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Abstract— Mobile inspection robots are typically tasked to
find anomalies and report them, such that proper action can be
taken. They operate in an open world, in which they encounter
previously unseen situations in changing environments. We take
the robot’s goal, its context, prior knowledge and uncertainties
into account to find anomalies that are relevant for the
operation. Prior knowledge is expressed by logic formulas.
E.g., a tool should not be left on the floor. These symbolic
formulas describe anomalous objects in terms of predicates and
variables (symbols) that can represent various concepts in the
real world, their attributes and their relations. This knowledge
can easily be adapted during the robot’s operation to a new
anomaly that is considered relevant. Reasoning is performed in
a probabilistic, multi-hypothesis framework. A neuro-symbolic
program evaluates the symbolic formulas against probabilistic,
imperfect observations of the symbols. New anomalies require
new symbols, which are measured in images by zero-shot
language-vision models and their extensions for objects and
segments. Starting from the symbolic formulas and predicates
that describe the anomaly, our method infers what objects are
involved that need to be detected, extracts the probabilistic
information from the language-vision models and reasons about
that via a neuro-symbolic program in order to find the anomaly
of interest. Our contribution is the integration of the neuro-
symbolic program and language-vision models. We show the
effectiveness of our method to find anomalous situations in a
robotic inspection setting.

I. INTRODUCTION
A foreseen task of mobile robots is to inspect large

industrial sites. One such inspection task is to search for
abnormal situations that may pose a hazard to the personnel
or their environment. Once such an anomaly is found, it
can be reported to the operator, such that proper action
can be taken. On such sites, there may be many activities.
Very likely the robot does not know all possible situations
beforehand. Therefore, the robot needs to be able to deal
with a (partially) open world, which includes previously
unseen actors, objects and situations. We focus on finding
anomalies in images, where we have prior knowledge about
the anomaly, and need to deal with uncertain observations
and previously unseen objects and segments in the scene.

For anomaly detection, a common approach is to use
a statistical model of the sensory data [14], [15], [13].
However, the robot’s goal, its context and the user’s prior
knowledge are not taken into account. As a consequence,
the detected anomalies are not necessarily relevant. Another
drawback of statistical models is that they do not generalize
well to new observations in the open world. They cannot be
adapted quickly, because it requires a significant amount of
training samples to adjust the statistical model.

1TNO, The Netherlands. gertjan.burghouts@tno.nl

We take a different approach by leveraging prior knowl-
edge about relevant anomalies. This knowledge can be
adapted quickly during operation and via generic definitions
it can generalize better to new situations. An example of an
anomaly is a tool that is left abandoned on the floor. A tool
can be one of many types, such as a hammer, skrewdriver,
wrench, and many more. Likewise, floors can be composed
of different materials with various appearances. Our goal is to
find anomalies in images, based on a high-level definition of
the object categories involved and their spatial configuration,
without specifying the precise object classes or learning
dedicated models for each of them. The rationale is that
such a knowledge-based anomaly detection has a broader
applicability, because it can generalize better across similar
anomalies and is adaptable to new anomalies by formulating
a new definition. Furthermore, any detected anomaly has
already been interpreted, which allows to connect actions
to it.

We search for anomalies by reasoning about spatial re-
lationships between the objects categories involved. We
capture such knowledge by means of logic formulas. Since
there are many objects in a scene and possibly multiple
occurrences of the relevant objects, with a multitude of
relations between them, a multi-hypothesis validation is
required. Perception is imperfect and probabilistic in nature,
therefore this validation needs to be done within a proba-
bilistic framework. A natural choice is to leverage a neuro-
symbolic program [7], [6], [3] to test hypotheses about the
specified anomaly, since such a program is able to validate
symbolic predicates against probabilistic observations of the
symbols from the predicates.

The key challenge is to get observations for the symbols
in a manner that generalizes well to the open world setting
and new symbols. In previous works, the symbols and their
probabilities were produced by specialized, fixed neural
networks [3]. In our example of the abandoned tool on
the floor, we may have a network to produce symbols for
hammers and skrewdrivers, but not for wrenches. Hence, a
wrench that was left on the floor will erroneously not be
detected as an anomaly. In an open world, we need symbols
that generalize to object categories and can recognize unseen
object classes. Therefore, we turn to language-vision models
[1], [11], [12] that have so-called zero-shot capabilities
to recognize novel classes based on a textual description
[2], [5], [4]. We use the symbol from the predicate to
formulate a textual query (a prompt) to the model, in a fully
automated manner. Because the model is based on language,
its advantage is that it is likely to have a representation of



Fig. 1: Knowledge-based anomaly detection via first-order logic, validated by a neuro-symbolic program that operates on
language-vision symbols.

the category of an object, since it is similar in terms of
the textual description. This enables us to specify anomalies
at the category level (e.g., tool). We explore extensions of
language-vision models in order to localize both objects and
segments in images, in order to extend the range of symbols.
With this extension we can localize concepts such as ‘floor’.
Using these zero-shot capabilities of language-vision models
and the segmentation extension, the neuro-symbolic program
has broader generalization towards various configurations of
the anomaly.

With many symbols in the image, there will be many
possible hypotheses. To deal with this, we consider a re-
cent neuro-symbolic programming framework that limits
the validation to the top-k hypotheses, while guarantying
a minimal performance degradation [3]. The summary of
our methodology is as follows. We start with the symbolic
predicates that define the anomaly. From the predicates,
our method infers the involved symbols. The symbols and
their probabilities are measured from images by prompting
the language-vision models. The probabilistic symbols and
predicates are validated by the neuro-symbolic program. Our
method is outlined in Figure 1. The key contribution is the
integration of neuro-symbolic programming and language-
vision models. We show the effectiveness on real-world im-
ages of anomalous situations in a robotic inspection setting.

II. RELATED WORK

To find anomalies based on prior knowledge, we integrate
neuro-symbolic programming and language-vision models.
Here we discuss related works.

Neuro-symbolic programming. An important capability
is to reason about an image with external knowledge [9]. This
is also the case for anomaly detection based on prior knowl-
edge. Connecting knowledge representation and reasoning

mechanisms with deep learning models [7] shows great
promise for learning from the environment and at the same
time reasoning about what has been learned [6]. Previous
reasoning methods were limited in terms of scalability, in
case of many possible hypotheses, e.g., industrial inspection
with many possible objects and relations. Those methods
were ill-suited for real-world applications. A recent neuro-
symbolic programming framework is based on first-order
logic. It introduces a tunable parameter k to specify the
level of reasoning granularity, by restraining the validation of
hypotheses by the top-k proofs. This asymptotically reduces
the computational cost while providing relative accuracy
guarantees [3]. This is beneficial for our purpose, as we
expect many possible hypotheses in complex environments
with many objects and imperfect observations.

Language-vision modeling. Language-vision models
learn directly from large datasets of texts about images which
offers a broad source of supervision [1], [2], [11], [12].
They have shown great promise to generalize beyond crisp
classes and towards semantically related classes. This so-
called zero-shot capability is beneficial for recognizing the
object categories that are involved in the anomalies. Recently,
these models were extended with capabilities to localize
objects in images via co-attentions [5] and to segment parts
of the scene based on textual descriptions [4]. We adopt
both methods to relate image parts to objects and segments
that are of interest for the anomaly at hand. To the best of
our knowledge, we are the first to combine neuro-symbolic
programming with language-vision models for knowledge-
based anomaly detection.

III. METHOD

Our aim is to find an anomaly in an image, based on prior
knowledge about the involved objects and their relations.



An overview of our method is shown in Figure 1. At the
top, it shows how an anomaly such as ‘tool on floor’ is
translated into symbolic predicates such as object(o, tool),
segment(x, floor) and above(o, x). At the bottom left, the
figure shows how the symbols from the predicates, such as
‘tool’ and ‘floor’, are measured from images by language-
vision models. These measurements are transformed into
probabilistic facts, which are fed to the neuro-symbolic pro-
gram in order to be validated against the logic (bottom right).
Each component is detailed in the following paragraphs.

First-order logic. The anomaly is defined by logic formu-
las and predicates. The symbols in the predicates are about
the objects and segments in an image. An example is the
anomaly of a tool that is left on the floor:

∃o :object(o, tool) ∧ side(o, x) ∧
segment(x, floor) ∧ above(o, y) ∧
segment(y, floor) ∧ ¬between(o, y, z)

(1)

This defines the anomaly as a tool that is above and on
the side of the floor. This definition is necessary, because
the robot’s perspective is oblique downward, i.e., the floor
will be visible at the bottom of the tool and on the side
of the tool. To express that the tool should be on the floor,
without anything in between, we define that there should be
nothing in between the tool and the floor. Otherwise a tool
on a cabinet standing on the floor also fulfils the definition.
The definitions of the helper predicates are:

between(x, y, z) = above(x, z) ∧ above(z, y)

side(x, y) = left(x, y) ∨ right(x, y)

middle(x, y, z) = left(x, y) ∧ right(x, z)

(2)

to express that: some z is in between x and y; some x is
in the middle of y and z.

Image to symbols. To relate the logic to the image, we
search the image for the symbols from the predicates. These
involve objects, segments and spatial relations between them.
The objects and segments are respectively recognized by the
attention-based [5] and segmentation-based [4] methods (see
Section II). The output of both methods are probabilistic. We
transform them into a heatmap per symbol, in order to ac-
quire probabilities in a spatial grid. The grid is our reference
frame to extract spatial relations and to later reason about
them. In this way, we acquire P (object = tool | image) and
P (segment = floor | image).

Inference. From the symbolic heatmaps we derive the
probabilistic facts which are used by the neuro-symbolic
program for inference. The distance between the robot and
the objects may differ from time to time. The heatmaps
are finegrained. We add downsampled versions of them to
enable both finegrained and coarser inference. To achieve
scale invariant reasoning, we select the scale σ (i.e., the
image downsampling factor) that maximizes the likelihood
for the anomaly A in the given image I given the logic L:

P (A | I, L) = argmax
σ∈{1, 2, 4, ...}

P (A | I, L, σ) (3)

IV. ANALYSIS

To analyze the performance of our method, we collected
31 test images in very diverse settings. The goal is to find
the anomalous case of an abandoned tool on the floor. To
validate how well the method generalizes to various tools, we
include images with hammers, skrewdrivers, wrenches, etc.
For the same reason, we include various floors, with different
materials, textures and colors. Moreover, the viewpoint and
zoom are varied significantly. There are 9 images of tools on
floors. These are the positives, where we expect anomalies
to be detected by our method. To verify true negatives, we
include 8 images where there is a both a tool and a floor,
but the tool is not on the floor (but on a cabinet, wall, etc.).
There are 5 images with only a floor (no tool) and 4 images
with only a tool (no floor). To verify true negatives, there
are also 5 images where there is no tool and no floor.

True positives. There are 9 positives, from which we
detect 7 cases. Figure 2 shows 3 out of those 7 cases,
one in each column. For each case, the top row shows the
results of the neuro-symbolic program. Red indicates a high
probability, whereas blue indicates a low probability. The
middle and bottom rows show the probabilistic symbols that
are used by the program (same color coding). Since the
symbols are predicted well (often the tools and floors have
a high probability at the respective symbols), the reasoning
is able to pinpoint a place in the image where the spatial
configuration is fulfilled (red peak).

True negatives. Figure 3a shows true negatives. Although
there are both a floor and tools, the reasoner correctly finds
that the spatial configuration is not a tool that is on the floor.

False positives. Errors are shown in Figure 3b. The neuro-
symbolic program incorrectly reasons that these cases are a
tool left on the floor (false positives). This is due to errors in
the symbols. There is a wrong association of the symbol tool
in both images. On the left, the Gazelle logo is associated
with a tool, because Gazelle is a manufacturer of bicycles
and many images are about tools. The language-vision model
has a bias to associate Gazelle with tools. On the right, the
duct tape is considered to be a tool. From a semantic point of
view this makes sense. These symbol errors propagate into
the reasoner’s outputs. Refining the prompts that we pose
to the language-vision models, may overcome such errors in
the symbols.

False negatives. Figure 3c shows missed cases (false
negatives). Again, the source of the errors is in the symbols.
On the left, the tool (a grinder) is not recognized as such.
This is a flaw in the language-vision model, probably because
this tool does not appear often in everyday images and
language. On the right, the floor is not recognized as such,
because a context is lacking: it could also be a wooden plate.
Without the proper evidence for each involved symbol, the
reasoner cannot assess these configurations correctly.



Fig. 2: True positives.

(a) True negatives. (b) False positives. (c) False negatives.

Fig. 3: True negatives and errors.

V. CONCLUSIONS

We proposed a method that endows mobile inspection
robots with the capability of finding anomalies based on a
high-level definition of the involved object categories and
their spatial configuration. We expressed the anomalies by
first-order logic, about which we reason using a neuro-
symbolic program. In the logical definitions, there is no need
to specify the precise object classes, so that we can generalize
to similar anomalies. To generate the probabilistic obser-
vations for the symbols, we leverage zero-shot language-
vision models. This extends the scope of the anomalies to
previously unseen objects, which is crucial in an open world.
Our approach avoids the necessity of learning dedicated
models for each of the involved objects, which makes our
method flexible and quickly deployable.
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