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Abstract

This paper presents a Persian spell checker001
called Virastman, which aims to detect and002
correct non-word and real-word errors in a003
sentence. A state-of-the-art method based004
on sequence labeling with BERT detects005
real-word errors on a small artificially made006
dataset. An unsupervised model based on007
BERT is used for correcting errors by calcu-008
lating the probability of each candidate in a009
sentence (including the detected word). A010
highly probable candidate word is selected011
as the correct word if some conditions are012
met based on two thresholds named α and β.013
Our experiments across six distinct test sets014
underscore our proposed methodology’s no-015
table superiority in detecting and correcting016
real-word and non-word errors compared017
to the baselines. More specifically, our ap-018
proach demonstrates an average enhance-019
ment of 3.41% in error detection and an020
average substantial 15% in error correction021
when assessed using the F0.5 metric, thus022
surpassing contemporary baselines, estab-023
lishing our method as the state-of-the-art024
for error detection and correction.025

1 Introduction026

Spelling error correction has been the subject027

of numerous studies.(Hládek et al., 2020) Spell028

checkers can help people write text without any029

errors. Language learners can learn a language030

more successfully by identifying and correct-031

ing written mistakes. Spell checkers are also032

useful in many applications, namely as a post-033

processing step in speech recognition (Priya034

et al., 2022) and OCR (Hangaragi et al., 2023).035

Moreover, they are useful to have better results036

in search engines (Li, 2020).037

Spelling errors are classified into two cate-038

gories: non-word and real-word errors. Non-039

word errors involve words that are incorrect040

and do not exist in the language, while real-041

word errors encompass words that are part of 042

the language but lack the appropriate meaning 043

in the given context. Existing Persian spell 044

checker tools perform well in detecting non- 045

word errors but are not good at correcting 046

them. It can be said that they do not have 047

the ability to detect and correct real-word er- 048

rors. Real-word mistakes are not scarce; in 049

fact, they account for 25% to 40% of observed 050

spelling mistakes (Mitton, 1987). For improv- 051

ing non-word error correction and real-word 052

error detection and correction, we represent a 053

Persian Spell Checker called Viratsman. 054

Persian is a low-resource language which 055

lacks large body of data for using supervised 056

methods spell checking methods (Hagiwara, 057

2021; Jayanthi et al., 2020). To address the 058

data scarcity problem, we present a method for 059

real-word error detection which works even on 060

small artificially generated data. Furthermore, 061

for error correction, we employ an unsupervised 062

approach that leverages pre-existing language 063

models. 064

Our contribution is summarized below: (1) 065

Developed an unsupervised method for error 066

correction based on existing language models. 067

(2) Achieved the highest correction rate in all 068

test sets in comparison to all other existing Per- 069

sian spell checkers. (3) In a dataset where ap- 070

proximately 66.9% of the errors were real-word 071

errors, notable improvements were achieved in 072

the F0.5 metric. Error detection was enhanced 073

by approximately 35%, and error correction 074

was improved by nearly 40% through the model 075

that was developed. (4) Derived unique thresh- 076

old values for a spell checker model by employ- 077

ing distinct datasets tailored to individual error 078

categories. 079

The rest of the paper is structured as follows. 080

A summary of relevant work is presented in 081

Section 2. Models for spelling detection and 082
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correction are discussed in Section 3. Section 4083

discusses experiments and findings. The paper084

is concluded in Section 5. Finally, Section 6085

discusses limitations.086

2 Related Work087

A spell checker consists of two primary phases:088

error detection and correction. The most pop-089

ular and simple way to detect non-word er-090

rors is using a dictionary (Faili et al., 2016;091

Hládek et al., 2020). Other methods for de-092

tecting all error types are deep-learning-based093

models such as encoder-decoder (Zaky and Ro-094

madhony, 2019; Dehghani and Faili, 2023) and095

sequential binary labeling models (Madi and096

Al-Khalifa, 2020; Liu et al., 2022; Zhang et al.,097

2020) which is used for detecting real-word098

errors in Virastman1.099

Recent large language models, like BERT100

and GPTs, perform well on various tasks, in-101

cluding mistake correction. They can calculate102

word or sentence probability, which is useful103

for error correction. A 5-gram language model104

is utilized in (Bryant and Briscoe, 2018) for105

correcting non-word and grammatical errors,106

and their model was a benchmark for many107

other language model error correction mod-108

els. The advantage of using a language model109

for error correcting is that it is an unsuper-110

vised model and does not need annotated data.111

Their model determines the word that can be112

replaced with this incorrect word by computing113

the logarithm of the sum of the sequence of114

words that contains an error. The candidate115

word is substituted if one of the logarithms of116

the probability of the words is higher than the117

original word, and this difference is bigger than118

a threshold. They reported the performance of119

their model based on several thresholds rather120

than calculating the best value for the thresh-121

old, and it is advised that this be done in the122

future. Grammarly (Alikaniotis and Raheja,123

2019) does the same as (Bryant and Briscoe,124

2018), but in correcting grammatical errors,125

they used GPT and GPT2 as a language model.126

For calculating the probability of a sentence,127

they replace each word in a sentence from left128

to right with a [MASK] token and then calcu-129

late the sum of the logarithm of words in a130

sentence. They used 0,2,4,6,8 as a value for131

1https://virastman.ir/

the threshold and selected the best one for the 132

threshold. In our work, we fined-tuned a model 133

for calculating the threshold, and each error 134

type has a different value for the threshold. 135

BERT is used as a language model for correct- 136

ing non-word and real-word errors in (Hu et al., 137

2020). A dictionary detects non-word errors, 138

but it considers that the real-word errors are 139

detected and then tries to correct the error. 140

This paper used two methodologies to rank the 141

suggestions. The first one ranks the BERT sug- 142

gestion word and then selects words with low 143

edit distance. The latter made a suggestion 144

list based on edit distance and then ranked the 145

suggestions. We used the second method for 146

ranking the suggestions. 147

3 Virastman Spell Checker 148

This paper addresses two distinct error cat- 149

egories within the Persian language, namely 150

non-word real-word errors. In order to op- 151

timize the speed and simplicity of our spell 152

checker while accommodating the intricacies of 153

the Persian language, we have devised a stream- 154

lined five-step pipeline. This pipeline consists 155

of pre-processing, error detection, suggestion 156

word generation, error correction, and post- 157

processing stages. It is worth noting that the 158

pre-processing and post-processing phases ex- 159

hibit a uniform mechanism for both non-word 160

and real-word errors, while the remaining com- 161

ponents employ distinct models and processes. 162

The pipeline of Virastman is shown in Figure 1. 163

In this paper and within the Virastman tool, 164

the initial focus is on non-word errors, followed 165

by the consideration of real-word errors. 166

3.1 Pre-processing 167

The pre-processing step does not need com- 168

plex models with deep learning; it can be done 169

based on some rules. The first rule used in 170

this paper is called generalization, a Unicode 171

normalization that converts numbers, Persian, 172

and English alphabet to the standard Persian 173

form. For this purpose, we used the general- 174

ization part of ParsiNorm (Oji et al., 2021a) 175

Python library. The second rule is correcting 176

zero-width non-joiner (ZWNJ). Persian is a 177

morphologically rich language(Khallash et al., 178

2013) and hence, a word can have multiple pre- 179

fixes and suffixes; some of them are connected 180
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Figure 1: Pipeline of Virastman Spell Checker

to the main word with or without a space char-181

acter or a ZWNJ character. Concatenation of182

prefixes and suffixes to the main word depends183

on a word’s meaning and its part of speech.184

Due to the aforementioned morphological com-185

plexity of Persian, one cannot make a list of all186

possible variations. We start from a reference187

for the correct form of words, namely Viras-188

taran2, and create rules for words with suffixes189

and prefixes based on their part of speech in a190

sentence.191

3.2 Non-word error detection192

Detecting non-word errors is a straightforward193

process, primarily because these errors involve194

words that do not exist in the language’s dic-195

tionary. Thus, the key to error detection lies in196

having an extensive language dictionary that197

encompasses all word forms. For instance, if a198

word is a verb, the dictionary must include all199

variations of verb tenses. A dictionary consists200

of unigrams and should be generated from the201

texts written in a particular language. To cre-202

ate a detection dictionary encompassing all the203

language’s words, we employed the Persian raw204

text corpus3, which is a collection of extensive205

2https://emla.virastaran.net/
3https://github.com/persiannlp/

persian-raw-text

80GB text files, and from it, we extracted the 206

unigrams. 207

Three annotators then annotate all of the 208

words in this dictionary. The final decision on 209

whether the word is correct is based on the 210

majority vote of the annotators. One impor- 211

tant note is that the dictionary of a language 212

is not static and can be changed. Due to the 213

dynamic nature of language and the fact that 214

Virastman is used by multiple users who oc- 215

casionally contribute new words that are de- 216

tected as mistakes, annotators look into any 217

new words that Virastman users add, and if 218

they are determined to be correct words, these 219

annotated words are then added to the existing 220

dictionary. 221

3.3 Non-word suggestion list 222

After detecting errors, we need a list of sug- 223

gested words to select the correct word to be 224

replaced with the wrong word. This list con- 225

tains words with one edit distance away from 226

the wrong word in deletion (removing one char- 227

acter), insertion (adding one character), and 228

spacing (removing space between two words or 229

adding space between two concatenated words) 230

and two edit distances away using transposition 231

(changing place of two adjacent characters) and 232

substitution (replacing one character instead of 233

another character). The suggested list contains 234

words that cover 80 to 90 percent of errors in 235

a large corpus (Pollock and Zamora, 1984). 236

3.4 Non-word error correction 237

For correcting errors, the first step is ranking 238

the suggestion list and then replacing the first 239

ranked suggested word with the wrong word. 240

To do this, we need a language model which 241

considers words around the wrong word and 242

gives the sentence probability. We employ an 243

unsupervised method, utilizing BERT as a lan- 244

guage model, to arrange the suggestions in or- 245

der of their likelihood. A sentence is comprised 246

of a sequence of words X =< x1, x2, ..., xn > 247

and after the detection of wrong words, the 248

wrong word is replaced by [MASK] token and 249

the probability of suggested words are calcu- 250

lated. If a sentence has multiple wrong words, 251

only one word at a time is considered wrong 252

and corrected. This process continues until no 253

incorrect word remain. Note that addressing 254

all errors at once is possible; however, it is 255
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more complex in terms of runtime complexity256

(Alikaniotis and Raheja, 2019).257

The idea behind using language models is258

that if there is an error in a sentence, that259

sentence has a lower probability in comparison260

to the sentence with all correct words (Bryant261

and Briscoe, 2018). To find the likelihood of a262

sentence, we mask each word in a sentence and263

then compute the summation of the log proba-264

bility of the next word in the sentence. (Wang265

and Cho, 2019) has shown that the computed266

value is a good approximation of the likelihood267

of a sentence. If a sentence is long, the prob-268

ability of the sentence becomes large. On the269

other hand, if the sentence is short, the proba-270

bility of the sentence becomes small, so in order271

to prevent selecting two-part words (when two272

words are concatenated and the correct form273

can be the separated form), the sum of the274

logarithm of probability is normalized based275

on the sentence length. More concretely, the276

sentence likelihood is calculated as follows.277

1

n

n∑
i=1

logP (Wi) (1)278

Certain correct words, such named entities,279

may not be in the detection dictionary, and280

they are labeled as wrong words. By adding281

the wrong word to the suggestion list, the prob-282

ability of original word in the sentence is the283

highest value, and the sentence remains un-284

changed. This technique reduces the probabil-285

ity of converting correct to wrong words (i.e.,286

false positives).287

A word with the highest probability is re-288

placed with the wrong word, when the following289

conditions are met.290

1- Probability of a sentence is greater291

than a certain threshold. Consider that292

P (C) is the logarithm of the probability of293

a candidate sentence. When P (C) > α, this294

candidate sentence can be the correct form of295

the sentence. α is a hyperparameter. In the296

context of sentences containing non-word er-297

rors, this parameter is determined empirically298

through an iterative procedure, selecting the299

optimal value by achieving a trade-off between300

the precision and recall of the correction among301

approximately 2000 values. This calculation is302

based on a dataset in which every sentence is303

known to contain at least one erroneous word,304

and this dataset is gathered from Virstman 305

logs. This dataset contains 5k sentences. The 306

best value is α = −25. The advantage of using 307

this condition is that when a sentence contains 308

unfamiliar words, the probability that this sen- 309

tence is converted to an incorrect sentence is 310

reduced. 311

2- The difference between the proba- 312

bility of the first and second words is 313

greater than a certain threshold. P (W 1) 314

is the logarithm of the probability of the first- 315

ranked candidate, and P (W 2) is the logarithm 316

of the probability of the second-ranked candi- 317

date. If P (W 1)− P (W 2) > β, the first candi- 318

date is considered as the correct word and is 319

replaced by the wrong word. To attain the opti- 320

mal value for β, the identical process employed 321

in the previous condition with the 5K dataset 322

is applied, with the parameter α being set to 323

a fixed value of -25. The best β value is found 324

as 0.33. One significant benefit of employing 325

this condition is that it allows a sentence to 326

retain its original structure unless a superior 327

word replacement is identified. Consequently, 328

this condition aids in mitigating the likelihood 329

of inadvertently substituting the correct word 330

with an incorrect one. 331

If none of the specified conditions materialize 332

or only one condition is met, the spell checker 333

presents the top three ranked items to the user. 334

In such a situation, the user retains the au- 335

tonomy to select the most appropriate word. 336

By evaluating test sets mentioned in Section 4, 337

it has been determined that 98 percent of the 338

time, the correct word can be found within the 339

initial three ranked words. 340

3.5 Real-word error detection 341

Real-word errors, while potentially present in 342

dictionaries, often lack appropriate meanings 343

within the given context, rendering them more 344

challenging to identify. Consequently, rely- 345

ing solely on a dictionary is not a viable ap- 346

proach for their detection. A sequential bi- 347

nary labeling model is used to detect this kind 348

of error. The input sentence is tokenized to 349

words X = (x1, x2, ..., xn) and then a contex- 350

tualized embedding is calculated using Pars- 351

BERT (Farahani et al., 2021), which is BERT- 352

based model for Persian. Next, embeddings 353

are passed through a dense layer followed by a 354

softmax layer. 355
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The output of the model is L = (l1, l2, ..., ln),356

where li denotes the correctness of the token357

i. Label 1 shows that the ith word is incorrect358

and has real-word error, while label 0 shows359

that the ith word is correct.360

For training the mentioned real-word error361

detector model a synthetically generated data362

is used. This synthetic data generation process363

involved the extraction of clean data from the364

aforementioned 80GB corpus. To ensure data365

cleanliness, we specifically selected sentences in366

which all constituent words were found within367

the detection dictionary.368

The foundation of this data generation effort369

was the creation of a confusion matrix, utiliz-370

ing the detection dictionary, to identify word371

pairs (wi, wj) with an edit distance of one or372

two between them. In each such pair, wi is373

assigned as the correct word, while wj is as-374

signed as the incorrect word. On average, this375

confusion matrix comprised approximately 36376

words for each word wi. Subsequently, in the377

process of data synthesis, whenever a word wi378

was encountered in a clean sentence, it was sys-379

tematically replaced with word wj . As a result,380

roughly 15% of the words in each sentence were381

substituted with incorrect alternatives.382

Every pair (wi, wj) is employed in a mini-383

mum of 10 distinct sentences. This minimum384

requirement of ten substitutions is crucial, as385

having a smaller number of (wi, wj) pairs would386

hinder the model’s training process. This is387

because, with fewer pairs, certain substitutions388

may result in sentences that remain correct and389

even convey identical meanings. T When the390

substitution process is repeated, the change in391

the meaning of sentences is guaranteed. For392

instance, the correct sentence 393یتساکویژکزازیهرپ«

»شهوژپنایمرد is changed to 394ردیتساکویژکزازیهرپ«

»شهوژپنایب while both sentences are correct, a395

single substitution example is not enough to396

properly train the model. 80% of the syntheti-397

cally generated data is used for training, while398

the rest is kept for validation. We used the399

dataset published in (Mirzababaei et al., 2013)400

as a test set.401

3.6 Real-word suggestion list402

Similar to non-word suggestion list in real-word403

errors, we cover insertion, deletion, substitu-404

tion, and transportation errors. In addition, we405

cover homophone and spoonerism errors. Ho-406

mophone words have the same pronunciation 407

but different spelling. Spoonerism happens 408

when words with more than two syllables have 409

their first characters or syllables transposed. 410

The pair of words ( »هنارای« , »هنایار« ) is an example 411

of spoonerism. 412

Suggested words in real-word errors based 413

on insertion, deletion, substitution, and trans- 414

position differ from non-word suggestion errors. 415

The difference is that all of the generated words 416

are not considered as suggested words, and 417

some of them are removed from the list. For 418

removing words, some rules based on part of 419

speech are considered. Consider the example 420

».تسادرگنیمزی هرک« (Translation: “The earth is 421

round.”), this sentence has a positive verb »تسا« 422

which cannot be changed to a negative verb 423

»تسین« (In Persian, adding the character »ن« to 424

the start of the verb, makes it negative.) By 425

having the negative word in the suggestion list, 426

the spelling of the sentence is correct, but it 427

is not factually correct. One way to overcome 428

this problem is to remove these words from the 429

suggestion list. 430

3.7 Real-word error correction. 431

The model of real-word error detection is simi- 432

lar to non-word error corrector, and the only 433

difference is the two conditions that are used 434

for auto-correcting errors. 435

1- Probability of a sentence is greater 436

than a threshold. If P (C) > α, the candi- 437

date word might be replaced by the incorrect 438

word, just like with non-word mistakes. A 10k 439

subset of dataset used for real-word error de- 440

tection ensuring that each pair of (wi, wj) is 441

utilized no more than twice is used to calcu- 442

late alpha. The optimal result for alpha is 443

-7. The reason behind this value is that if 444

the confidence level of an error is very high, 445

auto-correction must be performed; hence, the 446

barrier for this error type is much stricter. 447

2- The difference between the prob- 448

ability of the first and original words 449

is greater than a threshold. The log- 450

arithm of the probability of the top-ranked 451

candidate is represented by the P (W 1), and 452

the logarithm of the probability of the orig- 453

inal word is represented by P (WO). When 454

P (W 1) − P (WO) > β, auto-correction takes 455

place. We have two additional hyperparame- 456

ters, word length, and sentence length; depend- 457
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ing on their various values, β is determined.458

The mentioned 10k dataset is used for deter-459

mining the value of β. Table 1 displays the460

precise value of β depending on the two men-461

tioned hyperparameters.462

Conditions β

Sentence length less than 6 4
Word length equal to 1 20
Word length equal to 2 3
Word length equal to 3 2.2

Other 2

Table 1: Hyperparameters and model details of
real-word error detection.

3.8 Post-processing463

In the final step, punctuations are placed in464

their correct position, and the same as in the465

pre-processing step, ZWNJ errors are corrected.466

Finally, we have gathered a list of wrong words467

and their corresponding correct words from468

(Oji et al., 2021b) and suggest or auto-correct469

them.470

4 Experimental Results471

4.1 Dataset472

We used six test set to compare our method-473

ology with other spell checkers. Some of the474

datasets are modified because they do not con-475

sider Hamza, Tanvin, or ZWNJ as a type of476

error. The modified version is uploaded in a477

github repository.4 Zarebin5, Nevise news con-478

tent 5, Nevise news title 5, Shargh 5, PerSpell-479

Data (Oji et al., 2021b) and real-word error480

(Mirzababaei et al., 2013) are test sets that481

contain both non-word and real-word data but482

they have different rates. As shown in Table 2483

selected test sets have a variety of sentence484

lengths and error rates that cover different sce-485

narios that can happen in a sentence. All of486

the test sets also have errors that real users487

make, and they are not fake errors.488

4.2 Baselines489

We used the following methodologies as our490

baselines for comparison.491

4https://github.com/rominaoji/
modified-spellchecker-testset

5https://github.com/Dadmatech/
Persian-spell-checkers-comparison

Nevise6 is a deep learning model trained on 492

30M parallel datasets. Nevise has 2 versions, 493

and the second version7 is used. Paknevis8 is 494

a Persian AI-based spell checker that suggests 4 495

words as the correct candidate, and we consider 496

the first one as the correct word. Google API 497

on Google Docs is used as another spell checker. 498

The errors are fixed using the default settings. 499

Farsiyar9 is an AI-based spell checker that 500

suggests different words as correct word, and 501

the first ranked word is chosen as the correct 502

word. Xfspell (Hagiwara, 2021) is a charac- 503

ter level transformer based spell checker that 504

is trained on the Persian parallel dataset of 505

PerspellData (Oji et al., 2021b). To improve 506

the performance of Xfspell, the backtranslation 507

method is used for generating artificial noisy 508

data. Xfspell github10 code is used for training 509

this spell checker. 510

4.3 Experiment Setting 511

As evaluation metrics, we used precision, recall, 512

F0.5, are used for both detection and correc- 513

tion, and correct to the wrong ratio is used 514

for correction. We used F0.5 since precision is 515

more important than recall in the spell checker 516

task because it is important not to change the 517

correct word to the wrong word. 518

BertForTokenClassification of PyTorch li- 519

brary is used for implementing real-word error 520

detection, and hyperparameters are fine-tuned. 521

Hyperparameters and details are shown in Ta- 522

ble 3 . 523

4.4 Results 524

Table 4 represents the experimental results of 525

five spell checkers and Virastman on the six 526

datasets. In all of the test sets for all of the 527

metrics of precision, recall, and F0.5 Visratman 528

error correction has the best performance, and 529

that is because of covering real-word, hamza, 530

tanvin, and ZWNJ or word-boundary errors. 531

Based on Table 2, 66.19% of errors are real- 532

word errors, and the performance of Virastman 533

on real-word errors is more significant, which 534

6https://neviise.ir/
7https://neviise.ir/service.html
8https://chrome.google.com/webstore/

detail/paknevis-ai-based-persian/
pklcojlgnoaahjchjbiilfgjehinajmd?hl=fa

9https://text-mining.ir/landing/virastar]
10https://github.com/mhagiwara/xfspell

6

https://github.com/rominaoji/modified-spellchecker-testset
https://github.com/rominaoji/modified-spellchecker-testset
https://github.com/Dadmatech/Persian-spell-checkers-comparison
https://github.com/Dadmatech/Persian-spell-checkers-comparison
https://neviise.ir/
https://neviise.ir/service.html
https://chrome.google.com/webstore/detail/paknevis-ai-based-persian/pklcojlgnoaahjchjbiilfgjehinajmd?hl=fa
https://chrome.google.com/webstore/detail/paknevis-ai-based-persian/pklcojlgnoaahjchjbiilfgjehinajmd?hl=fa
https://chrome.google.com/webstore/detail/paknevis-ai-based-persian/pklcojlgnoaahjchjbiilfgjehinajmd?hl=fa
https://text-mining.ir/landing/virastar
https://github.com/mhagiwara/xfspell


Test set Sentence
Numbers

Average
of Words

Total
Errors

Average
of Errors

Non-word
Errors

Real-word
Errors

space or
ZWNJ
Errors

No. % No. % No. %
Shargh 223 8.56 451 2.01 422 93.77 29 6.23 304 67.40

PerSpellData 1127 12.90 1362 1.20 1337 98.16 25 1.48 247 18.13
Zarebin 1033 3.53 1470 1.42 1304 88.70 166 11.30 20 1.36

Nevise News
Content 451 26.96 2586 5.73 2216 85.69 370 14.31 983 38.01

Nevise News
Title 19,421 11.09 16,751 1.28 14572 86.99 2179 13.01 5731 34.21

Real-word 1100 16.16 1470 1.43 533 33.81 1043 66.19 408 25.88

Table 2: test set sentence and errors statistics

Hyperparameter Value

Optimizer AdamW
Loss Function Cross-Entropy
Learning Rate 2e− 5

Epsilon 1e− 3

Epoch 2
Batch Size 16
Scheduler Linear

Table 3: Hyperparameters and model details of
real-word error detection.

means other spell checkers do not have a good535

performance on correcting real-word errors.536

On the other hand, Virastman has a higher537

value in recall of error correction, which means538

that it detects more errors than other spell539

checkers; however, in most of them, the preci-540

sion is lower than Nevise, which means that541

some of the words that detected as errors are542

correct. This can also be seen in the correct-543

to-wrong rate, in which, most of the time, Vi-544

rastman has a higher percentage than Nevise.545

Investigation showed that this happens because546

the dictionary for detecting errors does not547

cover all the forms of words and needs to be548

extended. All in all, even if Viratsman detects549

more words as errors, it has better performance550

in the detection of errors since it corrects more551

errors than other spell checkers.552

4.5 Threshold Impact on Virastman553

As mentioned in Section 3.4, we correct the554

word if we have high confidence that it is wrong,555

and this is done by considering thresholds. For556

this experiment, we removed the real-word er-557

ror detection and correction of Virastman, and 558

we applied other parts of the Virastman to the 559

Shargh dataset with and without thresholds. 560

As illustrated in Table 5, the model without 561

threshold the correct words that are regarded 562

as wrong is increased, and this increases the 563

recall and reduces the precision, while in spell 564

checker, precision is more crucial than recall. 565

4.6 Impact of adding detected word to 566

suggestion list 567

In Section 3.4, it was stated that adding the 568

detected word to the suggestion list reduces 569

the ratio of converting the correct to the wrong 570

word. To investigate this, we use the non-word 571

Virastman with the same parameters two times 572

with and without adding the detected word to 573

the suggestions list. As shown in Table 5, by 574

adding the detected word to the suggestion list, 575

recall reduces (0.44% in detection and 0.88% in 576

error correction), but precision, which is more 577

important, increased significantly (2.92% for 578

detection and 1.12% for correction). The ratio 579

of converting the correct to the wrong word 580

was also reduced by 0.85%. 581

5 Conclusion 582

This paper notes a sequence labeling model for 583

real-word error detection that needs less data 584

than other methods, such as using a machine 585

translation as a spell checker. An unsupervised 586

model based on the sentence and word proba- 587

bility is used for non-word and real-word error 588

correction. Experimental results show a signif- 589

icant improvement in the output of Visratman 590

in comparison with other baselines. 591
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Test set Spell
Checkers

Correct to
Wrong Rate

Error Detection Error Correction
Recall Precision F0.5 Recall Precision F0.5

Shargh

Virastman 0.64 91.13 97.86 96.44 85.81 92.12 90.08
Nevise 0.28 78.94 98.89 94.13 65.41 81.94 78.00

Paknevis 3.54 78.71 87.64 85.70 61.86 68.89 67.36
Google 0.77 40.13 94.27 74.24 33.48 78.65 61.94

FarsiYar 1.96 72.17 93.26 88.11 52.39 67.70 63.96
XFspell 1.49 52.76 91.89 80.03 37.47 65.25 56.82

PerSpell
Data

Virastman 0.40 93.61 96.00 95.52 90.09 92.39 91.91
Nevise 0.33 79.59 96.10 92.27 72.17 87.15 83.68

Paknevis 0.03 84.36 72.86 74.90 72.47 62.59 64.34
Google 0.84 69.75 89.62 84.79 66.81 85.85 81.22

FarsiYar 0.91 84.80 90.59 89.37 77.02 82.27 81.16
XFspell 1.28 82.97 86.99 86.16 74.82 78.44 77.69

Zarebin

Virastman 0.06 92.86 99.92 98.43 90.95 97.88 96.41
Nevise 0.06 90.07 99.92 97.78 82.38 91.40 89.44

Paknevis 2.85 88.84 96.45 94.83 81.70 88.70 87.21
Google 0.30 91.97 99.63 98.00 90.20 97.72 96.12

FarsiYar 0.42 86.33 99.45 96.52 74.83 86.21 83.67
XFspell 2.26 87.55 97.13 95.05 78.16 86.72 84.87

Nevise
Content

Virastman 0.50 84.34 98.10 95.01 80.47 93.61 90.65
Nevise 0.27 75.14 98.83 92.97 64.31 84.59 79.57

Paknevis 2.93 74.44 88.63 85.38 61.06 72.70 70.03
Google 1.08 68.63 95.12 88.30 61.43 85.15 79.05

FarsiYar 2.30 67.21 89.96 84.26 49.38 66.10 61.91
XFspell 1.24 75.17 94.88 90.15 68.41 86.33 82.03

Nevise
Title

Virastman 0.48 87.87 96.58 94.70 84.42 92.78 90.98
Nevise 0.30 73.62 97.38 91.47 64.26 85.01 79.85

Paknevis 2.78 74.84 80.58 79.36 61.44 66.15 65.15
Google 0.56 54.93 93.79 82.16 50.99 87.07 76.27

FarsiYar 1.28 68.63 86.08 81.91 54.12 67.88 64.60
XFspell 1.21 70.69 89.70 85.12 67.69 85.89 81.51

Real-word
Errors

Virastman 0.01 88.71 97.56 95.65 87.17 95.88 94.00
Nevise 0.52 28.43 84.53 60.61 25.06 74.53 53.45

Paknevis 3.30 19.8 37.64 31.89 15.42 29.31 24.84
Google 0.80 35.66 81.69 64.93 33.19 76.02 60.42

FarsiYar 1.14 12.55 52.66 32.14 10.91 45.74 27.92
XFspell 0.77 49.68 86.62 75.41 48.54 84.63 73.67

Table 4: Performance of different spell checkers on different test sets.

Spell Checker
Errors

Correct to
Wrong Rate

Error Detection Error Correction
Recall Precision F0.5 Recall Precision F0.5

Non-Word Virastman
with threshold

and detected word
0.21 86.03 99.22 96.28 80.27 92.58 89.82

Non-word Virastman
without thresholds 0.35 86.25 98.72 95.95 80.93 92.64 90.03

Non-word Virastman
without detected word 1.06 86.47 96.30 94.16 81.15 90.36 88.36

Table 5: Effect of thresholds in Virastman non-word error detection and correction
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6 Limitations592

Virastman error detection in the part of non-593

word errors detects correct words as wrong594

words, and a larger dictionary is needed to595

reduce the ratio of converting correct words596

to wrong words, and this can happen by in-597

vestigating and collecting the words added to598

the dictionary by Virastman users. One other599

weakness of Virastman is that in the correction600

phase, it cannot distinguish the character 601»ا«

and »آ« and this is because of the tokenizer of602

ParsBERT. Training a new tokenizer can solve603

this problem.604
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