AdapLeR: Speeding up Inference by Adaptive Length Reduction

Anonymous ACL submission

Abstract

Pre-trained language models have shown stel-
lar performance in various downstream tasks.
But, this usually comes at the cost of high
latency and computation, hindering their us-
age in resource-limited settings. In this work,
we propose a novel approach for reducing the
computational cost of BERT with minimal loss
in downstream performance. Our model dy-
namically eliminates less contributing tokens
through layers, resulting in shorter lengths and
consequently lower computational cost. To
determine the importance of each token rep-
resentation, we train a Contribution Predictor
for each layer using a gradient-based saliency
method. Our experiments on several diverse
classification tasks show speedups up to 17x
during inference time. We also validate the
quality of the selected tokens in our method us-
ing human annotations in the ERASER bench-
mark. In comparison to other widely used
strategies for selecting important tokens, such
as saliency and attention, our proposed method
has significantly less false positive rate in gen-
erating rationales.

1 Introduction

While large-scale pre-trained language models ex-
hibit remarkable performances on various NLP
benchmarks, their excessive computational costs
and high inference latency have limited their usage
in low-resource settings. In this regard, there have
been various attempts at improving the efficiency
of BERT-based models (Devlin et al., 2019), in-
cluding knowledge distilation (Hinton et al., 2015;
Sanh et al., 2019; Sun et al., 2019, 2020; Jiao et al.,
2020), quantization (Gong et al., 2014; Shen et al.,
2020; Tambe et al., 2021), weight pruning (Han
et al., 2016; He et al., 2017; Michel et al., 2019;
Sanh et al., 2020), and progressive module replac-
ing (Xu et al., 2020). Despite providing significant
reduction in model size, these techniques are gener-
ally static at inference time, i.e., they dedicate the

same amount of computation to all inputs, irrespec-
tive of their difficulty.

A number of techniques have been also proposed
in order to make efficiency enhancement sensitive
to inputs. Early exit mechanism (Schwartz et al.,
2020; Liao et al., 2021; Xin et al., 2020; Liu et al.,
2020; Xin et al., 2021; Sun et al., 2021; Eyza-
guirre et al., 2021) is a commonly used method
in which each layer in the model is coupled with
an intermediate classifier to predict the target la-
bel. At inference, a halting condition is used to
determine whether the model allows an example
to exit without passing through all layers. Vari-
ous halting conditions have been proposed, includ-
ing Shannon’s entropy (Xin et al., 2020; Liu et al.,
2020), softmax outputs with temperature calibra-
tion (Schwartz et al., 2020), trained confidence
predictors (Xin et al., 2021), or the number of
agreements between predictions of intermediate
classifiers (Zhou et al., 2020).

Most of these techniques compress the model
from the depth perspective (i.e., reducing the num-
ber of involved encoder layers). However, one
can view compression from the width perspective
(Goyal et al., 2020; Ye et al., 2021), i.e., reduc-
ing the length of hidden states. (Ethayarajh, 2019;
Klafka and Ettinger, 2020). This is particularly
promising as recent analytical studies showed that
there are redundant encoded information in token
representations (Klafka and Ettinger, 2020; Etha-
yarajh, 2019). Among these redundancies, some
tokens carry more task-specific information than
others (Mohebbi et al., 2021), suggesting that only
these tokens could be considered through the model.
Moreover, in contrast to layer-wise pruning, token-
level pruning does not come at the cost of reducing
model’s capacity in complex reasoning (Sanh et al.,
2019; Sun et al., 2019).

PoWER-BERT (Goyal et al., 2020) is one of
the first such techniques which reduces inference
time by eliminating redundant token representa-

tions through layers based on self-attention weights.
Several studies have followed (Kim and Cho, 2021;
Wang et al., 2021); However, they usually optimize
a single token elimination configuration across the
entire dataset, resulting in a static model. In addi-
tion, their token selection strategies are based on
attention weights which can result in a sub-optimal
solution (Ye et al., 2021). In this work, we in-
troduce Adaptive Length Reduction (AdapLeR).
Instead of relying on attention weights, our model
trains a set of Contribution Predictors (CP) to esti-
mate tokens’ saliency scores at inference. We show
that this choice results in more reliable scores than
attention weights in measuring tokens’ contribu-
tions.

The most related study to ours is TR-BERT (Ye
et al., 2021) which leverages reinforcement learn-
ing to develop an input-adaptive token selection
policy network. However, as pointed out by the au-
thors, the problem has a large search space, making
it difficult for RL to solve. To mitigate this, they re-
sorted to extra heuristics such as imitation learning
(Hussein et al., 2017) for warming up the training
of the policy network, action sampling for limiting
the search space, and knowledge distillation for
transferring knowledge from the intact backbone
fine-tuned model. All of these steps significantly
increase the training cost. Hence, they only per-
form token selection at two layers. In contrast, we
propose a simple but effective method to gradu-
ally eliminate tokens in each layer throughout the
training phase using a soft-removal function which
allows the model to be adaptable to various inputs
in a batch-wise mode. It is also worth noting above
studies are based on top-k operations for identi-
fying the k most important tokens during training
or inference, which can be expensive without a
specific hardware architecture (Wang et al., 2021).

In summary, our contributions are threefold:

* We couple a simple Contribution Predictor
(CP) with each layer of the model to estimate
tokens’ contribution scores to eliminate redun-
dant representations.

* Instead of an instant token removal, we grad-
ually mask out less contributing token repre-
sentations by employing a novel soft-removal
function.

* We also show the superiority of our token
selection strategy over the other widely used
strategies by using human rationales.

2 Background
2.1 Self-attention Weights

Self-attention is a core component of the Trans-
formers (Vaswani et al., 2017) which looks for
the relation between different positions of a sin-
gle sequence of token representations (z1, ..., Zn)
to build contextualized representations. To this
end, each input vector x; is multiplied by the corre-
sponding trainable matrices (), K, and V' to respec-
tively produce query (g;), key (k;), and value (v;)
vectors. To construct the output representation z;, a
series of weights is computed by the dot product of
g; with every k; in all time steps. Before applying
a softmax function, these values are divided by a
scaling factor and then added to an attention mask
vector m, which is zero for positions we wish to
attend and —oo (in practice, —10000) for padded
tokens (Vaswani et al., 2017). Mathematically, for
a single attention head, the weight attention from
token x; to token x; in the same input sequence
can be written as:

ft aiky + R (1)
;= softmax m; | €
I (EjGX \/a

The time complexity for this is O(n?) given the
dot product qiij, where n is the input sequence
length. This impedes the usage of self-attention
based models in low-resource settings.

While self-attention is one of the most white-box
components in transformer-based models, relying
on raw attention weights as an explanation could
be misleading given that they are not necessarily re-
sponsible for determining the contribution of each
token in the final classifier’s decision (Jain and Wal-
lace, 2019; Serrano and Smith, 2019; Abnar and
Zuidema, 2020). This is based on the fact that raw
attentions are being faithful to the local mixture of
information in each layer and are unable to obtain a
global perspective of the information flow through
the entire model (Pascual et al., 2021).

2.2 Gradient-based Saliency Scores

Gradient-based methods provide alternatives to at-
tention weights to compute the importance of a
specific input feature. Despite having been widely
utilized in other fields earlier (Ancona et al., 2017,
Simonyan et al., 2013; Sundararajan et al., 2017;
Smilkov et al., 2017), they have only recently be-
come popular in NLP studies (Bastings and Fil-
ippova, 2020; Li et al., 2016; Yuan et al., 2019).

Encoder Layer £+1

Layer £+1 n y
Inputs: [CS] S
X X X —4 I
A A A I
— N X w c & —
" A4 U c© @ o
- o < w w
(SR e — %)
= 0 < h
Layer ¢ ; - i n tokens @
Outputs: . (5] [SEP] _— CP*¢

Encoder Layer £

Figure 1: To reduce the inference computation, in each layer (1) the attribution score of the token representation is
estimated and (2) based on a reduced uniform-level threshold (6¢ = n‘z/n) token representations with low importance
score are removed. Since the final layer’s classifier is connected to the [CLS] token and it could act as a pooler
within each layer it is the only token that would remain regardless of its score.

These methods are based on computing the first-
order derivative of the output logit y. w.r.t. the
input embedding A (initial hidden states), where
c could be true class label to find the most impor-
tant input features or the predicted class to interpret
model’s behavior. After taking the norm of output
derivatives, we get sensitivity (Ancona et al., 2017),
which indicates the changes in model’s output with
respect to the changes in specific input dimensions.
Instead, by multiplying gradients with input fea-
tures, we arrive at gradientxinput (Bastings and
Filippova, 2020), also known as saliency, which
also considers the direction of input vectors to de-
termine the most important tokens. Since these
scores are computed for each dimension of embed-
ding vectors, an aggregation method such as L2
norm or mean is needed to produce one score per
input token (Atanasova et al., 2020a):

Y.

5= g

® R |l)

3 Methodology

As shown in Figure 1, our approach relies on drop-
ping low contributing tokens in each layer and
passing only the more important ones to the next.
Therefore, one important step is to measure the
importance of each token. To this end, we opted
for saliency scores which is a more reliable crite-
rion in measuring token’s contributions (Bastings
and Filippova, 2020; Pascual et al., 2021). We will
show in Section 5.1 results of a series quantitative
analyses that supports this choice. In what follows,
we first describe how we estimate saliency scores

at inference time using a set of Contribution Pre-
dictors (CPs) and then we elaborate on how we
leverage these predictors during inference (Section
3.2) and training (Section 3.3) phase.

3.1 Contribution Predictor

Computing gradients during inference is problem-
atic as back-propagation computation prolongs in-
ference time, which is contrary to our main goal.
To circumvent this, we simply add a CP after each
layer £ in the model to estimate contribution score
for each token representation, i.e., S{. The model
then decides on the tokens that should be passed to
the next layer based on the values of S¢. CP com-
putes S! for each token using an MLP followed
by a softmax activation function. We argue that,
despite being limited in learning capacity, the MLP
is sufficient for estimating scores that are more gen-
eralized and relevant than vanilla saliency values.
We will present a quantitative analysis on this topic
in Section 5.

3.2 Model Inference

Most BERT-based models consist of L encoder
layers. The input sequence of n tokens is usually
passed through an embedding layer to build the
initial hidden states of the model h°. Each encoder
layer then produces the next hidden states using the
ones from the previous layer:

Rt = El’lCOdCI‘g(he_l) 3)

In our approach, we eliminate less contribut-
ing token representations before delivering hidden
states to the next encoder. Tokens are selected

based on the contribution scores §¢ obtained from
the CP of the corresponding layer £. As the sum
of these scores is equal to one, a uniform level
indicates that all tokens contribute equally to the
prediction and should be retained. On the other
hand, the lower-scoring tokens could be viewed as
unnecessary tokens if the contribution scores are
concentrated only on a subset of tokens. Given that
the final classification head uses the last hidden
state of the [CLS] token, we preserve this token’s
representation in all layers. Despite preserving this,
other tokens might be removed from a layer when
[CLS] has a significantly high estimated contri-
bution score than others. Based on this intuition,
we define a cutoff threshold based on the uniform
as: 0 = 0’ - 1/n with 0 < 1 < 1 to distinguish
important tokens. Tokens are considered important
if their contribution score exceeds § (which is a
equal or smaller value than the uniform score). In-
tuitively, a larger n provides a higher § cutoff level,
thereby dropping a larger number of tokens, hence,
yielding more speedup. The value of 7 determines
the extent to which we can rely on CP’s estimations.
In case the estimations of CP are deemed to be inac-
curate, its impact can be reduced by lowering 7. We
train each layer’s i’ using an auxiliary training ob-
jective, which allows the model to adjust the cutoff
value to control the speedup-performance tradeoff.
Also, since each input instance has a different com-
putational path during token removal process, it is
obvious that at inference time the batch size should
be equal to one (single instance usage), similarly to
other dynamic approaches (Zhou et al., 2020; Liu
etal., 2020; Ye et al., 2021; Eyzaguirre et al., 2021;
Xin et al., 2020).

3.3 Model Training

Training consists of three phases: initial finetuning,
saliency extraction, and adaptive length retraining.
In the first phase, we simply finetune the back-
bone model (BERT) on a given target task. We
then extract the saliencies of three top-perfroming
checkpoints from the finetuning process and com-
pute the average of them to mitigate potential in-
consistencies in saliency scores (cf. Section 2.2).
The final step is to train a pre-trained model us-
ing an adaptive length reduction procedure. In
this phase, a non-linear function gradually fades
out the representations throughout the training pro-
cess. Each CP is jointly trained with the rest of
the model using the saliencies extracted in the pre-

Figure 2: The soft-removal function plotted with
A€ {3,9,27,81} and 6 = 0.25. As) increases, the
removal region (1) gets steeper while the other zone (2),
which is almost horizontal, approaches the zero level.

vious phase alongside with the target task labels.
We also define a speedup tuning objective to deter-
mine the thresholds (via tuning 7)) to control the
performance-speedup trade-off. In the following,
we elaborate on the procedure.

Soft-removal function. During training, if to-
kens are immediately dropped similarly to the in-
ference mode, the effect of dropping tokens can-
not be captured using a gradient back-propagation
procedure. Using batch-wise training in this sce-
nario will also be problematic as the structure
will vary with each example. Hence, inspired by
the padding mechanism of self-attention models
(Vaswani et al., 2017) we introduce a new method
that gradually masks out less contributing token
representations. In each layer, after predicting con-
tribution scores, instead of instantly removing the
token representations, we accumulate a negative
mask to the attention mask vector M using a soft-
removal function:

Aagj (Sf — 6°) — § SE< ot
— 3l B
i (Si) B (Sf _ 1)5 Gl st @
(1— 69\ v =

This function consists of two main zones (Figure
2). In the first term, the less important tokens with
scores lower than the threshold (6¢) are assigned
higher negative masking as they get more distant
from §. The slope is determined by A\,4 = /s,
where) is a hyperparameter that is increased ex-
ponentially after each epoch (e.g., A <— 10 x A af-
ter finishing each epoch). Increasing A makes the
soft-removal function stronger and more decisive
in masking the representations. To avoid under-
going zero gradients during training, we define

0 < B < 0.1 to construct a small negative slope
(similar to the well known Leaky-ReLU of Maas
et al. 2013) for those tokens with higher contribut-
ing scores than 8¢ threshold. Consider a scenario in
which 1’ sharply drops, causing most of S get over
the 0¢ threshold. In this case, the non-zero value
in the second term of Equation 4, which facilitates
optimizing 7’.

Training the Contribution Predictors. The CPs
are trained by an additional term which is based
on the KL-divergence' of each layer’s CP output
with the extracted saliencies. The main training
objective is a minimization of the following loss:

L = Lcg+vLcp 5)

Where 7 is a hyperparameter which that specifies
the amount of emphasis on the CP training loss:

L-1
Lep =) (L —0)Dkr (5159
=0

L—-1 N y Se (6)
=2 (L=02 Slog(Z)
=0 =1 i

Since S is based on the input embeddings, the
[CLS] token usually shows a low amount of con-
tribution due to not having any contextualism in
the input. As we leverage the representation of
the [CLS] token in the last layer for classification,
this token acts as a pooler and gathers information
about the context of the input. In other words, the
token can potentially have more contribution as it
passes through the model. To this end, we amplify
the contribution score of [CLS] and renormalize
the distribution (S %) with a trainable parameter 6t

0'S{1i = 1] + S1fi > 1]
04ST + > imo Sf

Si = @

By this procedure, the next objective (discussed
in the next paragraph) will have the capability of
tuning the amount of pooling, consequently con-
trolling the amount of speedup. Larger 6 push the
CPs to shift the contribution towards the [CLS] to-
ken to gather most of the task-specific information
and avoids carrying redundant tokens through the
model.

"Inclusive KL loss. Check Appendix A.

Speedup Tuning. In the speedup tuning process,
we combine the cross-entropy loss of the target
classification task with a length loss which is the
expected number of unmasked token representa-
tions in all layers. Considering that we have a
non-positive and continuous attention mask M,
the length loss of a single layer would be the
summation over the exponential of the mask val-
ues exp(m;) to map the masking range [—oo, 0]
to a [0 (fully masked/removed), 1 (fully retained)]
bound.

ESPD./PERF. = »CCE + ¢£LENGTH

L n (8)
Lienctn = Z Z exp(mf)

=1 i=1

In Equation 8, demonstrates how the length loss is
computed inside the model and how its added to
the main classification loss. During training, we
assign a separate optimization process which tunes
7 and 6 to adjust the thresholds and the amount of
[CLS] pooling® alongside with the CP training.
The reason that this objective is treated as a sep-
arate problem instead of merging it with the pre-
vious one, is because in the latter case the CPs
could be influenced by the length loss and try to
manipulate the contribution scores for some tokens
regardless of their real influence. So in other words,
the first objective is to solve the task and make it
explainable with the CPs, and the secondary objec-
tive builds the speedup using tuning the threshold
levels and the amount of pooling in each layer.

4 Experiments

4.1 Datasets

To verify the effectiveness of our proposed method
on adaptive length reduction, we selected eight
various text classification datasets. In order to
incorporate a variety of tasks, we utilized SST-
2 (Socher et al., 2013) and IMDB (Maas et al.,
2011) for sentiment, MRPC (Dolan and Brock-
ett, 2005) for paraphrase, AG’s News (Zhang
et al., 2015) for topic classification, DBpedia
(Lehmann et al., 2015) for knowledge extraction,
MNLI (Williams et al., 2018) for NLI, QNLI (Ra-
jpurkar et al., 2016) for question answering, and
HateXplain (Mathew et al., 2021) for hate speech.
Evaluations are based on the test split of each
dataset. For those datasets that are in the GLUE

%Since @ is not in the computational DAG, we employed a
dummy variable inside the model. See Appendix B.

Model SST-2 IMDB HateXplain MRPC MNLI QNLI AG’s news DBpedia
Acc. FLOPs Acc. FLOPs Acc FLOPs Fl. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs
BERT 927 1.00x 93.8 1.00x 683 1.00x 875 1.00x 842 1.00x 903 1.00x 944 1.00x 993 1.00x
DistilBERT 922 2.00x 929 2.00x 682 200x 88.0 2.00x 81.8 2.00x 881 2.00x 942 2.00x 99.3 2.00x
PoWER-BERT 92.1 1.18x 922 1.70x 669 2.69x 88.0 1.07x 829 1.10x 89.7 1.23x 92.1 125x 98.1 14.8x
TR-BERT 934 1.09x 932 290x 679 223x 819 1.l6x 848 1.00x 89.0 1.09x 932 102x 989 10.01x
AdapLeR 923 149x 917 321x 68.6 473x 87.6 127x 829 142x 893 147x 925 17.1x 989 22.23x

Table 1: Comparison of our method (AdapLeR) with other baselines in eight classification tasks in terms of
performance and speedup (FLOPs). For each dataset the corresponding metric has been reported (Accuracy: Acc.,
F1: F-1 Score). In the MNLI task, the speedup and performance values are the average of the evaluations on the

matched and mismatched test sets.

Benchmark (Wang et al., 2018), test results were
acquired by submitting the test predictions to the
evaluation server. For other tasks results were com-
puted based on the test set provided.

4.2 Experimental Setup

To compare our approach, we set our first base-
line to be the pre-trained BERT (base-uncased)
(Devlin et al., 2019) which is also the backbone
model of our model and the other three baselines:
DistilBERT (uncased) (Sanh et al., 2019) as a static
model, TR-BERT and POWER-BERT as dynamic
approaches. We used the same implementations
and suggested hyperparameters? to train these base-
lines. To fine-tune the backbone model we used
similar hyperparameters over all tasks that are pro-
vided in Section D. The backbone model and our
model implementation is based on the Hugging-
Face’s Transformers library (Wolf et al., 2020).
Trainings and evaluations were conducted on a dual
2080Ti 11GB GPU machine with multiple runs.

Hyperparameter Selection. Overall, we intro-
duced four hyperparameters (7, ¢, A, 5)* which are
involved in the training process. However, the main
two primary terms that are the most influential and
have considerable effects on both the output per-
formance and the speedup of the trained model
are ¢ and . This makes our approach compara-
ble to existing techniques (Goyal et al., 2020; Ye
et al., 2021) which usually have two or three hy-
perparameters adjusted per task. While using grid
search for these two terms, we kept other hyperpa-
rameters constant over all datasets. The selected
hyperparamters and more details are discussed in
Section D.

3Since some of the datasets were not used originally, we
had to search the hyperparameters based on the given ranges.

*Note that @ and 7 are trainable terms that are tuned by the
model during training.

FLOPs Computation. As we wish to deter-
mine the computational complexity of models in-
dependently of the operating environment (e.g.,
CPU/GPU), following Ye et al. (2021) and Liu
et al. (2020), we computed FLOPs, i.e., the number
of floating-point operations (FLOPs) in a single
inference procedure. To have a fair comparison,
we computed FLOPs for POWER-BERT in a single
instance mode, described in Section C.

4.3 Results

The performance and speedup values of our pro-
posed method and other baselines are presented in
Table 1. We can observe that with a low perfor-
mance gap in all tasks, our approach significantly
outperforms others in terms of efficiency. It is note-
worthy that the results also reveal some form of
dependency on the type of tasks. Some tasks may
need less amount of contextualism during inference
and could be classified by using a fraction of input
tokens. For instance, in AG’s News, the topic of
a sentence might be identified with a single token
(e.g. Basketball — Topic: Sports, see Figure 5 in
the Appendix as an example).

We illustrate speed-accuracy curves for
HateXplain in Figure 6 in the Appendix to provide
a closer look at the efficiency of AdapLeR in
comparison with other state-of-the-art methods
for length reduction. For each curve, the points
were obtained by tuning the most influential
hyperparameters of the corresponding model.

S Analysis

In this section, we first conduct an experiment to
support our choice of saliency scores as a supervi-
sion in measuring the importance of token repre-
sentations. Next, we validate the behavior of Con-
tribution Predictors in identifying most important
tokens in an AdapLeR model.

Movie Reviews MultiRC
Strategy Acc. FLOPs Acc. FLOPs
Full input 93.3 1x 67.7 Ix
Human rationale 96.7 3.7x 76.6 4.6x
Saliency 92.3 3.7x 664 4.4x
Attention ALL 78.5 3.7x 62.9 4.4x
Attention [CLS] 70.3 3.7x 63.7 4.4x

Table 2: Accuracy and speedup when the most impor-
tant input tokens during fine-tuning are computed based
on attention and saliency strategies and human rationale
(the upper bound). The bold values indicate the best
corresponding strategy for each task (the closest perfor-
mance to the upper bound).

5.1 Saliency vs. Attention

In dealing with token pruning, a natural question
that might arise is what would be the most appropri-
ate criterion for assessing the relative importance of
tokens within a sentence? To arrive at an empirical
and reliable upper bound in measuring token im-
portance, we resort to human rationale. To this end,
we used the ERASER benchmark (DeYoung et al.,
2020), which contains multiple tasks for which
important spans of the input text have been high-
lighted as supporting evidence (aka “rationale”) by
human. Among the benchmark tasks, we opted
for two diverse classification tasks: Movie reviews
(Zaidan and Eisner, 2008) and MultiRC (Khashabi
et al., 2018) (see Sec. E in the Appendix for task
descriptions).

In order to verify the reliability of human ratio-
nales, we fine-tuned BERT just on rationales by
excluding those tokens that are not highlighted in
the input. In Table 2, the first two rows show the
performance score of BERT on target tasks with
full tokens and only rationales in the input. We
see that fine-tuning merely on rationales not only
yielded less computation cost, but also resulted in
higher performance when compared with the full
input setting. Obviously, human annotations are
not available for a whole range of downstream NLP
tasks; therefore, this criteria is infeasible in prac-
tice and can only be viewed as an upper bound
for evaluating different strategies in measuring to-
ken importance. We investigated the effectiveness
of saliency and self-attention weights as two com-
monly used strategies for measuring the importance
of tokens in pre-trained language models.

To compute these, we first fine-tuned BERT with
all tokens in the input for a given target task. We

then obtained saliency scores with respect to the
tokens in the input embedding layer. This gives us
two advantages. First, representations in this layer
are non-contextualized, allowing us to measure the
importance of each token individually. Second, the
fact that the gradient passes from the end to the
beginning of the model results in aggregated values
for the relative importance of each token based on
the entire model. Similarly, we aggregated self-
attention weights across all layers of the model
using a post-processed variant of attentions called
attention rollout (Abnar and Zuidema, 2020), a
popular technique in which each attention weight
matrix in each layer is multiplied by the ones before
it to form aggregated attention values. To assign
an importance score to each token, we examined
two different interpretation of attention weights.
The first strategy is the one adopted by POWER-
BERT (Goyal et al., 2020) in which for each token
we accumulate attention values from other tokens.
Additionally, we measured how much the [CLS]
token attends to each token in the input, a strat-
egy which has been widely used in interpretability
studies around BERT (Abnar and Zuidema, 2020;
Chrysostomou and Aletras, 2021; Jain et al., 2020,
inter alia). For a fair evaluation, for each sentence
in the test set, we selected the top-k salient and
attended words, with k being the number of words
that are annotated as rationales.

Results in Table 2 show that fine-tuning on the
most salient tokens outperforms that based on the
most attended tokens. This denotes that saliency
is a better indicator for the importance of tokens.
Nonetheless, recent length reduction techniques
(Goyal et al., 2020; Kim and Cho, 2021; Wang
et al., 2021) have mostly adopted attention weights
as their criterion for selecting important tokens as
these weights are convenient to compute during the
inference.

5.2 Contribution Predictor Evaluation

The goal of this section is to validate our Contri-
bution Predictors in selecting the most contributed
tokens. Figure 3 shows an input example from SST-
2 dataset. As we can see, the CPs can identify and
drop the irrelevant tokens gradually through lay-
ers, finally focusing mostly on ‘pedestrian’ (Adj.)
and [CLS] token representations which is highly
aligned with human interpretation.

Next, we attempted to quantify how much our
model can preserve rationales without requiring

Layer 0: [CLS] what was once original has been co - opted so frequently that it now seems pedestrian . [SEP]
Layer 5: [CLS] once original co - opted o frequently seems }
Layer 11: [CLS] opted frequently seems Pedestrian

Figure 3: The illustration of contribution scores obtained by CPs in three different layers of the model for an input
example from SST-2 (sentiment) task. The color intensity indicates the degree of contribution scores. Only the
highlighted token representations are processed in each layer. See more full-layer plots in the appendix 5.

0.50 +
a 0.45
<
€
0.40 +
0.35 +
.
=i S
o _’_(_,.,—(- = o
0.3) ,)_—-*')'"_)"—")‘——')-—'-)—-—-)-*_._)_.___)_._.)_
- \.
o PARICONE. O
& oo 4 v saliency
' —¢- Attention
—)=- Attention Rollout
0.1 —e— CP

2 4 6 8 10 12
Layer

Figure 4: Agreement with human rationales in terms of
mean Average Precision and False Positive Rate for CP
and three alternative techniques.

direct human annotations. For evaluation, we used
two Average Precision (AP) and False Positive Rate
(FPR) metrics by comparing the remaining tokens
to the human rationale annotations. The first metric
measures whether the model assigns higher con-
tinuous scores to those tokens that are annotated
by humans as rationales. Whereas, the intuition
behind the second metric is how many irrelevant
tokens are selected by the model to be passed to
subsequent layers.

First, we fine-tuned the model on the
Movie Review dataset and computed layer-wise
raw attention, attention rollout, and saliency scores
for each token representation. We also trained a
model using our proposed approach and computed
the output probability scores of CPs in each layer.
Since human rationales are annotated at the word
level, we sum the scores across tokens correspond-
ing to each word to arrive at word-level importance
scores. In addition to these soft scores, we used
the uniform-level threshold to reach a binary score
indicating tokens selected in each layer. We used
soft scores for computing AP and binary scores for
computing FPR.

Figure 4 shows the agreement between human
rationales and the selected tokens based on these
two metrics. As we can see, in comparison to
other widely used strategies for selecting important
tokens, such as salinecy and attention, our Contri-
bution Predictors has have significantly less false
positive rate in preserving rationales through the
layers. Though attention and CP converge at the
same point, note that, CPs can also identify ra-
tionales at earlier layers, allowing the model to
combine the most relevant token representations to
build the final representation and gain better perfor-
mance results, as we have seen in the main results.
There is also a line of research in which practition-
ers attempt to guide models to perform human-like
reasoning by training rationale generation simulta-
neously with the target task that requires human an-
notation (Atanasova et al., 2020b; Zhao et al., 2020;
Lietal., 2018). As a by-product, our trained CPs
are able to generate these rationales at inference
without the need for human-generated annotations.

6 Conclusion

In this paper we introduced AdapLeR, a model
that dynamically identifies and drops less contribut-
ing token representations through layers. Specifi-
cally, AdapLeR accomplishes this by training a set
of Contribution Predictors based on saliencies ex-
tracted from a finetuned model and applying a grad-
ual masking technique to simulate input-adaptive
token removal during training. Empirical results on
seven diverse text classification tasks show consid-
erable improvements over previous methods. Fur-
thermore, we demonstrated that contribution pre-
dictors generate rationales that are highly in line
with those manually specified by humans. As fu-
ture work, we aim to apply our technique to more
tasks and see whether it can be adapted to those
tasks that rely on all token representations (e.g.,
question answering). Additionally, combining our
width-based strategy with a depth-based one (e.g.,
early exiting) might potentially yield greater ef-
ficiency, something we plan to pursue as future
work.

References

Samira Abnar and Willem Zuidema. 2020. Quantify-
ing attention flow in transformers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4190—-4197, On-
line. Association for Computational Linguistics.

Marco Ancona, Enea Ceolini, Cengiz Oztireli, and
Markus Gross. 2017. Towards better understand-
ing of gradient-based attribution methods for deep
neural networks. arXiv preprint arXiv:1711.06104.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020a. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3256-3274, Online. Association for
Computational Linguistics.

Pepa Atanasova, Jakob Grue Simonsen, Christina Li-
oma, and Isabelle Augenstein. 2020b. Generating
fact checking explanations. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7352-7364, Online. Asso-
ciation for Computational Linguistics.

Jasmijn Bastings and Katja Filippova. 2020. The ele-
phant in the interpretability room: Why use attention
as explanation when we have saliency methods? In
Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 149-155, Online. Association for Com-
putational Linguistics.

George Chrysostomou and Nikolaos Aletras. 2021. En-
joy the salience: Towards better transformer-based
faithful explanations with word salience. ArXiv,
abs/2108.13759.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443-4458, Online.
Association for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55-65,
Hong Kong, China. Association for Computational
Linguistics.

Cristébal Eyzaguirre, Felipe del Rio, Vladimir Araujo,
and Alvaro Soto. 2021. Dact-bert: Differentiable
adaptive computation time for an efficient bert infer-
ence. arXiv preprint arXiv:2109.11745.

Yunchao Gong, L. Liu, Ming Yang, and Lubomir D.
Bourdev. 2014. Compressing deep convolu-
tional networks using vector quantization. ArXiv,
abs/1412.6115.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. 2020. Power-bert: Accelerating
bert inference via progressive word-vector elimina-
tion. In International Conference on Machine Learn-

ing, pages 3690-3699. PMLR.

Song Han, Huizi Mao, and William J. Dally. 2016. Deep
compression: Compressing deep neural network with
pruning, trained quantization and huffman coding.
arXiv: Computer Vision and Pattern Recognition.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel
pruning for accelerating very deep neural networks.
2017 IEEE International Conference on Computer
Vision (ICCV), pages 1398—1406.

Geoftrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan,
and Chrisina Jayne. 2017. Imitation learning: A sur-
vey of learning methods. ACM Computing Surveys
(CSUR), 50(2):1-35.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543-3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, and By-
ron C. Wallace. 2020. Learning to faithfully rational-
ize by construction. In ACL.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163—
4174, Online. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.18653/v1/2020.acl-main.656
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.14
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252-262, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Gyuwan Kim and Kyunghyun Cho. 2021. Length-
adaptive transformer: Train once with length drop,
use anytime with search. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6501-6511, Online. Association
for Computational Linguistics.

Josef Klafka and Allyson Ettinger. 2020. Spying on
your neighbors: Fine-grained probing of contex-
tual embeddings for information about surrounding
words. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
48014811, Online. Association for Computational
Linguistics.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Soren Auer, et al. 2015. Dbpedia—a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167-195.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 681-691, San Diego, California.
Association for Computational Linguistics.

Sizhen Li, Shuai Zhao, Bo Cheng, and Hao Yang. 2018.
An end-to-end multi-task learning model for fact
checking. In Proceedings of the First Workshop on
Fact Extraction and VERification (FEVER), pages
138-144, Brussels, Belgium. Association for Compu-
tational Linguistics.

Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su,
Xu Sun, and Bin He. 2021. A global past-future
early exit method for accelerating inference of pre-
trained language models. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2013-2023, Online.
Association for Computational Linguistics.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035—
6044, Online. Association for Computational Lin-
guistics.

10

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142—150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.
2013. Rectifier nonlinearities improve neural net-
work acoustic models. In in ICML Workshop on
Deep Learning for Audio, Speech and Language Pro-
cessing.

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam,
Chris Biemann, Pawan Goyal, and Animesh Mukher-
jee. 2021. Hatexplain: A benchmark dataset for ex-
plainable hate speech detection. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 14867-14875.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In NeurIPS.

Hosein Mohebbi, Ali Modarressi, and Moham-
mad Taher Pilehvar. 2021. Exploring the role of
BERT token representations to explain sentence prob-
ing results. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 792—-806, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Damian Pascual, Gino Brunner, and Roger Wattenhofer.
2021. Telling BERT’s full story: from local attention
to global aggregation. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 105-124, Online. Association for Computa-
tional Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. ArXiv, abs/2005.07683.

Roy Schwartz, Gabriel Stanovsky, = Swabha
Swayamdipta, Jesse Dodge, and Noah A. Smith.
2020. The right tool for the job: Matching model and
instance complexities. In Proceedings of the 58th
Annual Meeting of the Association for Computational

https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/N18-1023
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/2020.acl-main.434
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/W18-5523
https://doi.org/10.18653/v1/W18-5523
https://doi.org/10.18653/v1/W18-5523
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/P11-1015
https://aclanthology.org/2021.emnlp-main.61
https://aclanthology.org/2021.emnlp-main.61
https://aclanthology.org/2021.emnlp-main.61
https://aclanthology.org/2021.emnlp-main.61
https://aclanthology.org/2021.emnlp-main.61
https://doi.org/10.18653/v1/2021.eacl-main.9
https://doi.org/10.18653/v1/2021.eacl-main.9
https://doi.org/10.18653/v1/2021.eacl-main.9
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593

Linguistics, pages 6640-6651, Online. Association
for Computational Linguistics.

Sofia Serrano and Noah A. Smith. 2019. Is attention in-
terpretable? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2931-2951, Florence, Italy. Association for
Computational Linguistics.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low pre-
cision quantization of bert. In AAAI

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2013. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

D Smilkov, N Thorat, B Kim, F Viégas, and M Watten-
berg. 2017. Smoothgrad: removing noise by adding
noise. arxiv. arXiv preprint arxiv:1706.03825.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323-4332, Hong Kong, China. Association for Com-
putational Linguistics.

Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu
Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang, and
Xipeng Qiu. 2021. Early exiting with ensemble inter-
nal classifiers. arXiv preprint arXiv:2105.13792.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158-2170, Online. Association for Computa-
tional Linguistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 3319-3328.

Thierry Tambe, Coleman Hooper, Lillian Pentecost,
Tianyu Jia, En-Yu Yang, Marco Donato, Victor
Sanh, Paul N. Whatmough, Alexander M. Rush,
David Brooks, and Gu-Yeon Wei. 2021. Edge-
bert: Sentence-level energy optimizations for latency-
aware multi-task nlp inference. MICRO-54: 54th
Annual IEEE/ACM International Symposium on Mi-
croarchitecture.

11

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat-
ten: Efficient sparse attention architecture with cas-
cade token and head pruning. 2021 IEEE Interna-
tional Symposium on High-Performance Computer
Architecture (HPCA), pages 97-110.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Ji

Jury

Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246-2251, Online.
Association for Computational Linguistics.

Ji

—_

Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. BERxIT: Early exiting for BERT with better
fine-tuning and extension to regression. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 91-104, Online. Association for
Computational Linguistics.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. BERT-of-theseus: Com-
pressing BERT by progressive module replacing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7859-7869, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/P19-1282
https://doi.org/10.18653/v1/P19-1282
https://doi.org/10.18653/v1/P19-1282
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2021.eacl-main.8
https://doi.org/10.18653/v1/2021.eacl-main.8
https://doi.org/10.18653/v1/2021.eacl-main.8
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633

Deming Ye, Yankai Lin, Yufei Huang, and Maosong
Sun. 2021. TR-BERT: Dynamic token reduction
for accelerating BERT inference. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5798-5809,
Online. Association for Computational Linguistics.

Hao Yuan, Yongjun Chen, Xia Hu, and Shuiwang Ji.
2019. Interpreting deep models for text analysis via
optimization and regularization methods. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 5717-5724.

Omar Zaidan and Jason Eisner. 2008. Modeling an-
notators: A generative approach to learning from
annotator rationales. In Proceedings of the 2008
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 31-40, Honolulu, Hawaii.
Association for Computational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS.

Chen Zhao, Chenyan Xiong, Corby Rosset, Xia
Song, Paul Bennett, and Saurabh Tiwary. 2020.
Transformer-xh: Multi-evidence reasoning with ex-
tra hop attention. In International Conference on
Learning Representations.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit. In
Advances in Neural Information Processing Systems,
volume 33, pages 18330-18341. Curran Associates,
Inc.

A Inclusive KL Loss Consideration

We opted for an inclusive KL loss since CPs should
be trained to cover all tokens considered important
by saliency and not to be mode seeking (i.e., cover-
ing a subset of high contributing tokens considered
by the saliency scores.). Suppose an exclusive KL
is selected. Due to the limited learning capacity
of the CP and miscalculation possibility from the
saliency, the CP may be trained to maximize its
contribution on noninformative tokens. While in
an inclusive setting, it trains to extend its coverage
over all high-saliency tokens.

Additionally, our initial research indicated that
using a symmetric loss (e.g. Jensen-Shannon di-
vergence) would produce similar results but with a
significantly longer convergence time.

B Optimization of ¢

In Section 3.3, we introduced #¢ as a trainable pa-
rameter that increases the saliency score of [CLS].

12

We can deduce from Equations 6 and 7 that this pa-
rameter does not exist in the model’s computational
DAG and we need to compute the derivative of St
w.r.t. 6% to train this parameter. Hence, first we
assume that S’ is a close estimate of S* (due to the
CPs’ training objective). Second, using a dummy
variable 9§—that is involved in the computational
graph and is always equal to 1—we reformulate
S¢:

o 5t 055{1[i = 1] + Sf1fi > 1]
z Z 045F + >, St

©))

%

This reformulation is valid due to Gf; 1 and
Yoy S’f = 1. Now we compute the partial deriva-
tive w.r.t. Gfl which is the gradient that is computed
in the backpropagation:

05 _ S{(i, S{ifi =1] - S{1[i > 1))

265 (0351 + 321y 57)?
(10)
By knowing that Hfl =1:
s) ~
‘;*Z; = S - 8H1[i =1] - $1]i > 1)) (A1)
d

Now using our initial assumption (Sf ~ SY), we
can substitute Sf with Sf based on Equation 7:
DSt

=S -89H1i=1]-S4fi>1
802 1((D[] i 1[i > 1])

BSUT, Ml = 1] - SUfi > 1)
(065) + >0, S9)?

12)
In addition, the gradient of S¢ w.r.t. 6 is as follows
(cf. Equation 7):

05! _ S{(Xiy Sffi =1] - S{1[i > 1))
o6 (¢S] + D27y S7)?

13)
By comparing Equations 12 and 13, these deriva-
tives are related with a term of 6*:

4 4 Ql
08! _98{ 108 14
06t ~ 90t ~ 0% 96,

Therefore, during training, we can compute the
gradient w.r.t. the dummy variable 62 and then
divide it by 6°.

C Evaluating POWER-BERT in Single

Instance Mode

Due to the static structure of POWER-BERT, the
speedup ratios reported in Goyal et al. (2020) are

https://doi.org/10.18653/v1/2021.naacl-main.463
https://doi.org/10.18653/v1/2021.naacl-main.463
https://doi.org/10.18653/v1/2021.naacl-main.463
https://aclanthology.org/D08-1004
https://aclanthology.org/D08-1004
https://aclanthology.org/D08-1004
https://aclanthology.org/D08-1004
https://aclanthology.org/D08-1004
https://openreview.net/forum?id=r1eIiCNYwS
https://openreview.net/forum?id=r1eIiCNYwS
https://openreview.net/forum?id=r1eIiCNYwS
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf

based on wall time acceleration with batch-wise
inference procedure. This means that some inputs
might need extra padding to make all inputs with
the same token length. However, since our ap-
proach and other dynamic approaches are based
on single instance inference, in our procedure in-
puts are fed without being padded. To even out
this discrepancy, we apply a single instance flops
computation on the POWER-BERT, which means
we compute the computational cost for all input
lengths that appear in the test dataset. Some in-
stnaces may have shorter input length than some
values in the resulting retention configuration (num-
ber of tokens that are retained in each layer). To
overcome this issue, we update the retention con-
figuration by selecting the minimum between the
input length and each layers’ number of tokens re-
tained, to build a new retention configuration for
each input length. For instance, if the retention con-
figuration trained model on a given task be (153,
125, 111, 105, 85, 80, 72, 48, 35, 27, 22, 5), for an
input with 75 tokens length, the new configuration
which is used for speedup computation will be: (75,
75,75,75,75,75,72, 48, 35,27, 22, 5).

D AdapLeR Training Hyperparameters

For the initial step of finetuning BERT, we used the
hyperparameters in Table 3. For both finetuning
and training with length reduction, we employed an
AdamW optimizer (Loshchilov and Hutter, 2019)
with a weight decay rate of 0.1, warmup proportion
6% of total training steps and a linear learning rate
decay which reaches to zero at the end of training.

Dataset Epoch LR MaxlLen. BSZ
SST-2 5 2e-H 64 32
IMDB 5 2e5 512 16
HateXplain 5 3e-5 72 32
MRPC 5 2e5 128 32
MNLI 3 2e5H 128 32
QNLI 5 2e5 128 32
AG’s News 5 2e-5 128 32
DBpedia 3 2e5 128 32

Table 3: Hyperparameters in each dataset; LR: Learn-
ing rate; BSZ: Batch size; MaxLen: Maximum Token
Length

For the adaptive length reduction training step,
we also used the same hyperparameters in Table
3 with two differences: Since MRPC and CoLA
have small training sets, to prolong the gradual soft-

13

removal process, we increased the training duration
to 10 epochs. Moreover, we increase the learning
rate to 3e-5. Other hyperparameters are stated in
Table 4. To set a trend for A, it needs to start from
a small but effective value (10 < A < 100) and
grow exponentially per each epoch to reach an ex-
tremely high amount at the end of the training to
mimic a hard removal function (1e+5 < A). Hence,
datasets with the same amount of training epochs
have similar \ trends.

Dataset 5 10} A
SST-2 5¢-3 Se-4 10Epoch
IMDB 5e-3 5e-4 10%poch
HateXplain 5Se-2 2e-2 50Fpoch
MRPC 3e-2 5e-2 10 x 3Epoch
MNLI 5e-3 5e-4 50Epoch
QNLI 5e-3 le-4 10Epoch
AG’s News le-1 le-1 10Epoch
DBPedia le-1 le-1 50Epoch

Table 4: ALR hyperparameters in each dataset; Since
A increases expoonentially on each epoch the coorre-
sponding formula is written.

E Task Descriptions

In the Movie reviews (Zaidan and Eisner, 2008)
task, the model predicts the sentiment based on
multiple sentences. The MultiRC (Khashabi et al.,
2018) dataset contains a passage, a question, and
multiple candidate answers, which is cast as a bi-
nary classification task of passage/question/answer
triplets in ERASER benchmark.

F Additional Qualitative Examples
G Accuracy-Speedup Trade-off

Layer 0: [CLS] gi ##ddy PREIPS touches gold for first time michacl PREIPS won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP]
Layer 1: [MBBH gi ##ddy phelps touches gold michael phelps gold medal medley world

Layer2: [ESI phelps phelps medley

Layer 3:
Layer 4:
Layer 5:
Layer 6:
Layer 7:
Layer 8:
Layer 9:
Layer 10:

Layer 11: -

Figure 5: The illustration of contribution scores obtained by CPs in each layers of the model for an input example
from AG’s news (topic classification) task. The color intensity indicates the degree of contribution scores. Only the
highlighted token representations are processed in each layer

—>¢ TR
—@— PoWER
—&— AdapLeR

Accuracy
o o o o o °
[=)] (=) o o [=)] ~
v o ~ [©o o
d

o
o
S

/

Speedup

Figure 6: Accuracy-Speedup trade-off curve for
AdapLeR and two other state-of-the-art reduction meth-
ods; TR: TR-BERT, POWER:PoWER-BERT on HateX-
plain task.

14

