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Abstract

We investigate the ability of large language001
models to neurally generate Task Oriented Di-002
alogues in novel domains, provided only with003
an API implementation and a list of goals.004

We show these simulations formulate online,005
automatic metrics that correlate well with hu-006
man evaluations. Furthermore, by filtering007
for dialogues where goals are met, we can008
use simulation to repeatedly generate train-009
ing data and improve the quality of the dia-010
logues themselves. With no human interven-011
tion or domain-specific training data, our sim-012
ulations bootstrap end-to-end models which013
achieve a 37% error reduction over baseline in014
previously unseen domains. By including as015
few as 32 domain-specific conversations boot-016
strapped models can match the performance of017
a fully-supervised model with 10× more data.018

1 Introduction019

Virtual Assistants have become ubiquitous in mod-020

ern life (Acharya et al., 2021). However, building021

these Task Oriented Dialogue (TOD) systems is022

laborious, requiring significant data collection and023

engineering resources to add support for a novel024

domain. As such, methods which can generalize,025

learn from limited examples, and require fewer en-026

gineering resources are highly desirable (Shi et al.,027

2019; Shah et al., 2018; Acharya et al., 2021).028

To this end, works have previously identified029

User Simulators, wherein a model is used to em-030

ulate a human user in place of a real one, as a031

means of addressing these problems. User Sim-032

ulators have been used to evaluate (Walker et al.,033

1997, 2000; Schatzmann et al., 2005) and improve034

Assistant models by providing additional training035

data (Shah et al., 2018; Acharya et al., 2021) and036

reward signals for Reinforcement Learning meth-037

ods (Fazel-Zarandi et al., 2017; Su et al., 2018; Shi038

et al., 2019). Typically, these User Simulators are039

either limited to enhancing existing domains (Fazel-040

Zarandi et al., 2017) or utilize specialized and man- 041

ually engineered rules or templates for novel do- 042

mains (Shah et al., 2018; Shi et al., 2019). User 043

Simulators have often required post-hoc human 044

intervention to ensure quality (Shah et al., 2018). 045

In this work, we show that modern Large 046

Language Models (Radford et al., 2018, 2019; 047

Lewis et al., 2020) generate reasonable dialogues 048

when equipped with an API implementation and 049

prompted with a goal. We observe the quality of 050

these dialogues increases with the power of the 051

base models. Furthermore, we observe that simula- 052

tion success is a strong discriminator of Assistant 053

performance and dialogue quality. 054

We describe a method for bootstrapping User 055

and Assistant models for previously unseen dia- 056

logue domains. We use Task Success, which can 057

be automatically measured in fully synthetic di- 058

alogues, to discriminate between high- and low- 059

quality dialogues. By adding successful dialogues 060

back into the training set and retraining the model, 061

we bootstrap an Assistant model without the use of 062

any domain-specific training data, hand-engineered 063

rules, Natural Language templates, or humans-in- 064

the-loop. Our methodology shows improvements 065

in both zero-shot and full-shot settings. 066

Furthermore, we show that we can use Task Suc- 067

cess as a method for automatically identifying the 068

weakest areas of our model, and employ Active 069

Learning (Tur et al., 2003; Olsson, 2009) to en- 070

hance performance. By additionally including as 071

few as 32 domain-specific training examples, we 072

can match the performance of a fully-supervised 073

baseline provided with 10× more data. 074

We open source our simulation infrastructure — 075

including processing for all public datasets used 076

and scripts for both training models and generat- 077

ing bootstrapped conversations — as part of the 078

Anonymous framework (Anon, 202X).1 079

1Code already open sourced online at: Anonymous URL
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Goal
(Target API Call)

API Schema
(Optional)

User Model Assistant 
Model

API 
Implementation

Step 1: User Utterance Step 2: API Call

Step 3: API ResponseStep 4: Assistant Utterance

Grounding Turn
(beginning only)

Regular Turns
(repeat until 

User utters ‘[DONE]’)

Figure 1: Illustration of our Simulation system. See Section 2 for a description of functionality. In-arrows designate
inputs to an entity; entities do not see data where there is no in-arrow. Out-arrows designates generations.

First Turn (no API call)

APIRESP:

ASSISTANT: 
Where to?

APICALL:

APISCHEMA: api = 
BookRide; args = start, end...

USER: I want to 
book a ride

GOAL: api = BookRide; 
end = AMC NewPark 12...

[...and so on]

User Assistant Mock API

Turn with API Call

APIRESP: end = AMC 
NewPark 12, ride_duration = 

10 ...

ASSISTANT: So 
you want a ride for 
2 people to go to 

AMC NewPark 12?

APICALL: api = 
BookRide ; end = AMC 

NewPark 12...

ASSISTANT: Your 
ride is booked. It will 
be a 10 minute ride. 

USER: Yes that's 
right

[...and so on]

[... prior turns]

User Assistant Mock API

APISCHEMA: api = BookRide; args = start, end, 
book_at
GOAL: api = BookRide, end = AMC NewPark 12, book_at 
= now
USER: I want to book a ride
APICALL:
APIRESP:
ASSISTANT: Where to?

…

ASSISTANT: So you want a ride for 2 people to go to 
AMC NewPark 12?
USER: Yes, that’s right
APICALL: api = BookRide, end = AMC NewPark 12, 
book_at = now
APIRESP: end = AMC Newpark 12, ride_duration = 10
ASSISTANT: Your ride is booked. It will be a 10 
minute ride

…

Figure 2: Concrete example illustrating the system described in Fig 1. A linear version of the conversation is in the
middle; bold denotes utterances. Diagrams on either side illustrate how generations are passed between entities.

2 End-to-End TOD Conversation Setup080

A high-level illustration of our simulation system081

is shown in Figure 1 with an example in Figure 2.082

Our simulation system consists of three main com-083

ponents: a User model, an Assistant model, and084

an API Implementation. While traditional TOD085

systems model conversations with a combination086

of intent detection, belief state tracking, and policy087

(Jurafsky and Martin, 2009), we employ a more088

modern setup (Rastogi et al., 2019) where the As-089

sistant must both generate API calls and translate090

API responses into Natural Language utterances091

for the User at the right time. This is particularly092

amenable to modern End-to-End (E2E) approaches093

based on pretrained Language Models (Ham et al.,094

2020; Peng et al., 2020; Hosseini-Asl et al., 2020).095

To guide the conversation, the User is given a096

Goal as its first turn. The Goal consists of a com-097

plete API call (e.g. intent, slot names, and slot098

values) serialized as a string. The User model uses099

this Goal to ground natural language utterance gen-100

eration to the Assistant. The Assistant optionally101

generates a serialized API call string that is sent to102

the API Implementation. The API Implementation103

returns a serialized API response back to the As-104

sistant based on the call, including a sentinel value105

for failed calls. The Assistant generates a natural106

language utterance to the User with this response.107

Entities keep track of their own generations as well108

as previously seen turns when making generations. 109

Conversations continue in this repeated fashion 110

until the User generates a ‘[DONE]’ token. A con- 111

versation is said to be successful if the Assistant 112

generates an API call equal to the Goal given to 113

the User. We later show that simulations’ Task Suc- 114

cess Rate (TSR), the success averaged over a large 115

number of goals, is a strong proxy for the quality 116

of dialogues generated. 117

Our system optionally allows grounding the As- 118

sistant with an API Schema on the first turn; we 119

use this in Sec 5. An API Schema consists of the 120

signature of the Goal (e.g. intent and slot names) 121

without slot values. As we will later see, Schemas 122

(combined with Task Success) enable us to boot- 123

strap models in unseen domains. We take care to 124

not use Schemas for evaluations unless explicitly 125

stated, however, since this implies a precursor in- 126

tent detection step to select the Schema. 127

3 Related Work 128

User Simulators have a long history. They have 129

been used for both evaluation and Assistant im- 130

provement. Formulations have varied across Rule- 131

based, Agenda-based, and End-to-End approaches. 132

Works have explored using User Simulators as a 133

proxy for Assistant evaluation (Schatzmann et al., 134

2005) or predicting user satisfaction (Walker et al., 135

2000; Ai and Weng, 2008; Jung et al., 2009; Li 136
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et al., 2016; Crook and Marin, 2017). Simula-137

tors have been measured via Task Success Rate138

(Gür et al., 2018; Kreyssig et al., 2018) and cross-139

examining them against a wide-variety of Assis-140

tants (Schatzmann et al., 2005). Older works ex-141

plored using Language Models (LMs) as User Sim-142

ulators, but observed that the LMs had poor ad-143

herence to goals (Georgila et al., 2006; Crook and144

Marin, 2017). Accordingly, simulators of that time145

were often Agenda-based (Schatzmann et al., 2007;146

Shah et al., 2018). In contrast, we find that modern,147

large, pretrained LMs ground on goals well.148

Works have also used User Simulators and As-149

sistants to optimize Reinforcement Learning pol-150

icy (Schatzmann et al., 2007; Fazel-Zarandi et al.,151

2017; Peng et al., 2017; Su et al., 2018; Gür et al.,152

2018; Kreyssig et al., 2018). These often optimized153

the policy component of pipeline-based systems154

(Fazel-Zarandi et al., 2017) and frequently relied on155

the Natural Language Generation (NLG) templates156

over dialogue acts (Fazel-Zarandi et al., 2017; Shah157

et al., 2018; Shi et al., 2019; Kreyssig et al., 2018;158

Acharya et al., 2021). Our work instead utilizes159

fully lexicalized, E2E models for both the User and160

the Assistant models, without the need for agendas,161

dialogue acts, or NLG templates.162

Some works use Schemas, neural User Simu-163

lators, and neural Assistants for generating syn-164

thetic data to add to a training dataset (Shah et al.,165

2018; Acharya et al., 2021; Campagna et al., 2020;166

Kim et al., 2021; Mohapatra et al., 2021); these167

are most similar to our bootstrapping. Shah et al.168

(2018) uses a stage of human annotation to iden-169

tify failed dialogues and paraphrases; we show170

that Task Success can successfully identify fail-171

ures without human involvement. Campagna et al.172

(2020) uses detailed schema and rule-based tem-173

plates for NLG; our schemas are much simpler and174

we use no rules. Acharya et al. (2021) few-shots us-175

ing a similar bootstrapping process as ours, but re-176

lies on templates for NLG and human paraphrases;177

we use sampling to achieve diversity (Holtzman178

et al., 2020). The papers Kim et al. (2021); Mohap-179

atra et al. (2021) use pre-trained language models180

to generate synthetic dialogues given schemas. Mo-181

hapatra et al. (2021) uses a complex set of models182

to generate each side of the conversation, then fil-183

ter and label; they also do not attempt to solve184

the zero-shot learning task. Kim et al. (2021) use a185

BART-large model to generate dialogues given goal186

instructions and API results, and then RoBERTa187

to label the generated dialogues with state tracking 188

labels. They use a pre-generated list of API results 189

for fine-grain direction of the generated conversa- 190

tion. In comparison our dialog uses only goals for 191

directional grounding. We additionally automati- 192

cally self-improve our generation in a loop using 193

the models generated, successful, dialogues. 194

In contrast to prior methods that require human 195

selection, template generation, or paraphrasing, we 196

both identify failures and generate conversational 197

variety automatically. 198

End-to-End systems for TOD have had a re- 199

cent surge in interest (Asri et al., 2016; Bordes 200

et al., 2016; Liu and Lane, 2018; Rastogi et al., 201

2019; Ham et al., 2020; Hosseini-Asl et al., 2020; 202

Peng et al., 2020; Lin et al., 2020), thanks to the 203

success of pretrained models (Devlin et al., 2019; 204

Radford et al., 2019; Lewis et al., 2020). E2E 205

models promise to lower the cost of annotation 206

by replacing traditional pipeline models with text- 207

in-text-out and adjacent external API calls (Ras- 208

togi et al., 2019; Byrne et al., 2021). Compared 209

to these works, we leverage pretrained models for 210

User models in order to produce simulations, rather 211

than only modeling Assistants. We also leverage 212

Schema-based grounding techniques (Rastogi et al., 213

2019; Balaraman and Magnini, 2021), which may 214

be viewed as a form of in-context prompting meth- 215

ods (Brown et al., 2020; Schick and Schütze, 2020; 216

Wang et al., 2021; Wei et al., 2021). 217

4 Evaluating Synthetic Dialogue 218

We generate synthetic conversations with a vari- 219

ety of different models and validate that traditional 220

automated offline metrics, our TSR metric, and 221

human evaluation all correlate with expectations. 222

Note that our objective is explicitly not to achieve 223

State-of-the-Art performance but to validate direc- 224

tional correlation; namely, we expect more ‘power- 225

ful’ models to outperform weaker ones. 226

4.1 Experimental Setup 227

Dataset We focus our efforts on the Google 228

Schema Guided Dialogue (Google SGD) dataset 229

(Rastogi et al., 2019). Google SGD is a large 230

TOD dataset with emphasis on zero-shot incor- 231

poration of new skills. Assistants make Service 232

Calls (API Calls) which return responses. For these 233

experiments, we do not use dataset-included API 234

Schemas; we force our Assistant models to learn 235

the underlying Schemas directly from the data. 236
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Models We experiment with four model architec-237

tures: LSTM (Hochreiter and Schmidhuber, 1997),238

LSTM with Attention (Bahdanau et al., 2014),239

GPT2 (Radford et al., 2019), and BART (Lewis240

et al., 2020) with R3F (Aghajanyan et al., 2021).241

We expect models later in this list to be more pow-242

erful. Our GPT2 implementation closely resembles243

the setup of SimpleTOD (Hosseini-Asl et al., 2020),244

while our BART model roughly mirrors the imple-245

mentation of MinTL (Lin et al., 2020).246

We fine-tune on Google SGD, using the orig-247

inal splits from Rastogi et al. (2019). For each248

model type, we fine-tune separate User and Assis-249

tant models. We generate synthetic conversations250

as described in Sec 2. We seed conversations with251

single API calls extracted from a specified fold, one252

call per conversation, as goals. We mock API Im-253

plementations via a lookup table with fully realized254

API calls as keys and corresponding API responses255

as values; this lookup table is populated directly256

from the dataset. We return a sentinel failure value257

if the Assistant makes an invalid API Call.258

Evaluation Metrics We report two metrics for259

the Assistant: Joint Goal Accuracy (JGA)2 and260

BLEU score. We additionally evaluate our simula-261

tion quality by Task Success Rate over the goals of262

the Valid and Test sets. In Google SGD, the Test set263

contains Out-of-Domain (OOD) examples that do264

not appear in the Train or Valid sets. As such, con-265

sidering both Valid and Test gives us some estimate266

of OOD performance. While we aim to ensure267

that the models are well trained, e.g. comparable to268

results in the literature, our main objective to exam-269

ine the correlation between Task Success measured270

on synthetic data and established offline metrics.271

Human Evaluation We use ACUTE-Eval (Li272

et al., 2019) for human evaluation. ACUTE-Eval273

is a pairwise evaluation in which an annotator is274

shown two dialogues and asked a question (“Which275

Assistant would you rather use yourself?”) about276

which they prefer. As recommended by Li et al.277

(2019), we use a manually-curated control pair278

comparing an artificially repetitive dialogue with a279

gold dialogue from Google SGD; annotators who280

failed to identify the gold dialogue were removed.281

We select a random subset of 400 goals derived282

2We deviate from original Google SGD evaluation here
and report JGA on the API calls rather than the belief state.
An example receives a JGA score of 1 iff it generates the exact
API call perfectly. Note that the majority of turns do not have
API calls, so majority baseline is about 0.71.

User Assistant Simul. TSR

Model BLEU JGA BLEU Valid Test

LSTM .058 .777 .123 .042 .042
LSTM+Attn .078 .833 .183 .302 .169
GPT2 .093 .869 .223 .474 .307
BART .116 .897 .252 .583 .352

Table 1: Automatic Metrics of varied Model Archi-
tectures tested on the original Google SGD split. TSR
increases along with offline metrics, but shows greater
discrimination than offline metrics.

from the Test set of Google SGD and generate syn- 283

thetic conversations using a fixed BART model for 284

the User and the different model architectures for 285

the Assistant. We only present User and Assis- 286

tant utterance turns to annotators (hiding any API 287

calls). We collect pairwise annotations between 288

each Assistant model architecture described above, 289

as well as the gold dialogues from the original 290

dataset (Human). Annotators were presented with 291

conversations with the same goal when comparing 292

model-generated conversations. We measure the 293

fraction of times each model architecture (or Hu- 294

man) was preferred in its pairwise match up, and 295

compare all possible pairs of model architectures. 296

The annotators were also asked to provide justifica- 297

tion for their selections. An image of the annotator 298

UI is included in Appendix A.1. 299

4.2 Results 300

Automatic and Qualitative Evaluation See Ta- 301

ble 1. We find that performance of all metrics 302

improves monotonically in the direction we expect: 303

more modern models with better pre-training and 304

regularization do better. Additionally, the magni- 305

tude of improvements from better modeling is more 306

visible using either measure of TSR compared to 307

using more traditional offline metrics. 308

Reading simulations seeded by goals from the 309

Test set, we observe that LSTMs generated few 310

unique dialogues and generally ignored goals, pre- 311

ferring to replace slots and intents with ones more 312

frequently seen in training. Though it had very 313

low TSR, LSTM utterances often declared success- 314

ful task completion regardless. On the other hand, 315

GPT2 and BART models ground strongly on given 316

goals. In particular, we observe these stronger mod- 317

els are able to generate plausible dialogues even on 318

goals from domains present only within the Test 319

(but not Train or Valid) sets of Google SGD. This 320

ability to generalize is tested rigorously in Sec 5. 321
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Win %
L A G B H

L
os

e
%

LSTM .48 .55 .57 .80
Attn .52 .60 .63 .83

GPT2 .45 .40 .58 .81
BART .43 .37 .42 .75

Human .20 .17 .19 .25

Figure 3: Pairwise Human Evaluations of Simula-
tions. Blue entries agree with automatic metrics; red
italic entries disagree. Bold numbers indicate statisti-
cal significance (p < .05, binomial test).

Human Evaluation The results of our human322

evaluation are shown in Figure 3. We label the323

scores depending on whether they agree or disagree324

with our expectations from automatic metrics. We325

find only the LSTM v. LSTM-Attn pair disagrees326

with our expectations; all other pairwise evalua-327

tions agrees. Humans are greatly preferred over328

all the simulations, indicating none of our simula-329

tions are at human-level performance. However,330

the preference for gold data roughly decreases as331

the quality of the system improves.332

We read training logs and reasons for human333

preferences. As would be expected, successfully334

helping the User was a frequent justification for335

preferring one Assistant over another; conciseness,336

naturalness, and brevity were also mentioned.337

5 Bootstrapping Novel Domains338

In this section, we consider whether neural gener-339

ations can bootstrap models on completely novel340

domains. At a high level, our approach generates341

synthetic data, filters the synthetic dialogues using342

Task Success, and re-trains simulation models us-343

ing the synthetic dialogue. This process is repeated344

for multiple iterations to form a feedback loop.345

5.1 Experimental Setup346

Pretraining & Data setup Following the work347

of Soloist (Peng et al., 2020) and TOD-BERT (Wu348

et al., 2020), we pretrain a BART model on a large349

number of Task Oriented Dialogue datasets.350

As before, we use Google SGD as our primary351

dataset. To ensure bootstrapping is truly out of352

domain relative to pretraining, we build two cus-353

tom splits for Google SGD. We analyze all datasets354

and select four holdout domains unique to Google355

SGD. Google SGD conversations that use the hold-356

out domains are Out-of-Domain and all remaining357

Fold No. Diag. No. Domains

Pretraining (train) 119,677 29

In-Domain train 13,888 16
In-Domain valid 1,966 16
In-Domain test 3,132 16

Out-of-domain train 2,303 4
Out-of-domain valid 768 4
Out-of-domain test 768 4

Table 2: Statistics of Datasets for pretraining and boot-
strapping. In-Domain and Out-of-Domain refer to new
splits; see Sec 5.1. Pretraining statistics include those
of In-Domain. Out-of-Domain train fold is used to sam-
ple goals for bootstrapping, but not for pretraining.

conversations are In-Domain. Since Google SGD 358

has multiple domains in conversation, some non- 359

holdout dialogue appear as part of conversations in 360

the Out-of-Domain split. Only In-Domain Google 361

SGD is used for pretraining. Final statistics of pre- 362

training and evaluation data are provided in Table 2. 363

Full descriptions of datasets, domains, and relevant 364

preprocessing may be found in Appendix A.2. 365

Bootstrapping Procedure We use a Schema- 366

Aware models in order to generate synthetic train- 367

ing data, as we find that Schema Aware models are 368

necessary for zero-shot and few-shot domain gener- 369

alization. We use goals from the Train split of Out- 370

of-Domain Google SGD, to generating grounding 371

for synthetic training data. In order to increase data 372

diversity and prevent overfitting, we use Nucleus 373

generation (Holtzman et al., 2020; p = 0.9). We 374

generate 20 synthetic conversations for a given goal 375

and retain only successful conversations. These 376

successful conversations make up the synthetic data 377

that we use for fine-tuning, with 10% withheld and 378

used for model selection for early stopping. 379

We fine-tune both Schema-Aware (for data gen- 380

eration) and Schema-Agnostic (for evaluation) ver- 381

sions of our models on this synthetic data. Recall 382

that Schema-Aware models have the User intent 383

given to them, and therefore only Schema-Agnostic 384

models may be used for evaluation. Models are 385

fine-tuned incrementally – the best model from the 386

previous iteration acts as initialization for the next 387

iteration – and synthetic data is accumulated across 388

iterations. During early experimentation, we found 389

that fine-tuning a single model on both User and 390

Assistant roles generally performed better than fine- 391

tuning separate models and use this multitask setup 392

for all of our experiments. Additionally, we find 393

that multitasking on In-Domain data alongside syn- 394
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thetic data helps prevent overfitting, and include it395

in all experimental conditions.396

Experiments We perform multiple experimental397

comparisons for models with synthetic data.398

In our first experiment, we compare the perfor-399

mance of Schema-Aware and Schema-Agnostic400

models. This is to demonstrate that providing401

Schemas boosts performance and raises the Task402

Success Rate, enabling generation feedback loops.403

In our second experiment, we consider how sim-404

ulations may be used to bootstrap models in a Zero-405

shot setting. In these experiments, we only provide406

Out-of-Domain information via goals and com-407

pletely synthetic data. To show the improvement408

provided by simulations, we compare primarily409

against the Base pretrained model, which has never410

seen any Out-of-Domain information. To contextu-411

alize the result, we also provide results for a Fully-412

Supervised model upper baseline, which was fine-413

tuned directly on all available Out-of-Domain data.414

We evaluate on Schema-Agnostic versions of415

these models, and report offline metrics of Out-of-416

Domain JGA and Assistant BLEU-4, as well as417

the online metric TSR. We also report offline In-418

Domain JGA to ensure the use of synthetic data419

does not harm prior learned domains.420

In our third experiment, we consider how simula-421

tions enable a form of Active Learning. At each iter-422

ation, we evaluate performance of the model across423

all conversation goals, and identify the 8 schemas424

with the lowest overall performance. We select 8425

conversations from the Out-of-Domain training set426

with goals matching these schemes and add them427

into the next iteration’s training data (along with428

synthetic data). We also add 8 samples to the vali-429

dation data. This may be seen as Active Learning,430

where model performance is used to guide data col-431

lection at a lower cost. As a comparison, we evalu-432

ate a baseline trained with an equal number of ran-433

dom samples; this demonstrates the performance434

of few-shot modeling without any simulation. To435

contextualize performance, we also compare to a436

model which uses 10× more few-shot samples, and437

a fully supervised model.438

We also evaluate all of our models on the held-439

out Test set, which contains entirely unseen goals440

and conversations. Here, we evaluate whether our441

bootstrap procedure can be used in data-rich envi-442

ronments by applying it to a fully-supervised model443

as well.444

In-Domain Out-of-Dom

Model JGA TSR JGA TSR

Schema-Agnostic .878 .292 .777 .000
Schema-Aware .960 .839 .880 .369

Table 3: Task-pretrained BART models with and
without Schemas on validation data. Schemas help
Assistant models make correct API calls and are nec-
essary for any successful Out-of-Domain simulation.

5.2 Results 445

Use of Schemas Results of our first experiment 446

are shown in Table 3. Across both In-Domain and 447

Out-of-Domain, we see a substantial rise in perfor- 448

mance in Schema-Aware models. This is unsurpris- 449

ing, as providing Schemas allows the model to by- 450

pass Intent detection. Indeed, providing Schemas 451

has a dramatic effect on Out-of-Domain perfor- 452

mance, boosting JGA well above baseline perfor- 453

mance, and enabling a non-zero Task Success Rate. 454

Such successful conversations form the basis of 455

our synthetic data during bootstrapping, and thus 456

critical to our methodology. 457

Zero-shot Results for our Zero-shot experiments 458

are shown in Figure 4, with additional metrics pro- 459

vided in the Appendix A.4. Overall, we find that 460

Out-of-Domain JGA performance goes up by a to- 461

tal of 8.3 absolute points, or about a 37% reduction 462

in total errors, despite having no access to domain- 463

specific data. However, JGA plateaus after one 464

iteration of simulation training and further itera- 465

tions provide marginal negative value. 466

Meanwhile, TSR continues to improve for 3 it- 467

erations before eventually plateauing at approxi- 468

mately the level of the Fully-Supervised model; 469

this suggests that JGA and TSR are no longer cou- 470

pled, and that our bootstrapping procedure primar- 471

ily optimizes its selection criteria: Task Success. 472

To ensure the model was not simply making ran- 473

dom API guesses to maximize TSR, we counted 474

the number of API calls in simulation, and found 475

the model converged on approximately 1 call per 476

dialogue, matching the desired distribution. 477

We also find that Assistant BLEU does not 478

change significantly compared to baseline, suggest- 479

ing that improvements to Task Success do not trans- 480

late to improvements in Natural Language Genera- 481

tion. Finally, we see that In-Domain JGA remains 482

unchanged relative to the baseline, demonstrating 483

that the addition of synthetic data does not come at 484

the cost of performance in prior learned domains. 485
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Figure 4: Bootstrapped Validation Performance, Zero-shot. Out-of-Domain JGA and TSR both improve
through use of only synthetically generated data. BLEU and In-Domain JGA are relatively unaffected.
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Figure 5: Bootstrapped Validation Performance
with Active Learning. Active Learning vastly outper-
forms a model with an equivalent number of few-shot
samples. JGA and TSR match performance of a base-
line with 10× more domain-specific samples.

Active Learning Results for our Active Learn-486

ing experiments are shown in Figure 5. Contrary487

to the Zero-shot models, we see that JGA perfor-488

mance consistently improves for 3 iterations, fin-489

ishing with a total of 13.4 points over the Zero-shot490

baseline and matching the performance of Few-shot491

model with 320 dialogues (in green), 10× the num-492

ber available to the Active Learning model. The493

Active Learning model also shows a large gain over494

the sample-equivalent Few-shot model (dashed or-495

ange), and that the gain increases with the number496

of samples. These results demonstrates that our497

use of Task Success strongly improves our sample-498

efficiency. TSR performance continues to improve,499

and eventually exceeds the fully-supervised model500

that was trained with 72× more data.501

Although not shown, we find that Assistant502

BLEU, as in our Zero-shot experiments similarly503

does not significantly improve. This indicates that504

TSR is more strongly correlated with JGA, and its505

optimization primarily benefits NLU. In-Domain506

JGA also remains flat, confirming that synthetic507

data does not lower existing performance. Addi-508

tional metrics are provided in Appendix A.4.509

In-Domain Out-of-Dom

Model JGA TSR JGA TSR

Base Model .829 .394 .770 .000
Zero-Shot Simulation .838 .454 .860 .779
Few-Shot Only (n = 32) .835 .459 .852 .140
Active Learning (n = 32) .830 .362 .911 .799
Fully Supervised .895 .551 .973 .769
Fully Sup. + Simulation .895 .555 .977 .847

Table 4: Test set results. Final performance on the held
out Test-set for both In-Domain and Out-of-Domain.

Test Set Results To ensure that our methodology 510

did not overfit via leaking of goals, we report fi- 511

nal Test Set performance for a fully held-out set of 512

Out-of-Domain data. For Simulation-based models, 513

we evaluated models after 4 iterations. Results are 514

shown in Table 4. We find that results are consistent 515

with our earlier analysis. Zero-shot JGA improves 516

9 points over the baseline, and Active Learning 517

gains 14 points over the baseline. Task Success 518

Rate shows larger improvements, and matches the 519

Fully-supervised baseline. Both models outper- 520

form the Few-shot only baseline. Finally, we see 521

that our simulation procedure remains useful even 522

in data-rich environments: adding simulations to a 523

fully supervised model improves JGA by 0.4 abso- 524

lute points (15% error reduction). 525

Human Evaluation We perform a final human 526

evaluation using each the models from our exper- 527

imental conditions. We repeat the ACUTE-Evals 528

described in Section 4.2, using synthetic dialogues 529

from each condition. Results are shown in Figure 6. 530

We find that all human judgements are roughly 531

consistent with our expectations from offline eval- 532

uation, with clear wins for Active Learning over 533

the Baseline and Few-shot models. The Human 534

gold data outperforms all of our models, indicat- 535

ing further avenues for improvement. Nonetheless, 536
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Win %
B F Z A H

L
os

e
%

Base Model .60 .73 .59 .72
Few-Shot only .40 .60 .62 .75

Zero-Shot Sim. .27 .40 .42 .66
Active Learning .41 .38 .58 .69

Human .28 .25 .34 .31

Figure 6: Pairwise Human Evaluations of boot-
strapped models. Blue entries agree with automatic
metrics; red italics disagree. Bold numbers indicate sta-
tistical significance (p < .05, binomial test).

USER: I need a rental car.

ASST: What date and time do you need the car?

USER: I need it from the 2nd of March until the 5th.

ASST:  What time do you need the car?

USER: I need it at 12:30 pm.

ASST:  What city do you want to rent the car in?

USER: I want to rent a car in Fresno, CA.

ASST:  I found a Dodge Charger available at 12:30 pm.

Figure 7: Synthetic Conversation from our final Ac-
tive Learning model with Greedy generation. The con-
versation is successful, but linguistic variation is low.

the win rate of Humans decreases in our models537

compared to the Baseline and Few-shot models.538

In analysis of annotator preferences, we find539

that annotator selection is generally well-correlated540

with TSR: Annotators preferred unsuccessful con-541

versations over successful conversations in only542

about 10% of pairings. Simplicity and clarity were543

oftentimes given as rationale for preference in these544

unaligned pairings. Overall, annotators preferred545

Assistants that had clear communication. Many of546

the models learned to ask confirmation questions;547

this was generally liked as long as there was not548

too much back and forth between the User and As-549

sistant models in doing so. Some annotators even550

preferred generated conversations with confirma-551

tions over the gold, human conversations. While552

some annotators preferred “friendlier” or “more553

conversational” Assistants, this was not a consis-554

tent preference; some annotators found similar con-555

versations to be “weirdly informal,” or to “take too556

long to get to the point.”557

5.3 Limitations558

While our bootstrapping and Active Learning pro-559

cedures do significantly improve the robustness of560

models, they do surprisingly little to affect linguis-561

tic diversity, especially when using greedy gener-562

ation. As a representative example, see Figure 7. 563

In it, we observe that the conversation devolves to 564

a simple slot-filling questionnaire, with the User 565

beginning many utterances with “I need. . . ” Manu- 566

ally reviewing simulated conversations found that 567

while hallucination is very low in greedy-generated 568

dialogues, most dialogues form roughly the slot- 569

filling questionnaire pattern. While the synthetic 570

conversations are plausible, their linguistic diver- 571

sity is extremely low, explaining why our TSR 572

reaches near perfect levels: the User learns to spec- 573

ify things as simply as possible. Furthermore, we 574

find one of our domains (Make payments) has mul- 575

tiple instances of infinite-loops being generated, a 576

common issue known in Neural Language Models 577

(Holtzman et al., 2020; Welleck et al., 2019). 578

These examples, along with the lack of improve- 579

ments in NLG metrics (BLEU scores), show that 580

Task Success is likely to reduce the linguistic diver- 581

sity of Assistants or Users, unless generation meth- 582

ods prone to hallucination are used. In the future, 583

identifying automatic-filtering techniques for NLG 584

utterances, similar to Task Success and slot filling, 585

could help with this problem. Other generation 586

methods, like Diverse Beam Search (Vijayakumar 587

et al., 2016), may also be able to perform a bet- 588

ter hallucination-diversity trade-off. Nonetheless, 589

the offline metrics on the Test set demonstrate that 590

our methodology does improves robustness of the 591

NLU components of our model, as indicated by the 592

Out-of-Domain JGA metrics. 593

6 Conclusion 594

We explored the use of pretrained Language Mod- 595

els as User Simulators in order to generate syn- 596

thetic dialogues, and filter these models for quality 597

using Task Success. We demonstrated our method- 598

ology can be used to improve models in zero-shot, 599

few-shot, and full-shot manners. By incorporat- 600

ing Active Learning, we additionally show that our 601

models are able to bootstrap NLU performance to 602

that of a model with 10× more training data. We 603

encourage future work to look for improved gen- 604

eration methods which improve diversity without 605

hallucination, and to find methods for automati- 606

cally grading the quality of generations. Other 607

improvements, such as the use of Schema Descrip- 608

tions (Rastogi et al., 2019; Lin et al., 2021), may 609

provide further generalization on unseen domains. 610

8



References611

Anish Acharya, Suranjit Adhikari, Sanchit Agarwal,612
Vincent Auvray, Nehal Belgamwar, Arijit Biswas,613
Shubhra Chandra, Tagyoung Chung, Maryam Fazel-614
Zarandi, Raefer Gabriel, Shuyang Gao, Rahul Goel,615
Dilek Hakkani-Tur, Jan Jezabek, Abhay Jha, Jiun-616
Yu Kao, Prakash Krishnan, Peter Ku, Anuj Goyal,617
Chien-Wei Lin, Qing Liu, Arindam Mandal, An-618
geliki Metallinou, Vishal Naik, Yi Pan, Shachi619
Paul, Vittorio Perera, Abhishek Sethi, Minmin Shen,620
Nikko Strom, and Eddie Wang. 2021. Alexa con-621
versations: An extensible data-driven approach for622
building task-oriented dialogue systems. In Proceed-623
ings of the 2021 Conference of the North American624
Chapter of the Association for Computational Lin-625
guistics: Human Language Technologies: Demon-626
strations, pages 125–132, Online. Association for627
Computational Linguistics.628

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,629
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.630
2021. Better fine-tuning by reducing representa-631
tional collapse. ICLR.632

Hua Ai and Fuliang Weng. 2008. User simulation as633
testing for spoken dialog systems. In Proceedings634
of the 9th SIGdial Workshop on Discourse and Dia-635
logue, pages 164–171.636

Layla El Asri, Jing He, and Kaheer Suleman. 2016.637
A sequence-to-sequence model for user simula-638
tion in spoken dialogue systems. arXiv preprint639
arXiv:1607.00070.640

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-641
gio. 2014. Neural machine translation by jointly642
learning to align and translate. arXiv preprint643
arXiv:1409.0473.644

Vevake Balaraman and Bernardo Magnini. 2021.645
Domain-aware dialogue state tracker for multi-646
domain dialogue systems. IEEE/ACM Transac-647
tions on Audio, Speech, and Language Processing,648
29:866–873.649

Antoine Bordes, Y-Lan Boureau, and Jason Weston.650
2016. Learning end-to-end goal-oriented dialog.651
arXiv preprint arXiv:1605.07683.652

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie653
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind654
Neelakantan, Pranav Shyam, Girish Sastry, Amanda655
Askell, et al. 2020. Language models are few-shot656
learners. arXiv preprint arXiv:2005.14165.657

Bill Byrne, Karthik Krishnamoorthi, Saravanan658
Ganesh, and Mihir Kale. 2021. TicketTalk: To-659
ward human-level performance with end-to-end,660
transaction-based dialog systems. In Proceedings of661
the 59th Annual Meeting of the Association for Com-662
putational Linguistics and the 11th International663
Joint Conference on Natural Language Processing664
(Volume 1: Long Papers), pages 671–680, Online.665
Association for Computational Linguistics.666

Giovanni Campagna, Agata Foryciarz, Mehrad Morad- 667
shahi, and Monica Lam. 2020. Zero-shot transfer 668
learning with synthesized data for multi-domain dia- 669
logue state tracking. In Proceedings of the 58th An- 670
nual Meeting of the Association for Computational 671
Linguistics, pages 122–132, Online. Association for 672
Computational Linguistics. 673

Paul A Crook and Alex Marin. 2017. Sequence to se- 674
quence modeling for user simulation in dialog sys- 675
tems. In INTERSPEECH, pages 1706–1710. 676

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 677
Kristina Toutanova. 2019. BERT: Pre-training of 678
deep bidirectional transformers for language under- 679
standing. In Proceedings of the 2019 Conference 680
of the North American Chapter of the Association 681
for Computational Linguistics: Human Language 682
Technologies, Volume 1 (Long and Short Papers), 683
pages 4171–4186, Minneapolis, Minnesota. Associ- 684
ation for Computational Linguistics. 685

Maryam Fazel-Zarandi, Shang-Wen Li, Jin Cao, Jared 686
Casale, Peter Henderson, David Whitney, and Al- 687
borz Geramifard. 2017. Learning robust dialog 688
policies in noisy environments. arXiv preprint 689
arXiv:1712.04034. 690

Kallirroi Georgila, James Henderson, and Oliver 691
Lemon. 2006. User simulation for spoken dia- 692
logue systems: learning and evaluation. In INTER- 693
SPEECH. 694

Izzeddin Gür, Dilek Hakkani-Tür, Gokhan Tür, and 695
Pararth Shah. 2018. User modeling for task oriented 696
dialogues. In 2018 IEEE Spoken Language Technol- 697
ogy Workshop (SLT), pages 900–906. IEEE. 698

Donghoon Ham, Jeong-Gwan Lee, Youngsoo Jang, 699
and Kee-Eung Kim. 2020. End-to-end neural 700
pipeline for goal-oriented dialogue systems using 701
GPT-2. In Proceedings of the 58th Annual Meet- 702
ing of the Association for Computational Linguis- 703
tics, pages 583–592, Online. Association for Com- 704
putational Linguistics. 705

Sepp Hochreiter and Jürgen Schmidhuber. 1997. 706
Long short-term memory. Neural computation, 707
9(8):1735–1780. 708

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin 709
Choi. 2020. The curious case of neural text degener- 710
ation. ArXiv, abs/1904.09751. 711

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, 712
Semih Yavuz, and Richard Socher. 2020. A simple 713
language model for task-oriented dialogue. arXiv 714
preprint arXiv:2005.00796. 715

Sangkeun Jung, Cheongjae Lee, Kyungduk Kim, Min- 716
woo Jeong, and Gary Geunbae Lee. 2009. Data- 717
driven user simulation for automated evaluation of 718
spoken dialog systems. Comput. Speech Lang., 719
23(4):479–509. 720

9

https://doi.org/10.18653/v1/2021.naacl-demos.15
https://doi.org/10.18653/v1/2021.naacl-demos.15
https://doi.org/10.18653/v1/2021.naacl-demos.15
https://doi.org/10.18653/v1/2021.naacl-demos.15
https://doi.org/10.18653/v1/2021.naacl-demos.15
https://doi.org/10.18653/v1/2021.acl-long.55
https://doi.org/10.18653/v1/2021.acl-long.55
https://doi.org/10.18653/v1/2021.acl-long.55
https://doi.org/10.18653/v1/2021.acl-long.55
https://doi.org/10.18653/v1/2021.acl-long.55
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.54
https://doi.org/10.18653/v1/2020.acl-main.54
https://doi.org/10.18653/v1/2020.acl-main.54
https://doi.org/10.18653/v1/2020.acl-main.54
https://doi.org/10.18653/v1/2020.acl-main.54
https://doi.org/10.1016/j.csl.2009.03.002
https://doi.org/10.1016/j.csl.2009.03.002
https://doi.org/10.1016/j.csl.2009.03.002
https://doi.org/10.1016/j.csl.2009.03.002
https://doi.org/10.1016/j.csl.2009.03.002


Dan Jurafsky and James H. Martin. 2009. Speech and721
language processing : an introduction to natural722
language processing, computational linguistics, and723
speech recognition. Pearson Prentice Hall, Upper724
Saddle River, N.J.725

Sungdong Kim, Minsuk Chang, and Sang-Woo Lee.726
2021. NeuralWOZ: Learning to collect task-727
oriented dialogue via model-based simulation. In728
Proceedings of the 59th Annual Meeting of the729
Association for Computational Linguistics and the730
11th International Joint Conference on Natural Lan-731
guage Processing (Volume 1: Long Papers), pages732
3704–3717, Online. Association for Computational733
Linguistics.734

Florian Kreyssig, Iñigo Casanueva, Paweł735
Budzianowski, and Milica Gasic. 2018. Neural user736
simulation for corpus-based policy optimisation of737
spoken dialogue systems. ArXiv, abs/1805.06966.738

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-739
jan Ghazvininejad, Abdelrahman Mohamed, Omer740
Levy, Veselin Stoyanov, and Luke Zettlemoyer.741
2020. BART: Denoising sequence-to-sequence pre-742
training for natural language generation, translation,743
and comprehension. In Proceedings of the 58th An-744
nual Meeting of the Association for Computational745
Linguistics, pages 7871–7880, Online. Association746
for Computational Linguistics.747

Margaret Li, Jason Weston, and Stephen Roller. 2019.748
ACUTE-EVAL: Improved dialogue evaluation with749
optimized questions and multi-turn comparisons. In750
NeurIPS workshop on Conversational AI.751

Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong752
Li, Jianfeng Gao, and Yun-Nung Chen. 2016. A753
user simulator for task-completion dialogues. arXiv754
preprint arXiv:1612.05688.755

Zhaojiang Lin, Bing Liu, Andrea Madotto, Seung-756
whan Moon, Paul Crook, Zhenpeng Zhou, Zhiguang757
Wang, Zhou Yu, Eunjoon Cho, Rajen Subba, et al.758
2021. Zero-shot dialogue state tracking via cross-759
task transfer. arXiv preprint arXiv:2109.04655.760

Zhaojiang Lin, Andrea Madotto, Genta Indra Winata,761
and Pascale Fung. 2020. MinTL: Minimalist trans-762
fer learning for task-oriented dialogue systems. In763
Proceedings of the 2020 Conference on Empirical764
Methods in Natural Language Processing (EMNLP),765
pages 3391–3405, Online. Association for Computa-766
tional Linguistics.767

Bing Liu and Ian Lane. 2018. End-to-end learning of768
task-oriented dialogs. In Proceedings of the 2018769
Conference of the North American Chapter of the770
Association for Computational Linguistics: Student771
Research Workshop, pages 67–73, New Orleans,772
Louisiana, USA. Association for Computational Lin-773
guistics.774

Biswesh Mohapatra, Gaurav Pandey, Danish Contrac-775
tor, and Sachindra Joshi. 2021. Simulated chats for776

building dialog systems: Learning to generate con- 777
versations from instructions. In Findings of the As- 778
sociation for Computational Linguistics: EMNLP 779
2021, pages 1190–1203, Punta Cana, Dominican Re- 780
public. Association for Computational Linguistics. 781

Fredrik Olsson. 2009. A literature survey of active ma- 782
chine learning in the context of natural language pro- 783
cessing. Technical report, Swedish Institute of Com- 784
puter Science. 785

Baolin Peng, Chunyuan Li, Jinchao Li, Shahin Shayan- 786
deh, Lars Liden, and Jianfeng Gao. 2020. Soloist: 787
Few-shot task-oriented dialog with a single pre- 788
trained auto-regressive model. arXiv preprint 789
arXiv:2005.05298. 790

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, 791
Asli Celikyilmaz, Sungjin Lee, and Kam-Fai Wong. 792
2017. Composite task-completion dialogue policy 793
learning via hierarchical deep reinforcement learn- 794
ing. In Proceedings of the 2017 Conference on Em- 795
pirical Methods in Natural Language Processing, 796
pages 2231–2240, Copenhagen, Denmark. Associa- 797
tion for Computational Linguistics. 798

Alec Radford, Karthik Narasimhan, Tim Salimans, and 799
Ilya Sutskever. 2018. Improving language under- 800
standing by generative pre-training. 801

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 802
Dario Amodei, Ilya Sutskever, et al. 2019. Lan- 803
guage models are unsupervised multitask learners. 804
OpenAI blog, 1(8):9. 805

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, 806
Raghav Gupta, and Pranav Khaitan. 2019. Towards 807
scalable multi-domain conversational agents: The 808
schema-guided dialogue dataset. arXiv preprint 809
arXiv:1909.05855. 810

Jost Schatzmann, Kallirroi Georgila, and Steve Young. 811
2005. Quantitative evaluation of user simulation 812
techniques for spoken dialogue systems. In Proceed- 813
ings of the 6th SIGdial Workshop on Discourse and 814
Dialogue, pages 45–54, Lisbon, Portugal. Special In- 815
terest Group on Discourse and Dialogue (SIGdial). 816

Jost Schatzmann, Blaise Thomson, Karl Weilhammer, 817
Hui Ye, and Steve Young. 2007. Agenda-based 818
user simulation for bootstrapping a POMDP dia- 819
logue system. In Human Language Technologies 820
2007: The Conference of the North American Chap- 821
ter of the Association for Computational Linguis- 822
tics; Companion Volume, Short Papers, pages 149– 823
152, Rochester, New York. Association for Compu- 824
tational Linguistics. 825

Timo Schick and Hinrich Schütze. 2020. It’s 826
not just size that matters: Small language mod- 827
els are also few-shot learners. arXiv preprint 828
arXiv:2009.07118. 829

Pararth Shah, Dilek Hakkani-Tür, Bing Liu, and 830
Gokhan Tür. 2018. Bootstrapping a neural conversa- 831
tional agent with dialogue self-play, crowdsourcing 832

10

http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.18653/v1/2021.acl-long.287
https://doi.org/10.18653/v1/2021.acl-long.287
https://doi.org/10.18653/v1/2021.acl-long.287
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://doi.org/10.18653/v1/N18-4010
https://doi.org/10.18653/v1/N18-4010
https://doi.org/10.18653/v1/N18-4010
https://doi.org/10.18653/v1/2021.findings-emnlp.103
https://doi.org/10.18653/v1/2021.findings-emnlp.103
https://doi.org/10.18653/v1/2021.findings-emnlp.103
https://doi.org/10.18653/v1/2021.findings-emnlp.103
https://doi.org/10.18653/v1/2021.findings-emnlp.103
https://doi.org/10.18653/v1/D17-1237
https://doi.org/10.18653/v1/D17-1237
https://doi.org/10.18653/v1/D17-1237
https://doi.org/10.18653/v1/D17-1237
https://doi.org/10.18653/v1/D17-1237
https://aclanthology.org/2005.sigdial-1.6
https://aclanthology.org/2005.sigdial-1.6
https://aclanthology.org/2005.sigdial-1.6
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://doi.org/10.18653/v1/N18-3006
https://doi.org/10.18653/v1/N18-3006
https://doi.org/10.18653/v1/N18-3006
https://doi.org/10.18653/v1/N18-3006


and on-line reinforcement learning. In Proceedings833
of the 2018 Conference of the North American Chap-834
ter of the Association for Computational Linguistics:835
Human Language Technologies, Volume 3 (Industry836
Papers), pages 41–51, New Orleans - Louisiana. As-837
sociation for Computational Linguistics.838

Weiyan Shi, Kun Qian, Xuewei Wang, and Zhou839
Yu. 2019. How to build user simulators to train840
RL-based dialog systems. In Proceedings of the841
2019 Conference on Empirical Methods in Natu-842
ral Language Processing and the 9th International843
Joint Conference on Natural Language Processing844
(EMNLP-IJCNLP), pages 1990–2000, Hong Kong,845
China. Association for Computational Linguistics.846

Shang-Yu Su, Xiujun Li, Jianfeng Gao, Jingjing Liu,847
and Yun-Nung Chen. 2018. Discriminative deep848
dyna-q: Robust planning for dialogue policy learn-849
ing. arXiv preprint arXiv:1808.09442.850

Gokhan Tur, Robert E Schapire, and Dilek Hakkani-851
Tur. 2003. Active learning for spoken language un-852
derstanding. In 2003 IEEE International Confer-853
ence on Acoustics, Speech, and Signal Processing,854
2003. Proceedings.(ICASSP’03)., volume 1, pages855
I–I. IEEE.856

Ashwin K Vijayakumar, Michael Cogswell, Ram-857
prasath R Selvaraju, Qing Sun, Stefan Lee, David858
Crandall, and Dhruv Batra. 2016. Diverse beam859
search: Decoding diverse solutions from neural se-860
quence models. arXiv preprint arXiv:1610.02424.861

Marilyn Walker, Ace Kamm, and Diane Litman. 2000.862
Towards developing general models of usability with863
paradise. Natural Language Engineering, 6.864

Marilyn A. Walker, Diane J. Litman, Candace A.865
Kamm, and Alicia Abella. 1997. PARADISE: A866
framework for evaluating spoken dialogue agents.867
In 35th Annual Meeting of the Association for Com-868
putational Linguistics and 8th Conference of the869
European Chapter of the Association for Computa-870
tional Linguistics, pages 271–280, Madrid, Spain.871
Association for Computational Linguistics.872

Zirui Wang, Adams Wei Yu, Orhan Firat, and Yuan Cao.873
2021. Towards zero-label language learning. arXiv874
preprint arXiv:2109.09193.875

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin876
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-877
drew M Dai, and Quoc V Le. 2021. Finetuned lan-878
guage models are zero-shot learners. arXiv preprint879
arXiv:2109.01652.880

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-881
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu-882
ral text generation with unlikelihood training. arXiv883
preprint arXiv:1908.04319.884

Chien-Sheng Wu, Steven C.H. Hoi, Richard Socher,885
and Caiming Xiong. 2020. TOD-BERT: Pre-trained886
natural language understanding for task-oriented di-887
alogue. In Proceedings of the 2020 Conference on888

Empirical Methods in Natural Language Processing 889
(EMNLP), pages 917–929, Online. Association for 890
Computational Linguistics. 891

11

https://doi.org/10.18653/v1/N18-3006
https://doi.org/10.18653/v1/D19-1206
https://doi.org/10.18653/v1/D19-1206
https://doi.org/10.18653/v1/D19-1206
https://doi.org/10.1017/S1351324900002503
https://doi.org/10.1017/S1351324900002503
https://doi.org/10.1017/S1351324900002503
https://doi.org/10.3115/976909.979652
https://doi.org/10.3115/976909.979652
https://doi.org/10.3115/976909.979652
https://arxiv.org/abs/1908.04319
https://arxiv.org/abs/1908.04319
https://arxiv.org/abs/1908.04319
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://doi.org/10.18653/v1/2020.emnlp-main.66


A Appendix892

A.1 Screenshot of Annotator UI893

Figure 8: Screenshot of Annotator UI. Annotators are asked to evaluate "Which Conversational Assistant System
is better" by pressing radio buttons corresponding to two presented conversations.

A.2 Pretraining Datasets894

Dataset Dial. Dom. Overlap with Google SGD

GoogleSGD
In-Domain

18,986 16
Alarm, Banks, Buses, Calendar, Events, Flights, Hotels,
Media, Movies, Music, Restaurants, Rideshare, Services,
Travel, Trains, Weather

GoogleSGD
Out-of-Domain

3,839 4 Home Search, Messaging, Payment, Rental Cars

MetaLWoZ 37,884 47 Banks, Buses, Events, Movies, Music, Restaurants
MSR-E2E 10,087 3 Movies, Restaurants, Taxis
MultiDoGo 19,522 6 Calendar, Flights, Media, Weather
MultiWoz 10,438 7 Attractions, Hospitals, Hotels, Restaurants, Taxis, Train
Taskmaster-1 13,215 6 Restaurants, Rideshare
Taskmaster-2 17,289 7 Flights, Hotels, Movies, Music, Restaurants
TicketTalk 23,789 1 Movies

Table 5: Detailed statistics of datasets used in our work. All datasets except for Google SGD Out-of-Domain
used in pretraining.

We describe the different datasets that we use for pretraining. In general, we attempt to make these895

datasets be structured as similarly as possible to the conversations format as described in Sec 2 and896

generate data for separate User and Assistant models once formatted. For datasets with no API Call897

or Response labels, we imitate these values by accumulating dialogue state across user and assistant898

responses, respectively, and presenting these on appropriate turns. Other exceptions are described inline.899

See Table 5 for dataset statistics.900

Google SGD We describe Google SGD in 4.1. We describe our method for splitting Google SGD into901

In-Domain and Out-of-Domain splits in 5.1.902

For our Out-of-Domain split, we used Home Search, Messaging, Payment, Rental Cars as 4 holdout903

domains that did not have analogues in any of the other datasets. Though the "Services" and "Travel"904

domains do not occur explicitly in the other datasets, we do not include them in our holdout since905
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they include semantically similar information to the "Hospital" and "Attractions" domains of MultiWoz, 906

respectively. For our In-Domain split, we include solely the 16 other domains of the dataset. 907

As also mentioned in 5.1, since Google SGD is a dataset that contains both single-goal and mulit-goal 908

conversations, some domains of the In-Domain split are present as goals in multi-goal conversations of 909

the Out-of-Domain split. 910

MetalWoz MetalWoz is a dataset constructed in a Wizard of Oz fashion across 227 tasks and 47 domains. 911

Given a domain and a task, conversing pairs were asked to chat for 10 turns to satisfy the user’s queries. 912

As this dataset does not include any annotations about API Calls, API Responses, or belief state, we 913

pretrain on this dataset as-is and do not attempt to transform it into the format described in Sec 2. We do 914

however split this dataset into separate User and Assistant versions. 915

MultiDoGo MultiDoGo is a large task-oriented dataset collected in a Wizard of Oz fashion, using 916

both crowd and expert annotators with annotations at varying levels of granularity. We use only the data 917

available publicly on this dataset’s open-source repository (about 20k dialogues total.) 918

MultiWoz MultiWoz is a dataset of single and multi-goal human-human conversations collected in a 919

Wizard of Oz fashion. Validation and test sets contain only successful conversations while the train set 920

include some that are incomplete. Data of the original dataset is labelled with belief states. 921

MSR-E2E MSR-E2E is a dataset of human-human conversations in which one human plays the role of 922

an Agent and the other one plays the role of a User. Data is collected from Amazon Mechanical Turk. 923

Taskmaster 1 Conversations in Taskmaster 1 were collected in one of two ways: spoken Wizard of Oz 924

conversations between humans (transcribed to text) as well as written conversations from a single human 925

in a self-dialog method. Similar to our conversations format, rather than being labelled with intents and 926

dialog acts, conversations of this dataset are labelled with simple API arguments. 927

Taskmaster 2 Taskmaster2 is a dataset of entirely spoken two person dialogues collected in a Wizard of 928

Oz manner where Assistant utterances were typed by a human and then "spoken" using a text-to-speech 929

service. Dialogues in this dataset includes those that are search and recommendations oriented, rather 930

than purely task execution. 931

TicketTalk TicketTalk (or Taskmaster 3) is a dataset of movie ticket dialogues collected in a self-chat 932

manner. To induce conversational variety, crowd workers were asked to generate conversations given 933

dozens of different instructions of different level of specificity, some purposefully including conversational 934

errors. 935
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A.3 Hyperparameter Tables936

We include hyperparameter tables for each of our models used in this paper. All models were trained937

using the ADAM optimizer. All models were optimized using Token Exact Match (examples with perfect938

greedy decoding) as an early stopping criteria.939

Evaluating Synthetic Dialog Generation and its Metrics Note that as described in Sec 4, we aim to940

look for reasonable correlations between metrics and model architectures rather than absolute performance.941

LSTM & LSTM with Attention: (1 GPU per run)942

Hyperparameter Swept Values

Learning Rate 1e{-3, -4}
Number of Layers {1, 2, 4}
Embedding size {256, 384}
Hidden size {1024, 2048}
Batch size 64
Embedding Init FastText

943

GPT2: (8 GPUs per run)944

Hyperparameter Swept Values

Learning Rate 1e{-5, -6}
LR Scheduler Reduce on Plateau, Invsqrt
Model Size 124M
Text Truncate 512
Warm-up Updates 100
Batch size 4
Update Frequency 2
Gradient Clip 1

945

BART: (8 GPUs per run)946

Hyperparameter Swept Values

Learning Rate 1e{-5, -6}
LR Scheduler {Reduce on Plateau, Invsqrt}
Model Size 400M
Text Truncate 512
Warm-up Updates 100
Batch size 4
Update Frequency 2
Gradient Clip 1

947

Bootstrapping Novel Domains Once we early stopped models on Token Exact Match, we used Task948

Success Rate on validation goals of Google SGD to select the best model out of a given hyperparameter949

sweep. However, a post hoc analysis suggests that using Token Exact Match on synthetic data fine-tunes950

would have worked approximately as well for the goal of improving JGA.951

BART: (8 GPUs per run)952

Hyperparameter Swept Values

Learning Rate {1e-4, 5e-5, 1e-5, 5e-6}
Model Size 400M
Batch size 4
Update frequency 8
LR Scheduler Invsqrt
Warm-up updates 1000
Text truncate 512
Label truncate 512
Gradient Clip 0.1
Multitask Weights 1
Validation Steps 100

953
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A.4 Additional Results 954

We report additional metrics on each of our models, for both offline (static, held-out data) and online 955

(during simulation) settings. 956
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Figure 9: Offline Bootstrapping Results. Results of Bootstrapping on a static (held-out) offline dataset.
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Figure 10: Online Bootstrapping Results. Results of Bootstrapping models on during simulations.
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Figure 11: Offline Active Learning Results. Results of Active Learning on a static (held-out) offline dataset.
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Figure 12: Online Active Learning Results. Results of Active Learning model during simulations.
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A.5 Holdout API Analysis of Bootstrap Procedure957

We take the models generated from Sec 5.1 and evaluate the models for JGA, limiting only turns to which958

include API calls, over each of the holdout domains. Results of this are shown in Figure 13. We observe959

that all holdout domains have a JGA value of zero for the Base model; this validates our selection of960

holdout domains. We also observe that compared to the other models, Active Learning performs much961

better across all domains.962

Domain

Model Find Homes Payment Rental Cars Messaging

Base Model .000 .000 .000 .000
Few-Shot Only .603 .022 .411 .768
Zero-Shot Sim. .876 .022 .266 .929
Active Learning .882 .870 .623 .946

Figure 13: JGA of individual Holdout Domains (limited to API Call Turns only).
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