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Abstract

We investigate the ability of large language
models to neurally generate Task Oriented Di-
alogues in novel domains, provided only with
an API implementation and a list of goals.

We show these simulations formulate online,
automatic metrics that correlate well with hu-
man evaluations. Furthermore, by filtering
for dialogues where goals are met, we can
use simulation to repeatedly generate train-
ing data and improve the quality of the dia-
logues themselves. With no human interven-
tion or domain-specific training data, our sim-
ulations bootstrap end-to-end models which
achieve a 37% error reduction over baseline in
previously unseen domains. By including as
few as 32 domain-specific conversations boot-
strapped models can match the performance of
a fully-supervised model with 10x more data.

1 Introduction

Virtual Assistants have become ubiquitous in mod-
ern life (Acharya et al., 2021). However, building
these Task Oriented Dialogue (TOD) systems is
laborious, requiring significant data collection and
engineering resources to add support for a novel
domain. As such, methods which can generalize,
learn from limited examples, and require fewer en-
gineering resources are highly desirable (Shi et al.,
2019; Shah et al., 2018; Acharya et al., 2021).

To this end, works have previously identified
User Simulators, wherein a model is used to em-
ulate a human user in place of a real one, as a
means of addressing these problems. User Sim-
ulators have been used to evaluate (Walker et al.,
1997, 2000; Schatzmann et al., 2005) and improve
Assistant models by providing additional training
data (Shah et al., 2018; Acharya et al., 2021) and
reward signals for Reinforcement Learning meth-
ods (Fazel-Zarandi et al., 2017; Su et al., 2018; Shi
et al., 2019). Typically, these User Simulators are
either limited to enhancing existing domains (Fazel-

Zarandi et al., 2017) or utilize specialized and man-
ually engineered rules or templates for novel do-
mains (Shah et al., 2018; Shi et al., 2019). User
Simulators have often required post-hoc human
intervention to ensure quality (Shah et al., 2018).

In this work, we show that modern Large
Language Models (Radford et al., 2018, 2019;
Lewis et al., 2020) generate reasonable dialogues
when equipped with an API implementation and
prompted with a goal. We observe the quality of
these dialogues increases with the power of the
base models. Furthermore, we observe that simula-
tion success is a strong discriminator of Assistant
performance and dialogue quality.

We describe a method for bootstrapping User
and Assistant models for previously unseen dia-
logue domains. We use Task Success, which can
be automatically measured in fully synthetic di-
alogues, to discriminate between high- and low-
quality dialogues. By adding successful dialogues
back into the training set and retraining the model,
we bootstrap an Assistant model without the use of
any domain-specific training data, hand-engineered
rules, Natural Language templates, or humans-in-
the-loop. Our methodology shows improvements
in both zero-shot and full-shot settings.

Furthermore, we show that we can use Task Suc-
cess as a method for automatically identifying the
weakest areas of our model, and employ Active
Learning (Tur et al., 2003; Olsson, 2009) to en-
hance performance. By additionally including as
few as 32 domain-specific training examples, we
can match the performance of a fully-supervised
baseline provided with 10x more data.

We open source our simulation infrastructure —
including processing for all public datasets used
and scripts for both training models and generat-
ing bootstrapped conversations — as part of the
Anonymous framework (Anon, 202X).!

!Code already open sourced online at: Anonymous URL
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Figure 1: Illustration of our Simulation system. See Section 2 for a description of functionality. In-arrows designate
inputs to an entity; entities do not see data where there is no in-arrow. Out-arrows designates generations.

GOAL: api = BookRide;
end = AMC NewPark 12.

First Turn (no API call)
APISCHEMA: api =
BookRide; args = start, end.

ASSISTANT: Where to?

USER: | want to
book a ride

us: that

ppppppp

ASSISTANT: o
Where to? Az

ASSISTANT: Your
minute ride

USER: I want to book a ride

ASSISTANT: So you want a ride for 2 people to go to

ride is booked. It will be a 10

Turn with API Call

ASSISTANT: So
jou want a ride for

2 people to go to
AMC NewPark 127

APICALL: api =
BookRide ; end = AMC
NewPark 12

APIRESP: end = AMC
NewPark 12, rde_duration =
10

USER: Yes that's
right

ASSISTANT: Your
ride is booked. It will
be a 10 minute ride.

Mock API

Mock API

Figure 2: Concrete example illustrating the system described in Fig 1. A linear version of the conversation is in the
middle; bold denotes utterances. Diagrams on either side illustrate how generations are passed between entities.

2 End-to-End TOD Conversation Setup

A high-level illustration of our simulation system
is shown in Figure 1 with an example in Figure 2.
Our simulation system consists of three main com-
ponents: a User model, an Assistant model, and
an API Implementation. While traditional TOD
systems model conversations with a combination
of intent detection, belief state tracking, and policy
(Jurafsky and Martin, 2009), we employ a more
modern setup (Rastogi et al., 2019) where the As-
sistant must both generate API calls and translate
API responses into Natural Language utterances
for the User at the right time. This is particularly
amenable to modern End-to-End (E2E) approaches
based on pretrained Language Models (Ham et al.,
2020; Peng et al., 2020; Hosseini-Asl et al., 2020).

To guide the conversation, the User is given a
Goal as its first turn. The Goal consists of a com-
plete API call (e.g. intent, slot names, and slot
values) serialized as a string. The User model uses
this Goal to ground natural language utterance gen-
eration to the Assistant. The Assistant optionally
generates a serialized API call string that is sent to
the API Implementation. The API Implementation
returns a serialized API response back to the As-
sistant based on the call, including a sentinel value
for failed calls. The Assistant generates a natural
language utterance to the User with this response.
Entities keep track of their own generations as well

as previously seen turns when making generations.

Conversations continue in this repeated fashion
until the User generates a ‘[DONE]’ token. A con-
versation is said to be successful if the Assistant
generates an API call equal to the Goal given to
the User. We later show that simulations’ Task Suc-
cess Rate (TSR), the success averaged over a large
number of goals, is a strong proxy for the quality
of dialogues generated.

Our system optionally allows grounding the As-
sistant with an API Schema on the first turn; we
use this in Sec 5. An API Schema consists of the
signature of the Goal (e.g. intent and slot names)
without slot values. As we will later see, Schemas
(combined with Task Success) enable us to boot-
strap models in unseen domains. We take care to
not use Schemas for evaluations unless explicitly
stated, however, since this implies a precursor in-
tent detection step to select the Schema.

3 Related Work

User Simulators have a long history. They have
been used for both evaluation and Assistant im-
provement. Formulations have varied across Rule-
based, Agenda-based, and End-to-End approaches.

Works have explored using User Simulators as a
proxy for Assistant evaluation (Schatzmann et al.,
2005) or predicting user satisfaction (Walker et al.,
2000; Ai and Weng, 2008; Jung et al., 2009; Li



et al., 2016; Crook and Marin, 2017). Simula-
tors have been measured via Task Success Rate
(Giir et al., 2018; Kreyssig et al., 2018) and cross-
examining them against a wide-variety of Assis-
tants (Schatzmann et al., 2005). Older works ex-
plored using Language Models (LMs) as User Sim-
ulators, but observed that the LMs had poor ad-
herence to goals (Georgila et al., 2006; Crook and
Marin, 2017). Accordingly, simulators of that time
were often Agenda-based (Schatzmann et al., 2007;
Shah et al., 2018). In contrast, we find that modern,
large, pretrained LMs ground on goals well.

Works have also used User Simulators and As-
sistants to optimize Reinforcement Learning pol-
icy (Schatzmann et al., 2007; Fazel-Zarandi et al.,
2017; Peng et al., 2017; Su et al., 2018; Giir et al.,
2018; Kreyssig et al., 2018). These often optimized
the policy component of pipeline-based systems
(Fazel-Zarandi et al., 2017) and frequently relied on
the Natural Language Generation (NLG) templates
over dialogue acts (Fazel-Zarandi et al., 2017; Shah
et al., 2018; Shi et al., 2019; Kreyssig et al., 2018;
Acharya et al., 2021). Our work instead utilizes
fully lexicalized, E2E models for both the User and
the Assistant models, without the need for agendas,
dialogue acts, or NLG templates.

Some works use Schemas, neural User Simu-
lators, and neural Assistants for generating syn-
thetic data to add to a training dataset (Shah et al.,
2018; Acharya et al., 2021; Campagna et al., 2020;
Kim et al., 2021; Mohapatra et al., 2021); these
are most similar to our bootstrapping. Shah et al.
(2018) uses a stage of human annotation to iden-
tify failed dialogues and paraphrases; we show
that Task Success can successfully identify fail-
ures without human involvement. Campagna et al.
(2020) uses detailed schema and rule-based tem-
plates for NLG; our schemas are much simpler and
we use no rules. Acharya et al. (2021) few-shots us-
ing a similar bootstrapping process as ours, but re-
lies on templates for NLG and human paraphrases;
we use sampling to achieve diversity (Holtzman
et al., 2020). The papers Kim et al. (2021); Mohap-
atra et al. (2021) use pre-trained language models
to generate synthetic dialogues given schemas. Mo-
hapatra et al. (2021) uses a complex set of models
to generate each side of the conversation, then fil-
ter and label; they also do not attempt to solve
the zero-shot learning task. Kim et al. (2021) use a
BART-large model to generate dialogues given goal
instructions and API results, and then RoBERTa

to label the generated dialogues with state tracking
labels. They use a pre-generated list of API results
for fine-grain direction of the generated conversa-
tion. In comparison our dialog uses only goals for
directional grounding. We additionally automati-
cally self-improve our generation in a loop using
the models generated, successful, dialogues.

In contrast to prior methods that require human
selection, template generation, or paraphrasing, we
both identify failures and generate conversational
variety automatically.

End-to-End systems for TOD have had a re-
cent surge in interest (Asri et al., 2016; Bordes
et al., 2016; Liu and Lane, 2018; Rastogi et al.,
2019; Ham et al., 2020; Hosseini-Asl et al., 2020;
Peng et al., 2020; Lin et al., 2020), thanks to the
success of pretrained models (Devlin et al., 2019;
Radford et al., 2019; Lewis et al., 2020). E2E
models promise to lower the cost of annotation
by replacing traditional pipeline models with text-
in-text-out and adjacent external API calls (Ras-
togi et al., 2019; Byrne et al., 2021). Compared
to these works, we leverage pretrained models for
User models in order to produce simulations, rather
than only modeling Assistants. We also leverage
Schema-based grounding techniques (Rastogi et al.,
2019; Balaraman and Magnini, 2021), which may
be viewed as a form of in-context prompting meth-
ods (Brown et al., 2020; Schick and Schiitze, 2020;
Wang et al., 2021; Wei et al., 2021).

4 Evaluating Synthetic Dialogue

We generate synthetic conversations with a vari-
ety of different models and validate that traditional
automated offline metrics, our TSR metric, and
human evaluation all correlate with expectations.
Note that our objective is explicitly not to achieve
State-of-the-Art performance but to validate direc-
tional correlation; namely, we expect more ‘power-
ful’ models to outperform weaker ones.

4.1 Experimental Setup

Dataset We focus our efforts on the Google
Schema Guided Dialogue (Google SGD) dataset
(Rastogi et al., 2019). Google SGD is a large
TOD dataset with emphasis on zero-shot incor-
poration of new skills. Assistants make Service
Calls (API Calls) which return responses. For these
experiments, we do not use dataset-included API
Schemas; we force our Assistant models to learn
the underlying Schemas directly from the data.



Models We experiment with four model architec-
tures: LSTM (Hochreiter and Schmidhuber, 1997),
LSTM with Attention (Bahdanau et al., 2014),
GPT2 (Radford et al., 2019), and BART (Lewis
et al., 2020) with R3F (Aghajanyan et al., 2021).
We expect models later in this list to be more pow-
erful. Our GPT2 implementation closely resembles
the setup of SimpleTOD (Hosseini-Asl et al., 2020),
while our BART model roughly mirrors the imple-
mentation of MinTL (Lin et al., 2020).

We fine-tune on Google SGD, using the orig-
inal splits from Rastogi et al. (2019). For each
model type, we fine-tune separate User and Assis-
tant models. We generate synthetic conversations
as described in Sec 2. We seed conversations with
single API calls extracted from a specified fold, one
call per conversation, as goals. We mock API Im-
plementations via a lookup table with fully realized
API calls as keys and corresponding API responses
as values; this lookup table is populated directly
from the dataset. We return a sentinel failure value
if the Assistant makes an invalid API Call.

Evaluation Metrics We report two metrics for
the Assistant: Joint Goal Accuracy (JGA)? and
BLEU score. We additionally evaluate our simula-
tion quality by Task Success Rate over the goals of
the Valid and Test sets. In Google SGD, the Test set
contains Out-of-Domain (OOD) examples that do
not appear in the Train or Valid sets. As such, con-
sidering both Valid and Test gives us some estimate
of OOD performance. While we aim to ensure
that the models are well trained, e.g. comparable to
results in the literature, our main objective to exam-
ine the correlation between Task Success measured
on synthetic data and established offline metrics.

Human Evaluation We use ACUTE-Eval (Li
et al., 2019) for human evaluation. ACUTE-Eval
is a pairwise evaluation in which an annotator is
shown two dialogues and asked a question (“Which
Assistant would you rather use yourself?””) about
which they prefer. As recommended by Li et al.
(2019), we use a manually-curated control pair
comparing an artificially repetitive dialogue with a
gold dialogue from Google SGD; annotators who
failed to identify the gold dialogue were removed.
We select a random subset of 400 goals derived

>We deviate from original Google SGD evaluation here
and report JGA on the API calls rather than the belief state.
An example receives a JGA score of 1 iff it generates the exact
API call perfectly. Note that the majority of turns do not have
API calls, so majority baseline is about 0.71.

User Assistant Simul. TSR
Model BLEU JGA BLEU Valid Test
LSTM 058 777 123 042 .042
LSTM+Attn .078 .833 183 302 169
GPT2 .093  .869 223 474 307
BART 116 .897 252 583 352

Table 1: Automatic Metrics of varied Model Archi-
tectures tested on the original Google SGD split. TSR
increases along with offline metrics, but shows greater
discrimination than offline metrics.

from the Test set of Google SGD and generate syn-
thetic conversations using a fixed BART model for
the User and the different model architectures for
the Assistant. We only present User and Assis-
tant utterance turns to annotators (hiding any API
calls). We collect pairwise annotations between
each Assistant model architecture described above,
as well as the gold dialogues from the original
dataset (Human). Annotators were presented with
conversations with the same goal when comparing
model-generated conversations. We measure the
fraction of times each model architecture (or Hu-
man) was preferred in its pairwise match up, and
compare all possible pairs of model architectures.
The annotators were also asked to provide justifica-
tion for their selections. An image of the annotator
Ul is included in Appendix A.1.

4.2 Results

Automatic and Qualitative Evaluation See Ta-
ble 1. We find that performance of all metrics
improves monotonically in the direction we expect:
more modern models with better pre-training and
regularization do better. Additionally, the magni-
tude of improvements from better modeling is more
visible using either measure of TSR compared to
using more traditional offline metrics.

Reading simulations seeded by goals from the
Test set, we observe that LSTMs generated few
unique dialogues and generally ignored goals, pre-
ferring to replace slots and intents with ones more
frequently seen in training. Though it had very
low TSR, LSTM utterances often declared success-
ful task completion regardless. On the other hand,
GPT2 and BART models ground strongly on given
goals. In particular, we observe these stronger mod-
els are able to generate plausible dialogues even on
goals from domains present only within the Test
(but not Train or Valid) sets of Google SGD. This
ability to generalize is tested rigorously in Sec 5.



Win %
L A G B H

LSTM 48 55 57 .80
= At | .52 60 .63 .83
g GPT2| 45 40 58 .81

BART | 43 37 42 75

Human | .20 .17 .19 .25

Figure 3: Pairwise Human Evaluations of Simula-
tions. Blue entries agree with automatic metrics; red
italic entries disagree. Bold numbers indicate statisti-
cal significance (p < .05, binomial test).

Human Evaluation The results of our human
evaluation are shown in Figure 3. We label the
scores depending on whether they agree or disagree
with our expectations from automatic metrics. We
find only the LSTM v. LSTM-Attn pair disagrees
with our expectations; all other pairwise evalua-
tions agrees. Humans are greatly preferred over
all the simulations, indicating none of our simula-
tions are at human-level performance. However,
the preference for gold data roughly decreases as
the quality of the system improves.

We read training logs and reasons for human
preferences. As would be expected, successfully
helping the User was a frequent justification for
preferring one Assistant over another; conciseness,
naturalness, and brevity were also mentioned.

5 Bootstrapping Novel Domains

In this section, we consider whether neural gener-
ations can bootstrap models on completely novel
domains. At a high level, our approach generates
synthetic data, filters the synthetic dialogues using
Task Success, and re-trains simulation models us-
ing the synthetic dialogue. This process is repeated
for multiple iterations to form a feedback loop.

5.1 Experimental Setup

Pretraining & Data setup Following the work
of Soloist (Peng et al., 2020) and TOD-BERT (Wu
et al., 2020), we pretrain a BART model on a large
number of Task Oriented Dialogue datasets.

As before, we use Google SGD as our primary
dataset. To ensure bootstrapping is truly out of
domain relative to pretraining, we build two cus-
tom splits for Google SGD. We analyze all datasets
and select four holdout domains unique to Google
SGD. Google SGD conversations that use the hold-
out domains are Out-of-Domain and all remaining

Fold No. Diag. No. Domains
Pretraining (train) 119,677 29
In-Domain train 13,888 16
In-Domain valid 1,966 16
In-Domain test 3,132 16
Out-of-domain train 2,303 4
Out-of-domain valid 768 4
Out-of-domain test 768 4

Table 2: Statistics of Datasets for pretraining and boot-
strapping. In-Domain and Out-of-Domain refer to new
splits; see Sec 5.1. Pretraining statistics include those
of In-Domain. Out-of-Domain train fold is used to sam-
ple goals for bootstrapping, but not for pretraining.

conversations are In-Domain. Since Google SGD
has multiple domains in conversation, some non-
holdout dialogue appear as part of conversations in
the Out-of-Domain split. Only In-Domain Google
SGD is used for pretraining. Final statistics of pre-
training and evaluation data are provided in Table 2.
Full descriptions of datasets, domains, and relevant
preprocessing may be found in Appendix A.2.

Bootstrapping Procedure We use a Schema-
Aware models in order to generate synthetic train-
ing data, as we find that Schema Aware models are
necessary for zero-shot and few-shot domain gener-
alization. We use goals from the Train split of Out-
of-Domain Google SGD, to generating grounding
for synthetic training data. In order to increase data
diversity and prevent overfitting, we use Nucleus
generation (Holtzman et al., 2020; p = 0.9). We
generate 20 synthetic conversations for a given goal
and retain only successful conversations. These
successful conversations make up the synthetic data
that we use for fine-tuning, with 10% withheld and
used for model selection for early stopping.

We fine-tune both Schema-Aware (for data gen-
eration) and Schema-Agnostic (for evaluation) ver-
sions of our models on this synthetic data. Recall
that Schema-Aware models have the User intent
given to them, and therefore only Schema-Agnostic
models may be used for evaluation. Models are
fine-tuned incrementally — the best model from the
previous iteration acts as initialization for the next
iteration — and synthetic data is accumulated across
iterations. During early experimentation, we found
that fine-tuning a single model on both User and
Assistant roles generally performed better than fine-
tuning separate models and use this multitask setup
for all of our experiments. Additionally, we find
that multitasking on In-Domain data alongside syn-



thetic data helps prevent overfitting, and include it
in all experimental conditions.

Experiments We perform multiple experimental
comparisons for models with synthetic data.

In our first experiment, we compare the perfor-
mance of Schema-Aware and Schema-Agnostic
models. This is to demonstrate that providing
Schemas boosts performance and raises the Task
Success Rate, enabling generation feedback loops.

In our second experiment, we consider how sim-
ulations may be used to bootstrap models in a Zero-
shot setting. In these experiments, we only provide
Out-of-Domain information via goals and com-
pletely synthetic data. To show the improvement
provided by simulations, we compare primarily
against the Base pretrained model, which has never
seen any Out-of-Domain information. To contextu-
alize the result, we also provide results for a Fully-
Supervised model upper baseline, which was fine-
tuned directly on all available Out-of-Domain data.

We evaluate on Schema-Agnostic versions of
these models, and report offline metrics of Out-of-
Domain JGA and Assistant BLEU-4, as well as
the online metric TSR. We also report offline In-
Domain JGA to ensure the use of synthetic data
does not harm prior learned domains.

In our third experiment, we consider how simula-
tions enable a form of Active Learning. At each iter-
ation, we evaluate performance of the model across
all conversation goals, and identify the 8 schemas
with the lowest overall performance. We select 8
conversations from the Out-of-Domain training set
with goals matching these schemes and add them
into the next iteration’s training data (along with
synthetic data). We also add 8 samples to the vali-
dation data. This may be seen as Active Learning,
where model performance is used to guide data col-
lection at a lower cost. As a comparison, we evalu-
ate a baseline trained with an equal number of ran-
dom samples; this demonstrates the performance
of few-shot modeling without any simulation. To
contextualize performance, we also compare to a
model which uses 10 x more few-shot samples, and
a fully supervised model.

We also evaluate all of our models on the held-
out Test set, which contains entirely unseen goals
and conversations. Here, we evaluate whether our
bootstrap procedure can be used in data-rich envi-
ronments by applying it to a fully-supervised model
as well.

In-Domain  Out-of-Dom
Model JGA TSR JGA TSR

Schema-Agnostic  .878 .292 777  .000
Schema-Aware 960 839 880 .369

Table 3: Task-pretrained BART models with and
without Schemas on validation data. Schemas help
Assistant models make correct API calls and are nec-
essary for any successful Out-of-Domain simulation.

5.2 Results

Use of Schemas Results of our first experiment
are shown in Table 3. Across both In-Domain and
Out-of-Domain, we see a substantial rise in perfor-
mance in Schema-Aware models. This is unsurpris-
ing, as providing Schemas allows the model to by-
pass Intent detection. Indeed, providing Schemas
has a dramatic effect on Out-of-Domain perfor-
mance, boosting JGA well above baseline perfor-
mance, and enabling a non-zero Task Success Rate.
Such successful conversations form the basis of
our synthetic data during bootstrapping, and thus
critical to our methodology.

Zero-shot Results for our Zero-shot experiments
are shown in Figure 4, with additional metrics pro-
vided in the Appendix A.4. Overall, we find that
Out-of-Domain JGA performance goes up by a to-
tal of 8.3 absolute points, or about a 37% reduction
in total errors, despite having no access to domain-
specific data. However, JGA plateaus after one
iteration of simulation training and further itera-
tions provide marginal negative value.

Meanwhile, TSR continues to improve for 3 it-
erations before eventually plateauing at approxi-
mately the level of the Fully-Supervised model;
this suggests that JGA and TSR are no longer cou-
pled, and that our bootstrapping procedure primar-
ily optimizes its selection criteria: Task Success.
To ensure the model was not simply making ran-
dom API guesses to maximize TSR, we counted
the number of API calls in simulation, and found
the model converged on approximately 1 call per
dialogue, matching the desired distribution.

We also find that Assistant BLEU does not
change significantly compared to baseline, suggest-
ing that improvements to Task Success do not trans-
late to improvements in Natural Language Genera-
tion. Finally, we see that In-Domain JGA remains
unchanged relative to the baseline, demonstrating
that the addition of synthetic data does not come at
the cost of performance in prior learned domains.
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Figure 5: Bootstrapped Validation Performance
with Active Learning. Active Learning vastly outper-
forms a model with an equivalent number of few-shot
samples. JGA and TSR match performance of a base-
line with 10x more domain-specific samples.

Active Learning Results for our Active Learn-
ing experiments are shown in Figure 5. Contrary
to the Zero-shot models, we see that JGA perfor-
mance consistently improves for 3 iterations, fin-
ishing with a total of 13.4 points over the Zero-shot
baseline and matching the performance of Few-shot
model with 320 dialogues (in green), 10x the num-
ber available to the Active Learning model. The
Active Learning model also shows a large gain over
the sample-equivalent Few-shot model (dashed or-
ange), and that the gain increases with the number
of samples. These results demonstrates that our
use of Task Success strongly improves our sample-
efficiency. TSR performance continues to improve,
and eventually exceeds the fully-supervised model
that was trained with 72x more data.

Although not shown, we find that Assistant
BLEU, as in our Zero-shot experiments similarly
does not significantly improve. This indicates that
TSR is more strongly correlated with JGA, and its
optimization primarily benefits NLU. In-Domain
JGA also remains flat, confirming that synthetic
data does not lower existing performance. Addi-
tional metrics are provided in Appendix A.4.

In-Domain  Out-of-Dom
Model JGA TSR JGA TSR
Base Model 829 394 770 .000
Zero-Shot Simulation 838 454 860 .779
Few-Shot Only (n = 32) 835 459 852  .140
Active Learning (n = 32) .830 .362 911 .799
Fully Supervised 895 551 973 .769
Fully Sup. + Simulation 895 555 977 847

Table 4: Test set results. Final performance on the held
out Test-set for both In-Domain and Out-of-Domain.

Test Set Results To ensure that our methodology
did not overfit via leaking of goals, we report fi-
nal Test Set performance for a fully held-out set of
Out-of-Domain data. For Simulation-based models,
we evaluated models after 4 iterations. Results are
shown in Table 4. We find that results are consistent
with our earlier analysis. Zero-shot JGA improves
9 points over the baseline, and Active Learning
gains 14 points over the baseline. Task Success
Rate shows larger improvements, and matches the
Fully-supervised baseline. Both models outper-
form the Few-shot only baseline. Finally, we see
that our simulation procedure remains useful even
in data-rich environments: adding simulations to a
fully supervised model improves JGA by 0.4 abso-
lute points (15% error reduction).

Human Evaluation We perform a final human
evaluation using each the models from our exper-
imental conditions. We repeat the ACUTE-Evals
described in Section 4.2, using synthetic dialogues
from each condition. Results are shown in Figure 6.

We find that all human judgements are roughly
consistent with our expectations from offline eval-
uation, with clear wins for Active Learning over
the Baseline and Few-shot models. The Human
gold data outperforms all of our models, indicat-
ing further avenues for improvement. Nonetheless,



Win %
B F Z A H

o Base Model 60 73 59 72
¥ Few-Shotonly | .40 60 .62 .75
8  Zero-Shot Sim. | .27 .40 42 .66
—~  Active Learning | 41 .38 .58 .69

Human | .28 .25 .34 .31

Figure 6: Pairwise Human Evaluations of boot-
strapped models. Blue entries agree with automatic
metrics; red italics disagree. Bold numbers indicate sta-
tistical significance (p < .05, binomial test).

USER: | need a rental car.
ASST: What date and time do you need the car?
USER: | need it from the 2nd of March until the 5th.
ASST: What time do you need the car?
USER: | need it at 12:30 pm.
ASST: What city do you want to rent the car in?
USER: | want to rent a car in Fresno, CA.

ASST: | found a Dodge Charger available at 12:30 pm.

Figure 7: Synthetic Conversation from our final Ac-
tive Learning model with Greedy generation. The con-
versation is successful, but linguistic variation is low.

the win rate of Humans decreases in our models
compared to the Baseline and Few-shot models.

In analysis of annotator preferences, we find
that annotator selection is generally well-correlated
with TSR: Annotators preferred unsuccessful con-
versations over successful conversations in only
about 10% of pairings. Simplicity and clarity were
oftentimes given as rationale for preference in these
unaligned pairings. Overall, annotators preferred
Assistants that had clear communication. Many of
the models learned to ask confirmation questions;
this was generally liked as long as there was not
too much back and forth between the User and As-
sistant models in doing so. Some annotators even
preferred generated conversations with confirma-
tions over the gold, human conversations. While
some annotators preferred “friendlier” or “more
conversational” Assistants, this was not a consis-
tent preference; some annotators found similar con-
versations to be “weirdly informal,” or to “take too
long to get to the point.”

5.3 Limitations

While our bootstrapping and Active Learning pro-
cedures do significantly improve the robustness of
models, they do surprisingly little to affect linguis-
tic diversity, especially when using greedy gener-

ation. As a representative example, see Figure 7.
In it, we observe that the conversation devolves to
a simple slot-filling questionnaire, with the User
beginning many utterances with “I need...” Manu-
ally reviewing simulated conversations found that
while hallucination is very low in greedy-generated
dialogues, most dialogues form roughly the slot-
filling questionnaire pattern. While the synthetic
conversations are plausible, their linguistic diver-
sity is extremely low, explaining why our TSR
reaches near perfect levels: the User learns to spec-
ify things as simply as possible. Furthermore, we
find one of our domains (Make payments) has mul-
tiple instances of infinite-loops being generated, a
common issue known in Neural Language Models
(Holtzman et al., 2020; Welleck et al., 2019).

These examples, along with the lack of improve-
ments in NLG metrics (BLEU scores), show that
Task Success is likely to reduce the linguistic diver-
sity of Assistants or Users, unless generation meth-
ods prone to hallucination are used. In the future,
identifying automatic-filtering techniques for NLG
utterances, similar to Task Success and slot filling,
could help with this problem. Other generation
methods, like Diverse Beam Search (Vijayakumar
et al., 2016), may also be able to perform a bet-
ter hallucination-diversity trade-off. Nonetheless,
the offline metrics on the Test set demonstrate that
our methodology does improves robustness of the
NLU components of our model, as indicated by the
Out-of-Domain JGA metrics.

6 Conclusion

We explored the use of pretrained Language Mod-
els as User Simulators in order to generate syn-
thetic dialogues, and filter these models for quality
using Task Success. We demonstrated our method-
ology can be used to improve models in zero-shot,
few-shot, and full-shot manners. By incorporat-
ing Active Learning, we additionally show that our
models are able to bootstrap NLU performance to
that of a model with 10x more training data. We
encourage future work to look for improved gen-
eration methods which improve diversity without
hallucination, and to find methods for automati-
cally grading the quality of generations. Other
improvements, such as the use of Schema Descrip-
tions (Rastogi et al., 2019; Lin et al., 2021), may
provide further generalization on unseen domains.
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A Appendix

A.1 Screenshot of Annotator Ul

User: | need to reserve a car. User: | need to reserve a car.

P System: what s the pickup location?
ssistal SySte s Better? User: | need to pick it up from hartsfield-jackson international airport. User: I need to be picked up at hartsfield-jackson interational airport.
System: what date and time would you like to be picked up?
You are currently at comparison 2/ 5
User: I need to pick it up at 1:30 pm. User: | need to be picked up on the 10th of this month at 1:30 pm.

You will read two conversations and judge on the left and on
the right. Do your best to ignore the User . You may need to scroll down to see the e D e
full conversations.

User: | need to drop it off on the 11th of this month. User: | need to be dropped off at the airport on the 11th of this month.
You willjudge and [EYEELE on this: Which System would you rather
use yourself? You should also provide a very brief justification. Failure to do so System: what type of car would you like?

could result in your hits being rejected.
User: | need to pick it up on the 10th of this month. User: | need a standard car.
You will do this for 5 pairs of conversations. After completing each
judgement, use the [NEXT] button. System: please confirm the following details: you need a standard car to be
picked up at hartsfield-jackson intemational airport at 1:30 pm on march 10th
User: there will be two people, and dropped off at the airport on march 11th.

Which System would you rather use yourself?

O I would rather use O 1 would rather use S auE]

Please provide a brief justification for your choice (a few words or a sentence)

Figure 8: Screenshot of Annotator UI. Annotators are asked to evaluate "Which Conversational Assistant System
is better" by pressing radio buttons corresponding to two presented conversations.

A.2 Pretraining Datasets

Dataset Dial. Dom. Overlap with Google SGD

Alarm, Banks, Buses, Calendar, Events, Flights, Hotels,
GoogleSGD . . . . .

) 18,986 16 Media, Movies, Music, Restaurants, Rideshare, Services,

In-Domain .

Travel, Trains, Weather
GoogleSGD )
Out-of-Domain 3,839 4 Home Search, Messaging, Payment, Rental Cars
MetaLWoZ 37,884 47 Banks, Buses, Events, Movies, Music, Restaurants
MSR-E2E 10,087 3 Movies, Restaurants, Taxis
MultiDoGo 19,522 6 Calendar, Flights, Media, Weather
MultiWoz 10,438 7 Attractions, Hospitals, Hotels, Restaurants, Taxis, Train
Taskmaster-1 13,215 6 Restaurants, Rideshare
Taskmaster-2 17,289 7  Flights, Hotels, Movies, Music, Restaurants
TicketTalk 23,789 1 Movies

Table 5: Detailed statistics of datasets used in our work. All datasets except for Google SGD Out-of-Domain
used in pretraining.

We describe the different datasets that we use for pretraining. In general, we attempt to make these
datasets be structured as similarly as possible to the conversations format as described in Sec 2 and
generate data for separate User and Assistant models once formatted. For datasets with no API Call
or Response labels, we imitate these values by accumulating dialogue state across user and assistant
responses, respectively, and presenting these on appropriate turns. Other exceptions are described inline.

See Table 5 for dataset statistics.

Google SGD We describe Google SGD in 4.1. We describe our method for splitting Google SGD into
In-Domain and Out-of-Domain splits in 5.1.

For our Out-of-Domain split, we used Home Search, Messaging, Payment, Rental Cars as 4 holdout
domains that did not have analogues in any of the other datasets. Though the "Services" and "Travel"
domains do not occur explicitly in the other datasets, we do not include them in our holdout since
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they include semantically similar information to the "Hospital" and "Attractions" domains of MultiWoz,
respectively. For our In-Domain split, we include solely the 16 other domains of the dataset.

As also mentioned in 5.1, since Google SGD is a dataset that contains both single-goal and mulit-goal
conversations, some domains of the In-Domain split are present as goals in multi-goal conversations of
the Out-of-Domain split.

MetalWoz MetalWoz is a dataset constructed in a Wizard of Oz fashion across 227 tasks and 47 domains.
Given a domain and a task, conversing pairs were asked to chat for 10 turns to satisfy the user’s queries.

As this dataset does not include any annotations about API Calls, API Responses, or belief state, we
pretrain on this dataset as-is and do not attempt to transform it into the format described in Sec 2. We do
however split this dataset into separate User and Assistant versions.

MultiDoGo MultiDoGo is a large task-oriented dataset collected in a Wizard of Oz fashion, using
both crowd and expert annotators with annotations at varying levels of granularity. We use only the data
available publicly on this dataset’s open-source repository (about 20k dialogues total.)

MultiWoz MultiWoz is a dataset of single and multi-goal human-human conversations collected in a
Wizard of Oz fashion. Validation and test sets contain only successful conversations while the train set
include some that are incomplete. Data of the original dataset is labelled with belief states.

MSR-E2E MSR-E2E is a dataset of human-human conversations in which one human plays the role of
an Agent and the other one plays the role of a User. Data is collected from Amazon Mechanical Turk.

Taskmaster 1 Conversations in Taskmaster 1 were collected in one of two ways: spoken Wizard of Oz
conversations between humans (transcribed to text) as well as written conversations from a single human
in a self-dialog method. Similar to our conversations format, rather than being labelled with intents and
dialog acts, conversations of this dataset are labelled with simple API arguments.

Taskmaster 2 Taskmaster? is a dataset of entirely spoken two person dialogues collected in a Wizard of
Oz manner where Assistant utterances were typed by a human and then "spoken" using a text-to-speech
service. Dialogues in this dataset includes those that are search and recommendations oriented, rather
than purely task execution.

TicketTalk TicketTalk (or Taskmaster 3) is a dataset of movie ticket dialogues collected in a self-chat
manner. To induce conversational variety, crowd workers were asked to generate conversations given
dozens of different instructions of different level of specificity, some purposefully including conversational
eITorS.
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A.3 Hyperparameter Tables

We include hyperparameter tables for each of our models used in this paper. All models were trained
using the ADAM optimizer. All models were optimized using Token Exact Match (examples with perfect
greedy decoding) as an early stopping criteria.

Evaluating Synthetic Dialog Generation and its Metrics Note that as described in Sec 4, we aim to
look for reasonable correlations between metrics and model architectures rather than absolute performance.

LSTM & LSTM with Attention: (1 GPU per run)

Hyperparameter  Swept Values

Learning Rate le{-3, -4}
Number of Layers {1,2,4}
Embedding size {256, 384}
Hidden size {1024, 2048}
Batch size 64
Embedding Init FastText
GPT2: (8 GPUs per run)
Hyperparameter Swept Values
Learning Rate le{-5, -6}
LR Scheduler Reduce on Plateau, Invsqrt
Model Size 124M
Text Truncate 512
Warm-up Updates 100
Batch size 4
Update Frequency 2
Gradient Clip 1
BART: (8 GPUs per run)
Hyperparameter Swept Values
Learning Rate le{-5, -6}
LR Scheduler {Reduce on Plateau, Invsqrt}
Model Size 400M
Text Truncate 512
Warm-up Updates 100
Batch size 4
Update Frequency 2
Gradient Clip 1

Bootstrapping Novel Domains Once we early stopped models on Token Exact Match, we used Task
Success Rate on validation goals of Google SGD to select the best model out of a given hyperparameter
sweep. However, a post hoc analysis suggests that using Token Exact Match on synthetic data fine-tunes
would have worked approximately as well for the goal of improving JGA.

BART: (8 GPUs per run)

Hyperparameter Swept Values
Learning Rate {1e-4, 5e-5, le-5, 5e-6}
Model Size 400M
Batch size 4
Update frequency 8
LR Scheduler Invsqrt
Warm-up updates 1000
Text truncate 512
Label truncate 512
Gradient Clip 0.1
Multitask Weights 1
Validation Steps 100
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A.4 Additional Results

We report additional metrics on each of our models, for both offline (static, held-out data) and online
(during simulation) settings.

JGA (Offline, OOD)

JGA (Offline, In Domain)

Asst. BLEU (Offline, OOD)
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Figure 9: Offline Bootstrapping Results. Results of Bootstrapping on a static (held-out) offline dataset.
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Figure 10: Online Bootstrapping Results. Results of Bootstrapping models on during simulations.
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Figure 11: Offline Active Learning Results. Results of Active Learning on a static (held-out) offline dataset.
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Figure 12: Online Active Learning Results. Results of Active Learning model during simulations.
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A.5 Holdout API Analysis of Bootstrap Procedure

We take the models generated from Sec 5.1 and evaluate the models for JGA, limiting only turns to which
include API calls, over each of the holdout domains. Results of this are shown in Figure 13. We observe
that all holdout domains have a JGA value of zero for the Base model; this validates our selection of
holdout domains. We also observe that compared to the other models, Active Learning performs much
better across all domains.

Domain
Model Find Homes Payment Rental Cars Messaging
Base Model .000 .000 .000 .000
Few-Shot Only .603 .022 411 768
Zero-Shot Sim. .876 022 .266 .929
Active Learning .882 870 623 946

Figure 13: JGA of individual Holdout Domains (limited to API Call Turns only).
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