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Abstract

Making classifiers robust to adversarial examples
is hard. Thus, many defenses tackle the seemingly
easier task of detecting perturbed inputs.

We show a barrier towards this goal. We prove
a general hardness reduction between detection
and classification of adversarial examples: given
a robust detector for attacks at distance ε (in some
metric), we can build a similarly robust (but inef-
ficient) classifier for attacks at distance ε/2.

Our reduction is computationally inefficient, and
thus cannot be used to build practical classifiers.
Instead, it is a useful sanity check to test whether
empirical detection results imply something much
stronger than the authors presumably anticipated.

To illustrate, we revisit 13 detector defenses. For
11/13 cases, we show that the claimed detection
results would imply an inefficient classifier with
robustness far beyond the state-of-the-art.

1. Introduction
Consider the following claims about two defenses against
adversarial examples (Szegedy et al., 2014) on CIFAR-10:

• defense A is a classifier that achieves robust accuracy of
90% under `∞-perturbations bounded by ε = 4/255;

• defense B also has a “detection” option, and achieves ro-
bust accuracy of 90% under `∞-perturbations bounded
by ε = 8/255 (defense B is correct if it classifies a nat-
ural example correctly, and either detects or correctly
classifies all perturbed examples at distance ε.)

If you had to take a bet that one of these two (empirical)
claims is correct, which one would you choose?

Defense A claims much higher robustness than the current
best result achieved with adversarial training (Madry et al.,
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2018), the only empirical defense against adversarial exam-
ples that stands the test of time.1 Thus, this claim might be
met with some initial skepticism and heightened scrutiny.

The claim of defense B is harder to assess, due to a lack
of long-standing baselines for robust detectors. On one
hand, detection of adversarial examples has largely been
considered to be an easier task than classification (Xu et al.,
2018; Pang et al., 2021). On the other hand, defense B
claims robustness to perturbations that are twice as large as
defense A.

In this paper, we show that the claims about defenses A and
B are, in fact, equivalent! (up to computational efficiency.)

We prove a general hardness reduction between classifica-
tion and detection of adversarial examples. Given a detector
defense that achieves robust risk α for attacks at distance
ε (under any metric), we show how to build an explicit but
inefficient classifier that achieves robust risk α for classi-
fying attacks at distance ε/2. The reverse implication also
holds: a classifier robust at distance ε/2 implies an explicit
but inefficient robust detector at distance ε.

To the authors knowledge, there is no known way of leverag-
ing computational inefficiency to build more robust models.
We should thus be as “surprised” by the claim made by
defense B as by the claim made by defense A.

Our hardness reduction provides a way of assessing the
plausibility of new robust detection claims, by contrasting
them with results from the more mature literature on robust
classification. To illustrate, we revisit 13 published detection
defenses, and show that in 11/13 cases the defense’s robust
detection claims would imply an inefficient classifier with
robustness far superior to the current state-of-the-art. Yet,
none of these defense papers claim that their results should
imply such a breakthrough in robust classification.

Using our reduction, it is obvious that most of the 13 de-
tection defenses are claiming stronger robustness than we
currently believe feasible. And indeed, many of these de-
fenses were later shown to have overestimated their robust-
ness (Carlini & Wagner, 2017; Tramèr et al., 2020).

Remarkably, we find that for certified defenses, the state-

1The current state-of-the-art `∞ robustness for ε = 4/255 on
CIFAR-10 (without external data) is ≈ 79% (Rebuffi et al., 2021).
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of-the-art results for provable robust classification and de-
tection perfectly match the results implied by our reduction.
For example, Sheikholeslami et al. (2021) recently proposed
a certified detector on CIFAR-10 with provable robust er-
ror that is within 3% of the provable error of the inefficient
detector obtained by combining the state-of-the-art robust
classifier of Zhang et al. (2020) and our result. This gives
further credence to our assumption that computational ineffi-
ciency is of little help towards building more robust models.

In summary, we prove that giving classifiers access to a
rejection/detection option does not help robustness. It would
be interesting to find similar “barriers” for other directions
that have been considered to enhance robustness (e.g., the
use of randomness, ensembles, denoising functions, etc.)

2. Hardness Reductions Between Robust
Classifiers and Detectors

In this section, we prove our main result: a reduction be-
tween robust detectors and robust classifiers, and vice-versa.

We consider a classification task with a distribution D over
examples x ∈ Rd with labels y ∈ [C]. A classifier is a
function f : Rd → [C]. A detector is a classifier with an
extra “rejection” option ⊥. The binary indicator function
1{A} is 1 if and only if the predicate A is true.

We first define a classifier’s risk, i.e., its classification error
on unperturbed samples.

Definition 1 (Risk). Let f : Rd → [C]∪{⊥} be a classifier
(optionally with a detection output ⊥). The risk of f is:

R(f) := E
(x,y)∼D

[
1{f(x)6=y}

]
(1)

Note that for a detector, rejecting an unperturbed example,
f(x) = ⊥, is counted as an error.

For classifiers without a rejection option, we define the
robust risk as the risk on worst-case adversarial examples.
Given an input x sampled from D, an adversarial example
x̂ is constrained to being within distance d(x, x̂) ≤ ε from
x, where d is some arbitrary distance measure.

Definition 2 (Robust risk). Let f : Rd → [C] be a classifier.
The robust risk at distance ε is:

Rεadv(f) := E
(x,y)∼D

[
max

d(x,x̂)≤ε
1{f(x̂) 6=y}

]
(2)

For a detector (a classifier with an extra rejection output),
we analogously define the robust risk with detection. The
classifier is now allowed to reject adversarial examples.

Definition 3 (Robust risk with detection). Let f : Rd →
[C] ∪ {⊥} be a classifier with an extra detection output ⊥.

The robust risk with detection at distance ε is:

Rεadv-det(f) := E
(x,y)∼D

[
max

d(x,x̂)≤ε
1{f(x)6=y ∨ f(x̂)/∈{y,⊥}}

]
(3)

That is, a detector defense f is robust on a natural input x
if and only if f classifies x correctly and f either rejects or
correctly classifies every input x̂ within distance ε from x.
The requirement that f correctly classify natural examples
eliminates pathological defenses that reject all inputs.

We are now ready to introduce our main result, a reduction
from a robust detector for adversarial examples at distance
ε, to a robust classifier at distance ε/2:
Theorem 4 (ε-detection implies ε/2-classification). Let
d(·, ·) be an arbitrary metric. Let f be a defense that
achieves risk R(f) = α, and robust risk with detection
Rεadv-det(f) = β. Then, we can construct an explicit (but in-
efficient) defense g that achieves risk R(g) ≤ α and robust
risk Rε/2adv (g) ≤ β.

The defense g is constructed as follows on input x:

• Run y = f(x). If y 6= ⊥, output y.

• Otherwise, find an input x′ such that d(x, x′) ≤ ε/2 and
f(x′) 6= ⊥. If such an input x′ is found, output f(x′).
Else, output a random class y ∈ [C].

An intuitive illustration for our construction, and for the
proof of the theorem (see below) is in Figure 1.

Our construction is best viewed as an analog of minimum
distance decoding in coding theory. We can view the clean
data sampled from D as codewords, and adversarial exam-
ples x̂ as a noisy message with a certain number of errors
(where the error magnitude is measured using an arbitrary
metric on Rd rather than the Hamming distance). A stan-
dard result in coding theory states that if a code can detect
α errors, then it can correct α/2 errors.

Proof. First, note that the natural accuracy of g is at least
as high as that of f , since g always mimics the output of f
when f does not reject an input. Thus, R(g) ≤ R(f) = α.

Now, consider an input (x, y) ∼ D for which g is not robust
at distance ε/2. That is, there exists an input x̂ at distance
d(x, x̂) ≤ ε/2 such that g(x̂) = ŷ 6= y. We will show that
the defense f is not robust with detection for x either (for
attacks at distance up to ε.)

By definition of g, if g(x̂) = ŷ 6= y then either:

• The defense f also misclassifies x̂, i.e., f(x̂) = ŷ.
So f is not robust with detection for x at distance ε.

• There exists x′ such that d(x̂, x′) ≤ ε/2 and f(x′) = ŷ.
Note that by the triangular inequality, d(x, x′) ≤
d(x, x̂) + d(x̂, x′) ≤ ε/2 + ε/2 = ε, and thus f is
not robust with detection for x at distance ε.
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Figure 1. Illustration of the construction of a robust classifier from
a robust detector in Theorem 4. The outer blue circle represents
all inputs at distance at most ε from the input x. For a detector f ,
the areas in green correspond to correctly classified inputs, and
ratcheted gray areas correspond to rejected inputs. The detector
f is thus robust on x up to distance ε. The classifier g classifies
a perturbed input x̂, at distance ε/2 from x, by finding any input
within distance ε/2 from x̂ (the red dashed circle) that is not
rejected by f . The classifier g is robust on x up to distance ε/2.

• For all x′ such that d(x̂, x′) ≤ ε/2, we have f(x′) = ⊥
(and thus g has output x̂ at random).

Since d(x, x̂) ≤ ε/2, this implies that f(x) = ⊥, and
thus f is not robust with detection for x.

In summary, whenever g fails to robustly classify an input x
up to distance ε/2, the defense f also fails to robustly clas-
sify x with detection up to distance ε. Taking expectations
over the entire distribution D concludes the proof.

A corollary to our reduction is that many “information the-
oretic” results about robust classifiers can be directly ex-
tended to robust detectors. For example, the formal tradeoff
between robust classification and accuracy of Tsipras et al.
(2019), the increased data complexity of robust generaliza-
tion of Schmidt et al. (2018), or the tradeoff between ro-
bustness to multiple perturbation types of Tramèr & Boneh
(2019), all imply similar tradeoffs for robust detectors. In-
deed, all of these results also apply to inefficient classifiers.

A similar argument can be used in the opposite direction,
to show that a robust classifier at distance ε/2 implies an
inefficient robust detector at distance ε.

Theorem 5 (ε/2-classification implies ε-detection). Let
d(·, ·) be an arbitrary metric. Let g be a defense that
achieves robust risk Rε/2adv (f) = β. Then, we can con-
struct an explicit (but inefficient) defense f that achieves risk
R(f) ≤ β and robust risk with detection Rεadv-det(f) ≤ β.

The defense f is constructed as follows on input x:

• Run y = g(x).

• Find an input x′ such that d(x, x′) ≤ ε/2 and g(x′) 6= y.

If such an input x′ exists, output ⊥. Else, output y.

The proof of Theorem 5 is in Appendix A.

A main distinction between Theorem 4 and Theorem 5 is
that the construction in Theorem 4 preserves clean accuracy,
but the construction in Theorem 5 does not. That is, the con-
structed robust detector in Theorem 5 has natural accuracy
that is equal to the robust classifier’s robust accuracy.

The construction in Theorem 5 can be efficiently (but
approximately) instantiated by a certifiably robust classi-
fier (Wong & Kolter, 2018; Raghunathan et al., 2018). These
defenses can certify that a classifier’s output is constant for
all points within some distance of the input. For an adver-
sarial example x̂ for g, the certification always fails and thus
the constructed detector f will reject x̂. If g is robust and
the certification succeeds, the detector f copies the output
of g. However, a certified defense may fail to certify a ro-
bust input (a false negative), and thus the detector f may
reject more inputs than with the “optimal” construction in
Theorem 5. This reduction from a certified classifier to a
detector is implicit in (Wong & Kolter, 2018, Section 3.1).

3. What Are Detection Defenses Claiming?
We now survey 13 detection defenses, and consider the
robust classification performance that these defenses implic-
itly claim (via Theorem 4). As we will see, in 11/13 cases,
the defenses’ detection results imply an inefficient classifier
with far better robust accuracy than the state-of-the-art.

These claims are not necessarily wrong. But given how
challenging robust classification is proving to be, we have
reason to be skeptical of major breakthroughs (even for
inefficient classifiers). To compound this, many proposed
detection defenses are quite simple, and reject adversarial
inputs based on some standard statistical test over a neural
network’s features. It would be particularly surprising if
such simple techniques could yield robust classifiers (and in-
deed, many of these defenses have been broken by stronger
attacks (Carlini & Wagner, 2017; Tramèr et al., 2020)).

Setup. We choose 13 detector defenses from the literature
(see Table 1). Our choice for these defenses was somewhat
artificial and pragmatic: we chose defenses that made claims
that were easy to translate into a bound on the robust risk
with detection Rεadv-det. Indeed, some detection defenses
simply report a single AUC score, from which we cannot
derive a useful bound on the robust risk. We thus focus on
defenses that either directly report a robust error akin to
Definition 3, or that provide concrete pairs of false-positive
and false-negative rates (e.g., a full ROC curve). In the latter
case, we compute a “best-effort” bound on the robust risk
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Table 1. For each detector defense, we compute a (best-effort) bound on the claimed robust risk
with detectionRεadv-det, and report the complement (the robust accuracy with detection). For each
detector’s robustness claim (at distance ε), we report the state-of-the-art robust classification
accuracy 1−R

ε/2
adv , for attacks at distance ε/2. Detection defense claims that imply a higher

robust classification accuracy than the state-of-the-art are in red.

Dataset Defense Norm ε 1−Rεadv-det 1−R
ε/2
adv

MNIST Grosse et al. (2017) `∞ 0.5 ≥ 98% 94%
Ma et al. (2018) `2 4.2 ≥ 99% 72%

CIFAR-10

Yin et al. (2020) `2 1.7 ≥ 90% 66%
Feinman et al. (2017) `2 2.7 ≥ 43% 36%
Miller et al. (2019) `2 2.9 ≥ 75% 30%
Ma & Liu (2019) `∞ 4/255 ≥ 96% 85%
Roth et al. (2019) `∞ 8/255 ≥ 66% 79%
Lee et al. (2018) `∞ 20/255 ≥ 81% 59%
Li et al. (2019) `∞ 26/255 ≥ 80% 44%

ImageNet

Xu et al. (2018) `2 1.0 ≥ 67% 54%
Ma & Liu (2019) `∞ 2/255 ≥ 68% 55%
Jha et al. (2019) `∞ 2/255 ≥ 30% 55%
Hendrycks & Gimpel (2017) `∞ 10/255 ≥ 76% 30%
Yu et al. (2019) `∞ 26/255 ≥ 7% 5%

Table 2. Certified robust accuracy 1−
R
ε/2
adv for the defense of Zhang et al.

(2020), and certified robust accuracy
with detection 1−Rεadv-det for the de-
fense of Sheikholeslami et al. (2021).

ε 1−Rεadv-det 1−R
ε/2
adv

8/255 37% 39%
16/255 32% 33%

with detection as:

Rεadv-det(f) ≤ FPR + FNR +R(f) ,

where FPR and FNR are the detector’s false-positive and
false-negative rates, and R(f) is the defense’s standard risk
(i.e., the test error on natural examples). We note that this
union bound may be quite pessimistic, as we might over-
count examples that lead to multiple sources of errors (e.g., a
natural input that is misclassified and erroneously detected).
The true robustness claim made by these detector defenses
might thus be stronger than what we obtain from our bound.
We encourage future defense papers to report the adversarial
risk, to facilitate comparisons with robust classifiers.

The 13 detector defenses use three datasets: MNIST, CIFAR-
10 and ImageNet, and consider adversarial examples under
the `∞ or `2 norms. Given a claim of robust detection at
distance ε, we contrast it to a state-of-the-art robust classifi-
cation result for distance ε/2. On MNIST with `∞ attacks,
we use TRADES (Zhang et al., 2019) and measure robust
error with the Square attack (Andriushchenko et al., 2020).
For `2 attacks, we use the model from Tramèr & Boneh
(2019) and measure robust error with PGD (Madry et al.,
2018). For CIFAR-10, we use the best model of Rebuffi
et al. (2021) (trained without external data), and attack it
using AutoAttack (Croce & Hein, 2020). For ImageNet, we
use models and attacks from Engstrom et al. (2019).

We also consider two certified defenses for CIFAR-10: the
robust classifier of Zhang et al. (2020), and a recent certified
detector of Sheikholeslami et al. (2021).

Results. As we can see from table 1, most defenses claim
a detection performance that implies a far greater robust

accuracy than our current best robust classifiers.

In Table 2, we look at the robust accuracy with detection,
and standard robust accuracy achieved by certified defenses
(for which the claimed robustness numbers are necessarily
mathematically correct). Remarkably, we find that existing
results nearly match what is implied by our reduction (up
to ±2% error). For example, Zhang et al. (2020) follow a
long line of results on robust classifiers and achieve 39%
robust accuracy on CIFAR-10 for perturbations of `∞-norm
below 4/255. Together with Theorem 5, this implies an
inefficient detector with 39% robust detection accuracy for
perturbations of `∞-norm below 8/255. The recent work
of Sheikholeslami et al. (2021) nearly matches that bound
(37% robust accuracy with detection), with a defense that
has the advantage of being concretely efficient.

4. Conclusion
We have shown formal reductions between robust classifica-
tion with, and without, a detection option. Our results show
that significant progress on one of these two tasks implies
similar progress on the other. This raises the question on
whether we should spend our efforts on studying both of
these tasks, or focus our efforts on a single one.

On one hand, the two tasks represent different ways of
tackling a same goal, and working on either task might result
in new techniques or ideas that apply to the other task as well.
On the other hand, our reductions show that unless we make
progress on both tasks, work on one of the tasks can merely
aim to match the robustness of our inefficient constructions,
whilst improving their computational complexity.
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A. Proof of Theorem 5.
We restate Theorem 5 here:

Theorem 4 (ε/2-classification implies ε-detection). Let
d(·, ·) be an arbitrary metric. Let g be a defense that
achieves robust risk Rε/2adv (f) = β. Then, we can con-
struct an explicit (but inefficient) defense f that achieves risk
R(f) ≤ β and robust risk with detection Radv-det(f ; ε) ≤ β.

The defense f is constructed as follows on input x:

• Run y = g(x).

• Find an input x′ such that d(x, x′) ≤ ε/2 and g(x′) 6= y.
If such an input x′ exists, output ⊥. Else, output y.

Proof of Theorem 5. Note that for any input (x, y) for
which g is robust at distance ε/2, no input x′ above exists
and so f(x) = y. Thus, the risk of f is at most β.

Now, consider an input (x, y) ∼ D for which f is not robust
with detection at distance ε. That is, either f(x) 6= y, or
there exists an input x̂ at distance d(x, x̂) ≤ ε such that
f(x̂) = ŷ /∈ {y,⊥}. We will show that the defense g is not
robust for x either (for attacks at distance up to ε/2.)

If f(x) 6= y, then by the same argument as above it cannot
be the case that g is robust at distance ε/2 for x.

So let us consider the case where f(x̂) = ŷ /∈ {y,⊥}. By
the definition of f , this means that for all x′ at distance at
most ε/2 from x̂, we have g(x′) = ŷ. But, note that there
exists a point x∗ that is at distance at most ε/2 from both x̂
and x. Since we must have g(x∗) = ŷ, we conclude that g
is not robust at distance ε/2 for x.

Taking expectations over the distribution D concludes the
proof.


