimai(zh)
Word2Vec 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393
fastText 0.2510 0.8394 0.7783 0.2550 0.6727 0.7812 0.8333 0.8191
GloVe 0.2526 0.8247 0.7835 0.2832 0.6895 0.7628 0.8341 0.8298

Table 5: Test accuracy comparison of our ME-GCN model with different word embedding techniques to train word
node embeddings and word-word multi-dimensional edge features.

80 —40 20 0 B]

(aj Dim =5, second layer

-20 2

(b) i)im =25, second layer

Figure 2: t-SNE visualisation of test set document em-
beddings in AgNews (4 classes). The (a) and (b) show
second layer document embeddings learned by 5 and
25 dimensional node and edge features respectively.

085 ///’ﬁ
08

080
o 075

—#— ME-GCN
TextGCN
=&~ CNN-Pretrained

—— ME-GCN 065
05 TExtGCN
—&~ CNMN-Pretrained

00 01 0z 03 0.0 0l 02 03
Taining set proportion Taining set proportion

(a) R52 (b) Twitter nltk

Figure 3: Test accuracy comparison with different num-
ber of labelled documents.

the average number of words per document in the
corpus should align with the dimension size of the
edge features in ME-GCN. The trend is different
in waimai dataset as it is Chinese, this is because
different languages would have different nature of
choosing the efficient edge feature dimension.

Moreover, in order to analyse the impact of the
edge feature dimension, we present an illustrative
visualisation of the document embeddings learned
by ME-GCN. We use the t-SNE tool (Van der
Maaten and Hinton, 2008) in order to visualise
the learned document embeddings. Figure 2 shows
the visualisation of test set document embeddings
in AgNews learned by ME-GCN (second layer) 5
and 25 dimensional node and edge features. The
AgNews has 4 classes and the average number of
words per document is 35.2. Instead of dim=5,
having dim=25 as edge features would better to
separate them into four classes.

5.4 Impact of Ratio of Labelled Docs

We choose 3 representative methods with the
best performance from Table 2: CNN-Pretrained,
TextGCN and our ME-GCN, in order to study the

impact of the number of labeled documents. Par-
ticularly, we vary the ratio of labelled documents
and compare their performance on the two datasets,
Twitter nltk and R52, that have the smallest num-
ber and largest number of classes. Figure 3 reports
test accuracies with 1%, 10%, and 33% of the R52
and Twitter nltk training set. We note that our ME-
GCN outperforms all other methods consistently.
For instance, ME-GCN achieves a test accuracy
of 0.8232 on Twitter nltk with only 1% training
documents and a test accuracy of 0.8552 on R52
with only 10% training documents which are higher
than other models with even the 33% training doc-
uments. It demonstrates that our method can more
effectively take advantage of the limited labeled
data for text classification

5.5 Comparison of Embedding Variants

ME-GCN apply a Word2Vec CBOW in order to
train the word node embedding and the related
multi-dimensional edge feature. We compare our
model with three different word embedding tech-
niques, Word2 Vec, fastText, and Glove in Table 5.
We noted that using Word2Vec and Glove, word-
based models, is comparatively higher than apply-
ing the fastText, a character n-gram-based model.
This would be affected because the node and edge
of ME-GCN are based on words, not characters.

6 Conclusion

In this study, we introduced the ME-GCN (Multi-
dimensional Edge-enhanced Graph Convolutional
Networks) for semi-supervised text classification,
which takes full advantage of both limited labeled
and large unlabeled data by rich node and edge in-
formation propagation. We propose corpus-trained
multi-dimensional edge features in order to ef-
ficiently handle the distance/closeness between
words and documents as multi-dimensional edge
features, and all graph components are based on
the given text corpus only. ME-GCN demonstrates
promising results by outperforming numerous state-
of-the-art methods on eight semi-supervised text
classification datasets consistently. In the future,
it would be interesting to apply it to other natural
language processing tasks.

References

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1957-1967.

Yixin Cao, Zhiyuan Liu, Chengjiang Li, Juanzi Li, and
Tat-Seng Chua. 2019. Multi-channel graph neural
network for entity alignment. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1452—-1461.

Jiaao Chen, Zichao Yang, and Diyi Yang. 2020. Mix-
text: Linguistically-informed interpolation of hid-
den space for semi-supervised text classification. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2147—
2157.

Xingyuan Chen, Yunqing Xia, Peng Jin, and John Car-
roll. 2015. Dataless text classification with descrip-
tive 1da. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 29.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Liyu Gong and Qiang Cheng. 2019. Exploiting edge
features for graph neural networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9211-9219.

Zhichao Huang, Xutao Li, Yunming Ye, and Michael K.
Ng. 2020. Mr-gcn: Multi-relational graph convolu-
tional networks based on generalized tensor product.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, 1JCAI-
20, pages 1258-1264. International Joint Confer-
ences on Artificial Intelligence Organization. Main
track.

Muhammad Raza Khan and Joshua E Blumenstock.
2019. Multi-gen: Graph convolutional networks
for multi-view networks, with applications to global
poverty. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 606-613.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, pages 1746—-1751.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to doc-
ument distances. In International conference on ma-
chine learning, pages 957-966. PMLR.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188—

1196. PMLR.

Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu, and
Xiaoyong Du. 2018. Analogical reasoning on chi-
nese morphological and semantic relations. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 138—143.

Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and
Xiaoli Li. 2019. Heterogeneous graph attention net-
works for semi-supervised short text classification.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4823—
4832.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping
Lv. 2020. Tensor graph convolutional networks for
text classification. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
8409-8416.

Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei
Han. 2018. Weakly-supervised neural text classifica-
tion. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Manage-

ment, pages 983-992.

Tomas Mikolov, Kai Chen, G. S. Corrado, and J. Dean.
2013. Efficient estimation of word representations
in vector space. In International Conference on
Learning Representations.

Takeru Miyato, Andrew M. Dai, and Ian Goodfel-
low. 2017. Adversarial training methods for semi-
supervised text classification. International Confer-
ence on Learning Representations.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL’05), pages 115-124.

Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. Pte: Pre-
dictive text embedding through large-scale hetero-
geneous text networks. In Proceedings of the 21th
ACM SIGKDD international conference on knowl-
edge discovery and data mining, pages 1165-1174.

Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xi-
aodong He, and Bowen Zhou. 2019. Multi-hop read-
ing comprehension across multiple documents by
reasoning over heterogeneous graphs. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 2704-2713.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Shikhar Vashishth, Manik Bhandari, Prateek Yadav,
Piyush Rai, Chiranjib Bhattacharyya, and Partha
Talukdar. 2019. Incorporating syntactic and seman-
tic information in word embeddings using graph con-
volutional networks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3308-3318.

Nuo Xu, Pinghui Wang, Long Chen, Jing Tao, and
Junzhou Zhao. Mr-gnn: Multi-resolution and dual
graph neural network for predicting structured entity
interactions.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. In International conference on ma-
chine learning, pages 3881-3890. PMLR.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7370-7377.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th Interna-
tional Conference on Neural Information Processing
Systems-Volume 1, pages 649-657.

A Model Architecture

The overall architecture of ME-GCN is presented
in Figure 4. After the paper get accepted, the archi-

tecture figure will be moved to the main content.

B Hyperparemeter Search

For each dataset we use grid search to find the
best set of hyperparameters and select the base
model based on the average accuracy by running
each model for 5 times. The number of stream:
5,10,20,25,30,40,50. The document edge thresh-
old: 3,5,10,15. The pooling method: max pooling,
min pooling, average pooling. The number of hy-
perparameter search trials is 72(= 6 * 4 * 3) for
each dataset. The best hyperparameters for each
dataset and their average accuracy on test set shows
in Table 6. And the trend of validation performance
is very similar to the testing performance trend.

C Running Details

All the models are trained by using 16 In-
tel(R) Core(TM) 19-9900X CPU @ 3.50GHz and
NVIDIA Titan RTX 24GB. The number of parame-
ters for each part of the model is: Word2vec: 2UT,
Doc2vec: 2T(U + K), ME-GCN: T2dlL (1 + C).
And Table 7 shows the number of parameters and
training time when using the default hyperparame-
ters.

D Links Related to Datasets and Baseline
Models

The links for Datasets:

Doc2Vectrained by the given corpus

A
A
#
Py 1
/
s
y
i/
/

tanh 7]
m tark

i L
03 -05|
»

>

v

/ /
y ’

i
I

Multi-Stream
Learning

Qe

ing

Figure 4: Model Architecture

10

20NG RS R52 | Ohsumed | MR | Agnews | Twit nltk | Waimai(zh)
Stream 30 20 25 30 10 20 25 30
Document Threshold 15 10 15 5 5 5 3 3
Pooling Method avg avg max avg max avg max max
Accuracy 0.2861 | 0.8679 | 0.7828 | 0.2740 | 0.6811 | 0.8043 0.8232 0.8393

Table 6: Best hyperparameters for each dataset

20NG RS R52 Ohsumed MR Agnews | Twit nltk | Waimai(zh)
Word2vee # Parameters 304,750 | 217,650 | 230,950 432,950 225,050 | 268,000 | 31,700 548,950
Running Time(s) 118 25 76 140 71 83 20 74
Doc2vec # Parameters 454,750 | 367,650 | 380,950 582,950 758,150 | 568,000 | 181,700 1,148,300
Running Time(s) 104 35 118 272 270 140 29 312
ME-GCN # Parameters 328,125 | 140,625 | 828,125 375,000 46,375 78,125 46,875 46,375
Running Time(s) 198 16 164 286 120 612 14 610
Total # Parameters 1,087,625 | 725,925 | 1,440,025 | 1,390,900 | 1,030,075 | 914,125 | 260,275 1,744,125
Running Time(s) 420 76 358 698 461 835 63 996

Table 7: Number of Parameters and Running time for each dataset

* 20NG: http://qwone.com/~jason/20Newsgro

ups/

* R8, R52: https://www.cs.umb.edu/~smimar

og/textmining/datasets/

* Chinese Word Vectors: https://github.com

/Embedding/Chinese- Word- Vectors

The tokenizer used:

* English Tokenizer - NLTK: https://www.nl
tk.org/api/nltk.tokenize.html

* MR: http://www.cs.cornell.edu/people/pabo

/movie-review-data/

* Chinese Tokenizer - Jieba: https://github.c
om/fxsjy/jieba

e Ohsumed: http://disi.unitn.it/moschitti/corp

ora.htm

* Agnews: http://www.di.unipi.it/~gulli/AG_c
orpus_of_news_articles

» Twitter nltk: http://nltk.org/howto/twitter.h

tml

e Waimai: https://github.com/SophonPlus/Ch

ineseNIpCorpus/

The links for Baseline Models:

* TextCNN: https://github.com/DongjunLee/te

xt-cnn-tensorflow

* TextGCN: https://github.com/yao8839836/te

Xt_gcen

* BERT BASE: https://huggingface.co/bert-ba

se-uncased

* Tmix: https://github.com/GT-SALT/MixText

¢ Chinese BERT: https://huggingface.co/bert-

base-chinese

* GloVe-pretrained: https://nlp.stanford.edu/p

rojects/glove/

11

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
https://www.cs.umb.edu/~smimarog/textmining/datasets/
https://www.cs.umb.edu/~smimarog/textmining/datasets/
https://www.cs.umb.edu/~smimarog/textmining/datasets/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://disi.unitn.it/moschitti/corpora.htm
http://disi.unitn.it/moschitti/corpora.htm
http://disi.unitn.it/moschitti/corpora.htm
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles
http://nltk.org/howto/twitter.html
http://nltk.org/howto/twitter.html
http://nltk.org/howto/twitter.html
https://github.com/SophonPlus/ChineseNlpCorpus/
https://github.com/SophonPlus/ChineseNlpCorpus/
https://github.com/SophonPlus/ChineseNlpCorpus/
https://github.com/DongjunLee/text-cnn-tensorflow
https://github.com/DongjunLee/text-cnn-tensorflow
https://github.com/DongjunLee/text-cnn-tensorflow
https://github.com/yao8839836/text_gcn
https://github.com/yao8839836/text_gcn
https://github.com/yao8839836/text_gcn
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/GT-SALT/MixText
https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-chinese
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/Embedding/Chinese-Word-Vectors
https://github.com/Embedding/Chinese-Word-Vectors
https://github.com/Embedding/Chinese-Word-Vectors
https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
https://github.com/fxsjy/jieba
https://github.com/fxsjy/jieba
https://github.com/fxsjy/jieba

