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Abstract

This paper presents a Persian spell checker
called Virastman, which aims to detect and
correct non-word and real-word errors in a
sentence. A state-of-the-art method based
on sequence labeling with BERT detects
real-word errors on a small artificially made
dataset. An unsupervised model based on
BERT is used for correcting errors by calcu-
lating the probability of each candidate in a
sentence (including the detected word). A
highly probable candidate word is selected
as the correct word if some conditions are
met based on two thresholds named « and /.
Our experiments across six distinct test sets
underscore our proposed methodology’s no-
table superiority in detecting and correcting
real-word and non-word errors compared
to the baselines. More specifically, our ap-
proach demonstrates an average enhance-
ment of 3.41% in error detection and an
average substantial 15% in error correction
when assessed using the Fp 5 metric, thus
surpassing contemporary baselines, estab-
lishing our method as the state-of-the-art
for error detection and correction.

1 Introduction

Spelling error correction has been the subject
of numerous studies.(Hladek et al., 2020) Spell
checkers can help people write text without any
errors. Language learners can learn a language
more successfully by identifying and correct-
ing written mistakes. Spell checkers are also
useful in many applications, namely as a post-
processing step in speech recognition (Priya
et al., 2022) and OCR (Hangaragi et al., 2023).
Moreover, they are useful to have better results
in search engines (Li, 2020).

Spelling errors are classified into two cate-
gories: non-word and real-word errors. Non-
word errors involve words that are incorrect
and do not exist in the language, while real-

word errors encompass words that are part of
the language but lack the appropriate meaning
in the given context. Existing Persian spell
checker tools perform well in detecting non-
word errors but are not good at correcting
them. It can be said that they do not have
the ability to detect and correct real-word er-
rors. Real-word mistakes are not scarce; in
fact, they account for 25% to 40% of observed
spelling mistakes (Mitton, 1987). For improv-
ing non-word error correction and real-word
error detection and correction, we represent a
Persian Spell Checker called Viratsman.

Persian is a low-resource language which
lacks large body of data for using supervised
methods spell checking methods (Hagiwara,
2021; Jayanthi et al., 2020). To address the
data scarcity problem, we present a method for
real-word error detection which works even on
small artificially generated data. Furthermore,
for error correction, we employ an unsupervised
approach that leverages pre-existing language
models.

Our contribution is summarized below: (1)
Developed an unsupervised method for error
correction based on existing language models.
(2) Achieved the highest correction rate in all
test sets in comparison to all other existing Per-
sian spell checkers. (3) In a dataset where ap-
proximately 66.9% of the errors were real-word
errors, notable improvements were achieved in
the Fj5 metric. Error detection was enhanced
by approximately 35%, and error correction
was improved by nearly 40% through the model
that was developed. (4) Derived unique thresh-
old values for a spell checker model by employ-
ing distinct datasets tailored to individual error
categories.

The rest of the paper is structured as follows.
A summary of relevant work is presented in
Section 2. Models for spelling detection and



correction are discussed in Section 3. Section 4
discusses experiments and findings. The paper
is concluded in Section 5. Finally, Section 6
discusses limitations.

2 Related Work

A spell checker consists of two primary phases:
error detection and correction. The most pop-
ular and simple way to detect non-word er-
rors is using a dictionary (Faili et al., 2016;
Hladdek et al., 2020). Other methods for de-
tecting all error types are deep-learning-based
models such as encoder-decoder (Zaky and Ro-
madhony, 2019; Dehghani and Faili, 2023) and
sequential binary labeling models (Madi and
Al-Khalifa, 2020; Liu et al., 2022; Zhang et al.,
2020) which is used for detecting real-word
errors in Virastman'.

Recent large language models, like BERT
and GPTs, perform well on various tasks, in-
cluding mistake correction. They can calculate
word or sentence probability, which is useful
for error correction. A 5-gram language model
is utilized in (Bryant and Briscoe, 2018) for
correcting non-word and grammatical errors,
and their model was a benchmark for many
other language model error correction mod-
els. The advantage of using a language model
for error correcting is that it is an unsuper-
vised model and does not need annotated data.
Their model determines the word that can be
replaced with this incorrect word by computing
the logarithm of the sum of the sequence of
words that contains an error. The candidate
word is substituted if one of the logarithms of
the probability of the words is higher than the
original word, and this difference is bigger than
a threshold. They reported the performance of
their model based on several thresholds rather
than calculating the best value for the thresh-
old, and it is advised that this be done in the
future. Grammarly (Alikaniotis and Raheja,
2019) does the same as (Bryant and Briscoe,
2018), but in correcting grammatical errors,
they used GPT and GPT2 as a language model.
For calculating the probability of a sentence,
they replace each word in a sentence from left
to right with a [MASK] token and then calcu-
late the sum of the logarithm of words in a
sentence. They used 0,2,4,6,8 as a value for
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the threshold and selected the best one for the
threshold. In our work, we fined-tuned a model
for calculating the threshold, and each error
type has a different value for the threshold.
BERT is used as a language model for correct-
ing non-word and real-word errors in (Hu et al.,
2020). A dictionary detects non-word errors,
but it considers that the real-word errors are
detected and then tries to correct the error.
This paper used two methodologies to rank the
suggestions. The first one ranks the BERT sug-
gestion word and then selects words with low
edit distance. The latter made a suggestion
list based on edit distance and then ranked the
suggestions. We used the second method for
ranking the suggestions.

3 Virastman Spell Checker

This paper addresses two distinct error cat-
egories within the Persian language, namely
non-word real-word errors. In order to op-
timize the speed and simplicity of our spell
checker while accommodating the intricacies of
the Persian language, we have devised a stream-
lined five-step pipeline. This pipeline consists
of pre-processing, error detection, suggestion
word generation, error correction, and post-
processing stages. It is worth noting that the
pre-processing and post-processing phases ex-
hibit a uniform mechanism for both non-word
and real-word errors, while the remaining com-
ponents employ distinct models and processes.
The pipeline of Virastman is shown in Figure 1.
In this paper and within the Virastman tool,
the initial focus is on non-word errors, followed
by the consideration of real-word errors.

3.1 Pre-processing

The pre-processing step does not need com-
plex models with deep learning; it can be done
based on some rules. The first rule used in
this paper is called generalization, a Unicode
normalization that converts numbers, Persian,
and English alphabet to the standard Persian
form. For this purpose, we used the general-
ization part of ParsiNorm (Oji et al., 2021a)
Python library. The second rule is correcting
zero-width non-joiner (ZWNJ). Persian is a
morphologically rich language(Khallash et al.,
2013) and hence, a word can have multiple pre-
fixes and suffixes; some of them are connected
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Figure 1: Pipeline of Virastman Spell Checker

to the main word with or without a space char-
acter or a ZWNJ character. Concatenation of
prefixes and suffixes to the main word depends
on a word’s meaning and its part of speech.
Due to the aforementioned morphological com-
plexity of Persian, one cannot make a list of all
possible variations. We start from a reference
for the correct form of words, namely Viras-
taran?, and create rules for words with suffixes
and prefixes based on their part of speech in a
sentence.

3.2 Non-word error detection

Detecting non-word errors is a straightforward
process, primarily because these errors involve
words that do not exist in the language’s dic-
tionary. Thus, the key to error detection lies in
having an extensive language dictionary that
encompasses all word forms. For instance, if a
word is a verb, the dictionary must include all
variations of verb tenses. A dictionary consists
of unigrams and should be generated from the
texts written in a particular language. To cre-
ate a detection dictionary encompassing all the
language’s words, we employed the Persian raw
text corpus®, which is a collection of extensive
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3https://github.com/persiannlp/
persian-raw-text

80GB text files, and from it, we extracted the
unigrams.

Three annotators then annotate all of the
words in this dictionary. The final decision on
whether the word is correct is based on the
majority vote of the annotators. One impor-
tant note is that the dictionary of a language
is not static and can be changed. Due to the
dynamic nature of language and the fact that
Virastman is used by multiple users who oc-
casionally contribute new words that are de-
tected as mistakes, annotators look into any
new words that Virastman users add, and if
they are determined to be correct words, these
annotated words are then added to the existing
dictionary.

3.3 Non-word suggestion list

After detecting errors, we need a list of sug-
gested words to select the correct word to be
replaced with the wrong word. This list con-
tains words with one edit distance away from
the wrong word in deletion (removing one char-
acter), insertion (adding one character), and
spacing (removing space between two words or
adding space between two concatenated words)
and two edit distances away using transposition
(changing place of two adjacent characters) and
substitution (replacing one character instead of
another character). The suggested list contains
words that cover 80 to 90 percent of errors in
a large corpus (Pollock and Zamora, 1984).

3.4 Non-word error correction

For correcting errors, the first step is ranking
the suggestion list and then replacing the first
ranked suggested word with the wrong word.
To do this, we need a language model which
considers words around the wrong word and
gives the sentence probability. We employ an
unsupervised method, utilizing BERT as a lan-
guage model, to arrange the suggestions in or-
der of their likelihood. A sentence is comprised
of a sequence of words X =< x1,x3,..., T, >
and after the detection of wrong words, the
wrong word is replaced by [MASK] token and
the probability of suggested words are calcu-
lated. If a sentence has multiple wrong words,
only one word at a time is considered wrong
and corrected. This process continues until no
incorrect word remain. Note that addressing
all errors at once is possible; however, it is
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more complex in terms of runtime complexity
(Alikaniotis and Raheja, 2019).

The idea behind using language models is
that if there is an error in a sentence, that
sentence has a lower probability in comparison
to the sentence with all correct words (Bryant
and Briscoe, 2018). To find the likelihood of a
sentence, we mask each word in a sentence and
then compute the summation of the log proba-
bility of the next word in the sentence. (Wang
and Cho, 2019) has shown that the computed
value is a good approximation of the likelihood
of a sentence. If a sentence is long, the prob-
ability of the sentence becomes large. On the
other hand, if the sentence is short, the proba-
bility of the sentence becomes small, so in order
to prevent selecting two-part words (when two
words are concatenated and the correct form
can be the separated form), the sum of the
logarithm of probability is normalized based
on the sentence length. More concretely, the
sentence likelihood is calculated as follows.

Ly log P(1) 1)
=1

Certain correct words, such named entities,
may not be in the detection dictionary, and
they are labeled as wrong words. By adding
the wrong word to the suggestion list, the prob-
ability of original word in the sentence is the
highest value, and the sentence remains un-
changed. This technique reduces the probabil-
ity of converting correct to wrong words (i.e.,
false positives).

A word with the highest probability is re-
placed with the wrong word, when the following
conditions are met.

1- Probability of a sentence is greater
than a certain threshold. Consider that
P(C) is the logarithm of the probability of
a candidate sentence. When P(C') > a, this
candidate sentence can be the correct form of
the sentence. « is a hyperparameter. In the
context of sentences containing non-word er-
rors, this parameter is determined empirically
through an iterative procedure, selecting the
optimal value by achieving a trade-off between
the precision and recall of the correction among
approximately 2000 values. This calculation is
based on a dataset in which every sentence is
known to contain at least one erroneous word,

and this dataset is gathered from Virstman
logs. This dataset contains 5k sentences. The
best value is &« = —25. The advantage of using
this condition is that when a sentence contains
unfamiliar words, the probability that this sen-
tence is converted to an incorrect sentence is
reduced.

2- The difference between the proba-
bility of the first and second words is
greater than a certain threshold. P(IW?!)
is the logarithm of the probability of the first-
ranked candidate, and P(W?) is the logarithm
of the probability of the second-ranked candi-
date. If P(W') — P(W?) > 3, the first candi-
date is considered as the correct word and is
replaced by the wrong word. To attain the opti-
mal value for 3, the identical process employed
in the previous condition with the 5K dataset
is applied, with the parameter a being set to
a fixed value of -25. The best S value is found
as 0.33. One significant benefit of employing
this condition is that it allows a sentence to
retain its original structure unless a superior
word replacement is identified. Consequently,
this condition aids in mitigating the likelihood
of inadvertently substituting the correct word
with an incorrect one.

If none of the specified conditions materialize
or only one condition is met, the spell checker
presents the top three ranked items to the user.
In such a situation, the user retains the au-
tonomy to select the most appropriate word.
By evaluating test sets mentioned in Section 4,
it has been determined that 98 percent of the
time, the correct word can be found within the
initial three ranked words.

3.5 Real-word error detection

Real-word errors, while potentially present in
dictionaries, often lack appropriate meanings
within the given context, rendering them more
challenging to identify. Consequently, rely-
ing solely on a dictionary is not a viable ap-
proach for their detection. A sequential bi-
nary labeling model is used to detect this kind
of error. The input sentence is tokenized to
words X = (x1, 9, ...,x,) and then a contex-
tualized embedding is calculated using Pars-
BERT (Farahani et al., 2021), which is BERT-
based model for Persian. Next, embeddings
are passed through a dense layer followed by a
softmax layer.



The output of the model is L = (11,12, ..., 1),
where [; denotes the correctness of the token
i. Label 1 shows that the i*" word is incorrect
and has real-word error, while label 0 shows
that the #*" word is correct.

For training the mentioned real-word error
detector model a synthetically generated data
is used. This synthetic data generation process
involved the extraction of clean data from the
aforementioned 80GB corpus. To ensure data
cleanliness, we specifically selected sentences in
which all constituent words were found within
the detection dictionary.

The foundation of this data generation effort
was the creation of a confusion matrix, utiliz-
ing the detection dictionary, to identify word
pairs (w;, w;) with an edit distance of one or
two between them. In each such pair, w; is
assigned as the correct word, while w; is as-
signed as the incorrect word. On average, this
confusion matrix comprised approximately 36
words for each word w;. Subsequently, in the
process of data synthesis, whenever a word w;
was encountered in a clean sentence, it was sys-
tematically replaced with word w;. As a result,
roughly 15% of the words in each sentence were
substituted with incorrect alternatives.

Every pair (w;,w;) is employed in a mini-
mum of 10 distinct sentences. This minimum
requirement of ten substitutions is crucial, as
having a smaller number of (w;, w;) pairs would
hinder the model’s training process. This is
because, with fewer pairs, certain substitutions
may result in sentences that remain correct and
even convey identical meanings. T When the
substitution process is repeated, the change in
the meaning of sentences is guaranteed. For
instance, the correct sentence _zulS 53 5l
(iRss Oke 53 is changed to s 2wl 5 635 5 50
(2% ok while both sentences are correct, a
single substitution example is not enough to
properly train the model. 80% of the syntheti-
cally generated data is used for training, while
the rest is kept for validation. We used the
dataset published in (Mirzababaei et al., 2013)
as a test set.

3.6 Real-word suggestion list

Similar to non-word suggestion list in real-word
errors, we cover insertion, deletion, substitu-
tion, and transportation errors. In addition, we
cover homophone and spoonerism errors. Ho-

mophone words have the same pronunciation
but different spelling. Spoonerism happens
when words with more than two syllables have
their first characters or syllables transposed.
The pair of words ( «l,b, bl ) is an example
of spoonerism.

Suggested words in real-word errors based
on insertion, deletion, substitution, and trans-
position differ from non-word suggestion errors.
The difference is that all of the generated words
are not considered as suggested words, and
some of them are removed from the list. For
removing words, some rules based on part of
speech are considered. Consider the example
(sl 38 e 50,5 (Translation: “The earth is
round.”), this sentence has a positive verb «zoh
which cannot be changed to a negative verb
«w (In Persian, adding the character «» to
the start of the verb, makes it negative.) By
having the negative word in the suggestion list,
the spelling of the sentence is correct, but it
is not factually correct. One way to overcome
this problem is to remove these words from the
suggestion list.

3.7 Real-word error correction.

The model of real-word error detection is simi-
lar to non-word error corrector, and the only
difference is the two conditions that are used
for auto-correcting errors.

1- Probability of a sentence is greater
than a threshold. If P(C) > a, the candi-
date word might be replaced by the incorrect
word, just like with non-word mistakes. A 10k
subset of dataset used for real-word error de-
tection ensuring that each pair of (w;, w;) is
utilized no more than twice is used to calcu-
late alpha. The optimal result for alpha is
-7. The reason behind this value is that if
the confidence level of an error is very high,
auto-correction must be performed; hence, the
barrier for this error type is much stricter.

2- The difference between the prob-
ability of the first and original words
is greater than a threshold. The log-
arithm of the probability of the top-ranked
candidate is represented by the P(W1), and
the logarithm of the probability of the orig-
inal word is represented by P(W?). When
P(W') — P(W©) > B, auto-correction takes
place. We have two additional hyperparame-
ters, word length, and sentence length; depend-



ing on their various values, 3 is determined.
The mentioned 10k dataset is used for deter-
mining the value of 5. Table 1 displays the
precise value of 5 depending on the two men-
tioned hyperparameters.

Conditions ‘

Sentence length less than 6 | 4
Word length equal to 1 20
Word length equal to 2 3
Word length equal to 3 2.2

Other 2

Table 1: Hyperparameters and model details of
real-word error detection.

3.8 Post-processing

In the final step, punctuations are placed in
their correct position, and the same as in the
pre-processing step, ZWNJ errors are corrected.
Finally, we have gathered a list of wrong words
and their corresponding correct words from
(Oji et al., 2021b) and suggest or auto-correct
them.

4 Experimental Results

4.1 Dataset

We used six test set to compare our method-
ology with other spell checkers. Some of the
datasets are modified because they do not con-
sider Hamza, Tanvin, or ZWNJ as a type of
error. The modified version is uploaded in a
github repository.? Zarebin®, Nevise news con-
tent °, Nevise news title 5, Shargh 5, PerSpell-
Data (Oji et al., 2021b) and real-word error
(Mirzababaei et al., 2013) are test sets that
contain both non-word and real-word data but
they have different rates. As shown in Table 2
selected test sets have a variety of sentence
lengths and error rates that cover different sce-
narios that can happen in a sentence. All of
the test sets also have errors that real users
make, and they are not fake errors.

4.2 Baselines

We used the following methodologies as our
baselines for comparison.

“https://github.com/rominaoji/
modified-spellchecker-testset

Shttps://github.com/Dadmatech/
Persian-spell-checkers-comparison

Nevise® is a deep learning model trained on

30M parallel datasets. Nevise has 2 versions,
and the second version” is used. Paknevis® is
a Persian Al-based spell checker that suggests 4
words as the correct candidate, and we consider
the first one as the correct word. Google API
on Google Docs is used as another spell checker.
The errors are fixed using the default settings.
Farsiyar® is an Al-based spell checker that
suggests different words as correct word, and
the first ranked word is chosen as the correct
word. Xfspell (Hagiwara, 2021) is a charac-
ter level transformer based spell checker that
is trained on the Persian parallel dataset of
PerspellData (Oji et al., 2021b). To improve
the performance of Xfspell, the backtranslation
method is used for generating artificial noisy
data. Xfspell github'? code is used for training
this spell checker.

4.3 Experiment Setting

As evaluation metrics, we used precision, recall,
Fy5, are used for both detection and correc-
tion, and correct to the wrong ratio is used
for correction. We used Fjy 5 since precision is
more important than recall in the spell checker
task because it is important not to change the
correct word to the wrong word.

BertForTokenClassification of PyTorch li-
brary is used for implementing real-word error
detection, and hyperparameters are fine-tuned.
Hyperparameters and details are shown in Ta-
ble 3 .

4.4 Results

Table 4 represents the experimental results of
five spell checkers and Virastman on the six
datasets. In all of the test sets for all of the
metrics of precision, recall, and Fp 5 Visratman
error correction has the best performance, and
that is because of covering real-word, hamza,
tanvin, and ZWNJ or word-boundary errors.
Based on Table 2, 66.19% of errors are real-
word errors, and the performance of Virastman
on real-word errors is more significant, which

Shttps://neviise.ir/
"https://neviise.ir/service.html
8https://chrome.google.com/webstore/
detail/paknevis-ai-based-persian/
pklcojlgnoaahjchjbiilfgjehinajmd?hl=fa
https://text-mining.ir/landing/virastar
Ohttps://github. com/mhagiwara/xfspell
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space or
Sentence | Average | Total | Average Non-word Real-word ZWNJ
Test set Errors Errors
Numbers | of Words | Errors | of Errors Errors
No. % | No. % | No. %
Shargh 223 8.56 451 2.01 422 93.77 | 29 6.23 | 304 | 67.40
PerSpellData 1127 12.90 1362 1.20 | 1337 | 98.16 | 25 1.48 | 247 | 18.13
Zarebin 1033 3.53 1470 1.42 | 1304 | 88.70 | 166 | 11.30 | 20 1.36
Nevise News 451 26.96 | 2586 5.73 | 2216 | 85.69 | 370 | 14.31 | 983 | 38.01
Content
Nev?‘:tgews 19,421 11.09 | 16,751 1.28 | 14572 | 86.99 | 2179 | 13.01 | 5731 | 34.21
Real-word 1100 16.16 1470 1.43 | 533 | 33.81 | 1043 | 66.19 | 408 | 25.88
Table 2: test set sentence and errors statistics
Hyperparameter Value ror detection and correction of Virastman, and
Ootimi AdamW we applied other parts of the Virastman to the
ptlmlze.r am Shargh dataset with and without thresholds.
Loss Functlon Cross-Fntropy As illustrated in Table 5, the model without
Learnm'g Rate 2e —5 threshold the correct words that are regarded
Epsilon le—3 as wrong is increased, and this increases the
EpOCh. 2 recall and reduces the precision, while in spell
Batch Size 16 checker, precision is more crucial than recall.
Scheduler Linear

Table 3: Hyperparameters and model details of
real-word error detection.

means other spell checkers do not have a good
performance on correcting real-word errors.

On the other hand, Virastman has a higher
value in recall of error correction, which means
that it detects more errors than other spell
checkers; however, in most of them, the preci-
sion is lower than Nevise, which means that
some of the words that detected as errors are
correct. This can also be seen in the correct-
to-wrong rate, in which, most of the time, Vi-
rastman has a higher percentage than Nevise.
Investigation showed that this happens because
the dictionary for detecting errors does not
cover all the forms of words and needs to be
extended. All in all, even if Viratsman detects
more words as errors, it has better performance
in the detection of errors since it corrects more
errors than other spell checkers.

4.5 Threshold Impact on Virastman

As mentioned in Section 3.4, we correct the
word if we have high confidence that it is wrong,
and this is done by considering thresholds. For
this experiment, we removed the real-word er-

4.6 Impact of adding detected word to
suggestion list

In Section 3.4, it was stated that adding the
detected word to the suggestion list reduces
the ratio of converting the correct to the wrong
word. To investigate this, we use the non-word
Virastman with the same parameters two times
with and without adding the detected word to
the suggestions list. As shown in Table 5, by
adding the detected word to the suggestion list,
recall reduces (0.44% in detection and 0.88% in
error correction), but precision, which is more
important, increased significantly (2.92% for
detection and 1.12% for correction). The ratio
of converting the correct to the wrong word
was also reduced by 0.85%.

5 Conclusion

This paper notes a sequence labeling model for
real-word error detection that needs less data
than other methods, such as using a machine
translation as a spell checker. An unsupervised
model based on the sentence and word proba-
bility is used for non-word and real-word error
correction. Experimental results show a signif-
icant improvement in the output of Visratman
in comparison with other baselines.



Spell

Correct to

Error Detection

Error Correction

Test set Checkers | Wrong Rate | Recall | Precision | Fy5 | Recall | Precision | Fyj5
Virastman 0.64 91.13 97.86 96.44 | 85.81 92.12 90.08

Nevise 0.28 78.94 98.89 94.13 | 65.41 81.94 78.00

Shargh Paknevis 3.54 78.71 87.64 85.70 | 61.86 68.89 67.36
Google 0.77 40.13 94.27 74.24 | 33.48 78.65 61.94

FarsiYar 1.96 72.17 93.26 88.11 52.39 67.70 63.96

XFspell 1.49 52.76 91.89 80.03 | 37.47 65.25 56.82
Virastman 0.40 93.61 96.00 95.52 | 90.09 92.39 91.91

Nevise 0.33 79.59 96.10 92.27 | 72.17 87.15 83.68

PerSpell Paknevis 0.03 84.36 72.86 74.90 | 72.47 62.59 64.34
Data Google 0.84 69.75 89.62 84.79 | 66.81 85.85 81.22
FarsiYar 0.91 84.80 90.59 89.37 | 77.02 82.27 81.16

XFspell 1.28 82.97 86.99 86.16 | 74.82 78.44 77.69
Virastman 0.06 92.86 99.92 98.43 | 90.95 97.88 96.41

Nevise 0.06 90.07 99.92 97.78 | 82.38 91.40 89.44

Zarebin Paknevis 2.85 88.84 96.45 94.83 | 81.70 88.70 87.21
Google 0.30 91.97 99.63 98.00 | 90.20 97.72 96.12

FarsiYar 0.42 86.33 99.45 96.52 | 74.83 86.21 83.67

XFspell 2.26 87.55 97.13 95.05 | 78.16 86.72 84.87
Virastman 0.50 84.34 98.10 95.01 | 80.47 93.61 90.65

Nevise 0.27 75.14 98.83 92.97 | 64.31 84.59 79.57

Nevise Paknevis 2.93 74.44 88.63 85.38 | 61.06 72.70 70.03
Content Google 1.08 68.63 95.12 88.30 | 61.43 85.15 79.05
FarsiYar 2.30 67.21 89.96 84.26 | 49.38 66.10 61.91

XFspell 1.24 75.17 94.88 90.15 | 68.41 86.33 82.03
Virastman 0.48 87.87 96.58 94.70 | 84.42 92.78 90.98

Nevise 0.30 73.62 97.38 91.47 | 64.26 85.01 79.85

Nevise Paknevis 2.78 74.84 80.58 79.36 61.44 66.15 65.15
Title Google 0.56 54.93 93.79 82.16 | 50.99 87.07 76.27
FarsiYar 1.28 68.63 86.08 81.91 54.12 67.88 64.60

XFspell 1.21 70.69 89.70 85.12 | 67.69 85.89 81.51
Virastman 0.01 88.71 97.56 95.65 | 87.17 95.88 94.00

Nevise 0.52 28.43 84.53 60.61 25.06 74.53 53.45

Real-word | Paknevis 3.30 19.8 37.64 31.89 15.42 29.31 24.84
Errors Google 0.80 35.66 81.69 64.93 | 33.19 76.02 60.42
FarsiYar 1.14 12.55 52.66 32.14 | 10.91 45.74 27.92

XFspell 0.77 49.68 86.62 75.41 48.54 84.63 73.67

Table 4: Performance of different spell checkers on different test sets.

Spell Checker

Correct to

Error Detection

Error Correction

Errors Wrong Rate | Recall | Precision | Fy5 | Recall | Precision | Fg5
Non-Word Virastman
with threshold 0.21 86.03 99.22 96.28 | 80.27 92.58 89.82
and detected word
Non-word Virastman
without thresholds 0.35 86.25 98.72 95.95 | 80.93 92.64 90.03
Non-word Virastman 1.06 86.47 | 9630 | 94.16 | 81.15 90.36 | 88.36

without detected word

Table 5: Effect of thresholds in Virastman non-word error detection and correction




6 Limitations

Virastman error detection in the part of non-
word errors detects correct words as wrong
words, and a larger dictionary is needed to
reduce the ratio of converting correct words
to wrong words, and this can happen by in-
vestigating and collecting the words added to
the dictionary by Virastman users. One other
weakness of Virastman is that in the correction
phase, it cannot distinguish the character
and (" and this is because of the tokenizer of
ParsBERT. Training a new tokenizer can solve
this problem.
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