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Abstract

Medical imaging and numerical simulation of partial differential equations (PDEs) repre-
senting biophysical processes, have been combined in the past few decades to provide non-
invasive diagnostic and treatment prediction tools for various diseases. Most approaches
involve solving computationally expensive PDEs, which can hinder their effective deploy-
ment in clinical settings. To overcome this limitation, deep learning has emerged as a
promising method to accelerate numerical solvers. One challenge persists however in the
generalization abilities of these models, given the wide variety of patient morphologies. This
study addresses this challenge by introducing a physics-informed graph neural network de-
signed to solve Darcy equations for the simulation of myocardial perfusion. Leveraging a
finite volume discretization of the equations as a “physics-informed” loss, our model was
successfully trained and tested on a 3D synthetic dataset, namely meshes representing
simplified myocardium shapes. Subsequent evaluation on genuine myocardium meshes, ex-
tracted from patients Computed Tomography images, demonstrated promising results, and
generalized capabilities. Such a fast solver, within a differentiable learning framework, will
enable to tackle inverse problems based on H2O-PET perfusion imaging data.

Keywords: Graph Neural Network, Partial Differential Equations, Physics-informed Neu-
ral Network, Finite Volume method, Digital Twins, Perfusion simulation

1. Introduction

Integrating medical imaging techniques and numerical simulation methods has shown to
be promising as a noninvasive diagnostic and treatment predictive tool for various diseases
(Vignon-Clementel et al., 2006, 2010, 2023; Pant et al., 2022; Schwarz et al., 2023). The un-
derlying models usually entail solving complex partial differential equations (PDEs): the as-
sociated computational complexity can cause difficulties in real clinical applications. Hence,
the computational biomedical community has been seeking ways to derive reduced-order
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methods (Guibert et al., 2014; Caiazzo et al., 2016). Deep Learning (DL) methods for PDE
resolution, which can be interpreted as pre-computing solutions over a large database of pa-
tients, have gained significant attention (Chen et al., 2021; Pegolotti et al., 2024). However,
training data-driven models for PDE resolution has its own set of problems, particularly to
achieve generalization across diverse geometric configurations such as patient-specific organ
morphometries. Physics-informed neural networks, introduced by (Raissi et al., 2019), in-
corporate prior physical knowledge by integrating PDE equations into the loss function via
automatic differentiation. This constrains the solution search space, facilitating training.
However, these models usually require retraining when modifying the geometry of the do-
main. Other physics-informed approaches aim to improve learning generalization abilities
by combining traditional solver discretization schemes with neural networks (Wandel et al.,
2021; Zhao et al., 2023; Li et al., 2023; Nastorg et al., 2023). The most promising methods
leverage the Finite Element Method (FEM) or the Finite Volume Method (FVM), combined
with Graph Neural Networks (GNN). GNNs, designed for processing graphs, are applicable
to unstructured meshes of varying shapes, unlike Convolutional Neural Networks, which are
limited to Euclidean grids. In (Li et al., 2023), a GNN with a finite volume constrained loss
combined with ground truth data, successfully predicted the 2D Navier-Stokes solutions
over a diverse range of shapes, starting from the solution of one time step and predicting
the next one. (Donon et al., 2020) developed a FEM-informed loss function that effectively
addressed the Poisson equation on various 2D shapes, employing a GNN without reliance
on ground truth data. These neural networks demonstrated in some cases superior gener-
alization abilities compared to data-driven-only models, but were only tested in 2D cases,
with a small number of unknowns and with simple shapes.

Our study introduces a Finite-Volume Informed Graph Neural Network for solving the
3D Darcy equations to model myocardial perfusion. It is trained on a synthetic dataset
with diverse non-convex shapes resembling patient left ventricular geometries. Our model
incorporates a physics-informed loss, thus eliminating the need for ground truth data. The
PDE is discretized with Finite Volumes. Once the training is complete, the model can be
applied in inference mode to new geometries to predict a solution, without retraining. We
show preliminary results of our model and its generalization ability on a patient-specific left-
ventricle myocardium dataset from coronary computed tomography angiography (CCTA)
images. To our knowledge, this is the first physics-informed model tested on a real-world
3D dataset with a clinical purpose, and the first fully-based finite volume-informed neural
network (FVINN), hence without the need for ground-truth data.

2. Datasets generation

2.1. Myocardial perfusion simulation

In prior investigations, (Papamanolis et al., 2021) formulated a patient-specific simulation
pipeline for diagnosing coronary artery diseases based on CT-scans. The model is initiated
with the segmentation of the aorta, epicardial coronary arteries, and left ventricle my-
ocardium from CCTA image data. To account for small arteries that fill the myocardium
volume and are too small to segment on CCTA images, synthetic coronary trees are gen-
erated from the epicardial segmented roots (Jaquet et al., 2018). Reduced order blood
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Figure 1: Left: schematic of the synthetic shape generation. Centre: example of one final
synthetic 3D mesh. Right: example of one patient myocardium with its psource map.

flow equations are then solved in the defined vascular network, with both segmented and
synthetic components, to simulate the blood flow supply to the left ventricle myocardium.

Subsequently, to simulate perfusion in the myocardium and to account for the microcir-
culation (blood flow in the arterioles, capillaries, . . .), a porous-media model governed by
Darcy’s law is utilized (Chapelle et al., 2010). The model comprises a source term driven by
coronary flow and a homogeneous sink term (to simulate an ideal venous system). In order
to obtain the source term, psource, maps are generated by associating a perfusion territory
in the myocardium with each outlet of the synthetic coronary tree. These territories are
estimated through a Voronoi tessellation. Finally, a psource value is assigned to each perfu-
sion region. This value is the pressure at the vasculature outlet, determined by solving the
flow equations in the network.

We will focus in this study on predicting the FVM solution of the Darcy equations on
different meshes and psource maps, by a FVINN. We describe in the following subsection the
different datasets for training, validation, and test.

2.2. Synthetic dataset

To facilitate model training, we generated a synthetic dataset comprising half-ellipsoidal
shells aimed at simulating simplified myocardium morphologies. The dataset was created
using gmsh (Geuzaine and Remacle, 2009). As illustrated in Figure 1, the geometries were
generated by defining 5 points connected by elliptical arcs. The resulting 2D shape was then
extruded around the z-axis to form a volume, within which a volume mesh was generated.
For the training dataset, 2000 distinct geometries were generated, with an additional 400
for the validation dataset. Various lengths L1, L2, L3, L4, and L5 were sampled to diversify
the geometries. Furthermore, different psource maps were assigned to each geometry: within
each volume, 1000 seed points were sampled. A Voronoi tessellation was grown from these
points to emulate the perfusion regions associated with network outlets. Each Voronoi
region was assigned a random psource value sampled from a normal distribution, in line
with the observed psource distribution from patient-specific simulations (Papamanolis et al.,
2021).
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2.3. Patient myocardium data

As a test dataset, the left ventricle myocardium of 400 patients were segmented from CCTA
image data, as part of the human-in-the-loop process for the HeartFlow FFRCT Analysis
(HeartFlow Inc., US). CCTA images were received from multiple sites around the world by
HeartFlow, Inc. (Taylor et al., 2013). 3D tetrahedral meshes of the myocardium volumes
were generated with gmsh. Synthetic psource maps were also attributed to each myocardium
mesh according to the previously explained method 2.2. Each mesh was composed of
approximately 60k nodes in both datasets.

3. Methodology

3.1. Governing equations

In this work we focus on solving the 3-dimensional (3D) single compartment Darcy model
for an incompressible flow:

w+K∇p = 0 in Ω (1)

∇.w = βsource(psource − p)− βsink(p− psink) in Ω (2)

∂w

∂n
= 0 in ∂Ω (3)

with K the permeability tensor, w the Darcy velocity, p the capillary bed pressure, psource
and psink the source and sink pressure terms respectively, βsource and βsink parameters de-
scribing the conductance of flow entering and exiting the myocardium respectively. These
two parameters are patient specific; their computation is described in (Papamanolis et al.,
2021). By applying the divergence operator to Equation (1), we obtain the following Poisson
equation, which can be solved for p with no-flux boundary conditions (Equation (3)):

K∆p = −βsource(psource − p) + βsink(p− psink) in Ω (4)

3.2. Finite volume method

FVM is a discretization method for the approximation of PDE. FVM is based on a volume
integral formulation of the PDE over a finite number of control volumes discretizing the
domain where the equations are solved in. The methodology unfolds by integrating the
equations over each control volume. Introducing the vector n, normal to the control volume
surface, and applying the divergence theorem on the diffusion term allows the replacement
of volume integrals with surface integrals:∫

S
K∇p.ndS =

∫
Ω
−βsource(psource − p) + βsink(p− psink) dΩ (5)

In this study, we consider the vertex-centered FVM where the control volumes are delimited
by the dual mesh of a 3D tetrahedron element mesh (see Figure 2). Considering the mean
value approach, the flux values (left-hand side of the equation here) are approximated by
their values on the centre of each surface while the source (right-hand side) are approximated
by their value at the centre of the control volume (p in the following is the discrete pressure):

K
∑

f∈faces
∇pf .nfSf = (−βsource(psource − p) + βsink(p− psink)) Ω (6)
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The values on each face are linearly interpolated between the nodes connected to the edge
crossing the face f . First order approximations are used for the pressure gradient.

Figure 2: Example of 2D vertex-based control volume where the element centroids are
connected to the edges centroids. In this study, generalization of such control volume to
3D tetrahedral meshes by replacing edges centroids by face centroids is employed. i is the
indice of the node related to the control volume in red. f denotes one face of the control
volume and j the indice of one neighbors of i.

3.3. Graph Unet Attention Network

3.3.1. Graph Neural Network for solving PDEs

GNNs represent a specific class of neural networks designed for processing graph structures.
Specifically, meshes utilized for solving discretized PDEs can be viewed as graphs denoted
as G = (N,V,E), where N is the number of nodes, V is a matrix of node features, and
E is the adjacency matrix indicating connections between nodes. GNNs typically consist
of multiple layers that update the node feature matrix by exchanging information between
nodes along graph edges.

The solution to the Darcy equations introduced in Section 3.1 necessitates solving a
linear system of equations. Iterative methods, such as the Jacobi method, are very efficient
to solve these large systems of equations. The Jacobi method starts with an initial guess of
the solution and iteratively updates it based on the previous state:

pk+1
i =

1

aii
(bi −

∑
j∈Ni

aijp
k
j ) (7)

With pki the Darcy pressure of node i at iteration k, Ni the indices of nodes belonging to
node i neighbourhood, bi and aij coefficients computed from the different constants in 6.
The solution is obtained once the difference between two successive states is small enough.
As mentioned by (Liu et al., 2021), this sequence of operations is similar to the way GNNs
perform.

3.3.2. Graph Attention layer

The graph attention network was first introduced by (Velickovic et al., 2017). Given a graph
G = (N,V,E), for every node i ∈ N , attention coefficients are computed only between
neighbours: αij = softmaxj(LeakyReLU(a

t[Whi||Whj ]). With a a single-layer feedforward
neural network, W a weight matrix and hi the vector of node features of nodes i. The
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Sallé de Chou Sinclair Lynch Xiao Najman Vignon-Clementel Talbot

attention mechanism finally updates the feature vector hi, similarly to the Jacobi method
7, through a nonlinear function σ:

hi = σ(
∑
j∈Ni

αijWhj) (8)

3.3.3. Graph pooling and unpooling

Similarly to (Zhao and Zhang, 2021), we employ a Graph Attention U-Net (GATU-net,
Figure 3), with a slight deviation in the pooling and unpooling operations. The GATU-net
architecture comprises three levels. During each pooling operation, a random sub-sample
of the preceding upper-level mesh nodes serves as input. The node features of these sub-
samples are computed by averaging the node features of the k-nearest neighbours from the
upper mesh’s level. Notably, the unpooling function is the one proposed in PointNet++ (Qi
et al., 2017), where features are computed through distance-weighted interpolation from the
k-nearest neighbours of the previous lower-level stage’s mesh during the decoding phase.

A node encoder is employed to encode node features into a latent space. For each node,
the encoder takes as input the node coordinates, along with values for psource, βsource, and
βsink. Then, a node decoder processes the output of the GATU-net and predicts a pressure
value for every node.

Figure 3: GATU-net architecture. Each grid corresponds to a mesh with a different node
feature matrix computed thanks to the graph attention layers.

3.4. Finite volume informed loss function

The loss function to train the model is derived from Equation (7); it is the absolute mean
over all nodes of the residual:

|pθ(i)− (
1

aii
(bi −

∑
j∈Ni

aijpθ(j)))| (9)

With pθ(i) the pressure output of the node i of the decoder. It should be noted that no
reference pressure solution is used to train the model. In addition, the same GATU-net
architecture is trained with a classical L1 loss function between the network output and a
ground truth from FVM. The latter model will be denoted as the supervised model (SM) in
the next sections. The FVINN can be trained on a dataset comprising varying geometries
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and psource maps. The goal of the proposed method is to find a set of convolutions which
minimize Equation (9) for every node of the meshes. Once trained, the model can be applied
to a new geometry and psource map to predict the solution in inference mode.

4. Results

In this section, we present the results of FVINN and SM compared to the FVM solution.
For both models, we report the actual, relative and normalized mean absolute error (MAE)
and Mean max absolute error per shape (MMAE). The normalized error is the actual error
divided by the standard deviation of the FVM solution. The Computational time to solve
the linear system of equations given in Equation (6) with using the GPU-enabled pytorch
function linalg.solve is approximately 4.28 seconds. The forward pass of our network to
compute the solution takes 0.56 second.

The model was successfully trained on the synthetic dataset. SM obtained a slightly
better MAE than FVINN on both the training and validation datasets. Specifically, on the
validation dataset, the SM achieved a MAE of 3.74 Pa compared to 4.04 Pa for FVINN
(Table 1). The relative MAE on the validation dataset was approximately 0.20% for both
models, which corresponds to about 0.15 standard deviations of the FVM solution, as
demonstrated by the normalized MMAE.

On the test dataset, the MAE was also smaller for the SM compared to FVINN, with
normalized MAE values of 0.40 and 0.33, respectively. However, FVINN exhibited better
MMAE on all three datasets. Notably, the MMAE on the test dataset was 99.23 Pa and
35.10 Pa for SM and FVINN, respectively (Table 2). The high MMAE, combined with a
relatively low MAE, indicates localized high errors for the SM, as displayed in Figure 4. No
particular locations of these errors were found.

Figure 4: Comparison of the FVINN and SM results with the FVM ground truth on one
case from the test dataset.
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Table 1: Mean absolute error (MAE) and standard deviation of the absolute error on
training, validation and test datasets.

Dataset Model MAE (Pa) Relative MAE (%) Normalised MAE
Training FVINN 4.02 ± 1.19 0.20 ± 0.05 0.16 ± 0.04

SM 3.75 ± 0.89 0.18 ± 0.04 0.15 ± 0.03
Validation FVINN 4.04 ± 1.15 0.20 ± 0.05 0.16 ± 0.03

SM 3.74 ± 0.86 0.18 ± 0.04 0.15 ± 0.07
Myo FVINN 8.06 ± 2.28 0.40 ± 0.11 0.31 ± 0.08

SM 6.79 ± 4.44 0.33 ± 0.18 0.26 ± 0.17

Table 2: Mean max absolute error (MMAE) per shape and its stadard deviation on training,
validation and test datasets.

Dataset Model MMAE (Pa) Relative MMAE (%) Normalised MMAE
Training FVINN 18.50 ± 6.94 0.92 ± 0.35 0.75 ± 0.20

SM 18.56 ± 5.04 0.93 ± 0.30 0.76 ± 0.19
Validation FVINN 18.19 ± 5.36 0.90 ± 0.26 0.76 ± 0.18

SM 18.31 ± 1.68 0.92 ± 0.22 0.78 ± 0.21
Myo FVINN 35.10 ± 11.70 1.75 ± 0.58 1.37 ± 0.41

SM 99.23 ± 381.79 3.92 ± 5.75 3.90 ± 10.88

5. Discussion

In this study, we presented a graph neural network for 3D myocardial perfusion prediction.
The model incorporates a finite volume-informed loss function and requires no ground truth
data for training. Successfully trained on a fully synthetic dataset, the neural network was
then tested on patient-specific myocardium meshes. To our knowledge, this is the first
application of such a model on a dataset of patient-specific data and large size meshes.
Despite our model not being trained against ground truth from simulations, it achieves
comparable accuracies on synthetic datasets, validating this approach. However, while SM
obtained better MAE, the MMAE of our FVINN was better on the three datasets and almost
three times smaller than SM on the patient-specific dataset. Our model demonstrates more
robust generalization results on unseen geometries, which may differ significantly from the
original distribution of shapes in the training dataset. Nevertheless, the synthetic datasets
used in our study represent highly simplified myocardium shapes, which limits our ability
to draw conclusions about the efficacy of FVINN or SM for predicting Darcy solutions on
patient left-ventricle myocardium meshes. Future work should involve training these models
on patient-specific or more complex synthetic data to further investigate their performance.
In conclusion, our study shows promising results for developing deep learning-based models
as PDE solvers for real-world applications. Beyond reducing computational complexity,
models such as the FVINN offer the potential to solve inverse problems from H2O-PET
perfusion imaging data. Moreover, the integration of physics-based loss functions with an
unsupervised framework holds potential for predicting more robust results while reducing
the reliance on data, thereby supporting their application in medical context.
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Appendix A. Dataset Generation

The L1-L5 ranges were found empirically to represent the patient-specific LV volume ranges.
The ranges in millimetres were [10, 20], [55, 85], [10, 20], [10, 20], [10, 20] for L1, L2, L3,
L4 and L5, respectively. Uniform distributions were used within each range to sample new
geometries. All the meshes were centred and align along z-axis.

Figure 5: Example of meshes of the synthetic dataset.

Appendix B. Supplementary materials for model architecture and
training

The node encoder and decoder were simple feed-forward neural networks consisting of two
hidden layers with 64 neurons each. LeakyReLU activation functions, along with batch nor-
malization layers, were applied after every GAT convolution and layer of the node encoder
and decoder.

For every pooling block of the GATU-net, the coarse mesh connectivity was computed
as follows: clusters of nodes were generated by assigning each node of the upper level to
the closest node of the sub-sample. Then, edges were established between two sub-sample
nodes if their clusters were connected by an edge in the upper level.
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We employed the Adam optimizer with an initial learning rate of 0.001 and a 0.99
exponential decay. Batches of 8 meshes were fed to the network during training for 400
epochs. The training lasted two days using two GPUs.

Appendix C. Supplementary visual results

Figure 6: Comparison of the FVINN and SM results with the FVM ground truth on one
case from the validation dataset.
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Figure 7: Comparison of the FVINN and SM results with the FVM ground truth on one
case from the test dataset.
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