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Abstract

Compared to sequential learning models,001
graph-based neural networks exhibit excel-002
lent ability in capturing global information003
and have been used for semi-supervised learn-004
ing tasks, including citation network analysis005
or text classification. However, most GCNs006
are designed with the single-dimensional edge007
feature and neglected to utilise the rich008
edge information about graphs. In this009
paper, we introduce the ME-GCN (Multi-010
dimensional Edge-enhanced Graph Convolu-011
tional Networks) for semi-supervised text clas-012
sification. A text graph for an entire corpus is013
firstly constructed to describe the undirected014
and multi-dimensional relationship of word-015
to-word, document-document, and word-to-016
document. The graph is initialised with corpus-017
trained multi-dimensional word and document018
node representation, and the relations are rep-019
resented according to the distance of those020
words/documents nodes. Then, the generated021
graph is trained with ME-GCN, which consid-022
ers the edge features as multi-stream signals,023
and each stream performs a separate graph con-024
volutional operation. Our ME-GCN can in-025
tegrate a rich source of graph edge informa-026
tion of the entire text corpus. The results027
have demonstrated that our proposed model028
has significantly outperformed the state-of-the-029
art methods across eight benchmark datasets.030

1 Introduction031

Deep Learning models, such as Recurrent Neural032

Networks (RNN) or Transformer, have performed033

well and have been widely used for text classifi-034

cation. However, the performance is not always035

satisfactory when utilising small labelled datasets.036

In many practical scenarios, the labelled dataset is037

very scarce as human labelling is time-consuming038

and may require domain knowledge. There is a039

pressing need for studying semi-supervised text040

classification with a relatively small number of la-041

belled training data in deep learning paradigm. For042

the successful semi-supervised text classification, it 043

is crucial to maximize effective utilization of struc- 044

tural and feature information of unlabelled data. 045

Graph Neural Networks (GNN) have recently 046

received lots of attention as it can analyse rich 047

relational structure, prioritize global features ex- 048

ploitation, and preserve global structure of a graph 049

in graph embeddings. Due to these benefit, there 050

have been some successful attempts to revisit semi- 051

supervised learning with Graph Convolutional Net- 052

works (GCN) (Kipf and Welling, 2017). TextGCN 053

(Yao et al., 2019) initialises the whole text corpus 054

as a document-word graph and applies GCN for 055

text classification. It shows potential of GCN-based 056

semi-supervised text classification. Linmei et al. 057

(2019) worked on semi-supervised short text clas- 058

sification using GCN with topic-entity, and Liu 059

et al. (2020) proposed tensorGCN with semantic, 060

syntactic, and sequential information. 061

One major problem in those existing GCN-based 062

text classification models is that edge features are 063

restricted to be one-dimensional, which are the in- 064

dication about whether there is edge or not (e.g. 065

binary connectedness) or often one-dimensional 066

real-value representing similarities (e.g. pmi, tf- 067

idf). Instead of being a binary indicator variable 068

or a single-dimensional value, edge features can 069

possess rich information and fully incorporated by 070

using multi-dimensional vectors. Addressing this 071

problem is likely to benefit several graph-based 072

classification problems but particularly important 073

for the text classification task. This is because 074

the relationship between words and documents can 075

be better represented in a multi-dimensional vec- 076

tor space rather than a single value. For example, 077

word-based vector space models embed the words 078

in a vector space where similarly defined words 079

are mapped near to each other. Rather than us- 080

ing the lexical-based syntactic parsers or additional 081

resources, words that share semantic or syntactic 082

relationships will be represented by vectors of sim- 083
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ilar magnitude and be mapped in close proximity084

to each other in the word embedding. Using this085

multi-dimensional word embedding as node and086

edge features, it would be more efficient to analyse087

rich relational information and explore global struc-088

ture of a graph. Then, what would be the best way089

to exploit edge features in a text graph convolu-090

tional network? According to the recently reported091

articles (Gong and Cheng, 2019; Khan and Blumen-092

stock, 2019; Huang et al., 2020; Liu et al., 2020),093

more rich information should be considered in the094

relations in the graph neural networks.095

In this paper, we propose a new multi-096

dimensional edge enhanced text graph convolu-097

tional networks (ME-GCN), which is most suitable098

for the semi-supervised text classification. Note099

that the focus of our semi-supervised text classifica-100

tion task is on small proportion of labelled text doc-101

uments with no other resource, i.e. no pre-trained102

word embedding or language model, syntactic tag-103

ger or parser.104

We construct a single textual large graph from an105

entire corpus, which contains words and documents106

as nodes. The graph describes the undirected and107

multi-dimensional relationship of word-to-word,108

document-document, and word-to-document. Each109

word and document are initialised with corpus-110

trained multi-dimensional word and document em-111

bedding, and the relations are represented based112

on the semantic distance of those representations.113

Then, the generated graph is trained with ME-114

GCN, which considers edge features as multi-115

stream signals, and each stream performs a sep-116

arate graph convolutional operation. We conduct117

experiments on several semi-supervised text classi-118

fication benchmark datasets. The proposed model119

can achieve strong text classification performance120

with a small proportion of labelled documents with121

no additional resources. The main contributions122

are as follows:123

1) To the best of our knowledge, this is the first124

attempt to apply multi-dimensional edge features125

on GNN for text classification.126

2) ME-GCN1 is proposed to use corpus-trained127

multi-dimensional word and document-based edge128

features for the semi-supervised text classification.129

3) Experiments are conducted on several bench-130

mark datasets to illustrate the effectiveness of ME-131

GCN for semi-supervised text classification.132

1An overview architecture is presented in the Appendix.

2 Related Works 133

2.1 Semi-supervised text classification 134

Due to the high cost of human labelling and the 135

scarcity of fully-labelled data, deep learning based 136

semi-supervised models have received lots of atten- 137

tion in text classification. Latent variable models 138

(Chen et al., 2015) apply topic models by user- 139

oriented seed information and infer the documents’ 140

labels based on category-topic assignment. The 141

embedding-based model (Tang et al., 2015; Meng 142

et al., 2018) utilise seed information to derive text 143

(word or document) embeddings for documents 144

and labels for text classification. Yang et al. (2017) 145

leveraged sequence-to-sequence Variational Au- 146

toEncoders (VAEs) model on text classification and 147

sequential labelling. Miyato et al. (2017) utilized 148

adversarial and virtual adversarial training to the 149

text domain by applying perturbations to the word 150

embeddings. Recently, graph convolutional net- 151

works (GCN) have been popular in semi-supervised 152

learning as it shows superior global structure un- 153

derstanding ability.(Kipf and Welling, 2017). 154

2.2 GNN for Text Classification 155

Graph Neural Networks have received lots of at- 156

tention and successfully used in various NLP tasks 157

(Bastings et al., 2017; Tu et al., 2019; Cao et al., 158

2019; Xu et al.). Yao et al. (2019) proposed the Text 159

Graph Convolutional Networks by applying a basic 160

GCN (Kipf and Welling, 2017) to the text classifica- 161

tion task. In their work, a text graph for the whole 162

corpus is constructed; word and document nodes 163

are initialised with one-hot representation and edge 164

features are represented as one-dimensional real 165

values, such as PMI, TF-IDF. Several studies have 166

attempted multiple different graph alignments us- 167

ing knowledge graph or semantic/syntactic graph. 168

Vashishth et al. (2019) applied GCN to incorpo- 169

rate syntactic/semantic information for word em- 170

bedding training. Cao et al. (2019) proposed an 171

alignment-oriented knowledge graph embedding 172

for entity alignment. TensorGCN (Liu et al., 2020) 173

proposed semantic, syntactic, and sequential con- 174

textual information. In their framework, multi- 175

ple aspect graphs are constructed from external 176

resources, and those graph are jointly trained. How- 177

ever, our model ME-GCN constructs and trains 178

multi-dimensional node and edge features alone 179

based on the given text corpus. 180

2



3 ME-GCN181

We propose the Multi-dimensional Edge-enhanced182

Graph Convolutional Networks (ME-GCN) for183

semi-supervised text classification. Note that all184

graph components are only based on the given text185

corpus without using any external resources. We186

utilize the GCN as a base component, due to its187

simplicity and effectiveness. In this section, we188

first give a brief overview of GCN and introduce189

details of how to construct our corpus-based textual190

graph from a given text corpus. Finally, we present191

ME-GCN learning model.192

GCN Graph A GCN (Kipf and Welling, 2017)193

is a generalised version of the convolutional neural194

networks for semi-supervised learning that operates195

directly on the graph-structured data and induces196

embedding vectors of nodes based on properties197

of their neighbourhoods. Consider a graph G =198

(V,E,A), where V (|V | = N) is the set of graph199

nodes, E is the set of graph edges, andA ∈ RN×N200

is the graph adjacency matrix.201

3.1 Textual Graph Construction202

We first describe how to construct a textual graph203

that contains word/document node representation204

and multi-dimensional edge features for a whole205

text corpus. We apply a straightforward textual con-206

struction approach that treats words and documents207

as nodes in the graph. Unlike Yao et al. (2019), we208

have three types of edges, namely word-document209

edge, word-word edge, and document-document210

edge with the aim to investigate all possible rela-211

tions between nodes. Formally, we define a ME-212

GCN graph GME = (V,E(t),ME(t)), where t213

denotes the tth dimensional edge, V (|V | = N) is214

the set of graph nodes of word/document, E(t) are215

the set of graph edges, which can be one of the216

three types, and ME(t) is the set of adjacency ma-217

trix at the tth dimension. The details of node and218

edge features construction are presented as follows.219

3.1.1 Textual Node Construction220

From an entire textual corpus, we construct word221

and document nodes in a graph so that the global222

word and document distance can be explicitly mod-223

eled and graph convolution can be easily adapted.224

ME-GCN considers the word and document nodes225

as components for preserving rich information and226

representing the global structure of a whole cor-227

pus, which can fully support for the successful228

semi-supervised text classification. With this in229

mind, ME-GCN trains word/node feature by us- 230

ing a Word2Vec (Mikolov et al., 2013) for word 231

nodes, and a Doc2Vec (Le and Mikolov, 2014) for 232

document nodes. For instance, Word2Vec takes as 233

its input a whole corpus of words, and the trained 234

word vectors are positioned in a vector space such 235

that words that share common contexts in the cor- 236

pus are located in close proximity to one another 237

in the space. This is well-aligned with the role 238

of graph neural networks, representing the global 239

structure of the corpus, and preserving rich seman- 240

tic information of the corpus. Most importantly, 241

those word/document embeddings are distributed 242

representations of text in an T -dimensional space 243

so the distance between words and documents can 244

be represented as a multi-dimensional vector. For- 245

mally, the word/document node features in ME- 246

GCN are initialised as follows. Note that the nega- 247

tive sampling is applied to reduce the training time. 248

Word Node Construction We train the 249

Word2Vec CBOW (Mikolov et al., 2013) using 250

context words to predict the centre word. Assume 251

we have a given text corpus consisting of K docu- 252

ments and U unique words. The input is a set of 253

context words Xik in document k ∈ K encoded as 254

one-hot vector of size U . Then the hidden layer H 255

and output layer Output are formulated in equa- 256

tion (1) and (2), in which WU×T and W ′T×U are 257

two projection matrix. After training, we extract 258

the U vectors of dimension T from the updated 259

matrix WU×T representing the corresponding U 260

unique words in the whole corpus. 261

H =
C∑
i=1

XikWU×T (1) 262

Output = HW ′T×U (2) 263

Document Node Construction Doc2Vec CBOW 264

(Le and Mikolov, 2014) is essentially the same as 265

Word2Vec. In Doc2Vec, we feed the context words 266

Xik together with the current document k to the 267

model, which is also encoded as one-hot vector 268

based on the document id, and the vector size be- 269

comes Û = U +K. We have the projection matrix 270

WÛ×T containing U +K vectors. After training, 271

those K vectors in the updated WT×Û are used for 272

representing the corresponding K document. 273

H = DkWÛ×T
+

C∑
i=1

XikWÛ×T (3) 274

Output = HW ′
T×Û (4) 275

3



3.1.2 Multi-dimensional Edge Construction276

In this section, we describe how to construct a277

multi-dimensional edge feature in a graph. A278

traditional textual graph edge (Yao et al., 2019)279

was based on word occurrence in documents280

(document-word edges), and word co-occurrence281

in the whole corpus (word-word edges), however,282

the occurrence information is not enough to extract283

how close two pieces of text are in both surface284

proximity and meaning. According to Mikolov285

et al. (2013); Kusner et al. (2015), the distance286

between word/document embeddings learn seman-287

tically meaningful representations for words from288

local co-occurrences in sentences. Inspired by this,289

we utilise the distance between word/document290

embeddings to preserve the rich semantic infor-291

mation captured edges, which are also presented292

as multi-dimensional vectors. To represent all293

possible edge types, we propose three types of294

edges: word-word edges, document-document295

edges, and word-document edges. Our goal is296

to incorporate the semantic similarity between in-297

dividual node pairs (each unique word and docu-298

ment) into multi-dimensional edge features. One299

such measure for word/document node similar-300

ity is provided by their Euclidean distance in the301

Word2Vec or Doc2Vec embedding space. We sep-302

arately use each dimension space in the node fea-303

ture (Word2Vec/Dec2Vec) for representing each304

of the dimension in the multi-dimensional node305

edge. Thus, we will have T dimensional edges306

between nodes of T dimensional features and each307

t ∈ {1, 2, ..., T} is represented by one dimensional308

Euclidean distance calculation in the tth dimen-309

sional space. This edge calculation method is ap-310

plied to word-word and doc-doc edge features.311

Word-Word Edge Feature We draw on the312

learned semantics in each feature dimension of313

the word embedding of size T to calculate the314

edge weight for each dimension. Concretely,315

the T -dimensional word-word edge E(t)
wi,wj , t ∈316

{1, 2, ..., T} between word i and word j is formu-317

lated as in equation (5), in which W (t)
i and W (t)

j318

represents the feature value at the dimension t of319

the word embedding Wi for word i and Wj for320

word j respectively. The denominator calculates321

the distance of the two words regarding dimension322

t and tanh(−1) is used for normalization.323

E(t)
wi,wj

= tanh
1

|W (t)
i −W

(t)
j |

(5)324

Doc-Doc Edge Feature The document-document 325

edge is constructed in a way similar to the word- 326

word edge. As is shown in equation (6), the T - 327

dimensional document-document edge E(t)
di,dj

is 328

calculated based on the normalized Euclidean dis- 329

tance between the values D(t)
i and D

(t)
j at each 330

dimension t of the features for document i and j. 331

E
(t)
di,dj

= tanh
1

|D(t)
i −D

(t)
j |

(6) 332

Word-Doc Edge Feature We use the same calcula- 333

tion method for a single-dimension word-document 334

edge as in TextGCN while repeating it for each 335

dimension t. Thus, the T -dimensional word- 336

document edge E(t)
wi,dj

is simply represented as the 337

TF-IDF value of word i and document j. This is 338

repeated for each dimension t, as is formulated in 339

equation (7). We also found using TF-IDF weight 340

is better than using term frequency only. 341

E
(t)
wi,dj

= TF-IDFwi,dj (7) 342

Formally, the multi-dimensional edge weights 343

between node i and j is defined as follows. 344

ME
(t)
ij =



E
(t)
wi,wj wi, wj are words

E
(t)
di,dj

di, dj are docs, Wdi∩dj ≥ u

E
(t)
wi,dj

wi is word, dj is doc
1 i = j

0 otherwise

(8) 345

We noted that the threshold u for the doc-doc edges 346

is not compulsory but efficient for the better com- 347

putation. The detailed threshold is in Section 4.3. 348

3.2 ME-GCN Learning 349

After constructing the multi-dimensional edge en- 350

hanced text graph, we focus on applying effective 351

learning framework to perform GCN on the textual 352

graph with multi-dimensional edge features. 353

The traditional GCN learning takes into the ini- 354

tial input matrixH(0) ∈ RN×d0 containingN node 355

features of size d0. Then the propagation through 356

layers is made based on the rule in equation (9), 357

which takes into consideration both node features 358

and the graph structure in terms of connected edges. 359

H(l+1) = f(H(l), A) = σ(ÂH(l)W (l)) (9) 360

The l and (l+1) represents the two subsequent lay- 361

ers, Â = D̃−
1
2 ÃD̃−

1
2 is the normalized symmetric 362

adjacency matrix Ã = A+ I (I is an identity ma- 363

trix for including self-connection), D̃ is the diago- 364

nal node degree matrix with D̃(i, i) = ΣjÃ(i, j), 365

and W (l) ∈ Rdl×dl+1 is a layer-specific train- 366

able weight matrix for lth layer. dl and dl+1 in- 367
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dicates the node feature dimension for lth layer368

and (l + 1)th respectively. σ denotes a non-linear369

activation function for each layer such as Leaky370

ReLu/ReLU except for the output layer where soft-371

max is normally used for the classification.372

Our goal is to represent the node representation373

by aggregating neighbour information with each374

edge features in a multi-stream manner. Hence, we375

generalize the traditional GCN learning approach376

to perform multi-stream(MS) learning for the multi-377

dimensional edge enhanced graph. The overall MS378

learning procedure is in equation (10), for each379

node feature in H(l) ∈ RN×dl , we will apply the380

multi-stream GCN learning fMS that formulates t381

streams of traditional GCN learning through the t382

dimensions of the connected edge, resulting in the383

multi-stream hidden feature H(l+1)
t ∈ RN×d

(l+1)
ms384

at (l+ 1)th layer. Here t ∈ {1, 2, ..., T} and d(l+1)
ms385

is the multi-stream feature size for each edge di-386

mension at this layer. Then a multi-stream aggre-387

gation function φMS is applied over the t streams,388

producing the feature matrix H(l+1) ∈ RN×d(l+1)389

that contains the aggregated feature for each node390

in N . Here we use concatenation function as391

φMS for the hidden layer in the multi-stream ag-392

gregation, leading us to have dl+1 = t ∗ d(l+1)
ms .393

Specifically, for the output layer, pooling method394

is used instead and the details are provided in later395

paragraph. Accordingly, the updated propagation396

rule is provided in equation (11). Unlike the origi-397

nal GCN propagation in equation (9), we have T398

streams of GCN learning in each layer, sharing the399

same input H(l) and propagating based on the T400

adjacency matrices ME(t), which involves a set of401

layer and stream specific trainable weight matrices402

denoted asW (l)(t). We also tried the shared-stream403

learning that shares the trainable weight matrices404

across each stream but found that separate stream-405

specific trainable weight matrices have better per-406

formance. The comparison of the two learning407

mechanisms is provided in Section 5.2.408

H(l) fMS−−−→ H
(l+1)
t

φMS−−−→ H(l+1) (10)409
410

H(l+1) = φMS(fMS(H(l),ME(t))) (11)411

= φMS(σ(M̂E
(t)
H(l)W (l)(t)))412

3.2.1 Pooling413

Unlike the hidden layers where we use414

concatenation to aggregate the node features over415

each stream to continue propagation to next layer,416

we instead apply the pooling method at the output 417

layer to further synthesize the multi-stream features 418

of each node in order to do the final classification. 419

Equation (12) formulizes max pooling, in which 420

H
(lO)
t ∈ RN×d

lO
ms , t ∈ {1, 2, ..., T} denotes the 421

T streams of node features for N nodes at the 422

output layer lO, and here dlOms is the node feature 423

dimension that equals to the classification label 424

number C. Through max pooling, we select 425

the best valued features over the T streams for 426

each node in N before the final classification. We 427

also tried other pooling methods and provide the 428

comparison in Section 5.2. 429

poolingmax = max
1≤t≤T

(H
(lO)
t ) (12) 430

4 Evaluation Setup 431

We evaluate the performance of our ME-GCN on 432

semi-supervised text classification, and carefully 433

examine the effectiveness of corpus-based multi- 434

dimensional edge features. 435

4.1 Baselines2 436

We aim to compare ME-GCN with state-of-the-art 437

semi-supervised text classification models, which 438

do not use any external resources. Additionally, 439

we also include four baseline models, which use 440

pretrained embedding or language model: CNN- 441

Pretrained, LSTM-Pretrained, BERT, and TMix. 442

1)TF-IDF+LR, 2)TF-IDF+SVM: Term fre- 443

quency inverse document frequency for feature en- 444

gineering with Logistic Regression or SVM with 445

rbf kernel. 3)CNN-Rand, 4)-Pretrained: Text- 446

CNN (Kim, 2014) is used as the classifier. Both 447

CNN-Rand using random initialized word embed- 448

ding and CNN-Pretrained using pretrained word 449

embedding are evaluated. We used English Glove- 450

pretrained and Chinese Word Vectors (Li et al., 451

2018) for Chinese dataset-zh. 5)LSTM-Rand, 452

6)-Pretrained: We apply the same set-up as the 453

CNN model, but with Long Short-Term Memory 454

(LSTM). 7)TextGCN: We follow the same hyper- 455

parameters of the TextGCN (Yao et al., 2019). 456

8)BERT: BERT (Devlin et al., 2018) is a pre- 457

trained model which has achieved good perfor- 458

mance in text classification. We use the BERTBASE 459

in our experiments (‘bert-base-chinese’ model 460

from huggingface is used for Chinese). 9)TMix: 461

TMix(Chen et al., 2020) generates new training 462

text data by interpolating over labeled text encoded 463

2All baseline related links are provided in Appendix D.
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Datasets # Doc # Words # Node # Class Avg. length
20NG 3,000 6,095 9,095 20 249.4

R8 3,000 4,353 7,353 8 84.2
R52 3,000 4,619 7,619 52 104.5

Ohsumed 3,000 8,659 11,659 23 132.6
MR 10,662 4,501 15,163 2 18.4

Agnews 6,000 5,360 11,360 4 35.2
Twit nltk 3,000 634 3,634 2 11.5

Waimai(zh) 11,987 10,979 22,966 2 15.5

Table 1: The summary statistics of datasets

using BERT hidden representation and train on the464

generated text data for text classification. We use465

the default setting provided in the official github.466

4.2 Dataset3467

We evaluated our experiments on five widely used468

text classification benchmark datasets (Yao et al.,469

2019), 20NG, R8, R52, MR and Ohsumed, and470

three additional semi-supervised text classification471

datasets (Linmei et al., 2019), Agnews, Twitter nltk472

and Waimai. All the data is split based on the ex-473

treme low resource text classification enviornment-474

1% training and 99% test set. The summary statis-475

tics of the datasets can be found in Table 1. For476

the data sample selection, we randomly select them477

but the class distribution is followed by the original478

datasets. 1)20NG is a 20-class news classification479

dataset and we select 3,000 samples from the origi-480

nal dataset. 2)R8, 3)R52 are from Reuters which481

is a topic classification dataset with 8 classes and482

52 classes. 3,000 samples from each dataset are483

selected. 4)MR(Pang and Lee, 2005) is a binary484

classification dataset about movie comments and485

we use all samples from the dataset. 5)Ohsumed486

is a medical dataset with 23 classes, and we select487

3,000 samples from the original dataset. 6)Ag-488

news(Zhang et al., 2015) is a 4-class news clas-489

sification dataset and 6,000 samples are selected.490

7)Twitter nltk is a binary classification sentiment491

analysis from Twitter, we sampled 1,500 positive492

samples and 1,500 test samples from the original493

dataset. 8)Waimai is a binary sentiment analy-494

sis dataset about food delivery service comments495

from a Chinese online food ordering platform. The496

dataset is in Chinese and pre-tokenized. We use all497

samples from the original dataset.498

4.3 Settings499

Before training, words occurring no more than 5500

times have been excluded. Both word2vec and501

Dec2vec are trained on the corpus we get using502

gensim package with window_size = 5 and503

3Source links for all datasets are provided in Appendix D.

iter = 200. The initial feature dimension for node 504

and document is set to d0 = 25, which is same 505

to the multi-dimension number for edge features 506

and multi-stream number T in ME-GCN learn- 507

ing. Different multi-stream numbers are tested and 508

discussed in 5.3. The threshold u = 5 is used 509

for document-document edge construction. We 510

use two-layers of multi-stream GCN learning with 511

dl1ms = 25 (thus dl1 = 625) for the first multi- 512

stream GCN layer and dlOms = C(no. of label in the 513

datasets) for the output layer. In the training pro- 514

cess, following Liu et al. (2020), we use dropout 515

rate as 0.5 and learning rate as 0.002 with Adam op- 516

timizer. The number of epochs is 2000 and 10% of 517

the training set is used as the validation set for early 518

stopping when there is no decreasing in validation 519

set’s loss for 100 consecutive epochs. 520

5 Results Analysis 521

5.1 Performance Evaluation 522

Table 2 presents a comprehensive performance ex- 523

periment, conducted on the benchmark datasets. 524

The most bottom row shows the accuracy from our 525

best models using either max or average pooling.4 526

Overall, our proposed model significantly out- 527

performs the baseline models on all eight datasets, 528

demonstrating the effectiveness of our ME-GCN 529

on semi-supervised text classification for various 530

length of text. With in-depth analysis, CNN/LSTM- 531

Rand is quite low in performance on several 532

datasets but increases significantly when using pre- 533

trained embeddings. While TextGCN achieves bet- 534

ter accuracy than above baselines on most datasets, 535

the performance is all lower than ME-GCN. This 536

shows the efficiency of preserving rich informa- 537

tion using multi-dimensional edge features. The 538

merit of pre-training stands out with BERT and 539

TMix, producing better accuracy than the base- 540

line TextGCN on most datasets. Especially, BERT 541

achieves the best and second best performance on 542

MR and Waimai, which are short-text sentiment 543

analysis datasets. This would be because of the two 544

aspects of sentiment classification: (1) compared to 545

topic-specific text classification, sentiment analysis 546

task may benefit from the pretrained general se- 547

mantics learned from a large external text; (2) word 548

order matters for sentiment analysis, which could 549

be missing in GNNs. Nevertheless, our ME-GCN, 550

with no external resources, still outperforms those 551

4The detailed comparison of pooling method variants can
be found in Table 3.
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Methods Pretrained 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
TFIDF + SVM 7 0.2529 0.7246 0.5932 0.1589 0.5884 0.4241 0.5737 0.7521
TFIDF + LR 7 0.2633 0.7249 0.6332 0.1798 0.5871 0.5370 0.5791 0.7381
CNN - Rand 7 0.0768 0.7219 0.6325 0.1889 0.5641 0.3825 0.5822 0.7784
CNN - Pretrained 3 0.2380 0.7428 0.6896 0.2458 0.6005 0.6636 0.6088 0.7926
LSTM - Rand 7 0.0545 0.6788 0.4253 0.1319 0.5442 0.3444 0.5458 0.6458
LSTM - Pretrained 3 0.0593 0.6919 0.5285 0.0948 0.5933 0.5815 0.6098 0.6663
TextGCN 7 0.1188 0.8628 0.4847 0.1612 0.6222 0.7420 0.7806 0.8065
BERT 3 0.1347 0.5148 0.6291 0.1464 0.7666 0.7261 0.7024 0.8248
TMix 3 0.2286 0.7322 0.6195 0.1721 0.6267 0.8025 0.6111 0.6376
Our ME-GCN 7 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Table 2: Test accuracy comparison with baselines on benchmark datasets. The bottom row shows the best test
accuracy from our proposed model using either max pooling or average pooling. The comparison of our model
performance for each dataset using the three pooling methods is provided in Table 3. The second best is underlined.

Pooling Method 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Max Pooling 0.2775 0.8473 0.7828 0.2475 0.6811 0.8043 0.8232 0.8393
Avg Pooling 0.2861 0.8679 0.7675 0.2740 0.6658 0.7911 0.8205 0.8303
Min Pooling 0.0424 0.2987 0.2550 0.0294 0.5000 0.2005 0.5000 0.6663

Table 3: Test accuracy of ME-GCN with three different pooling methods, max, average, and min pooling

Learning Methods 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Separated Learning 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Shared Learning 0.1582 0.8016 0.6554 0.2635 0.6575 0.6993 0.7037 0.8137

Table 4: Test accuracy of ME-GCN with two multi-stream learning methods, shared and separated learners.

pertrained models in seven datasets, illustrating552

the potential superiority of self-exploration on the553

corpus via multi-dimensional edge graph in com-554

parison of pretraining on large external resource.555

5.2 Learning and Pooling Variant Testing556

We compare ME-GCN with three different pooling557

approaches (max, average, and min pooling) and558

the result is shown in Table 3. Most datasets pro-559

duce better results when using max pooling, and560

the result with max and average pooling outper-561

forms that with min pooling. This is very obvious562

because the min pooling captures the minimum563

value of each graph component.564

We also compare two multi-stream graph learn-565

ing methods, including separated and shared stream566

learning to examine the effectiveness of ME-GCN567

learning with multi-dimensional edge features. Ta-568

ble 4 presents that the separated stream learners569

significantly outperforms the shared learners. This570

shows it is much efficient to learn each dimensional571

stream with an individual learning unit and initially572

understand the local structure, instead of learning573

all global structures at once.574

5.3 Impact of Edge Feature Dimension575

To evaluate the effect of the dimension size of the576

edge features, we tested ME-GCN with different577

dimensions. Figure 1 shows the test accuracy of our578

ME-GCN model on the four dataset, including R8,579

(a) R8 (b) R52

(c) MR (d) Waimai(zh)

Figure 1: Test accuracy by varying edge feature dimen-
sions. The bottom right corner shows the average num-
ber of words per document in each corpus.

R52, MR, Waimai(zh). The bottom right corner 580

for each subgraph includes the average number of 581

the words per document. We noted that the test 582

accuracy is related to the average number of words 583

per document in the corpus. For instance, for ‘MR’ 584

(avg #: 18.4), test accuracy first increases with the 585

increase of the size of edge feature dimensions, 586

reaching the highest value at 10; it falls when its 587

dimension is higher than 15. However, for R8 and 588

R52 (avg : 84.2 and 104.5), got the highest value at 589

20 or 25. This is consistent with the intuition that 590
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Word Embedding 20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
Word2Vec 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

fastText 0.2510 0.8394 0.7783 0.2550 0.6727 0.7812 0.8333 0.8191
GloVe 0.2526 0.8247 0.7835 0.2832 0.6895 0.7628 0.8341 0.8298

Table 5: Test accuracy comparison of our ME-GCN model with different word embedding techniques to train word
node embeddings and word-word multi-dimensional edge features.

(a) Dim = 5, second layer (b) Dim = 25, second layer

Figure 2: t-SNE visualisation of test set document em-
beddings in AgNews (4 classes). The (a) and (b) show
second layer document embeddings learned by 5 and
25 dimensional node and edge features respectively.

(a) R52 (b) Twitter nltk

Figure 3: Test accuracy comparison with different num-
ber of labelled documents.

the average number of words per document in the591

corpus should align with the dimension size of the592

edge features in ME-GCN. The trend is different593

in waimai dataset as it is Chinese, this is because594

different languages would have different nature of595

choosing the efficient edge feature dimension.596

Moreover, in order to analyse the impact of the597

edge feature dimension, we present an illustrative598

visualisation of the document embeddings learned599

by ME-GCN. We use the t-SNE tool (Van der600

Maaten and Hinton, 2008) in order to visualise601

the learned document embeddings. Figure 2 shows602

the visualisation of test set document embeddings603

in AgNews learned by ME-GCN (second layer) 5604

and 25 dimensional node and edge features. The605

AgNews has 4 classes and the average number of606

words per document is 35.2. Instead of dim=5,607

having dim=25 as edge features would better to608

separate them into four classes.609

5.4 Impact of Ratio of Labelled Docs610

We choose 3 representative methods with the611

best performance from Table 2: CNN-Pretrained,612

TextGCN and our ME-GCN, in order to study the613

impact of the number of labeled documents. Par- 614

ticularly, we vary the ratio of labelled documents 615

and compare their performance on the two datasets, 616

Twitter nltk and R52, that have the smallest num- 617

ber and largest number of classes. Figure 3 reports 618

test accuracies with 1%, 10%, and 33% of the R52 619

and Twitter nltk training set. We note that our ME- 620

GCN outperforms all other methods consistently. 621

For instance, ME-GCN achieves a test accuracy 622

of 0.8232 on Twitter nltk with only 1% training 623

documents and a test accuracy of 0.8552 on R52 624

with only 10% training documents which are higher 625

than other models with even the 33% training doc- 626

uments. It demonstrates that our method can more 627

effectively take advantage of the limited labeled 628

data for text classification 629

5.5 Comparison of Embedding Variants 630

ME-GCN apply a Word2Vec CBOW in order to 631

train the word node embedding and the related 632

multi-dimensional edge feature. We compare our 633

model with three different word embedding tech- 634

niques, Word2Vec, fastText, and Glove in Table 5. 635

We noted that using Word2Vec and Glove, word- 636

based models, is comparatively higher than apply- 637

ing the fastText, a character n-gram-based model. 638

This would be affected because the node and edge 639

of ME-GCN are based on words, not characters. 640

6 Conclusion 641

In this study, we introduced the ME-GCN (Multi- 642

dimensional Edge-enhanced Graph Convolutional 643

Networks) for semi-supervised text classification, 644

which takes full advantage of both limited labeled 645

and large unlabeled data by rich node and edge in- 646

formation propagation. We propose corpus-trained 647

multi-dimensional edge features in order to ef- 648

ficiently handle the distance/closeness between 649

words and documents as multi-dimensional edge 650

features, and all graph components are based on 651

the given text corpus only. ME-GCN demonstrates 652

promising results by outperforming numerous state- 653

of-the-art methods on eight semi-supervised text 654

classification datasets consistently. In the future, 655

it would be interesting to apply it to other natural 656

language processing tasks. 657
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A Model Architecture795

The overall architecture of ME-GCN is presented796

in Figure 4. After the paper get accepted, the archi-797

tecture figure will be moved to the main content. 798

B Hyperparemeter Search 799

For each dataset we use grid search to find the 800

best set of hyperparameters and select the base 801

model based on the average accuracy by running 802

each model for 5 times. The number of stream: 803

5,10,20,25,30,40,50. The document edge thresh- 804

old: 3,5,10,15. The pooling method: max pooling, 805

min pooling, average pooling. The number of hy- 806

perparameter search trials is 72(= 6 ∗ 4 ∗ 3) for 807

each dataset. The best hyperparameters for each 808

dataset and their average accuracy on test set shows 809

in Table 6. And the trend of validation performance 810

is very similar to the testing performance trend. 811

C Running Details 812

All the models are trained by using 16 In- 813

tel(R) Core(TM) i9-9900X CPU @ 3.50GHz and 814

NVIDIA Titan RTX 24GB. The number of parame- 815

ters for each part of the model is: Word2vec: 2UT , 816

Doc2vec: 2T (U +K), ME-GCN: T 2dl1ms(1 + C). 817

And Table 7 shows the number of parameters and 818

training time when using the default hyperparame- 819

ters. 820

D Links Related to Datasets and Baseline 821

Models 822

The links for Datasets: 823

Figure 4: Model Architecture
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20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)
# Stream 30 20 25 30 10 20 25 30

Document Threshold 15 10 15 5 5 5 3 3
Pooling Method avg avg max avg max avg max max

Accuracy 0.2861 0.8679 0.7828 0.2740 0.6811 0.8043 0.8232 0.8393

Table 6: Best hyperparameters for each dataset

20NG R8 R52 Ohsumed MR Agnews Twit nltk Waimai(zh)

Word2vec
# Parameters 304,750 217,650 230,950 432,950 225,050 268,000 31,700 548,950

Running Time(s) 118 25 76 140 71 83 20 74

Doc2vec
# Parameters 454,750 367,650 380,950 582,950 758,150 568,000 181,700 1,148,300

Running Time(s) 104 35 118 272 270 140 29 312

ME-GCN
# Parameters 328,125 140,625 828,125 375,000 46,875 78,125 46,875 46,875

Running Time(s) 198 16 164 286 120 612 14 610

Total
# Parameters 1,087,625 725,925 1,440,025 1,390,900 1,030,075 914,125 260,275 1,744,125

Running Time(s) 420 76 358 698 461 835 63 996

Table 7: Number of Parameters and Running time for each dataset

• 20NG: http://qwone.com/~jason/20Newsgro824

ups/825

• R8, R52: https://www.cs.umb.edu/~smimar826

og/textmining/datasets/827

• MR: http://www.cs.cornell.edu/people/pabo828

/movie-review-data/829

• Ohsumed: http://disi.unitn.it/moschitti/corp830

ora.htm831

• Agnews: http://www.di.unipi.it/~gulli/AG_c832

orpus_of_news_articles833

• Twitter nltk: http://nltk.org/howto/twitter.h834

tml835

• Waimai: https://github.com/SophonPlus/Ch836

ineseNlpCorpus/837

The links for Baseline Models:838

• TextCNN: https://github.com/DongjunLee/te839

xt-cnn-tensorflow840

• TextGCN: https://github.com/yao8839836/te841

xt_gcn842

• BERT BASE: https://huggingface.co/bert-ba843

se-uncased844

• Tmix: https://github.com/GT-SALT/MixText845

• Chinese BERT: https://huggingface.co/bert-846

base-chinese847

• GloVe-pretrained: https://nlp.stanford.edu/p848

rojects/glove/849

• Chinese Word Vectors: https://github.com 850

/Embedding/Chinese-Word-Vectors 851

The tokenizer used: 852

• English Tokenizer - NLTK: https://www.nl 853

tk.org/api/nltk.tokenize.html 854

• Chinese Tokenizer - Jieba: https://github.c 855

om/fxsjy/jieba 856
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