
Bayesian Generational Population-Based Training

Xingchen Wan1 Cong Lu1 Jack Parker-Holder1 Philip J. Ball1 Vu Nguyen2 Binxin Ru1

Michael A. Osborne1

1Machine Learning Research Group, University of Oxford, Oxford, UK
2Amazon, Adelaide, Australia

Abstract Reinforcement learning (RL) offers the potential for training generally capable agents that
can interact autonomously in the real world. However, one key limitation is the brittleness
of RL algorithms to core hyperparameters and network architecture choice. Furthermore,
non-stationarities such as evolving training data and increased agent complexity mean that
different hyperparameters and architectures may be optimal at different points of training.
This motivates AutoRL, a class of methods seeking to automate these design choices. One
prominent class of AutoRL methods is Population-Based Training (PBT), which have led to
impressive performance in several large scale settings. In this paper, we introduce two new
innovations in PBT-style methods. First, we employ trust-region based Bayesian Optimiza-
tion, enabling full coverage of the high-dimensional mixed hyperparameter search space.
Second, we show that using a generational approach, we can also learn both architectures
and hyperparameters jointly on-the-fly in a single training run. Leveraging the new highly
parallelizable Brax physics engine, we show that these innovations lead to large performance
gains, significantly outperforming the tuned baseline while learning entire configurations
on the fly. Code is available at https://github.com/xingchenwan/bgpbt.

1 Introduction

Reinforcement Learning (rl) (Sutton and Barto, 2018) has proven to be a successful paradigm for
training agents across a variety of domains and tasks (Kalashnikov et al., 2018; Mnih et al., 2013;
Nguyen et al., 2021b; Silver et al., 2017), with some believing it could be enough for training gener-
ally capable agents (Silver et al., 2021). However, a crucial factor limiting the wider applicability of
rl to new problems is the notorious sensitivity of algorithms with respect to their hyperparame-
ters (Andrychowicz et al., 2021; Engstrom et al., 2020; Henderson et al., 2018), which often require
expensive tuning. Indeed, it has been shown that when tuned effectively, good configurations often
lead to dramatically improved performance in large scale settings (Chen et al., 2018).

To address these challenges, recent work inAutomated Reinforcement Learning (AutoRL) (Parker-
Holder et al., 2022) has shown that rigorously searching these parameter spaces can lead to pre-
viously unseen levels of performance, even capable of breaking widely used simulators (Zhang
et al., 2021). However, AutoRL contains unique challenges, as different tasks even in the same
suite are often best solved with different network architectures and hyperparameters (Furuta et al.,
2021; Xu et al., 2022). Furthermore, due to the non-stationarities present in rl (Igl et al., 2021),
such as changing data distributions and the requirement for agents to model increasingly complex
behaviors over time, optimal hyperparameters and architectures may not remain constant. To
address this, works have shown adapting hyperparameters through time (Jaderberg et al., 2017;
Parker-Holder et al., 2021; Paul et al., 2019; Zhang et al., 2021) and defining fixed network architec-
ture schedules (Czarnecki et al., 2018) can be beneficial for performance. However, architectures
and hyperparameters are inherently linked (Park et al., 2019), and to date, no method combines the
ability to jointly and continuously adapt both on the fly.

In this paper we focus on Population-based Training (pbt) (Jaderberg et al., 2017) methods,
where a population of agents is trained in parallel, copying across stronger weights and enabling
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Figure 1: An example run of bg-pbt on HalfCheetah task in Brax: bg-pbt combines population-based
training with high-dimensional Bayesian optimization, generational training (different gen-
erations marked with numbers in the figure) and on-policy distillation between generations
to transfer across rl agents with different neural architectures: at different points during
training, both hyperparameters and the architectures of policy & value networks are tuned
on-the-fly, leading to significant improvement over the baseline.

adaption of hyperparameters in a single training run. This allows pbtmethods to achieve impressive
performance onmany large-scale settings (Jaderberg et al., 2019; Liu et al., 2021). However, pbt-style
methods are typically limited in scope due to two key factors: 1) they only optimize a handful
of hyperparameters, either due to using random search (Jaderberg et al., 2017), or model-based
methods that do not scale to higher dimensions (Parker-Holder et al., 2021, 2020); 2) pbt methods
are usually restricted to the same fixed architecture since weights are copied between agents.

We seek to overcome both of these issues in this paper, and propose Bayesian Generational

Population-based Training (bg-pbt), with an example run demonstrated in Fig. 1. bg-pbt is capable of
tuning a significantly greater proportion of the agent’s configuration, thanks to two new ideas. First,
we introduce a new model-based hyperparameter and architecture exploration step motivated by
recent advances in local Bayesian optimization (Wan et al., 2021). Second, we take inspiration from
Stooke et al. (2021) who showed that pbt can be particularly effective when combined with network
distillation (Igl et al., 2021), in an approach known as generational learning. As prior works in
generational training (Stooke et al., 2021; Vinyals et al., 2019) show, the use of successive generations
of architectures with distillation results in significantly reduced training time for new agents. This
provides us with an algorithm-agnostic framework to create agents which continuously discover
their entire configuration. Thus, for the first time, we can tune hyperparameters and architectures
during one training run as part of a single unified algorithm.

We run a series of exhaustive experiments tuning both the architectures and hyperparameters
for a Proximal Policy Optimization (ppo) (Schulman et al., 2017) agent in the newly introduced Brax
environment suite (Freeman et al., 2021). Brax enables massively parallel simulation of agents,
making it perfect for testing population-based methods without vast computational resources. Our
agents significantly outperform both the tuned baseline and a series of prior pbt methods. Notably,
we observe that bg-pbt often discovers a schedule of networks during training—which would be
infeasible to train from scratch. Furthermore, bg-pbt discovers entirely new modes of behavior for
these representative environments, which we show at https://sites.google.com/view/bgpbt.

To summarize, the main contributions of this paper are as follows:
1. We show for the first time it is possible to select architectures as part of a general-purpose pbt

framework, using generational training with policy distillation with Neural Architecture Search
(nas).
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2. We propose a novel and efficient algorithm, bg-pbt, especially designed for high-dimensional
mixed search spaces, which can select both architectures and hyperparameters on-the-fly with
provable efficiency guarantees.

3. We show in a series of experiments our automatic architecture curricula make it possible to achieve
significantly higher performance than previous methods.

2 Preliminaries

We begin by introducing the reinforcement learning framework, population-based training, which
our method is based on, and the general problem setup we investigate in this paper.

Reinforcement Learning. We model the environment as a Markov Decision Process (mdp)
(Sutton and Barto, 2018), defined as a tuple𝑀 = (S,A, 𝑃, 𝑅, 𝜌0, 𝛾), where S and A denote the state
and action spaces respectively, 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) the transition dynamics, 𝑅(𝑠𝑡 , 𝑎𝑡 ) the reward function,
𝜌0 the initial state distribution, and 𝛾 ∈ (0, 1) the discount factor. The goal is to optimize a policy
𝜋 (𝑎𝑡 |𝑠𝑡 ) that maximizes the expected discounted return E𝜋,𝑃,𝜌0

[∑∞
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
]
. Given a policy 𝜋 ,

we may define the state value function 𝑉 𝜋 (𝑠) = E𝜋,𝑃

[∑∞
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠
]
and the state-action

value-function 𝑄𝜋 (𝑠, 𝑎) = E𝜋,𝑃

[∑∞
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠, 𝑎0 = 𝑎
]
. The advantage function is then

defined as the difference 𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) −𝑉 𝜋 (𝑠).
A popular algorithm for online continuous control that we use is ppo (Schulman et al., 2017).

ppo achieves state-of-the-art results for popular benchmarks (Cobbe et al., 2020) and is hugely
parallelizable, making it an ideal candidate for population-based methods (Parker-Holder et al.,
2020). ppo approximates trpo (Schulman et al., 2015, 2017) and uses a clipped objective to stabilize
training:

LPPO(𝜃 ) = min
(
𝜋𝜃 (𝑎 | 𝑠)
𝜋𝜇 (𝑎 | 𝑠)𝐴

𝜋𝜇 , 𝑔(𝜃, 𝜇)𝐴𝜋𝜇

)
, where 𝑔(𝜃, 𝜇) = clip

(
𝜋𝜃 (𝑎 | 𝑠)
𝜋𝜇 (𝑎 | 𝑠) , 1 − 𝜖, 1 + 𝜖

)
(1)

where 𝜋𝜇 is a previous policy and 𝜖 is the clipping parameter.
Population-Based Training. rl algorithms, including ppo, are typically quite sensitive to

their hyperparameters. pbt (Jaderberg et al., 2017) is an evolutionary method that tunes rl hy-
perparameters on-the-fly. It optimizes a population of 𝐵 agents in parallel, so that their weights
and hyperparameters may be dynamically adapted within a single training run. In the standard
paradigm without architecture search, we consider two sub-routines, explore and exploit. We train
for a total of 𝑇 steps and evaluate performance every 𝑡ready < 𝑇 steps. In the exploit step, the
weights of the worst-performing agents are replaced by those from an agent randomly sampled
from the set of best-performing ones, via truncation selection. To select new hyperparameters, we
perform the explore step. We denote the hyperparameters for the 𝑏th agent in a population at
timestep 𝑡 as z𝑏𝑡 ∈ Z ; this defines a schedule of hyperparameters over time

(
𝑧𝑏𝑡
)
𝑡=1,...𝑇 . Let 𝑓𝑡 (𝑧𝑡 )

be an objective function (e.g. the return of a rl agent) under a given set of hyperparameters at
timestep 𝑡 , our goal is to maximize the final performance 𝑓𝑇 (𝑧𝑇 ).

The original pbt uses a combination of random sampling and evolutionary search for the explore
step by suggesting new hyperparameters mutated from the best-performing agents. Population
Based Bandit (pb2) and pb2-Mix (Parker-Holder et al., 2021, 2020) improve on pbt by using Bayesian
optimization (bo) to suggest new hyperparameters, relying on a time-varying Gaussian Process (gp)

(Bogunovic et al., 2016; Rasmussen and Williams, 2006) to model the data observed. We will also
use gp-based bo in our method, and we include a primer of gps and bo in App. A.

Problem Setup. We follow the notation used in Parker-Holder et al. (2020) and frame the
hyperparameter optimization problem in the lens of optimizing an expensive, time-varying, black-
box reward function 𝑓𝑡 : Z → R. Every 𝑡ready steps, we observe and record noisy observations,
𝑦𝑡 = 𝑓𝑡 (z𝑡 ) + 𝜖𝑡 , where 𝜖𝑡 ∼ N (0, 𝜎2I) for some fixed variance 𝜎2. We follow the typical pbt setup
by defining a hyperparameter space, Z , which for the Brax (Freeman et al., 2021) implementation
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of ppo we follow in the paper, consists of 9 parameters: learning rate, discount factor (𝛾 ), entropy
coefficient (𝑐), unroll length, reward scaling, batch size, updates per epoch, GAE parameter (𝜆)
and clipping parameter (𝜖). To incorporate the architecture hyperparameters, y ∈ Y , we add 6
additional parameters leading to a 15-dimensional joint space J = Y × Z . For both the policy and
value networks, we add the width and depth of the Multi-layer Perceptron (mlp) and a binary flag
on whether to use spectral normalization.

3 Bayesian Generational Population-Based Training (BG-PBT)

Algorithm 1 bg-pbt; distillation and nas steps
marked in magenta (§3.2)
1: Input: pop size 𝐵, 𝑡ready, max steps 𝑇 , 𝑞 (% agents re-

placed per iteration)
2: Initialize 𝐵 agents with weights {𝜃 (𝑖)0 }𝐵

𝑖=1, random hy-
perparameters {z(𝑖)0 }𝐵

𝑖=1 and architectures {y(𝑖)0 }𝐵
𝑖=1,

3: for 𝑡 = 1, . . . ,𝑇 (in parallel for all 𝐵 agents) do
4: Train models & record data for all agents
5: if 𝑡 mod 𝑡ready = 0 then
6: Replace the weights & architectures of the bottom

𝑞% agents with those of the top 𝑞% agents.
7: Update the surrogate with new observations &

returns and adjust/restart the trust regions.
8: Check whether to start a new generation (see §3.2).
9: if start a new generation then
10: Clear the gp training data.
11: Create 𝐵 agents with archs. from BO/random.
12: Distill from a top-𝑞% performing agent of the

existing generation to new agents.
13: else
14: Select new hyperparameters z for the agents

whose weights have been just replaced with
randomly sampled configs (if D = ∅) OR using
the suggestions from the bo agent described
conditioned on y (otherwise).

We present bg-pbt in Algorithm 1 which
consists of two major components. First, a bo
approach to select new hyperparameter config-
urations z for our agents (§3.1). We then extend
the search space to accommodate architecture
search, allowing agents to choose their own
networks (parameterized by y ∈ Y) and use on-
policy distillation to transfer between different
architectures (§3.2).

3.1 High-Dimensional BO Agents in Mixed-Input
Configuration Space for PBT

Existing population-based methods ignore (pb2)
or only partially address (pb2-Mix, which does
not consider ordinal variables such as integers)
the heterogeneous nature of the mixed hyperpa-
rameter space Z . Furthermore, both previous
methods are equipped with standard gp surro-
gates which typically scale poorly beyond low-
dimensional search spaces, and are thus only
used to tune a few selected hyperparameters
deemed to be the most important based on hu-
man expertise. To address these issues, bg-pbt
explicitly accounts for the characteristics of typical rl hyperparameter search space by making
several novel extensions to Casmopolitan (Wan et al., 2021), a state-of-the-art bo method for
high-dimensional, mixed-input problems for our setting. In this section, we outline the main
elements of our design, and we refer the reader to App. B.2 for full technical details of the approach.

Tailored Treatment of Mixed Hyperparameter Types. Hyperparameters in rl can be continu-
ous (e.g. discounting factor), ordinal (discrete variables with ordering, e.g. batch size) and categorical
(discrete variables without ordering, e.g. activation function). bg-pbt treats each variable type
differently: we use tailored kernels for the gp surrogate, and utilize interleaved optimization for
the acquisition function, alternating between local search for the categorical/ordinal variables and
gradient descent for the continuous variables. bg-pbt extends both Casmopolitan and pb2-Mix by
further accommodating ordinal variables, as both previous works only considered continuous and
categorical variables. We demonstrate the considerable benefits of explicitly accounting for the
ordinal variables in App. F.6.

Trust Regions (tr). trs have proven success in extending gp-based bo to higher-dimensional
search spaces, which were previously intractable due to the curse of dimensionality, by limiting
exploration to promising regions in the search space based on past observations (Eriksson et al.,
2019; Wan et al., 2021). In the pbt context, trs also implicitly avoid large jumps in hyperparameters,
which improves training stability. We adapt the trs used in the original Casmopolitan to the
time-varying setup by defining trs around the current best configuration, and then adjusting them
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Figure 2: bg-pbt (a) at the beginning of a generation (left) and (b) during a generation (right). At
the start of a generation, agents with diverse architectures are suggested and on-policy
distillation is used to transfer information across generations & different architectures (§3.2).
Within a generation, a high-dimensional, mixed-input bo agent suggests hyperparameters
(§3.1, we copy weights across fixed architectures).

dynamically: similar to Eriksson et al. (2019) and Wan et al. (2021), trs are expanded or shrunk
upon consecutive “successes” or “failures”. We define a proposed configuration to be a “success” if
it appears in the top 𝑞%-performing agents and a “failure” otherwise. When the trs shrink below
some specified minimum, a restart is triggered, which resets the gp surrogate to avoid becoming
stuck at a local optimum. We adapt the Upper Confidence Bound (ucb)-based criterion proposed
in Wan et al. (2021) which is based on a global, auxiliary gp model to the time-varying setting to
re-initialize the population when a restart is triggered. Full details are provided in App. B.4.

Theoretical Properties. Following Wan et al. (2021), we show that under typical assumptions
(presented in App. C) used for tr-based algorithms (Yuan, 1999), our proposed bg-pbt, without
architecture and distillation to be introduced in §3.2, converges to the global optimum asymp-
totically. Furthermore, we derive an upper bound on the cumulative regret and show that under
certain conditions it achieves sublinear regret. We split the search space into Z = [H,X ] (cate-
gorical/continuous parts respectively). We note that Assumption C.3 considers the minimum tr
lengths 𝐿𝑥min, 𝐿

ℎ
min are set to be small enough so that the gp approximates 𝑓 accurately in the trs.

In practice, this assumption only holds asymptotically, i.e. when the observed datapoints in the trs
goes to infinity. We present the main result, the time-varying extension to Theorem 3.4 from Wan
et al. (2021), and then refer to App. C for the derivation.

Theorem 3.1. Assume Assumptions C.2 & C.3 hold. Let 𝑓𝑖 : [H,X ] → R be a time-varying objective

defined over a mixed space and 𝜁 ∈ (0, 1). Suppose that: (i) there exists a class of functions 𝑔𝑖 in the

RKHS G𝑘 ( [H,X ]) corresponding to the kernel 𝑘 of the global gp model, such that 𝑔𝑖 passes through

all the local maximas of 𝑓𝑖 and shares the same global maximum as 𝑓𝑖 ; (ii) the noise at each timestep

𝜖𝑖 has mean zero conditioned on the history and is bounded by 𝜎 ; (iii) ∥𝑔𝑖 ∥2𝑘 ≤ 𝐵. Then bg-pbt obtains

a regret bound

Pr

{
𝑅𝐼𝐵 ≤

√︂
𝐶1𝐼 𝛽𝐼

𝐵
𝛾
(
𝐼𝐵;𝑘 ; [H,X ]

)
+ 2 ∀𝐼 ≥ 1

}
≥ 1 − 𝜁 ,

with 𝐶1 = 8/log(1 + 𝜎−2), 𝛾 (𝑇 ;𝑘 ; [H,X ]) defined in Theorem C.1 and 𝛽𝐼 is parameter balancing

exploration-exploitation as in Theorem 2 of Parker-Holder et al. (2020).

Under the same ideal conditions assumed in Bogunovic et al. (2016); Parker-Holder et al. (2020)
where the objective does not vary significantly through time, the cumulative regret bound is
sublinear with lim𝐼→∞

𝑅𝐼𝐵

𝐼
= 0, when 𝜔 → 0 and 𝑁̃ → 𝐼 .
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3.2 Adapting Architectures on the Fly

Now that we are equipped with an approach to optimize in high-dimensional Z , we focus on
choosing network architectures. Despite their importance in rl (Cobbe et al., 2019; Furuta et al.,
2021), architectures remain underexplored as a research direction. Adapting architectures for pbt
methods is non-trivial as we further enlarge the search space, and weights cannot readily be copied
across different networks. Inspired by Stooke et al. (2021), our key idea is that when beginning a
new generation we can distill behaviors into new architectures (see Fig. 2). Specifically:

• Starting each generation: We fill the population of 𝐵 agents by generating a diverse set of archi-
tectures for both the policy and value networks. For the first generation, this is done via random
sampling. For subsequent generations, we use suggestions from bo and/or random search with
successive halving over the architecture spaceY only (refer to App. B.3 for details); the bo is trained
on observations of the best performance each architecture has achieved in previous generations.
We initialize a new generation when the evaluated return stagnates beyond a pre-set patience
during training.

• Transfer between generations: Apart from the very first generation, we transfer information from
the best agent(s) of the previous generation to each new agent, in a similar fashion to Stooke
et al. (2021), using on-policy distillation with a joint supervised and rl loss between different

architectures as shown in Fig. 2a. Given a learned policy 𝜋𝑖 and value function 𝑉𝑖 from a previous
generation, the new joint loss optimized is:

E(𝑠𝑡 ,𝑎𝑡 )∼𝜋𝑖+1 [𝛼RLLRL + 𝛼𝑉 ∥𝑉𝑖 (𝑠𝑡 ) −𝑉𝑖+1(𝑠𝑡 )∥2 + 𝛼𝜋DKL
(
𝜋𝑖 (· | 𝑠𝑡 ) | | 𝜋𝑖+1(· | 𝑠𝑡 )

)
] (2)

for weights 𝛼RL ≥ 0, 𝛼𝑉 ≥ 0, 𝛼𝜋 ≥ 0, and rl loss LRL taken from Equation (1). We linearly anneal
the supervised losses over the course of each generation, so that by the end, only the rl loss
remains.

• During a generation: We follow standard pbt methods to evolve the hyperparameters of each agent
by copying weights 𝜽 and the architecture y from a top-𝑞% performing agent to a bottom-𝑞% agent,
as shown in Fig. 2b. This creates an effect similar to successive halving (Jamieson and Talwalkar,
2016; Karnin et al., 2013) where poorly-performing architectures are quickly removed from the
population in favor of more strongly-performing ones; typically at the end of a generation, 1 or
2 architectures dominate the population. While we do not introduce new architectures within
a generation, the hyperparameter suggestions are conditioned on the current policy and value
architectures by incorporating the architecture parameters y as contextual fixed dimensions in the
gp surrogate described in §3.1.

4 Experiments

While bg-pbt provides a framework applicable to any rl algorithm, we test our method on 7 envi-
ronments from the new Brax environment suite, using ppo. We begin by presenting a comparative
evaluation of bg-pbt against standard baselines in population-based training to both show the
benefit of searching over the full hyperparameter space with local bo and of automatically adapting
architectures over time. We further show that our method beats end-to-end bo, showing the
advantage of dynamic schedules. Next, we analyze these learned hyperparameter and architecture
schedules using bg-pbt and we show analogies to similar trends in learning rate and batch size in
supervised learning. Finally, we perform ablations on individual components of bg-pbt. For all
population-based methods, we use a population size 𝐵 = 8 and a total budget of 150M steps. We
note that bg-pbt with architectures uses additional on-policy samples from the environment in
order to distill between architectures. We instantiate the Brax environments with an action repeat
of 1. We use 𝑡ready of 1M for all pbt-based methods on all environments except for Humanoid
and Hopper, where we linearly anneal 𝑡ready from 5M to 1M. The remaining hyperparameters and
implementation details used in this section are listed in App. E.
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Figure 3: Visualization of each environment (top row) and mean evaluated return over the population

with ±1 sem (shaded) across 7 random seeds (bottom row) in all environments. RS refers to
the higher performing of RS-Z or RS-J in Table 1.

Table 1: Mean evaluated return ±1sem across 7 seeds shown. For pbt-style methods (pbt, pb2 and
bg-pbt), the mean best-performing agent in the population is shown. Methods performing
within 1 sem of the best-performing method are bolded (the same applies to all tables).

Method PPO
∗ RS RS PBT PB2 BG-PBT

Search space Z Z J Z Z J

Ant 3853±676 6780±317 4781±515 8955±385 8954±594 10349±326
HalfCheetah 6037±236 9502±76 10340±329 8455±400 8629±746 13450±551
Humanoid 9109±987 4004±519 4652±1002 7954±437 8452±512 9171±748
Hopper 120±43 339±25 943±185 2002±254 2027±323 2569±293
Reacher −189.3±43.7 −24.2±1.4 −95.2±25.3 −32.9±2.8 −26.6±2.6 −19.2±0.9
Fetch 14.0±0.2 5.2±0.4 8.6±0.2 5.5±0.8 6.6±0.7 9.4±0.7
UR5e 5.2±0.2 5.3±0.4 7.7±0.3 6.9±0.4 7.4±0.6 10.7±0.6

∗From the Brax authors and implemented in a different framework (JAX) to ours (PyTorch)

Comparative Evaluation of bg-pbt. We first perform a comparative evaluation of bg-pbt
against standard baselines in pbt-methods and the ppo baseline provided by the Brax authors. We
show the benefit of using local bo and treating the whole rl hyperparameter spaceZ , by comparing
bg-pbt against pbt (Jaderberg et al., 2017), pb2 (Parker-Holder et al., 2020) and Random Search
(rs) using the default architecture in Brax. In rs, we simply sample from the hyperparameter
space and take the best performance found using the same compute budget as the pbt methods.
Next, we include architecture search into bg-pbt using the full space J and show significant gains
in performance compared to bg-pbt without architectures; we use random search over J as a
baseline. The optimized ppo implementation from the Brax authors is provided as a sequential
baseline. We present the results in Table 1 and the training trajectories in Fig. 3.

We show that bg-pbt significantly outperforms the rs baselines and the existing pbt-style
methods in almost all environments considered. We also observe that rs is a surprisingly strong
baseline, performing on par or better than pbt and pb2 in HalfCheetah, Reacher, Fetch and UR5e —
this is due to a well-known failure mode in pbt-style algorithms where they may be overly greedy
in copying sub-optimal behaviors early on and then fail to sufficiently explore in weight space
when the population size is modest. bg-pbt avoids this problem by re-initializing networks each

generation and distilling, which prevents collapse to suboptimal points in weight space.
Experiments with Different Training Timescales. We further show experiments with a higher

budget of 300M timesteps and/or an increased population size up to 𝐵 = 24 to investigate the
scalability of bg-pbt in larger-scale environments (App. F.1). Furthermore, given that bg-pbt uses
additional on-policy samples in order to distill between architectures, we conduct experiments of
bg-pbt with reduced training budget in App. F.2. We find that even when the maximum timesteps
are roughly halved, bg-pbt still outperforms the baseline AutoRL methods.
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Table 2: Comparison against sequential BO∗

Method BO-Z∗ BO-J ∗ BG-PBT

Ant 6975±1013 7149±507 10349±326
HalfCheetah 11202±204 10859±174 13450±551
Humanoid 9040±1303 4845±962 9171±748
Hopper 358±60 1254±154 2569±293
Reacher −17.3±0.3 −51.7±18.3 −19.2±0.9
Fetch 13.2±0.2 11.6±0.1 9.4±0.7
UR5e 9.0±0.5 6.3±1.4 10.7±0.6

∗More resources required compared to bg-pbt.

Table 3: Ablation studies
Method No TR/NAS No NAS BG-PBT

Ant 8954±594 9352±402 10349±326
HalfCheetah 8629±746 9483±626 13450±551
Humanoid 8452±512 10359±647 9171±748
Hopper 2027±323 2511±154 2569±293
Reacher −26.6±2.6 −17.6±0.8 −19.2±0.9
Fetch 6.6±0.7 7.3±0.8 9.4±0.7
UR5e 7.4±0.6 9.0±0.8 10.7±0.6
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Figure 4: The hyperparameter and architecture schedule discovered by bg-pbt on Ant: we plot the
hyperparameters of the best-performing agent in the population averaged across 7 seeds
with ± 1 sem shaded. Gray dashed lines denote the hyperparameter bounds.

Comparison Against Sequential bo. We further compare against bo in the traditional sequential
setup (Table 2): for each bo iteration, the agent is trained for the full 150M timesteps before a
new hyperparameter suggestion is made. To enable bo to improve on rs, we allocate a budget of
50 evaluations, which is up to 6× more expensive than our method and even more costly in terms
of wall-clock time if vanilla, non-parallel bo is used. We implement this baseline using SMAC3
(Lindauer et al., 2022) in both the Z and J search spaces (denoted BO-Z and BO-J respectively
in Table 2). While, unsurprisingly, bo improves over the rs baseline, bg-pbt still outperforms it
in a majority of environments. One reason for this is that bg-pbt naturally discovers a dynamic
schedule of hyperparameters and architectures, which is strictly more flexible than a carefully
tuned but still static configuration – we analyze this below.

Analysis of Discovered Hyperparameter and Architecture Schedules. We present the hyper-
parameter and architecture schedules learned by bg-pbt in our main comparative evaluation on Ant
in Fig. 4 (results on other environments are presented in App. F.4). We find consistent trends across
environments such as the decrease of learning rate and increase in batch sizes over time, consistent
to common practices in both rl (Engstrom et al., 2020) and supervised learning, but crucially bg-pbt
discovers the same without any pre-defined schedule. We note, however, that the exact rate at which
the learning rate decreases and batch size increase differs across different environments – for
example, in Ant we find that the learning rate quickly drops from a relatively large value to almost
the smallest possible 10−4, whereas in UR5e, the schedule is much less aggressive. This suggests
that the optimal schedule is dependent on the exact environment, and a uniform, manually-defined
schedule as in Engstrom et al. (2020) may not be optimal. We demonstrate this empirically in App.
F.7, where we compare against rs but with the learning rate following a manually-defined cosine
annealing schedule. We also find that different networks are favored at different stages of training,
but the exact patterns differ across environments: for Ant (Fig. 4), we find that larger networks are
preferred towards the end of training, with the policy and value network widths increasing over
time: Prior work has shown that larger networks like those we automatically find towards the end
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of training can be notoriously unstable and difficult to train from scratch (Czarnecki et al., 2018; Ota
et al., 2021), which further supports our use of generational training to facilitate this.

Ablation Studies. bg-pbt improves on existing methods by using local tr-based bo (§3.1) and
nas & distillation (§3.2). We conduct an ablation study by removing either or both components in
Table 3 (a comparison between the training trajectories in Fig. 7 may be found in App. F.3), where
“No NAS” does not search architectures or distill but uses the default Brax architectures, and “No
TR/NAS” further only uses a vanilla gp surrogate and is identical to pb2. We find the tailored bo
agent in §3.1 improves performance across the board. On the importance of nas & distillation, in
all environments except for Humanoid and Reacher, bg-pbt matches or outperforms “No NAS”,
despite J being a more complicated search space and the “No NAS” baseline is conditioned on
strongly-performing default architectures. We also see a particularly large gain for HalfCheetah
and Fetch when we include architectures, demonstrating the effectiveness of the generational
training and nas in our approach. We include additional ablation studies in App. F.3.

5 Related Work

On-the-fly Hyperparameter Tuning. Our work improves on previous pbt (Jaderberg et al., 2017;
Parker-Holder et al., 2020; Zhang et al., 2021) style methods; in particular, we build upon Parker-
Holder et al. (2021), using a more scalable bo step, and adding architecture search with generational
learning. Dalibard and Jaderberg (2021) introduce an approach for increasing diversity in the weight
space for pbt, orthogonal to our work. There have also been non-population-based methods for
dynamic hyperparameter optimization, using bandits (Badia et al., 2020; Ball et al., 2020; Moskovitz
et al., 2021; Nguyen et al., 2020; Parker-Holder et al., 2020), gradients (Flennerhag et al., 2021;
Paul et al., 2019; Xu et al., 2018; Zahavy et al., 2020) or Evolution (Tang and Choromanski, 2020)
which mostly do not search over architectures. A notable exception is Sample-efficient Automated
Deep Learning (SEARL) (Franke et al., 2021), which adapts architectures within a pbt framework.
However, SEARL is designed for off-policy rl and thus especially shows the benefit of shared replay
buffers for efficiency, whereas our method is general-purpose.

Architecture Search. In rl, Czarnecki et al. (2018) showed increasing agent complexity over
time could be effective, albeit with a pre-defined schedule. Miao et al. (2021) showed that DARTS (Liu
et al., 2019) could be effective in rl, finding high performing architectures on the Procgen benchmark.
Auto-Agent-Distiller (Fu et al., 2020) deals with the problem of finding optimal architectures for
compressing the model size of rl agents, and also find that using distillation between the teacher
and student networks improves stability of nas in rl. On the other hand, bo has been used as a
powerful tool for searching over large architecture spaces (Kandasamy et al., 2018; Nguyen et al.,
2021a; Ru et al., 2021; Wan et al., 2021, 2022; White et al., 2021). Conversely, we only consider
simple mlps and the use of spectral normalization. There has been initial effort (Izquierdo et al.,
2021) combining nas and hyperparameter optimization in sequential settings, which is distinct to
our on-the-fly approach.

Generational Training and Distillation. Stooke et al. (2021) recently introduced generational
training, using policy distillation to transfer knowledge between generations, accelerating training.
Our method is based on this idea, with changing generations. The use of distillation is further
supported by Igl et al. (2021) who recently used this successfully to adapt to non-stationarities in
reinforcement learning, however keeping hyperparameters and architectures fixed.

6 Conclusion & Discussion

In this paper, we propose bg-pbt: a new algorithm that significantly increases the capabilities
of pbt methods for rl. Using recent advances in Bayesian Optimization, bg-pbt is capable of
searching over drastically larger search spaces than previous methods. Furthermore, inspired by
recent advances in generational learning, we show it is also possible to efficiently learn architectures
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on the fly as part of a unified algorithm. The resulting method leads to significant performance
gains across the entire Brax environment suite, achieving high performance even in previously
untested environments. We believe bg-pbt is a significant step towards truly environment agnostic
RL algorithms, while also offering a path towards open-ended learning where agents never stop
tuning themselves and continuously expand their capabilities over time.

Limitations & Future Work. We note that while our method shows a significant boost in
performance by including architectures for most environments, in some environments, such as
Humanoid, we achieve better results without architecture search (Table 3). We hypothesize this is
due to the complexity of the environment and an increased sensitivity to the network architecture.
Furthermore, while we provide a theoretical guarantee for our method in Theorem 3.1 for searching
purely over architectures, no such guarantees exist when we transfer between architectures across
generations. Indeed, we occasionally see poor architectures being selected, which are then discarded
during truncation selection. Therefore, an immediate future direction is to address these issues
and to improve the architecture selection process. Another limitation is that while all rl-related
hyperparameters are included in the search space, certain hyperparameters of bg-pbt could also
be automatically searched for, including but not limited to distillation hyperparameters, which are
currently fixed, and pbt parameters such as 𝑡ready, which could allow us to avoid myopic and greedy
behavior. Beyond these limitations, our algorithm readily transfers to other rl problems with high-
dimensional mixed spaces, and thus we would readily accommodate more complicated architecture
search spaces (e.g. vision-based environments) and incorporate environment parameters (Paul
et al., 2016) into the search space to generalize to new tasks.

Broader Impact. We open-source our code so that practitioners in the field can accelerate
their own deployment of rl systems. However, in doing so, we should be wary of the risk of also
improving malicious use of rl; in particular, down-stream applications which could have an impact
on people’s security and privacy. To mitigate these risks, we encourage research on rl governance
and safe rl. As a general purpose framework for improving any rl algorithm, our method should
be part of that conversation.
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Supplementary Material
A Primer on GPs and BO

Gaussian Processes. In Bayesian Optimization (bo), Gaussian Processes, or gps, act as surrogate
models for a black-box function 𝑓 which takes an input z (in our case, the hyperparameters
and/or the architecture parameters) and returns an output 𝑦 = 𝑓 (z) + 𝜖 where 𝜖 ∼ N (0, 𝜎2).
A gp defines a probability distribution over functions 𝑓 under the assumption that any finite
subset {(z𝑖 , 𝑓 (z𝑖)} follows a normal distribution (Rasmussen and Williams, 2006). Formally, a gp is
denoted as 𝑓 (z) ∼ GP (𝑚 (z) , 𝑘 (z, z′)), where𝑚 (z) and 𝑘 (z, z′) are called the mean and covariance
functions respectively, i.e. 𝑚(z) = E [𝑓 (z)] and 𝑘 (z, z′) = E

[
(𝑓 (z) −𝑚 (z)) (𝑓 (z′) −𝑚 (z′))𝑇

]
.

The covariance function (kernel) 𝑘 (z, z′) can be thought of as a similarity measure relating 𝑓 (z)
and 𝑓 (z′). There have been various proposed kernels which encode different prior beliefs about
the function 𝑓 (z) (Rasmussen and Williams, 2006).

If we assume a zero mean prior𝑚(z) = 0, to predict 𝑓∗ = 𝑓 (z∗) at a new data point z∗, we have,[
𝒇
𝑓∗

]
∼ N

(
0,
[
𝑲 k𝑇∗
k∗ 𝑘∗∗

] )
, (3)

where 𝑘∗∗ = 𝑘 (z∗, z∗), k∗ = [𝑘 (z∗, z𝑖)]𝑖≤𝑡 , 𝑡 is the number of observed points for the gp, and
𝑲 =

[
𝑘
(
z𝑖 , z𝑗

) ]
𝑖, 𝑗≤𝑡 . We denote our observations as {z1, 𝑓1}, {z2, 𝑓2}, ..., {z𝑡 , 𝑓𝑡 } and collect all past

return observations as f𝑡 = [𝑓1, ..., 𝑓𝑡 ]⊤. Then, we may combine Eq. (3) with the fact that 𝑝 (𝑓∗ | 𝒇 )
follows a univariate Gaussian distributionN

(
𝜇 (z∗) , 𝜎2 (z∗)

)
. Given a new configuration z′, the gp

posterior mean and variance at z′ may be computed as:

𝜇𝑡 (z′) B k𝑡 (z′)𝑇 (K𝑡 + 𝜎2I)−1f𝑡 (4)

𝜎2
𝑡 (z′) B 𝑘 (z′, z′) − k𝑡 (z′)𝑇 (K𝑡 + 𝜎2I)−1k𝑡 (z′), (5)

where K𝑡 B {𝑘 (𝑧𝑖 , 𝑧 𝑗 )}𝑡𝑖, 𝑗=1 and k𝑡 B {𝑘 (𝑧𝑖 , 𝑧 ′𝑡 )}𝑡𝑖=1.

Bayesian Optimization. Bayesian optimization (bo) is a powerful sequential approach to find the
global optimum of an expensive black-box function 𝑓 (z) without making use of derivatives. First,
a surrogate model (in our case, a gp as discussed above) is learned from the current observed data
D𝑡 = {z𝑖 , 𝑦𝑖}𝑡𝑖=1 to approximate the behavior of 𝑓 (z). Second, an acquisition function is derived
from the surrogate model to select new data points that maximizes information about the global
optimum – a common acquisition function that we use in our paper is the Upper Confidence Bound
(ucb) (Srinivas et al., 2010) criterion which balances exploitation and exploration. Specifically, the
ucb on a new, unobserved point z′ is given by:

UCB(z′) = 𝜇𝑡 (z′) +
√︁
𝛽𝑡𝜎𝑡 (z′), (6)

where 𝜇𝑡 and 𝜎𝑡 are the posterior mean and standard deviation given in Eq. 4 above and 𝛽𝑡 > 0
is a trade-off parameter between mean and variance. At each bo iteration, we find a batch of
samples that sequentially maximizes the acquisition function above. The process is conducted
iteratively until the evaluation budget is depleted, and the global optimum is estimated based on all
the sampled data. In-depth discussions about bo beyond this brief overview can be found in recent
surveys (Brochu et al., 2010; Frazier, 2018; Shahriari et al., 2016).

B Bayesian Optimization for PBT
In this section, we provide specific details for the modifications to Casmopolitan to make it
amenable for our setup which consists of non-stationary reward and a mixed, high-dimensional
search space.
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B.1 Kernel Design
We use the following time-varying kernel (Bogunovic et al., 2016; Parker-Holder et al., 2021) to
measure the spatiotemporal distance between a pair of configuration vectors {z, z′}with continuous,
ordinal and/or categorical dimensions, and whose rewards are observed at timesteps {𝑖, 𝑗}. For
the most general case where we model all three types of variables, we have the following kernel
function:

𝑘 (z, z′, 𝑖, 𝑗) = 1
2

( (
𝑘𝑥 (x, x′) + 𝑘ℎ (h, h′)

)
+
(
𝑘𝑥 (x, x′)𝑘ℎ (h, h′)

) ) (
(1 − 𝜔) |𝑖−𝑗 |/2

)
(7)

where x denotes the continuous and ordinal dimensions and h denotes the categorical dimensions
of the configuration vector z, respectively, 𝑘𝑥 (·, ·) is the kernel for continuous and ordinal inputs
(by default Matérn 5/2), 𝑘 (ℎ) (·, ·) is the kernel for the categorical dimensions (by default the
exponentiated overlap kernel in Wan et al. (2021)) and 𝜔 ∈ [0, 1] controls how quickly old data is
decayed and is learned jointly during optimization of the GP log-likelihood. When the search space
only contains continuous/ordinal variables, we simply have 𝑘 (z, z′, 𝑖, 𝑗) = 𝑘𝑧 (x, x′) (1−𝜔) |𝑖−𝑗 |/2, and
a similar simplification holds if the search space only contains categorical variables. We improve
on Parker-Holder et al. (2021) by directly supporting ordinal variables such as integers (for e.g. batch
size) and selecting them alongside categorical variables using interleaved acquisition optimization

as opposed to time-varying bandits which scales poorly to large discrete spaces.

B.2 Proposing New Configurations
As discussed in App. A, a bo agent selects new configuration(s) by selecting those which maximize
the acquisition function (in this case, the ucb acquisition function). This is typically achieved via
off-the-shelf first-order optimizers, which is challenging in a mixed-input space as the discrete
(ordinal and categorical) variables lack gradients and naïvely casting them into continuous variables
yields invalid solutions which require rounding. To address this issue, Parker-Holder et al. (2021)
select h first via time-varying bandits (using the proposed TV.EXP3.M algorithm) and then select x
by optimizing the BO acquisition function, conditioned on the chosen h. This method scales poorly
to spaces with a large number of categorical choices, as bandit problems generally require pulling
each arm at least once. Instead, we develop upon interleaved acquisition optimization introduced in
Wan et al. (2021) which unifies all variables under a single GP, and alternates between optimization
of the continuous and discrete variables:

Algorithm 2 Interleaved optimization of acq(z)
1: while not converged do
2: Continuous: Do a single step of gradient descent on the continuous dimensions.
3: Ordinal and Categorical: Conditioned on the new continuous values, do a single step of local search: randomly

select an ordinal/categorical variable and choose a different (categorical), or an adjacent (ordinal) value, if the
new value leads to an improvement in acq(·).

Compared to the approach inWan et al. (2021), we include ordinal variables, which are optimized
alongside the categorical variables via local search during acquisition optimization but are treated
like continuous variables by the kernel. During acquisition, we define adjacent ordinals to be the
neighboring values. For example, for an integer variable with a valid range [1, 5] and current value
3, its neighboring values are 2 and 4. This allows us to exploit the natural ordering for ordinal
variables whilst still ensuring that suggested configurations remain local and only explore valid
neighboring solutions.

B.3 Suggesting New Architectures
At the start of each generation for the full bg-pbt method, we have to suggest a pool of new
architectures. For the first generation, we simply use random sampling across the joint space J to
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fill up the initial population. For subsequent generations, we use a combination of bo and random
sampling to both leverage information already gained from the architectures and allow sufficient
exploration. For the bo, at the start of the 𝑖-th generation, we first fit a gp model solely in the
architecture space Y , by using the architectures from the 𝑖 − 1-th generation as the training data.
Since these network architectures are trained with different hyperparameters during the generation,
we use the best return achieved on each of these architectures as the training targets. We then run
bo on this gp to obtain the suggestions for new architectures for the subsequent generation. In
practice, to avoid occasional instability in the distillation process, we find it beneficial to select
a number of architectures larger than 𝐵: we then start the distillation for all the agents, but use
successive halving (Karnin et al., 2013) such that only 𝐵 agents survive and are distilled for the full
budget allocated. By doing so, we trade a modest increase in training steps for greatly improved
stability in distillation.

B.4 Details on Trust Regions

To define trust regions for our time-varying objective, we again consider the most general case
where the search space contains both categorical and continuous/ordinal dimensions. Given the
configuration z∗𝑡 = [h∗𝑡 , x∗𝑡 ] = argmaxz𝑡 (𝑓𝑡 ) with the best return at time 𝑡 , we may define the trust
region centered around z∗𝑡 :

TR(z∗𝑇 ) =

{
h | 1

𝑑ℎ

∑𝑑ℎ
𝑖=1 𝛿 (ℎ𝑖 , ℎ∗𝑖 ) ≤ 𝐿ℎ

}
for categorical h∗

𝑇
= {ℎ∗𝑖 }

𝑑ℎ
𝑖=1{

x | |𝑥𝑖 − 𝑥∗𝑖 | <
ℓ̃𝑖∏𝑑𝑥

𝑖=1 ℓ̃
1
𝑑𝑥
𝑖

𝐿𝑥 , 0 ≤ 𝑥𝑖 ≤ 1
}

for continuous or ordinal x∗
𝑇
= {𝑥∗𝑖 }

𝑑𝑥
𝑖=1,

(8)

where 𝛿 (·, ·) is the Kronecker delta function, 𝐿ℎ ∈ [0, 1] is the trust region radius defined in
terms of normalized Hamming distance over the categorical variables, 𝐿𝑥 is the trust region radius
defining a hyperrectangle over the continuous and ordinal variables, and {ℓ̃𝑖 = ℓ𝑖

1
𝑑𝑥

∑𝑑𝑥
𝑖=1 ℓ𝑖

}𝑑𝑥
𝑖=1 are the

normalized lengthscales {ℓ𝑖} learned by the GP surrogate over the continuous/ordinal dimensions.
This means that the more sensitive hyperparameters, i.e. those with smaller learned lengthscales,
will automatically be assigned smaller trust region radii.

For the restart of trust regions when either or both of the trust regions defined fall below
some pre-defined threshold, we adapt the ucb-based criterion proposed in Wan et al. (2021) to the
time-varying setting to re-initialize the population when a restart is triggered. For the 𝑖-th restart,
we consider a global, auxiliary GP model trained on a subset of observed configurations and returns
𝐷∗
𝑖−1 = {z∗𝑗 , 𝑓 ∗𝑗 }𝑖𝑗=1 and denote 𝜇𝑔 (z;𝐷∗

𝑖−1) and 𝜎2
𝑔 (z;𝐷∗

𝑖−1) as the posterior mean and variance of the
auxiliary GP. The new trust region center is given by the configuration z(0)

𝑖
that maximizes the UCB

score: z(0)
𝑖

= argmaxz∈Z 𝜇𝑔 (z;𝐷∗
𝑖−1) +

√︁
𝛽𝑖𝜎𝑔 (z;𝐷∗

𝑖−1) where 𝛽𝑖 is the UCB trade-off parameter. In
the original Casmopolitan, 𝐷∗ consists of the best configurations in all previous restarts 1, ..., 𝑖 − 1,
which is invalid for the time-varying setting. Instead, we construct 𝐷∗

𝑖−1 using the following:

𝐷∗
𝑖−1 = {z∗𝑗 , 𝜇𝑇 (z∗𝑗 )}𝑖=1𝑗=1 where z

∗
𝑗 = arg max

z𝑗 ∈D𝑗

𝜇𝑇 (z𝑗 ), (9)

where D𝑗 denotes the set of previous configurations evaluated during the 𝑗-th restart and 𝜇𝑇 (·)
denotes the posterior mean of the time-varying GP surrogate at the present timestep 𝑡 = 𝑇 . Thus,
instead of simply selecting the configurations of each restart that led to the highest observed return,
we select the configurations that would have led to the highest return if they were evaluated now,
according to the GP surrogate. Such a configuration preserves the convergence property of bg-pbt
(without distillation and architecture search) shown in Theorem 3.1 and proven below in App. C.
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C Theoretical Guarantees

C.1 Bound on the Maximum Information Gain

We start by deriving the maximum information gain, which extends the result presented in Wan
et al. (2021) for the time-varying setting. Note that this result is defined over the number of local
restarts 𝐼 .

Theorem C.1. Let 𝛾 (𝐼 ;𝑘 ;𝑉 ) := max𝐴⊆𝑉 , |𝐴 | ≤𝐼
1
2 log |I + 𝜎−2 [𝑘 (v, v′)]v,v′∈𝐴 | be the maximum infor-

mation gain achieved by sampling 𝐼 points in a gp defined over a set 𝑉 with a kernel 𝑘 . Denote the

constant 𝜂 :=
∏𝑑ℎ

𝑗=1 𝑛 𝑗 . Then we have, for the time-varying mixed kernel 𝑘 ,

𝛾 (𝐼 ;𝑘 ; [H,X ]) ⪅ 𝐼

𝑁̃

(
𝜆𝜂𝛾 (𝐼 ;𝑘𝑥 ;X ) + (𝜂 − 2𝜆) log 𝐼 + 𝜎−2

𝑓
𝑁̃ 3𝜔

)
(10)

where the time steps {1, ..., 𝐼 } are split into into 𝐼/𝑁̃ blocks of length 𝑁̃ , such that the function 𝑓𝑡 does

not vary significantly within each block.

Proof. Following the proof used in Bogunovic et al. (2016)), we split the time steps {1, ..., 𝐼 } into
𝐼/𝑁̃ blocks of length 𝑁̃ , such that within each block the function 𝑓𝑖 does not vary significantly.
Then, we have that the maximum information gain of the time-varying kernel Bogunovic et al.
(2016)) is bounded by

𝛾𝐼 ≤
(
𝐼

𝑁̃
+ 1

) (
𝛾𝑁̃ + 𝜎−2

𝑓
𝑁̃ 3𝜔

)
where 𝜔 ∈ [0, 1] is the forgetting-remembering trade-off parameter, and we consider the kernel
for time 1 − 𝑘𝑡𝑖𝑚𝑒 (𝑡, 𝑡 ′) ≤ 𝜔 |𝑡 − 𝑡 ′ |. We denote 𝛾𝑁̃ as the maximum information gain for the
time-invariant kernel counterpart in each block length of 𝑁̃ .

Next, by using the bounds for the (time-invariant) mixed kernel in Wan et al. (2021) that
𝛾𝑁̃ ≤ O

(
(𝜆𝜂 + 1 − 𝜆)𝛾 (𝐼 ;𝑘𝑥 ;X ) + (𝜂 + 2 − 2𝜆) log 𝐼

)
, we get the new time-varying bound

𝛾 (𝐼 ;𝑘 ; [H,X ]) ⪅ 𝐼

𝑁̃

(
𝜆𝜂𝛾 (𝐼 ;𝑘𝑥 ;X ) + (𝜂 − 2𝜆) log 𝐼 + 𝜎−2

𝑓
𝑁̃ 3𝜔

)
where we have suppressed the con-

stant term for simplicity.

C.2 Proof of Local Convergence in Each Trust Region

Assumption C.2. The time-varying objective function 𝑓𝑡 (z) is bounded in [H,X ], i.e. ∃𝐹𝑙 , 𝐹𝑢 ∈ R :
∀z ∈ [H,X ], 𝐹𝑙 ≤ 𝑓𝑡 (z) ≤ 𝐹𝑢,∀𝑡 ∈ [1, ...,𝑇 ].

Assumption C.3. Let us denote 𝐿ℎmin, 𝐿
𝑥
min and 𝐿ℎ0 , 𝐿

𝑥
0 be the minimum and initial tr lengths

for the categorical and continuous variables, respectively. Let us also denote 𝛼𝑠 as the shrink-

ing rate of the trs. The local gp approximates 𝑓𝑡 ,∀𝑡 ≤ 𝑇 accurately within any tr with length

𝐿𝑥 ≤ max
(
𝐿𝑥min/𝛼𝑠 , 𝐿𝑥0 (⌈(𝐿ℎmin+1)/𝛼𝑠⌉−1)/𝐿ℎ0

)
and 𝐿ℎ ≤ max

(
⌈(𝐿ℎmin+1)/𝛼𝑠⌉−1, ⌈𝐿ℎ0𝐿𝑥min/(𝛼𝑠𝐿𝑥0 )⌉

)
.

Theorem C.4. Given Assumptions C.2 & C.3, after a restart, bg-pbt converges to a local maxima after

a finite number of iterations or converges to the global maximum.

Proof. Wemay apply the same proof by contradiction used in Wan et al. (2021) for our time-varying
setting, given the assumptions C.2 and C.3. For completeness, we summarize it below.

We show that our algorithm converges to (1) to a global maximum of 𝑓 (if does not terminate
after a finite number of iterations) or (2) a local maxima of 𝑓 (if terminated after a finite number of
iterations).

Case 1: when 𝑡 → ∞ and the tr lengths 𝐿ℎ and 𝐿𝑥 have not shrunk below 𝐿ℎmin and 𝐿𝑥min.
From the algorithm description, the tr is shrunk after fail_tol consecutive failures. Thus, if
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after 𝑁min = fail_tol ×𝑚 iterations where𝑚 = max(⌈log𝛼𝑒 (𝐿
ℎ
0 /𝐿ℎmin)⌉, ⌈log𝛼𝑒 (𝐿

𝑥
0 /𝐿𝑥min)⌉), there

is no success, bg-pbt terminates. This means, for case (1) to occur, bg-pbt needs to have at
least one improvement per 𝑁min iterations. Let consider the increasing series {𝑓 (z𝑘 )}∞

𝑘=1 where
𝑓 (z𝑘 ) = max𝑡=(𝑘−1)𝑁min+1,...,𝑘𝑁min{𝑓 (z𝑡 )} and 𝑓 (z𝑖) is the function value at iteration 𝑡 . Thus, using
the monotone convergence theorem (Bibby, 1974), this series converges to the global maximum of
the objective function 𝑓 given that 𝑓 (z) is bounded (Assumption C.2).

Case 2: when bg-pbt terminates after a finite number of iterations, bg-pbt converges to a local
maxima of 𝑓 (z) given Assumption C.3. Let us remind that bg-pbt terminates when either the
continuous tr length ≤ 𝐿𝑥min or the categorical tr length ≤ 𝐿ℎmin.

Let 𝐿𝑠 be the largest tr length that after being shrunk, the algorithm terminates, i.e., ⌊𝛼𝑠𝐿𝑠⌋ ≤
𝐿ℎmin.

1 Due to ⌊𝛼𝑠𝐿𝑠⌋ ≤ 𝛼𝑠𝐿𝑠 < ⌊𝛼𝑠𝐿𝑠⌋ + 1, we have 𝐿𝑠 < (𝐿ℎmin + 1)/𝛼𝑠 . Because 𝐿𝑠 is an integer, we
finally have 𝐿𝑠 ≤ ⌈(𝐿ℎmin + 1)/𝛼𝑠⌉ − 1. This means that 𝐿𝑠 = ⌈(𝐿ℎmin + 1)/𝛼𝑠⌉ − 1 is the largest tr
length that after being shrunk, the algorithm terminates. We may apply a similar argument for the
largest tr length (before terminating) for the continuous 𝐿𝑥min/𝛼𝑠 .

In our mixed space setting, we have two separate trust regions for categorical and continuous
variables. When one of the tr reaches its terminating threshold (𝐿𝑥min/𝛼𝑠 or ⌈(𝐿ℎmin + 1)/𝛼𝑠⌉ − 1), the
length of the other one is (⌈𝐿ℎ0𝐿𝑥min/(𝛼𝑠𝐿𝑥0 )⌉

)
or𝐿𝑥0 (⌈(𝐿ℎmin+1)/𝛼𝑠⌉−1)/𝐿ℎ0 ). Based onAssumption C.3,

the gp can accurately fit a tr with continuous length 𝐿𝑥 ≤ max
(
𝐿𝑥min/𝛼𝑠 , 𝐿𝑥0 (⌈(𝐿ℎmin+1)/𝛼𝑠⌉−1)/𝐿ℎ0

)
and 𝐿ℎ ≤ max

(
⌈(𝐿ℎmin + 1)/𝛼𝑠⌉ − 1, ⌈𝐿ℎ0𝐿𝑥min/(𝛼𝑠𝐿𝑥0 )⌉

)
. Thus, if the current tr center is not a local

maxima, bg-pbt can find a new data point whose function value is larger than the function value
of current tr center. This process occurs iteratively until a local maxima is reached, and bg-pbt
terminates.

C.3 Proof of Theorem 3.1

Proof. Under the time-varying setting, at the 𝑖-th restart, we first fit the global time-varying gp
model on a subset of data 𝐷∗

𝑖−1 = {z∗𝑗 , 𝑓 (z∗𝑗 )}𝑖−1𝑗=1, where z
∗
𝑗 is the local maxima found after the 𝑗-th

restart, or, a random data point, if the found local maxima after the 𝑗-th restart is same as in the
previous restart.

Let z∗∗𝑖 = argmax∀z∈[H,X ] 𝑓𝑡 (z) 2 be the global optimum location at time step 𝑖 . Let 𝜇𝑔𝑙 (z;𝐷∗
𝑖−1)

and 𝜎2
𝑔𝑙
(z;𝐷∗

𝑖−1) be the posterior mean and variance of the global gp learned from 𝐷∗
𝑖−1. Then, at

the 𝑖-th restart, we select the following location z(0)
𝑖

as the initial centre of the new tr:

z(0)
𝑖

= arg max
z∈[H,X ]

𝜇𝑔𝑙 (z;𝐷∗
𝑖−1) +

√︁
𝛽𝑖𝜎𝑔𝑙 (z;𝐷∗

𝑖−1),

where 𝛽𝑖 is the trade-off parameter in pb2 (Parker-Holder et al., 2020).
We follow Wan et al. (2021) to assume that at the 𝑖-th restart, there exists a function 𝑔𝑖 (z): (a)

lies in the RKHS G𝑘 ( [H,X ]) and ∥𝑔𝑖 ∥2𝑘 ≤ 𝐵, (b) shares the same global maximum z∗ with 𝑓 , and, (c)
passes through all the local maxima of 𝑓 and any data point z′ in D∗

𝑖−1 ∪ {z(0)
𝑖

} which are not local
maxima (i.e. 𝑔𝑖 (z′) = 𝑓 (z′),∀z′ ∈ 𝐷∗

𝑖−1∪{z(0)
𝑖

}). In other words, the function 𝑔𝑖 (z) is a function that
passes through the maxima of 𝑓 whilst lying in the RKHS G𝑘 ( [H,X ]) and satisfying ∥𝑔𝑖 ∥2𝑘 ≤ 𝐵.

Using 𝛽𝑖 defined in Theorem 2 in Srinivas et al. (2010) for function 𝑔𝑖 , ∀𝑖 , ∀𝑧 ∈ [H,X ], we have,

Pr{|𝜇𝑔𝑙 (z;𝐷∗
𝑖−1) − 𝑔𝑖 (z) | ≤

√︁
𝛽𝑖𝜎𝑔𝑙 (z;𝐷∗

𝑖−1) |} ≥ 1 − 𝜁 . (11)

In particular, with probability 1 − 𝜁 , we have that,

𝜇𝑔𝑙 (z(0)𝑖
;𝐷∗

𝑖−1) +
√︁
𝛽𝑖𝜎𝑔𝑙 (z(0)𝑖

;𝐷∗
𝑖−1) ≥ 𝜇𝑔𝑙 (z∗∗𝑖 ;𝐷∗

𝑖−1) +
√︁
𝛽𝑖𝜎𝑔𝑙 (z∗∗𝑖 ;𝐷∗

𝑖−1) ≥ 𝑔𝑖 (z∗∗𝑖 ) . (12)
1The operator ⌊.⌋ denotes the floor function
2Notationally, at the 𝑖-th restart, z∗∗

𝑖
is the global optimum location while z∗

𝑖
is the local maxima found by bg-pbt.
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Thus, ∀𝑖 , with probability 1 − 𝜁 we have

𝑔𝑖 (z∗∗𝑖 ) − 𝑔𝑖 (z(0)𝑖
) ≤ 𝜇𝑔𝑙 (z(0)𝑖

;𝐷∗
𝑖−1) +

√︁
𝛽𝑖𝜎𝑔𝑙 (z(0)𝑖

;𝐷∗
𝑖−1) − 𝑔𝑖 (z(0)𝑖

) ≤ 2
√︁
𝛽𝑖𝜎𝑔𝑙 (z(0)𝑖

;𝐷∗
𝑖−1) .

Since 𝑔𝑖 (z(0)𝑖
) = 𝑓 (z(0)

𝑖
), and 𝑔𝑖 (z∗∗𝑖 ) = 𝑓 (z∗∗𝑖 ), hence, 𝑓𝑖 (z∗∗𝑖 ) − 𝑓 (z(0)

𝑖
) ≤ 2

√︁
𝛽𝑖𝜎𝑔𝑙 (z(0)𝑖

;𝐷∗
𝑖−1) with

probability 1−𝜁 . With z∗𝑖 as the local maxima found by bg-pbt at the 𝑖-th restart. As 𝑓 (z(0)
𝑖

) ≤ 𝑓 (z∗𝑖 ),
we have,

𝑓𝑖 (z∗∗𝑖 ) − 𝑓𝑖 (z∗𝑖 ) ≤ 2
√︁
𝛽𝑖𝜎𝑔𝑙 (z(0)𝑖

;𝐷∗
𝑖−1) . (13)

Let z𝑖,𝑏 be the point chosen by our algorithm at iteration 𝑖 and batch element 𝑏, we follow Parker-
Holder et al. (2020) to define the time-varying instantaneous regret as 𝑟𝑖,𝑏 = 𝑓𝑖 (z∗∗𝑖 ) − 𝑓𝑖 (z𝑖,𝑏). Then,
the time-varying batch instantaneous regret over 𝐵 points is as follows

𝑟𝐵𝑖 = min
𝑏≤𝐵

𝑟𝑖,𝑏 = min
𝑏≤𝐵

𝑓𝑖 (z∗∗𝑖 ) − 𝑓𝑖 (z𝑖,𝑏),∀𝑏 ≤ 𝐵 (14)

Using Equation (13) and Theorem 2 in Parker-Holder et al. (2020), we bound the cumulative batch
regret over 𝐼 restarts and 𝐵 parallel agents

𝑅𝐼𝐵 =

𝐼∑︁
𝑖=1

𝑟𝐵𝑖 ≤
√︂
𝐶1𝐼 𝛽𝐼

𝐵
𝛾 (𝐼𝐵;𝑘 ; [H,X ]) + 2 (15)

where 𝐶1 = 32/log(1 + 𝜎2
𝑓
), 𝛽𝐼 is the explore-exploit hyperparameter defined in Theorem 2 in

Parker-Holder et al. (2020) and 𝛾 (𝐼𝐵;𝑘 ; [H,X ]) ⪅ 𝐼𝐵

𝑁̃

(
𝜆𝜂𝛾 (𝐼 ;𝑘𝑥 ;X ) + (𝜂 − 2𝜆) log 𝐼𝐵 + 𝜎−2

𝑓
𝑁̃ 3𝜔

)
is

the maximum information gain defined over the mixed space of categorical and continuous [H,X ]
in the time-varying setting defined in Theorem C.1.

We note that given Theorem 3.1, if we use the squared exponential kernel over the con-
tinuous variables, 𝛾 (𝑁̃𝐵;𝑘 ;X ) = O(

[
log 𝑁̃𝐵

]𝑑+1) (Srinivas et al., 2010), the bound becomes

𝑅𝐼𝐵 ≤
√︂

𝐶1𝐼 2𝛽𝐼
𝑁̃

(
𝜆𝜂

[
log 𝑁̃𝐵

]𝑑+1 + (𝜂 − 2𝜆) log 𝐼𝐵 + 𝜎−2
𝑓
𝑁̃ 3𝜔

)
+ 2 where 𝑁̃ ≤ 𝐼 , 𝐵 ≪ 𝑇 and

𝜔 ∈ [0, 1].

D Full PPO Hyperparameter Search Space

We list the full search space for PPO in Table 4. The architecture and hyperparameters form the full
15-dimensional mixed search space. For methods that do not search in the architecture space (e.g.,
pbt, pb2, random search baselines in Z , and the partial bg-pbt in Ablation Studies that uses §3.1
only), the last 6 dimensions are fixed to the default architecture used in Brax: a policy network
with 4 hidden layers each containing 32 neurons, and a value network with 5 hidden layers each
containing 256 neurons. By default, spectral normalization is disabled in both networks.

E Implementation Details

We list the hyperparameters for our method bg-pbt in Table 5. Since bg-pbt uses the Casmopolitan
bo agent, it also inherits the default hyperparameters from Wan et al. (2021) which are used in all
our experiments (Table 6). We refer the readers to App. B.5 of Wan et al. (2021) which examines
the sensitivity of these hyperparameters. Note that in our current instantiation, we use 𝛼𝑉 = 0
so we only transfer policy networks across generations, since we found the value function was
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Table 4: The hyperparameters for PPO form a 15-dimensional mixed search space.

Hyperparameter Type Range

learning rate log-uniform [1e-4, 1e-3]
discount factor (𝛾 ) uniform [0.9, 0.9999]
entropy coefficient (c) log-uniform [1e-6, 1e-1]
unroll length integer [5, 15]
reward scaling uniform [0.05, 20]
batch size integer (power of 2) [32, 1024]
no. updates per epoch integer [2, 16]
GAE parameter (𝜆) uniform [0.9, 1]
clipping parameter (𝜖) uniform [0.1, 0.4]
𝜋 network width integer (power of 2) [32, 256]
𝜋 network depth integer [1, 5]
𝜋 use spectral norm binary [True, False]
𝑉 network width integer (power of 2) [32, 256]
𝑉 network depth integer [1, 5]
𝑉 use spectral norm binary [True, False]

Table 5: Hyperparameters for bg-pbt.

Hyperparameter Value Description

𝐵 8 Population size (number of parallel agents)
𝑞 12.5 % agents replaced each iteration (𝑞)
𝑡max 150M Total timesteps
𝛼RL 1 RL weight
𝛼𝑉 0 Value function weight
𝛼𝜋 5 Policy weight

less informative. We linearly anneal the coefficients for the supervised loss 𝛼𝑉 and 𝛼𝜋 from their
original value to 0 over the course of the distillation phase. This means we smoothly transition to a
pure RL loss over the initial part of each new generation.

Our method is built using the PyTorch version of the Brax (Freeman et al., 2021) codebase
at https://github.com/google/brax/tree/main/brax. The codebase is open-sourced under the
Apache 2.0 License. The Brax environments are often subject to change, for full transparency, our
evaluation is performed using the 0.10.0 version of the codebase. We ran all our experiments on
Nvidia Tesla V100 GPUs and used a single GPU for all experiments. We note that the PPO baseline
used in Table 1 is implemented in a different framework (JAX) to ours, which has some differences in
network weight initialization. The hyperparameters for the PPO baseline are tuned via grid-search
on a reduced hyperparameter search space (Freeman et al., 2021). Since no hyperparameters were
provided for the Hopper environment, we use the default in Freeman et al. (2021).

For all experiments, we use 𝑇max = 150𝑀 , population size (number of parallel agents) 𝐵 = 8
and 𝑞 = 12.5 (percentage of the agents that are replaced at each pbt iteration – in this case, at
each iteration, the single worst-performing agent is replaced). For all environments except for
Humanoid and Hopper, we use a fixed 𝑡ready = 1𝑀 . To avoid excessive sensitivity to initialization,
at the beginning of training for all pbt-based methods (pb2, pbt and bg-pbt) we initialize with 24
agents and train for 𝑡ready steps and choose the top-𝐵 agents as the initializing population. For the
full bg-pbt, to trigger distillations and hence a new generation, we set a patience of 20 (i.e., if the
evaluated return fails to improve after 20 consecutive 𝑡ready steps, a new generation is started). Since
starting new generations can be desirable even if the training has not stalled, we introduce a second
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Table 6: Hyperparameters for bg-pbt inherited from Casmopolitan

Hyperparameter Value Description

tr multiplier 1.5 multiplicative factor for each expansion/shrinking of the tr.
succ_tol 3 number of consecutive successes before expanding the tr
fail_tol 10 number of consecutive failures before shrinking the tr
Min. continuous tr radius 0.15 min. tr of the continuous/ordinal variables before restarting
Min. categorical tr radius 0.1 min. tr of the categorical variables before restarting
Init. continuous tr radius 0.4 initial tr of the continuous/ordinal variables
Init. categorical tr radius 1 initial tr of the categorical variables

criterion to also start a new generation after 40M steps. Thus, a new generation is started when
either criterion is met (40M steps since last distillation, or 20 consecutive failures in improving
the evaluated return). For distillation at the start of every generation (all except initial), we begin
distillation with 24 agents (4 suggested by bo and the rest from random sampling, see App. B.3 for
details). We then use successive halving to only distill 𝐵 of them using the full budget of 30M steps
with the rest terminated early.

For the Humanoid and Hopper environments, we observed that PBT-style methods performed
poorly across the board (See App. F for detailed results): in particular, on Hopper we notice that
agents often learn a sub-optimal mode where it only learns to stand up (hence collecting the reward
associating with simply surviving) but not to move. On Humanoid, we find that agents often learn
a mode where the humanoid does not use its knee joint – in both cases, the agents seem to get
stuck in stable but sub-optimal modes which use fewer degrees-of-freedom than they are capable
of exploiting. This behavior was ameliorated by linearly annealing the interval 𝑡ready from 5M to
1M as a function of timesteps to not encourage myopic behavior at the start. Since the increase
in 𝑡ready at the initial stage of training will lead to more exploratory behaviors, we increase the
threshold before triggering a new generation at 60M for these two environments.

F Additional Experiments

F.1 Scalability with Increased Training Budget and/or 𝐵
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Figure 5: Evaluation of bg-pbt on the
Hopper environment with
𝐵 = 24, and varying 𝑡max and
𝑡ready. Results in the format
“{𝑡max}_{𝑡ready}”.

For more complicated large-scale environments, pbt is often
used with a much larger population size than what we present
in this paper (𝐵 = 8). In this section, we investigate whether
bg-pbt benefits from increased parallelism by increasing the
number of agents to 𝐵 = 24 and training for much longer. In
this instance, we use the Hopper environment as a testbed as
it is amongst the most challenging in the current version of
Brax and is particularly well suited to pbt-style methods. We
show the results in Fig. 5: for a 𝑡max of 150M, there is a small
improvement over the 𝐵 = 8 results presented in the main text;
whereas there is a significant benefit from jointly scaling up
𝐵, 𝑡max and 𝑡ready as exemplified by the 300M_10M result.

F.2 Effects of Reduced Training Budget

We additionally conduct experiments on bg-pbt with the maximum timesteps roughly halved from
the default 150M used in the main experiments to remove the effect of the additional samples used
during distillation. We show the results in Fig. 6, where bg-pbt_s denotes bg-pbt run for roughly
75M steps. Compared to the training setup outlined in App. E, to further reduce the training cost,
we also reduce the number of initializing population to 12, reduce the distillation timesteps to 20M
and allow for only one generation of distillation. The results show that bg-pbt still performs well
with results on par with or exceeding previous baselines using the full budget.
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Figure 6: Mean evaluated return over the population with ±1 sem (shaded) across 7 random seeds in
all environments.

F.3 Components of bg-pbt
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Figure 7: Comparison of full bg-pbt and bg-pbt without nas and distillation. Mean evaluated return
over the population shown with ±1 sem (shaded) across 7 random seeds in all environments.

We show the training trajectories of bg-pbt and the variant of bg-pbt without neural architec-
ture search and distillation in Fig. 7. We also perform additional ablation studies on components of
bg-pbt on Ant and HalfCheetah in Fig. 8. The modifications to bg-pbt we consider are:

1. No NAS/TR pbt without tr-based bo or nas. This is identical to the pb2 baseline described in the
main text.

2. No NAS bg-pbt with tr-based bo in Sec. 3.1 but without nas or distillation.

3. Random Arch bg-pbt with tr-based bo and distillation, but at the start of each generation, the
architectures are selected randomly instead using bo+rs followed by the successive halving
strategy described in App. B.3.

4. Static Arch bg-pbt with tr-based bo and distillation, but without nas: all agents are started
with the same default architectures for both the policy and value networks, and at the start of a
new generation we distill across identical architectures.

The results further demonstrate the benefit of introducing both tr-based bo and NAS to PBT-style
methods in bg-pbt. The results in Fig. 8 also highlight the importance of having architecture
diversity for distillation to be successful – for both environments, removing the architecture
variability (Static Arch) led to a significant drop in performance, which in some cases even
under-performed the baseline without any distillation. In contrast, simply initializing the new
agents with random architectures performed surprisingly well (Random Arch). This provides more
even evidence that optimal architectures at different stages of training may vary, and thus should
also vary dynamically through time.
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Figure 8: Additional ablation studies on the Ant and HalfCheetah environments.
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F.4 Hyperparameter and Architecture Schedules Learned on Additional Environments

Supplementary to Fig. 4, we show the hyperparameter and architectures schedules learned by
bg-pbt in Fig. 9 for additional environments where architecture search improves performance. We
see similar trends to the schedules learned for the Ant environment.
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Figure 9: The hyperparameter and architecture schedule discovered by bg-pbt on various environ-
ments: we plot the hyperparameters of the best-performing agent in the population averaged
across 7 seeds with ± 1 sem shaded. Gray dashed lines denote the hyperparameter bounds.
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F.5 Hopper and Humanoid Results with Constant 𝑡ready = 1𝑀

For our main evaluation, we linearly anneal 𝑡ready through time. We show why this is necessary
in Table 7 by evaluating the PBT-style methods with a constant 𝑡ready = 1M as with the other
environments. We observe a considerable decrease in evaluated return compared to the results in
Table 1.

Table 7: Mean evaluated return ±1sem across 7 seeds shown for Humanoid and Hopper environments
with constant 𝑡ready = 1M.

Method PBT PB2 BG-PBT
Search space Z Z J

Humanoid 7498±666 7667±1000 7949±876
Hopper 1667±222 1253±77 2257±290

F.6 Ablations on Explicit Treatment of Ordinal Variables

For bg-pbt, we extended Casmopolitan (Wan et al., 2021) by further accommodating for ordinal
variables (i.e., discrete variables with ordering, such as integer variables for the width of a multi-
layer perceptron). In this section, we show the empirical benefits of this over treating them as
categorical variables (the default in Wan et al. (2021)).

We consider 3 Brax environments (Fig. 10), where we further compare the full bg-pbt with
a variant of bg-pbt where we use the original Casmopolitan by treating the ordinal variables
(log2-batch size, widths and depths of the value and policy MLPs, unroll length, number of updates
per epoch) as categorical variables. It is clear that the ordinal treatment in our case results in better
performance in all 3 environments.
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Figure 10: Comparison of bg-pbt with the variant of bg-pbt that uses original Casmpolitan (bg-pbt-
Cat) that treats ordinal variables as categorical.

F.7 Comparison Against Random Search with Manually Defined Learning Rate Schedule

We compare against random search that uses an equivalent amount of compute resources, but
with a manually defined learning rate schedule, in Table 8. Specifically, we use random search
for all hyperparameters in either the joint search space (J ) or the hyperparameter search space
(Z) defined in Table 1, with the exception that instead of using flat learning rates, we search for
an initial learning rate which is cosine annealed to 10−8 by the end of the training. We find that
in Ant and HalfCheetah where the bg-pbt discovered schedules are similar to the manual cosine
schedules, RS-Anneal significantly outperforms regular RS, but when the discovered schedules
deviate from the manual design in the case of UR5e, we find the margin of improvement to be much
smaller. This shows that there is unlikely to be an optimal manual schedule for all environments,
further demonstrating the desirable flexibility of bg-pbt in adapting to different environments.
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Table 8: Comparison against RS and RS with cosine annealing (RS-Anneal). The results for RS and
bg-pbt are lifted from Table 1.

Method RS RS RS-Anneal RS-Anneal BG-PBT
Search space Z J Z J J

Ant 6780±317 4781±515 9640±79 9536±257 10349±326
HalfCheetah 9502±76 10340±329 9672±157 13071±360 13450±551

UR5e 5.3±0.4 6.9±0.4 7.7±0.3 7.8±0.4 10.7±0.6

Furthermore, in all environments, bg-pbt still outperforms RS, with or without manual learning
rate scheduling. This is particularly notable as previous pbt-style methods were often known to
under-perform random search, especially with small population sizes.
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