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Abstract

Pre-trained language models have shown stel-001
lar performance in various downstream tasks.002
But, this usually comes at the cost of high003
latency and computation, hindering their us-004
age in resource-limited settings. In this work,005
we propose a novel approach for reducing the006
computational cost of BERT with minimal loss007
in downstream performance. Our model dy-008
namically eliminates less contributing tokens009
through layers, resulting in shorter lengths and010
consequently lower computational cost. To011
determine the importance of each token rep-012
resentation, we train a Contribution Predictor013
for each layer using a gradient-based saliency014
method. Our experiments on several diverse015
classification tasks show speedups up to 17x016
during inference time. We also validate the017
quality of the selected tokens in our method us-018
ing human annotations in the ERASER bench-019
mark. In comparison to other widely used020
strategies for selecting important tokens, such021
as saliency and attention, our proposed method022
has significantly less false positive rate in gen-023
erating rationales.024

1 Introduction025

While large-scale pre-trained language models ex-026

hibit remarkable performances on various NLP027

benchmarks, their excessive computational costs028

and high inference latency have limited their usage029

in low-resource settings. In this regard, there have030

been various attempts at improving the efficiency031

of BERT-based models (Devlin et al., 2019), in-032

cluding knowledge distilation (Hinton et al., 2015;033

Sanh et al., 2019; Sun et al., 2019, 2020; Jiao et al.,034

2020), quantization (Gong et al., 2014; Shen et al.,035

2020; Tambe et al., 2021), weight pruning (Han036

et al., 2016; He et al., 2017; Michel et al., 2019;037

Sanh et al., 2020), and progressive module replac-038

ing (Xu et al., 2020). Despite providing significant039

reduction in model size, these techniques are gener-040

ally static at inference time, i.e., they dedicate the041

same amount of computation to all inputs, irrespec- 042

tive of their difficulty. 043

A number of techniques have been also proposed 044

in order to make efficiency enhancement sensitive 045

to inputs. Early exit mechanism (Schwartz et al., 046

2020; Liao et al., 2021; Xin et al., 2020; Liu et al., 047

2020; Xin et al., 2021; Sun et al., 2021; Eyza- 048

guirre et al., 2021) is a commonly used method 049

in which each layer in the model is coupled with 050

an intermediate classifier to predict the target la- 051

bel. At inference, a halting condition is used to 052

determine whether the model allows an example 053

to exit without passing through all layers. Vari- 054

ous halting conditions have been proposed, includ- 055

ing Shannon’s entropy (Xin et al., 2020; Liu et al., 056

2020), softmax outputs with temperature calibra- 057

tion (Schwartz et al., 2020), trained confidence 058

predictors (Xin et al., 2021), or the number of 059

agreements between predictions of intermediate 060

classifiers (Zhou et al., 2020). 061

Most of these techniques compress the model 062

from the depth perspective (i.e., reducing the num- 063

ber of involved encoder layers). However, one 064

can view compression from the width perspective 065

(Goyal et al., 2020; Ye et al., 2021), i.e., reduc- 066

ing the length of hidden states. (Ethayarajh, 2019; 067

Klafka and Ettinger, 2020). This is particularly 068

promising as recent analytical studies showed that 069

there are redundant encoded information in token 070

representations (Klafka and Ettinger, 2020; Etha- 071

yarajh, 2019). Among these redundancies, some 072

tokens carry more task-specific information than 073

others (Mohebbi et al., 2021), suggesting that only 074

these tokens could be considered through the model. 075

Moreover, in contrast to layer-wise pruning, token- 076

level pruning does not come at the cost of reducing 077

model’s capacity in complex reasoning (Sanh et al., 078

2019; Sun et al., 2019). 079

PoWER-BERT (Goyal et al., 2020) is one of 080

the first such techniques which reduces inference 081

time by eliminating redundant token representa- 082
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tions through layers based on self-attention weights.083

Several studies have followed (Kim and Cho, 2021;084

Wang et al., 2021); However, they usually optimize085

a single token elimination configuration across the086

entire dataset, resulting in a static model. In addi-087

tion, their token selection strategies are based on088

attention weights which can result in a sub-optimal089

solution (Ye et al., 2021). In this work, we in-090

troduce Adaptive Length Reduction (AdapLeR).091

Instead of relying on attention weights, our model092

trains a set of Contribution Predictors (CP) to esti-093

mate tokens’ saliency scores at inference. We show094

that this choice results in more reliable scores than095

attention weights in measuring tokens’ contribu-096

tions.097

The most related study to ours is TR-BERT (Ye098

et al., 2021) which leverages reinforcement learn-099

ing to develop an input-adaptive token selection100

policy network. However, as pointed out by the au-101

thors, the problem has a large search space, making102

it difficult for RL to solve. To mitigate this, they re-103

sorted to extra heuristics such as imitation learning104

(Hussein et al., 2017) for warming up the training105

of the policy network, action sampling for limiting106

the search space, and knowledge distillation for107

transferring knowledge from the intact backbone108

fine-tuned model. All of these steps significantly109

increase the training cost. Hence, they only per-110

form token selection at two layers. In contrast, we111

propose a simple but effective method to gradu-112

ally eliminate tokens in each layer throughout the113

training phase using a soft-removal function which114

allows the model to be adaptable to various inputs115

in a batch-wise mode. It is also worth noting above116

studies are based on top-k operations for identi-117

fying the k most important tokens during training118

or inference, which can be expensive without a119

specific hardware architecture (Wang et al., 2021).120

In summary, our contributions are threefold:121

• We couple a simple Contribution Predictor122

(CP) with each layer of the model to estimate123

tokens’ contribution scores to eliminate redun-124

dant representations.125

• Instead of an instant token removal, we grad-126

ually mask out less contributing token repre-127

sentations by employing a novel soft-removal128

function.129

• We also show the superiority of our token130

selection strategy over the other widely used131

strategies by using human rationales.132

2 Background 133

2.1 Self-attention Weights 134

Self-attention is a core component of the Trans- 135

formers (Vaswani et al., 2017) which looks for 136

the relation between different positions of a sin- 137

gle sequence of token representations (x1, ..., xn) 138

to build contextualized representations. To this 139

end, each input vector xi is multiplied by the corre- 140

sponding trainable matrices Q, K, and V to respec- 141

tively produce query (qi), key (ki), and value (vi) 142

vectors. To construct the output representation zi, a 143

series of weights is computed by the dot product of 144

qi with every kj in all time steps. Before applying 145

a softmax function, these values are divided by a 146

scaling factor and then added to an attention mask 147

vector m, which is zero for positions we wish to 148

attend and −∞ (in practice, −10000) for padded 149

tokens (Vaswani et al., 2017). Mathematically, for 150

a single attention head, the weight attention from 151

token xi to token xj in the same input sequence 152

can be written as: 153

αi,j = softmax
xj∈X

(
qik

⊤
j√
d

+mi

)
∈ R (1) 154

The time complexity for this is O(n2) given the 155

dot product qik⊤j , where n is the input sequence 156

length. This impedes the usage of self-attention 157

based models in low-resource settings. 158

While self-attention is one of the most white-box 159

components in transformer-based models, relying 160

on raw attention weights as an explanation could 161

be misleading given that they are not necessarily re- 162

sponsible for determining the contribution of each 163

token in the final classifier’s decision (Jain and Wal- 164

lace, 2019; Serrano and Smith, 2019; Abnar and 165

Zuidema, 2020). This is based on the fact that raw 166

attentions are being faithful to the local mixture of 167

information in each layer and are unable to obtain a 168

global perspective of the information flow through 169

the entire model (Pascual et al., 2021). 170

2.2 Gradient-based Saliency Scores 171

Gradient-based methods provide alternatives to at- 172

tention weights to compute the importance of a 173

specific input feature. Despite having been widely 174

utilized in other fields earlier (Ancona et al., 2017; 175

Simonyan et al., 2013; Sundararajan et al., 2017; 176

Smilkov et al., 2017), they have only recently be- 177

come popular in NLP studies (Bastings and Fil- 178

ippova, 2020; Li et al., 2016; Yuan et al., 2019). 179
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Figure 1: To reduce the inference computation, in each layer (1) the attribution score of the token representation is
estimated and (2) based on a reduced uniform-level threshold (δℓ = ηℓ

/n) token representations with low importance
score are removed. Since the final layer’s classifier is connected to the [CLS] token and it could act as a pooler
within each layer it is the only token that would remain regardless of its score.

These methods are based on computing the first-180

order derivative of the output logit yc w.r.t. the181

input embedding h0i (initial hidden states), where182

c could be true class label to find the most impor-183

tant input features or the predicted class to interpret184

model’s behavior. After taking the norm of output185

derivatives, we get sensitivity (Ancona et al., 2017),186

which indicates the changes in model’s output with187

respect to the changes in specific input dimensions.188

Instead, by multiplying gradients with input fea-189

tures, we arrive at gradient×input (Bastings and190

Filippova, 2020), also known as saliency, which191

also considers the direction of input vectors to de-192

termine the most important tokens. Since these193

scores are computed for each dimension of embed-194

ding vectors, an aggregation method such as L2195

norm or mean is needed to produce one score per196

input token (Atanasova et al., 2020a):197

Si =∥
∂yc
∂h0i
⊙ h0i ∥2 (2)198

3 Methodology199

As shown in Figure 1, our approach relies on drop-200

ping low contributing tokens in each layer and201

passing only the more important ones to the next.202

Therefore, one important step is to measure the203

importance of each token. To this end, we opted204

for saliency scores which is a more reliable crite-205

rion in measuring token’s contributions (Bastings206

and Filippova, 2020; Pascual et al., 2021). We will207

show in Section 5.1 results of a series quantitative208

analyses that supports this choice. In what follows,209

we first describe how we estimate saliency scores210

at inference time using a set of Contribution Pre- 211

dictors (CPs) and then we elaborate on how we 212

leverage these predictors during inference (Section 213

3.2) and training (Section 3.3) phase. 214

3.1 Contribution Predictor 215

Computing gradients during inference is problem- 216

atic as back-propagation computation prolongs in- 217

ference time, which is contrary to our main goal. 218

To circumvent this, we simply add a CP after each 219

layer ℓ in the model to estimate contribution score 220

for each token representation, i.e., S̃ℓ
i . The model 221

then decides on the tokens that should be passed to 222

the next layer based on the values of S̃ℓ
i . CP com- 223

putes S̃ℓ
i for each token using an MLP followed 224

by a softmax activation function. We argue that, 225

despite being limited in learning capacity, the MLP 226

is sufficient for estimating scores that are more gen- 227

eralized and relevant than vanilla saliency values. 228

We will present a quantitative analysis on this topic 229

in Section 5. 230

3.2 Model Inference 231

Most BERT-based models consist of L encoder 232

layers. The input sequence of n tokens is usually 233

passed through an embedding layer to build the 234

initial hidden states of the model h0. Each encoder 235

layer then produces the next hidden states using the 236

ones from the previous layer: 237

hℓ = Encoderℓ(hℓ−1) (3) 238

In our approach, we eliminate less contribut- 239

ing token representations before delivering hidden 240

states to the next encoder. Tokens are selected 241
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based on the contribution scores S̃ℓ obtained from242

the CP of the corresponding layer ℓ. As the sum243

of these scores is equal to one, a uniform level244

indicates that all tokens contribute equally to the245

prediction and should be retained. On the other246

hand, the lower-scoring tokens could be viewed as247

unnecessary tokens if the contribution scores are248

concentrated only on a subset of tokens. Given that249

the final classification head uses the last hidden250

state of the [CLS] token, we preserve this token’s251

representation in all layers. Despite preserving this,252

other tokens might be removed from a layer when253

[CLS] has a significantly high estimated contri-254

bution score than others. Based on this intuition,255

we define a cutoff threshold based on the uniform256

as: δℓ = ηℓ · 1/n with 0 < ηℓ ≤ 1 to distinguish257

important tokens. Tokens are considered important258

if their contribution score exceeds δ (which is a259

equal or smaller value than the uniform score). In-260

tuitively, a larger η provides a higher δ cutoff level,261

thereby dropping a larger number of tokens, hence,262

yielding more speedup. The value of η determines263

the extent to which we can rely on CP’s estimations.264

In case the estimations of CP are deemed to be inac-265

curate, its impact can be reduced by lowering η. We266

train each layer’s ηℓ using an auxiliary training ob-267

jective, which allows the model to adjust the cutoff268

value to control the speedup-performance tradeoff.269

Also, since each input instance has a different com-270

putational path during token removal process, it is271

obvious that at inference time the batch size should272

be equal to one (single instance usage), similarly to273

other dynamic approaches (Zhou et al., 2020; Liu274

et al., 2020; Ye et al., 2021; Eyzaguirre et al., 2021;275

Xin et al., 2020).276

3.3 Model Training277

Training consists of three phases: initial finetuning,278

saliency extraction, and adaptive length retraining.279

In the first phase, we simply finetune the back-280

bone model (BERT) on a given target task. We281

then extract the saliencies of three top-perfroming282

checkpoints from the finetuning process and com-283

pute the average of them to mitigate potential in-284

consistencies in saliency scores (cf. Section 2.2).285

The final step is to train a pre-trained model us-286

ing an adaptive length reduction procedure. In287

this phase, a non-linear function gradually fades288

out the representations throughout the training pro-289

cess. Each CP is jointly trained with the rest of290

the model using the saliencies extracted in the pre-291
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Figure 2: The soft-removal function plotted with
λ ∈ {3, 9, 27, 81} and δℓ = 0.25. As λ increases, the
removal region (1) gets steeper while the other zone (2),
which is almost horizontal, approaches the zero level.

vious phase alongside with the target task labels. 292

We also define a speedup tuning objective to deter- 293

mine the thresholds (via tuning η) to control the 294

performance-speedup trade-off. In the following, 295

we elaborate on the procedure. 296

Soft-removal function. During training, if to- 297

kens are immediately dropped similarly to the in- 298

ference mode, the effect of dropping tokens can- 299

not be captured using a gradient back-propagation 300

procedure. Using batch-wise training in this sce- 301

nario will also be problematic as the structure 302

will vary with each example. Hence, inspired by 303

the padding mechanism of self-attention models 304

(Vaswani et al., 2017) we introduce a new method 305

that gradually masks out less contributing token 306

representations. In each layer, after predicting con- 307

tribution scores, instead of instantly removing the 308

token representations, we accumulate a negative 309

mask to the attention mask vector M using a soft- 310

removal function: 311

m−
i (S̃

ℓ
i ) =


λadj(S̃

ℓ
i − δℓ)− β

λ
S̃ℓ
i < δℓ

(S̃ℓ
i − 1)β

(1− δℓ)λ
S̃ℓ
i ≥ δℓ

(4) 312

This function consists of two main zones (Figure 313

2). In the first term, the less important tokens with 314

scores lower than the threshold (δℓ) are assigned 315

higher negative masking as they get more distant 316

from δ. The slope is determined by λadj = λ/δ, 317

where λ is a hyperparameter that is increased ex- 318

ponentially after each epoch (e.g., λ← 10× λ af- 319

ter finishing each epoch). Increasing λ makes the 320

soft-removal function stronger and more decisive 321

in masking the representations. To avoid under- 322

going zero gradients during training, we define 323
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0 < β < 0.1 to construct a small negative slope324

(similar to the well known Leaky-ReLU of Maas325

et al. 2013) for those tokens with higher contribut-326

ing scores than δℓ threshold. Consider a scenario in327

which ηℓ sharply drops, causing most of S̃ℓ
i get over328

the δℓ threshold. In this case, the non-zero value329

in the second term of Equation 4, which facilitates330

optimizing ηℓ.331

Training the Contribution Predictors. The CPs332

are trained by an additional term which is based333

on the KL-divergence1 of each layer’s CP output334

with the extracted saliencies. The main training335

objective is a minimization of the following loss:336

L = LCE + γLCP (5)337

Where γ is a hyperparameter which that specifies338

the amount of emphasis on the CP training loss:339

LCP =

L−1∑
ℓ=0

(L− ℓ)DKL(Ŝ
ℓ||S̃ℓ)

=
L−1∑
ℓ=0

(L− ℓ)
N∑
i=1

Ŝℓ
i log(

Ŝℓ
i

S̃ℓ
i

)

(6)340

Since S is based on the input embeddings, the341

[CLS] token usually shows a low amount of con-342

tribution due to not having any contextualism in343

the input. As we leverage the representation of344

the [CLS] token in the last layer for classification,345

this token acts as a pooler and gathers information346

about the context of the input. In other words, the347

token can potentially have more contribution as it348

passes through the model. To this end, we amplify349

the contribution score of [CLS] and renormalize350

the distribution (Ŝℓ) with a trainable parameter θℓ:351

Ŝℓ
i =

θℓSℓ
11[i = 1] + Sℓ

i1[i > 1]

θℓSℓ
1 +

∑n
i=2 S

ℓ
i

(7)352

By this procedure, the next objective (discussed353

in the next paragraph) will have the capability of354

tuning the amount of pooling, consequently con-355

trolling the amount of speedup. Larger θ push the356

CPs to shift the contribution towards the [CLS] to-357

ken to gather most of the task-specific information358

and avoids carrying redundant tokens through the359

model.360

1Inclusive KL loss. Check Appendix A.

Speedup Tuning. In the speedup tuning process, 361

we combine the cross-entropy loss of the target 362

classification task with a length loss which is the 363

expected number of unmasked token representa- 364

tions in all layers. Considering that we have a 365

non-positive and continuous attention mask M , 366

the length loss of a single layer would be the 367

summation over the exponential of the mask val- 368

ues exp(mi) to map the masking range [−∞, 0] 369

to a [0 (fully masked/removed), 1 (fully retained)] 370

bound. 371

LSPD./PERF. = LCE + ϕLLENGTH

LLENGTH =

L∑
l=1

n∑
i=1

exp(mℓ
i)

(8) 372

In Equation 8, demonstrates how the length loss is 373

computed inside the model and how its added to 374

the main classification loss. During training, we 375

assign a separate optimization process which tunes 376

η and θ to adjust the thresholds and the amount of 377

[CLS] pooling2 alongside with the CP training. 378

The reason that this objective is treated as a sep- 379

arate problem instead of merging it with the pre- 380

vious one, is because in the latter case the CPs 381

could be influenced by the length loss and try to 382

manipulate the contribution scores for some tokens 383

regardless of their real influence. So in other words, 384

the first objective is to solve the task and make it 385

explainable with the CPs, and the secondary objec- 386

tive builds the speedup using tuning the threshold 387

levels and the amount of pooling in each layer. 388

4 Experiments 389

4.1 Datasets 390

To verify the effectiveness of our proposed method 391

on adaptive length reduction, we selected eight 392

various text classification datasets. In order to 393

incorporate a variety of tasks, we utilized SST- 394

2 (Socher et al., 2013) and IMDB (Maas et al., 395

2011) for sentiment, MRPC (Dolan and Brock- 396

ett, 2005) for paraphrase, AG’s News (Zhang 397

et al., 2015) for topic classification, DBpedia 398

(Lehmann et al., 2015) for knowledge extraction, 399

MNLI (Williams et al., 2018) for NLI, QNLI (Ra- 400

jpurkar et al., 2016) for question answering, and 401

HateXplain (Mathew et al., 2021) for hate speech. 402

Evaluations are based on the test split of each 403

dataset. For those datasets that are in the GLUE 404

2Since θ is not in the computational DAG, we employed a
dummy variable inside the model. See Appendix B.
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Model
SST-2 IMDB HateXplain MRPC MNLI QNLI AG’s news DBpedia

Acc. FLOPs Acc. FLOPs Acc FLOPs F1. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs

BERT 92.7 1.00x 93.8 1.00x 68.3 1.00x 87.5 1.00x 84.2 1.00x 90.3 1.00x 94.4 1.00x 99.3 1.00x

DistilBERT 92.2 2.00x 92.9 2.00x 68.2 2.00x 88.0 2.00x 81.8 2.00x 88.1 2.00x 94.2 2.00x 99.3 2.00x

PoWER-BERT 92.1 1.18x 92.2 1.70x 66.9 2.69x 88.0 1.07x 82.9 1.10x 89.7 1.23x 92.1 12.5x 98.1 14.8x
TR-BERT 93.4 1.09x 93.2 2.90x 67.9 2.23x 81.9 1.16x 84.8 1.00x 89.0 1.09x 93.2 10.2x 98.9 10.01x

AdapLeR 92.3 1.49x 91.7 3.21x 68.6 4.73x 87.6 1.27x 82.9 1.42x 89.3 1.47x 92.5 17.1x 98.9 22.23x

Table 1: Comparison of our method (AdapLeR) with other baselines in eight classification tasks in terms of
performance and speedup (FLOPs). For each dataset the corresponding metric has been reported (Accuracy: Acc.,
F1: F-1 Score). In the MNLI task, the speedup and performance values are the average of the evaluations on the
matched and mismatched test sets.

Benchmark (Wang et al., 2018), test results were405

acquired by submitting the test predictions to the406

evaluation server. For other tasks results were com-407

puted based on the test set provided.408

4.2 Experimental Setup409

To compare our approach, we set our first base-410

line to be the pre-trained BERT (base-uncased)411

(Devlin et al., 2019) which is also the backbone412

model of our model and the other three baselines:413

DistilBERT (uncased) (Sanh et al., 2019) as a static414

model, TR-BERT and PoWER-BERT as dynamic415

approaches. We used the same implementations416

and suggested hyperparameters3 to train these base-417

lines. To fine-tune the backbone model we used418

similar hyperparameters over all tasks that are pro-419

vided in Section D. The backbone model and our420

model implementation is based on the Hugging-421

Face’s Transformers library (Wolf et al., 2020).422

Trainings and evaluations were conducted on a dual423

2080Ti 11GB GPU machine with multiple runs.424

Hyperparameter Selection. Overall, we intro-425

duced four hyperparameters (γ, ϕ, λ, β)4 which are426

involved in the training process. However, the main427

two primary terms that are the most influential and428

have considerable effects on both the output per-429

formance and the speedup of the trained model430

are ϕ and γ. This makes our approach compara-431

ble to existing techniques (Goyal et al., 2020; Ye432

et al., 2021) which usually have two or three hy-433

perparameters adjusted per task. While using grid434

search for these two terms, we kept other hyperpa-435

rameters constant over all datasets. The selected436

hyperparamters and more details are discussed in437

Section D.438

3Since some of the datasets were not used originally, we
had to search the hyperparameters based on the given ranges.

4Note that θ and η are trainable terms that are tuned by the
model during training.

FLOPs Computation. As we wish to deter- 439

mine the computational complexity of models in- 440

dependently of the operating environment (e.g., 441

CPU/GPU), following Ye et al. (2021) and Liu 442

et al. (2020), we computed FLOPs, i.e., the number 443

of floating-point operations (FLOPs) in a single 444

inference procedure. To have a fair comparison, 445

we computed FLOPs for PoWER-BERT in a single 446

instance mode, described in Section C. 447

4.3 Results 448

The performance and speedup values of our pro- 449

posed method and other baselines are presented in 450

Table 1. We can observe that with a low perfor- 451

mance gap in all tasks, our approach significantly 452

outperforms others in terms of efficiency. It is note- 453

worthy that the results also reveal some form of 454

dependency on the type of tasks. Some tasks may 455

need less amount of contextualism during inference 456

and could be classified by using a fraction of input 457

tokens. For instance, in AG’s News, the topic of 458

a sentence might be identified with a single token 459

(e.g. Basketball → Topic: Sports, see Figure 5 in 460

the Appendix as an example). 461

We illustrate speed-accuracy curves for 462

HateXplain in Figure 6 in the Appendix to provide 463

a closer look at the efficiency of AdapLeR in 464

comparison with other state-of-the-art methods 465

for length reduction. For each curve, the points 466

were obtained by tuning the most influential 467

hyperparameters of the corresponding model. 468

5 Analysis 469

In this section, we first conduct an experiment to 470

support our choice of saliency scores as a supervi- 471

sion in measuring the importance of token repre- 472

sentations. Next, we validate the behavior of Con- 473

tribution Predictors in identifying most important 474

tokens in an AdapLeR model. 475
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Movie Reviews MultiRC

Strategy Acc. FLOPs Acc. FLOPs

Full input 93.3 1x 67.7 1x
Human rationale 96.7 3.7x 76.6 4.6x

Saliency 92.3 3.7x 66.4 4.4x
Attention ALL 78.5 3.7x 62.9 4.4x
Attention [CLS] 70.3 3.7x 63.7 4.4x

Table 2: Accuracy and speedup when the most impor-
tant input tokens during fine-tuning are computed based
on attention and saliency strategies and human rationale
(the upper bound). The bold values indicate the best
corresponding strategy for each task (the closest perfor-
mance to the upper bound).

5.1 Saliency vs. Attention476

In dealing with token pruning, a natural question477

that might arise is what would be the most appropri-478

ate criterion for assessing the relative importance of479

tokens within a sentence? To arrive at an empirical480

and reliable upper bound in measuring token im-481

portance, we resort to human rationale. To this end,482

we used the ERASER benchmark (DeYoung et al.,483

2020), which contains multiple tasks for which484

important spans of the input text have been high-485

lighted as supporting evidence (aka “rationale”) by486

human. Among the benchmark tasks, we opted487

for two diverse classification tasks: Movie reviews488

(Zaidan and Eisner, 2008) and MultiRC (Khashabi489

et al., 2018) (see Sec. E in the Appendix for task490

descriptions).491

In order to verify the reliability of human ratio-492

nales, we fine-tuned BERT just on rationales by493

excluding those tokens that are not highlighted in494

the input. In Table 2, the first two rows show the495

performance score of BERT on target tasks with496

full tokens and only rationales in the input. We497

see that fine-tuning merely on rationales not only498

yielded less computation cost, but also resulted in499

higher performance when compared with the full500

input setting. Obviously, human annotations are501

not available for a whole range of downstream NLP502

tasks; therefore, this criteria is infeasible in prac-503

tice and can only be viewed as an upper bound504

for evaluating different strategies in measuring to-505

ken importance. We investigated the effectiveness506

of saliency and self-attention weights as two com-507

monly used strategies for measuring the importance508

of tokens in pre-trained language models.509

To compute these, we first fine-tuned BERT with510

all tokens in the input for a given target task. We511

then obtained saliency scores with respect to the 512

tokens in the input embedding layer. This gives us 513

two advantages. First, representations in this layer 514

are non-contextualized, allowing us to measure the 515

importance of each token individually. Second, the 516

fact that the gradient passes from the end to the 517

beginning of the model results in aggregated values 518

for the relative importance of each token based on 519

the entire model. Similarly, we aggregated self- 520

attention weights across all layers of the model 521

using a post-processed variant of attentions called 522

attention rollout (Abnar and Zuidema, 2020), a 523

popular technique in which each attention weight 524

matrix in each layer is multiplied by the ones before 525

it to form aggregated attention values. To assign 526

an importance score to each token, we examined 527

two different interpretation of attention weights. 528

The first strategy is the one adopted by PoWER- 529

BERT (Goyal et al., 2020) in which for each token 530

we accumulate attention values from other tokens. 531

Additionally, we measured how much the [CLS] 532

token attends to each token in the input, a strat- 533

egy which has been widely used in interpretability 534

studies around BERT (Abnar and Zuidema, 2020; 535

Chrysostomou and Aletras, 2021; Jain et al., 2020, 536

inter alia). For a fair evaluation, for each sentence 537

in the test set, we selected the top-k salient and 538

attended words, with k being the number of words 539

that are annotated as rationales. 540

Results in Table 2 show that fine-tuning on the 541

most salient tokens outperforms that based on the 542

most attended tokens. This denotes that saliency 543

is a better indicator for the importance of tokens. 544

Nonetheless, recent length reduction techniques 545

(Goyal et al., 2020; Kim and Cho, 2021; Wang 546

et al., 2021) have mostly adopted attention weights 547

as their criterion for selecting important tokens as 548

these weights are convenient to compute during the 549

inference. 550

5.2 Contribution Predictor Evaluation 551

The goal of this section is to validate our Contri- 552

bution Predictors in selecting the most contributed 553

tokens. Figure 3 shows an input example from SST- 554

2 dataset. As we can see, the CPs can identify and 555

drop the irrelevant tokens gradually through lay- 556

ers, finally focusing mostly on ‘pedestrian’ (Adj.) 557

and [CLS] token representations which is highly 558

aligned with human interpretation. 559

Next, we attempted to quantify how much our 560

model can preserve rationales without requiring 561
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  [CLS] what was once original has been co - opted so frequently that it now seems pedestrian . [SEP] 
  [CLS] what was once original has been co - opted so frequently that it now seems pedestrian . [SEP] 
  [CLS] what was once original has been co - opted so frequently that it now seems pedestrian . [SEP]

Layer 0: 
Layer 5: 
Layer 11:

Figure 3: The illustration of contribution scores obtained by CPs in three different layers of the model for an input
example from SST-2 (sentiment) task. The color intensity indicates the degree of contribution scores. Only the
highlighted token representations are processed in each layer. See more full-layer plots in the appendix 5.
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Figure 4: Agreement with human rationales in terms of
mean Average Precision and False Positive Rate for CP
and three alternative techniques.

direct human annotations. For evaluation, we used562

two Average Precision (AP) and False Positive Rate563

(FPR) metrics by comparing the remaining tokens564

to the human rationale annotations. The first metric565

measures whether the model assigns higher con-566

tinuous scores to those tokens that are annotated567

by humans as rationales. Whereas, the intuition568

behind the second metric is how many irrelevant569

tokens are selected by the model to be passed to570

subsequent layers.571

First, we fine-tuned the model on the572

Movie Review dataset and computed layer-wise573

raw attention, attention rollout, and saliency scores574

for each token representation. We also trained a575

model using our proposed approach and computed576

the output probability scores of CPs in each layer.577

Since human rationales are annotated at the word578

level, we sum the scores across tokens correspond-579

ing to each word to arrive at word-level importance580

scores. In addition to these soft scores, we used581

the uniform-level threshold to reach a binary score582

indicating tokens selected in each layer. We used583

soft scores for computing AP and binary scores for584

computing FPR.585

Figure 4 shows the agreement between human 586

rationales and the selected tokens based on these 587

two metrics. As we can see, in comparison to 588

other widely used strategies for selecting important 589

tokens, such as salinecy and attention, our Contri- 590

bution Predictors has have significantly less false 591

positive rate in preserving rationales through the 592

layers. Though attention and CP converge at the 593

same point, note that, CPs can also identify ra- 594

tionales at earlier layers, allowing the model to 595

combine the most relevant token representations to 596

build the final representation and gain better perfor- 597

mance results, as we have seen in the main results. 598

There is also a line of research in which practition- 599

ers attempt to guide models to perform human-like 600

reasoning by training rationale generation simulta- 601

neously with the target task that requires human an- 602

notation (Atanasova et al., 2020b; Zhao et al., 2020; 603

Li et al., 2018). As a by-product, our trained CPs 604

are able to generate these rationales at inference 605

without the need for human-generated annotations. 606

6 Conclusion 607

In this paper we introduced AdapLeR, a model 608

that dynamically identifies and drops less contribut- 609

ing token representations through layers. Specifi- 610

cally, AdapLeR accomplishes this by training a set 611

of Contribution Predictors based on saliencies ex- 612

tracted from a finetuned model and applying a grad- 613

ual masking technique to simulate input-adaptive 614

token removal during training. Empirical results on 615

seven diverse text classification tasks show consid- 616

erable improvements over previous methods. Fur- 617

thermore, we demonstrated that contribution pre- 618

dictors generate rationales that are highly in line 619

with those manually specified by humans. As fu- 620

ture work, we aim to apply our technique to more 621

tasks and see whether it can be adapted to those 622

tasks that rely on all token representations (e.g., 623

question answering). Additionally, combining our 624

width-based strategy with a depth-based one (e.g., 625

early exiting) might potentially yield greater ef- 626

ficiency, something we plan to pursue as future 627

work. 628
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A Inclusive KL Loss Consideration1000

We opted for an inclusive KL loss since CPs should1001

be trained to cover all tokens considered important1002

by saliency and not to be mode seeking (i.e., cover-1003

ing a subset of high contributing tokens considered1004

by the saliency scores.). Suppose an exclusive KL1005

is selected. Due to the limited learning capacity1006

of the CP and miscalculation possibility from the1007

saliency, the CP may be trained to maximize its1008

contribution on noninformative tokens. While in1009

an inclusive setting, it trains to extend its coverage1010

over all high-saliency tokens.1011

Additionally, our initial research indicated that1012

using a symmetric loss (e.g. Jensen-Shannon di-1013

vergence) would produce similar results but with a1014

significantly longer convergence time.1015

B Optimization of θ1016

In Section 3.3, we introduced θℓ as a trainable pa-1017

rameter that increases the saliency score of [CLS].1018

We can deduce from Equations 6 and 7 that this pa- 1019

rameter does not exist in the model’s computational 1020

DAG and we need to compute the derivative of S̃ℓ 1021

w.r.t. θℓ to train this parameter. Hence, first we 1022

assume that S̃ℓ is a close estimate of Ŝℓ (due to the 1023

CPs’ training objective). Second, using a dummy 1024

variable θℓd—that is involved in the computational 1025

graph and is always equal to 1—we reformulate 1026

S̃ℓ: 1027

Ŝℓ
i ≈ S̃ℓ

i =
θℓdS̃

ℓ
11[i = 1] + S̃ℓ

i1[i > 1]

θℓdS̃
ℓ
1 +

∑n
i=2 S̃

ℓ
i

(9) 1028

This reformulation is valid due to θℓd = 1 and 1029∑n
i=1 S̃

ℓ
i = 1. Now we compute the partial deriva- 1030

tive w.r.t. θℓd which is the gradient that is computed 1031

in the backpropagation: 1032

∂S̃ℓ
i

∂θℓd
=

S̃ℓ
1(
∑n

i=2 S̃
ℓ
i1[i = 1]− S̃ℓ

i1[i > 1])

(θℓdS̃
ℓ
1 +

∑n
i=2 S̃

ℓ
i )

2

(10) 1033

By knowing that θℓd = 1: 1034

∂S̃ℓ
i

∂θℓd
= S̃ℓ

1((1− S̃ℓ
1)1[i = 1]− S̃ℓ

i1[i > 1]) (11) 1035

Now using our initial assumption (Ŝℓ
i ≈ S̃ℓ

i ), we 1036

can substitute S̃ℓ
i with Ŝℓ

i based on Equation 7: 1037

∂S̃ℓ
i

∂θℓd
= Ŝℓ

1((1− Ŝℓ
1)1[i = 1]− Ŝℓ

i1[i > 1])

=
θℓSℓ

1(
∑n

i=2 S
ℓ
i1[i = 1]− Sℓ

i1[i > 1])

(θℓSℓ
1 +

∑n
i=2 S

ℓ
i )

2

(12) 1038

In addition, the gradient of Ŝℓ
i w.r.t. θℓ is as follows 1039

(cf. Equation 7): 1040

∂Ŝℓ
i

∂θℓ
=

Sℓ
1(
∑n

i=2 S
ℓ
i1[i = 1]− Sℓ

i1[i > 1])

(θℓSℓ
1 +

∑n
i=2 S

ℓ
i )

2

(13) 1041

By comparing Equations 12 and 13, these deriva- 1042

tives are related with a term of θℓ: 1043

∂Ŝℓ
i

∂θℓ
≈ ∂S̃ℓ

i

∂θℓ
=

1

θℓ
∂S̃ℓ

i

∂θℓd
(14) 1044

Therefore, during training, we can compute the 1045

gradient w.r.t. the dummy variable θℓd and then 1046

divide it by θℓ. 1047

C Evaluating PoWER-BERT in Single 1048

Instance Mode 1049

Due to the static structure of PoWER-BERT, the 1050

speedup ratios reported in Goyal et al. (2020) are 1051
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based on wall time acceleration with batch-wise1052

inference procedure. This means that some inputs1053

might need extra padding to make all inputs with1054

the same token length. However, since our ap-1055

proach and other dynamic approaches are based1056

on single instance inference, in our procedure in-1057

puts are fed without being padded. To even out1058

this discrepancy, we apply a single instance flops1059

computation on the PoWER-BERT, which means1060

we compute the computational cost for all input1061

lengths that appear in the test dataset. Some in-1062

stnaces may have shorter input length than some1063

values in the resulting retention configuration (num-1064

ber of tokens that are retained in each layer). To1065

overcome this issue, we update the retention con-1066

figuration by selecting the minimum between the1067

input length and each layers’ number of tokens re-1068

tained, to build a new retention configuration for1069

each input length. For instance, if the retention con-1070

figuration trained model on a given task be (153,1071

125, 111, 105, 85, 80, 72, 48, 35, 27, 22, 5), for an1072

input with 75 tokens length, the new configuration1073

which is used for speedup computation will be: (75,1074

75, 75, 75, 75, 75, 72, 48, 35, 27, 22, 5).1075

D AdapLeR Training Hyperparameters1076

For the initial step of finetuning BERT, we used the1077

hyperparameters in Table 3. For both finetuning1078

and training with length reduction, we employed an1079

AdamW optimizer (Loshchilov and Hutter, 2019)1080

with a weight decay rate of 0.1, warmup proportion1081

6% of total training steps and a linear learning rate1082

decay which reaches to zero at the end of training.1083

Dataset Epoch LR MaxLen. BSZ

SST-2 5 2e-5 64 32
IMDB 5 2e-5 512 16
HateXplain 5 3e-5 72 32
MRPC 5 2e-5 128 32
MNLI 3 2e-5 128 32
QNLI 5 2e-5 128 32
AG’s News 5 2e-5 128 32
DBpedia 3 2e-5 128 32

Table 3: Hyperparameters in each dataset; LR: Learn-
ing rate; BSZ: Batch size; MaxLen: Maximum Token
Length

For the adaptive length reduction training step,1084

we also used the same hyperparameters in Table1085

3 with two differences: Since MRPC and CoLA1086

have small training sets, to prolong the gradual soft-1087

removal process, we increased the training duration 1088

to 10 epochs. Moreover, we increase the learning 1089

rate to 3e-5. Other hyperparameters are stated in 1090

Table 4. To set a trend for λ, it needs to start from 1091

a small but effective value (10 < λ < 100) and 1092

grow exponentially per each epoch to reach an ex- 1093

tremely high amount at the end of the training to 1094

mimic a hard removal function (1e+5 < λ). Hence, 1095

datasets with the same amount of training epochs 1096

have similar λ trends. 1097

Dataset γ ϕ λ

SST-2 5e-3 5e-4 10Epoch

IMDB 5e-3 5e-4 10Epoch

HateXplain 5e-2 2e-2 50Epoch

MRPC 3e-2 5e-2 10× 3Epoch

MNLI 5e-3 5e-4 50Epoch

QNLI 5e-3 1e-4 10Epoch

AG’s News 1e-1 1e-1 10Epoch

DBPedia 1e-1 1e-1 50Epoch

Table 4: ALR hyperparameters in each dataset; Since
λ increases expoonentially on each epoch the coorre-
sponding formula is written.

E Task Descriptions 1098

In the Movie reviews (Zaidan and Eisner, 2008) 1099

task, the model predicts the sentiment based on 1100

multiple sentences. The MultiRC (Khashabi et al., 1101

2018) dataset contains a passage, a question, and 1102

multiple candidate answers, which is cast as a bi- 1103

nary classification task of passage/question/answer 1104

triplets in ERASER benchmark. 1105

F Additional Qualitative Examples 1106

G Accuracy-Speedup Trade-off 1107

13



  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 

  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP] 
  [CLS] gi ##ddy phelps touches gold for first time michael phelps won the gold medal in the 400 individual medley and set a world record in a time of 4 minutes 8 . 26 seconds . [SEP]

Layer 0: 
Layer 1: 
Layer 2: 
Layer 3: 
Layer 4: 
Layer 5: 
Layer 6: 
Layer 7: 
Layer 8: 
Layer 9: 
Layer 10: 
Layer 11:

Figure 5: The illustration of contribution scores obtained by CPs in each layers of the model for an input example
from AG’s news (topic classification) task. The color intensity indicates the degree of contribution scores. Only the
highlighted token representations are processed in each layer
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Figure 6: Accuracy-Speedup trade-off curve for
AdapLeR and two other state-of-the-art reduction meth-
ods; TR: TR-BERT, PoWER:PoWER-BERT on HateX-
plain task.
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