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Abstract

Personalized Intelligence (PI) is the problem of provid-001
ing customized AI experiences tailored to each individ-002
ual user. A related problem is the compartmentalization003
of intelligence that maintains a partition between the004
personalized and the general models. Existing personal-005
ization approaches involve fine-tuning pre-trained mod-006
els to create new customized models. However, these007
require a significant amount of computation to train,008
which scales with model size and the number of users,009
inhibiting PI to be realized widely. A compartmental-010
ized approach enables a small model to be specialized011
for each individual user, which needs to be used to-012
gether with a larger model to provide personalization.013
By separating personalized and general models, we en-014
able higher accuracy, scalability, and stronger privacy015
guarantees. In this paper, we aim to design a compart-016
mentalized personalization approach that can scale to017
millions of users and beyond. We investigate the land-018
scape of model fine-tuning techniques and construct new019
design adaptations based on the requirements of PI. We020
then introduce Personalized Head (PH), a new model021
training/inference framework designed for scalable PI.022
We explore the design space of these techniques and023
evaluate their efficacy under various production-level024
constraints. Specifically, we break down the trade-off025
between accuracy, scalability and production deploy-026
ment limitations. We present several production-ready027
personalization approaches suited for various produc-028
tion use case scenarios.029

1 Introduction030

Personalized Intelligence (PI) is the problem of031

providing unique and customized AI experience032

tailored for each individual user. Today’s AI in033

production is often served with an unified model034

shared among all users and the experience remains035

largely homogeneous across users. However, cer-036

tain problems are highly personal and the task037

scope can vary from user to user, which limits the038

effectiveness of this single model approach. For039

instance, in productivity software, users often use040

personalized category labels and tags to organize041

their to-do items. For the task of classifying a new042

unseen item to a category, a shared model is limited043
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Figure 1: Full-model fine-tuning approach vs. compart-
mentalized personalization training approach.

as each user can have unique category labels and 044

can interpret them differently. More PI use case 045

examples are described in Section 2. 046

In order to capture the user-specific knowledge, 047

PI tasks require personalized weights and module 048

to learn from user-specific data. This presents sev- 049

eral key requirements for solving PIs. First, the 050

training of the personalized models needs to be 051

lightweight and fast, as they often happen in an 052

online settings. Second, the personalized models 053

need to be parameter efficient. The amount of per- 054

sonalized models scales with the number of users, 055

which can be millions or even billions, so the per- 056

sonalized model size needs to be small so they can 057

be stored and served at large scale. Third, the per- 058

sonalized weights need to be compartmentalized 059

from the original model, in order to protect the pri- 060

vacy of user data and maintain the integrity of each 061

user’s model quality. 062

The goal of this paper is to design an approach 063

for achieving personalized intelligence at the pro- 064

duction scale of millions of users and beyond. We 065

examine a landscape of personalization techniques 066

and aim to answer the following research questions: 067

1. How scalable can we achieve with the current 068

landscape of compartmentalized personaliza- 069

tion training techniques? 070

2. What are the design knobs of each technique 071

and what kind of trade-off do they represent 072

in the design space? 073

3. How do the techniques compare under various 074
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production level constraints?075

We investigate the current landscape of076

parameter-efficient fine-tuning techniques, includ-077

ing Adapters (Houlsby et al., 2019) and Prefix Tun-078

ing (Li and Liang, 2021). We identify key limita-079

tions of these approaches to be the compartmen-080

talization of the personalized weights as they are081

intertwined with the layers and weights of the orig-082

inal model. In addition, these approaches are de-083

signed for task-level fine-tuning and it remains an084

open question whether they are scalable enough085

for creating user-level personalized models. To ad-086

dress these, we make two contributions. We first087

construct new design adaptations specifically for088

personalization, namely Personalized Adapter (PA)089

and Personalized Prefix (PP). Secondly, we propose090

a new model training and inference framework, Per-091

sonalized Head (PH), specifically for personaliza-092

tion at scale. In PH, the personalized weights are093

completely separated from the original base model.094

We explore the design space of all three tech-095

niques (PA, PP and PH) and compare their ac-096

curacy and scalability. We found that Personal-097

ized Prefix (PP) outperforms Personalized Adapter098

(PA) and Head (PH) when no deployment con-099

straints are considered and all layers of the original100

model are augmented with new weights. On the101

other hand, under production level deployment con-102

straints, there are several viable options across the103

three techniques, each with unique advantages de-104

pending on the use case.105

2 Personalized Intelligence106

We describe in details the concept of Personalized107

Intelligence and provide three concrete example108

use cases that can be found in production today.109

2.1 Definition110

Personalized Intelligence (PI) is the problem of111

creating unique and customized experience of an112

AI capability for each individual user. To provide113

experience tailored to each user, PI requires user-114

specific weights that are trained on user-specific115

data. The user-specific weights also serve as com-116

partmentalization for the learnt knowledge of each117

user to not influence and affect other users’ mod-118

els and experience. PI requires every user-specific119

models to be query-able and incoming requests are120

routed accordingly based on their source. This cre-121

ates significant scalability challenges for traditional122

fine-tuning approach. Specifically, it is not feasible123

to have full size model replicas for each user due to124

the ever increasing size of state-of-the-art models.125

A similar problem that has been studied recently 126

is task-specific fine-tuning (Houlsby et al., 2019; 127

He et al., 2021; Li and Liang, 2021; Hu et al., 2021). 128

While both problems involve adapting pre-trained 129

models to new data, task-specific fine-tuning gener- 130

ates one model per task and only that model needs 131

to be hosted and served to the users. In contrast, 132

in personalized intelligence, unique weights and 133

learning is required for each user and total num- 134

ber of query-able models scales with number of 135

users. Furthermore, the task scope is fully defined 136

at the model creation time for task-specific fine- 137

tuning, while for personalized intelligence, part of 138

the problem scope is unique for each user. 139

In summary, Personalized Intelligence tasks gen- 140

erally have one or more of the following character- 141

istics: 142

• Part of the problem scope is user-specific and 143

not fully defined at model creation and pre- 144

training time. The scope can also evolve over- 145

time, pre- and post-production deployment. 146

• Unique weights are required on a user-by-user 147

basis to capture the personalized knowledge 148

of each user. 149

• The knowledge learnt from the user-specific 150

data needs to be compartmentalized as to 151

avoid potentially contaminating the behavior 152

of other users’ models and experience. 153

2.2 Example use-cases of PI 154

We describe three example production use cases of 155

Personalized Intelligence, as illustrated in Figure 2. 156

Category Prediction in Productivity Tools - In 157

productivity apps such as Todoist and OmniFocus, 158

users are encouraged to create and organize their 159

tasks into custom categories or tags (e.g., work, 160

family, hobbies, etc). The task of classifying an 161

item to a category/tag by learning from past user be- 162

havior is an example of Personalized Intelligence, 163

as the category labels can be drastically different 164

between users and are not fully defined before- 165

hand (Figure 2a). A successful category prediction 166

model needs to train on each user’s data to capture 167

user’s personal preference. Furthermore, this per- 168

sonalized knowledge need to be compartmentalized 169

to avoid affecting other users. 170

Intent Classification in Dialogue Systems - For 171

intent classification in dialogue systems, each state 172

has its own set of candidate intents correspond- 173

ing to the set of next possible states, as shown in 174

Figure 2b. Based on the user, the map of dialogue 175

states can also be different and as a result, the scope 176
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Figure 2: Example use cases of Personalized Intelligence (PI) in production today.

of the intent classification for a given user is unique.177

Furthermore, the set of candidate intents generally178

evolve and grow as new topics and capabilities179

are introduced. A fully built-out dialogue system180

can feature hundreds or more states (Larson et al.,181

2019), which combined with the conversation paths182

unique to each user, can lead to a large number of183

unique classification problems within one dialogue184

system. A personalized intent classification model185

is customized to the context of each state and each186

user and trained to focus on the state’s candidate187

intents and specific type of utterances encountered188

from a given user.189

Federated Learning - The goal of federated190

learning is to train a central model based on191

data that is distributed over a large number of192

clients (Konečný et al., 2016) (Figure 2c). Clients193

independently compute model updates based on194

local data, and client-side updates are eventually195

aggregated to update the central model. The orig-196

inal motivation for this technique was driven by197

the needs of distributed systems, where learning198

takes place based on data at the edge (e.g. in mo-199

bile phones) which may not always be connected200

to the central model. Follow-on work (Gao et al.,201

2019) emphasized the privacy-preserving aspects202

of federated learning, as the training data itself does203

not need to leave its original location at the edge.204

Personalized Intelligence techniques can be used205

to support federated learning use-cases, as the in-206

formation contained in each personalized model207

can be transferred to the general model, if needed,208

under user control. Instead of assuming that all209

knowledge learned at the edge is going to end up in210

the general model, PI approach emphasizes privacy-211

preservation and compartmentalization to provide212

user-specific inference.213

3 Training for Personalization 214

We define the process of training personalized mod- 215

els. Let M be a pre-trained language model (LM) 216

and ΘM its trainable parameters. Consider the 217

scenario of fine-tuning for an individual user to 218

create a personalized model. We define U “ 219

tpD1, L1q, pD2, L2q, ..., pDN , LN qu as the collec- 220

tion of personalized tasks where i P r1, ..., N s for 221

N users, Di is the unique data for user i and Li is 222

the loss function. 223

3.1 Traditional Fine-Tuning 224

When applying model M to a downstream task 225

T with labelled training data DT , an output layer 226

K with parameters ΘK is usually appended to M . 227

Then M and K are trained jointly: 228

Θ1M ,Θ1K Ð argmin
ΘM ,ΘK

LT pDT ; ΘM ,ΘKq (1) 229

This generates Θ1M and Θ1K . Θ1M is the fine- 230

tuned parameters of M , which are the same size 231

as ΘM but with distinct values. Let ΩpΘq be the 232

computation complexity required to train a set of 233

parameters Θ. We then define the training com- 234

plexity of the above fine-tuning operation as: 235

ΩpΘ1M q ` ΩpΘ1Kq (2) 236

The problem of fine-tuning the model to person- 237

alize for user i is defined as 238

Θ1M,i,Θ1K,i Ð argmin
ΘM ,ΘK

LipDi; ΘM ,ΘKq (3) 239

The aggregated training complexity scales linearly 240

with the number of users, N : 241

N
ÿ

1

ΩpΘ1M,iq `

N
ÿ

1

ΩpΘ1K,iq (4) 242
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The collection of model parameters to be stored243

scales linearly with N as well:244

N
ÿ

1

|Θ1M,i| `

N
ÿ

1

|Θ1K,i| (5)245

3.2 Compartmentalized Personalized246

Training247

When training compartmentalized and personalized248

model for user i, a new set of weights Wi are in-249

troduced. During training, the base LM parameters250

are frozen and only Wi and Ki are updated:251

Θ1W ,Θ1K Ð argmin
ΘW ,ΘK

LT pDT ; ΘM ,ΘW ,ΘKq

(6)252

Note that, compared to the traditional fine-tuning253

defined in Equation 1, no Θ1M is generated. During254

inference, Θ1W ,Θ1K is combined with the original255

ΘM to generate prediction. The aggregated training256

complexity for training the personalized model is:257

N
ÿ

1

ΩpΘ1W,iq `

N
ÿ

1

ΩpΘ1K,iq (7)258

and the total parameters is:259

ΘM `

N
ÿ

1

|Θ1W,i| `

N
ÿ

1

|Θ1K,i| (8)260

The main goal for a scalable personalization ap-261

proach is minimizing size of Wi, which will re-262

duce the model size and training cost and increase263

the maximum users supported N given a certain264

amount of compute resources, and optimizing for265

prediction accuracy on the collection of personal-266

ized tasks U .267

4 Personalization Model Architectures268

We describe the landscape of three personaliza-269

tion techniques studied in this work, Personalized270

Adapter (PA), Personalized Prefix (PP) and Person-271

alized Head (PH), as illustrated in Figure 3.272

4.1 Personalized Adapters273

Personalized Adapter (PA) is constructed based274

on the Adapter approach, which involves inserting275

small trainable feedforward layers into every layer276

of the base transformer model (Houlsby et al., 2019;277

Pfeiffer et al., 2021; Hu et al., 2021). During train-278

ing, the inserted adapter layers are updated while279

the base transformer is frozen. In the context of Per-280

sonalized Intelligence, the out-of-the-box adapter281

approach are not compartmentalized because the 282

new layers are interleaved with the layers of the 283

original model. This limits adapter’s applicability 284

to training for personalization. Specifically, it is 285

technically challenging to have many adapters shar- 286

ing the same base model for inference because the 287

inference execution flow switches back and forth 288

between the original model and the adapter. 289

To address this limitation, we formulate Person- 290

alized Adapter (Figure 3a), where only a subset 291

of transformer layers are augmented with adapters. 292

This way, in production, the augmented layers can 293

be replicated for each user to create compartmen- 294

talization and the untouched layers in the original 295

models can be shared across users for inference. In 296

order to understand the impact of selectively ap- 297

plying Adapters, we construct a range of different 298

PA configurations and evaluate their trade-offs in 299

Section 6.2. 300

4.2 Personalized Prefix 301

The Prefix tuning approach prepends trainable 302

weight vectors to the keys and values weight matri- 303

ces of the multi-head attention block in each trans- 304

former layer (Li and Liang, 2021). The new prefix 305

vectors are used in the attention calculation for at- 306

tention heads of every transformer layer. Similar to 307

Adapters, Prefix tuning has the same compartmen- 308

talization limitation and we construct Personalized 309

Prefix, where selected layers are augmented with 310

the prefix vectors, as shown in Figure 3b. We exper- 311

iment with a range of different PP configurations 312

in Section 6.3. 313

4.3 Personalized Head 314

Inspired by the above approaches and consider- 315

ing their limitation, we propose a new framework, 316

Personalized Head (PH). We propose to append a 317

single layer transformer module after the base trans- 318

former. During training, only the PH is updated 319

and the base model weights are frozen. During 320

inference, the base model processed the input first 321

and the output embeddings are sent to the PH to 322

apply the personalized knowledge and generate the 323

output. Our intuition is we can aggregate and focus 324

the personalized knowledge into the PH module 325

and avoid augmenting any of the base model layers. 326

Figure 3c shows an overview of the PH architec- 327

ture. 328

PH follows the Transformer architecture defined 329

in the original transformer paper (Vaswani et al., 330

2017). Each PH has a multi-head self-attention 331

layer and two fully connected layers, followed by 332
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Figure 3: Three personalization approaches. The purple colored block in each approach represents the personalized
module for each user. (a) Personalized Adapter insert adapter layers inside selective transformer layers; (b)
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transformer.

Dataset Description # Classes # Train # Test
SNIPS Smart assistants questions 7 13,034 1,442

Clinc150 Production VA tasks 150 15,100 1,500

Table 1: Datasets

layer normalization (Ba et al., 2016). Dropout (Sri-333

vastava et al., 2014) is applied to the output of the334

fully connected layers.335

To help us explore the PH design space and un-336

derstand its key design factors, we parameterize the337

size of the hidden dimension of the feed-forward338

network in the encoder and the number of atten-339

tion heads in the attention layer. We investigate340

the impact of these design decisions in detail in341

Section 6.4.342

5 Experiments343

To investigate the effectiveness of these techniques,344

we apply them to personalize the pre-trained BERT345

LM to two new classification tasks as the person-346

alized problems. We keep the BERT LM frozen347

during personalized training and apply each tech-348

nique separately to train on the new data. In this349

section, we describe in details the experiments and350

dataset setup.351

5.1 Universal Binary Classification Task352

We focus on personalized classification as the PI353

task to evaluate the suite of personalization tech-354

niques. We aim to design a personalization frame-355

work that is generalizable to arbitrary classification356

tasks without requiring modification to the model357

architecture. To that end, we formulate the multi-358

class classification problem as a series of binary 359

classification tasks. We concatenate the class label 360

and the text as input and the output layer generates 361

a binary True/False prediction with a confidence 362

score. The class with the most confident True pre- 363

diction is selected as the classification prediction. 364

We apply this binary classification across all per- 365

sonalization approaches. 366

5.2 Datasets 367

We use the SNIPS dataset (Coucke et al., 2018) 368

and Clinc-150 dataset (Larson et al., 2019). We 369

select SNIPS because its intents cover many com- 370

mon classification topics and it is a representative 371

dataset widely studied in the literature. We select 372

Clinc-150 for its focus on the complexity of pro- 373

duction use cases. It has 150 intents and features 374

intents and sentences inspired by real virtual assis- 375

tants in production. An overview of the datasets is 376

shown in Table 1. Specifically for Clinc, to make 377

training and evaluation time more manageable, we 378

randomly sample 10 examples (out of 30) per class 379

to construct the test set and include the True ex- 380

amples and randomly sample 2 False examples for 381

every True example to construct the training set. 382

The same train and test set construction is used 383

across all techniques and experiments. 384

5.3 Implementation 385

We use the AdapterHub framework (Pfeiffer et al., 386

2020) for the experiment on Adapters and Prefix 387

Tuning. We implement the PHs using the Flair NLP 388

framework (Akbik et al., 2019) with an underlying 389
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pytorch runtime (Paszke et al., 2019). We use the390

uncased BERT encoder as the base LM (Devlin391

et al., 2018) for all three approaches. We train392

for 50 epochs (unless noted otherwise) and report393

F1 score and accuracy on the test set. In terms of394

hyper-parameters for PH, we use a batch size of 16395

and a learning rate of 0.02, following the standard396

in (Halder et al., 2020).397

6 Results398

We evaluate the landscape of personalization tech-399

niques, including Personalized Adapters (PA), Per-400

sonalized Prefix (PP) and Personalized Head (PH).401

We aim to understand 1) how scalable can we push402

these techniques to be, 2) what are the design knobs403

that have the most impact on performance and 3)404

how do these techniques compare under production-405

level constraints.406

6.1 Naive Personalization Approaches407

Table 2 shows the results for several naive per-408

sonalization approaches. Full Model Fine-tuning409

- Fine-tuning both LM and linear layer achieves410

strong performance but it requires, for each user,411

the training of 109 million parameters which gen-412

erates a 417MB model. The large computation413

cycles and storage capacity becomes untenable for414

production use cases that require scaling to many415

(millions) users.416

Personalization via the linear layer only - We417

experiment with only training the linear classifica-418

tion layer. It achieves F1-score of 71.12 for SNIPS419

and 52.43 for Clinc, significantly underperform the420

full fine-tuning approach but only requiring per421

user 1.5K parameter.422

Personalization via Zeroshot - We also investi-423

gate the efficacy of the zeroshot approach. We424

use the TARS zeroshot classifier from (Halder425

et al., 2020), which uses BERT as the underlying426

language model and is pre-trained on a suite of427

datasets including AGNews and DBPedia (Zhang428

et al., 2015). We test the zeroshot performance of429

both the trained TARS classifier and BERT out-of-430

the-box. BERT(OOB) achieves F1-score of 2.99431

and 0.78 on SNIPS and Clinc, respectively, and432

the TARS classifier achieves an F1-score of 35.27433

and 23.98 on SNIPS and Clinc, respectively, which434

are significantly lower than the reported state-of-435

the-art results. This shows that zeroshot approach436

requires significant improvement to reach the level437

of performance needed for production usage.438

6.2 Personalized Adapter 439

Table 3 shows the performance of Personalized 440

Adapters on SNIPS and Clinc. As described in 441

Section 4, we construct Personalized Adapters by 442

selectively insert adapters to a subset of layers in 443

the transformer. We observe that the adapter’s abil- 444

ity to learn personalized knowledge depend heavily 445

on the number and location of the inserted adapters. 446

When only adding adapters to a selected set of 447

layers, we see that inserting adapters to early lay- 448

ers achieve better performance compared to later 449

layers, given the same number of adapters. Specif- 450

ically, inserting adapters for the first half of the 451

BERT model (1-6 layers) outperform inserting 452

adapters to the second half (7-12). Moreover, if 453

the situation only allows for a single transformer 454

layer to be augmented with new weights, adding 455

adapter to first layer outperforms the last layer. 456

Limitation and Trade-off for Production In 457

Personalized Adapters, personalized layers and 458

original layers are interleaved and the model needs 459

to switch between them many times during an infer- 460

ence. This makes it challenging to have many PAs 461

live in production to share the same base model. In 462

addition, the tightly integrated models require the 463

personalized weights and the original model to be 464

co-located in the same environment, limiting the 465

possible deployment configurations, e.g. deploying 466

personalized weights on user’s devices and sharing 467

the base model in the cloud. When only augment- 468

ing selective layers, those layers can be replicated 469

across users to create a more compartmentalized 470

approach, at the cost of accuracy. Under this ap- 471

proach, the most scalable design is applying PAs 472

on the first layer or first several layers. 473

6.3 Personalized Prefix 474

Table 5 shows the result of Personalized Prefix. 475

Similar to PA, we construct variations of Personal- 476

ized Prefx by applying prefixes to different layer 477

combinations. Overall, PP achieves similar perfor- 478

mance as PA. However, PP requires significantly 479

more parameters per user. In addition, at lower 480

parameter count, PA outperforms PP with less pa- 481

rameters per user. We also observe that applying 482

prefixes at early layers of the transformers yields 483

higher accuracy than early layers, similar to PA. 484

Limitation and Trade-off for Production Per- 485

sonalized Prefix approach requires 9.87M parame- 486

ters (37MB) per user when all layers are augmented. 487

This is a substantial amount of parameters when 488

considering potentially scaling to millions of users. 489

However, this technique has the unique property 490

6



Naive Personalization Approach
# Params

/ User
Size

/ User
SNIPS

F1 / Acc.
Clinc

F1 / Acc.

ZeroShot BERT NA NA 2.99 / 1.60 0.78 / 0.47
TARS NA NA 35.27 / 26.70 23.98 / 23.67

Fine-tuning
LM + Linear Layer

BERT 109M 417MB 98.61 / 98.61 95.74 / 95.07
TARS 109M 417MB 98.13 / 98.06 95.22 / 94.27

Fine-tuning
Linear Layer Only

BERT 1.5K 7KB 68.70 / 58.67 52.43 / 50.27
TARS 1.5K 7KB 71.12 / 63.11 33.27 / 33.20

Table 2: F1 score and accuracy of zeroshot, fine-tuning the LM + linear head and fine-tuning the linear head
only, evaluated on SNIPS and Clinc-150 datasets. We also show the number of parameters that are required to
be fine-tuned for each approach, as well as the size of the personalized model to be managed for each user as a
representation of the scalability of each approach.

Personalized
Adapter

# Params
/ User

Size
/ User

SNIPS
F1 / ACC.

Clinc
F1 / ACC.

Full (1-12) 894K 3.6MB 99.02 / 99.02 89.13 / 89.13
1st half (1-6) 447K 1.8MB 98.19 / 98.19 89.26 / 89.26

2nd half (7-12) 447K 1.8MB 98.54 / 98.54 89.33 / 89.33
last layer (12) 74.5K 0.3MB 97.22 / 97.22 64.80 / 64.80
first layer (1) 74.5K 0.3MB 98.06 / 98.05 82.00 / 82.00

Table 3: Performance and size of personalized adapters.

Personalized
Prefix

# Params
/ User

Size
/ User

SNIPS
F1 / ACC.

Clinc
F1/ ACC.

Full (1-12) 9.87M 37MB 98.95 / 98.95 91.80 / 91.80
1st half (1-6) 4.94M 19MB 98.74 / 98.75 89.40 / 89.40

2nd half (7-12) 4.94M 19MB 98.13 / 98.12 88.70 / 88.60
last layer (12) 823K 3.1MB 95.61 / 95.63 61.04 / 61.06
first layer (1) 823K 3.1MB 97.45 / 97.43 80.55 / 80.53

Table 4: Performance and size of personalized prefix.

where the prefix weights can be stored on the user491

side and then pass to the base model along with492

the input thus achieving complete compartmental-493

ization of the personalized weights (Li and Liang,494

2021). In a production settings, each user’s prefix495

weights can be stored in a separate database and496

during inference, first fetch the prefix weights and497

then send it to the shared base model. Note that498

this approach introduces an additional inference499

latency overhead for the step of fetching the prefix500

weights for the querying user.501

6.4 Personalized Head502

For PH, we experiment with a wide range of con-503

figurations by varying the hidden dimension of the504

feed-forward layer and the number of attention505

heads in the PH. For brevity, we include results for506

configurations with hidden dimensions from 128 to507

2048 and # attention heads of 2, 4, and 8. Results508

for additional configurations are included in the509

Appendix. We observe that PHs, across all config-510

urations, significantly outperform fine-tuning only511

the linear layer on both datasets. When comparing512

to the baseline of fine-tuning the entire model stack513

of the base language model and the linear output514

layer, PH achieves similar results for the SNIPS515

dataset, while requiring orders of magnitude less516

training cost. PH performs similarly as PA and 517

PP on SNIPS, while underperforms the previous 518

two approaches on Clinc, which is a more diffi- 519

cult dataset. As for scalability, PH requires less 520

parameters than all of PP configurations except for 521

single layer prefix and requires more parameters 522

than PA. We have included a deep dive into how to 523

effectively design and train a PH in the Appendix. 524

Limitation and Trade-off for Production PHs 525

are completely detached from the base model and 526

inference uses both models in combination to gen- 527

erate its prediction. By having a simple and clear 528

boundary between the base model and the person- 529

alized, PH makes it trivial to share the base model 530

among many users, using existing out-of-the-box 531

model implementation. It also enables more flex- 532

ible deployment options, such as cloud and edge 533

collaboration which has been shown to improve 534

latency and energy efficiency (Kang et al., 2017), 535

where PH is deployed on user’s own mobile/edge 536

device while keeping the large-scale base model in 537

the cloud. 538

7 Discussion 539

We compare across the three personalization tech- 540

niques and summarize their advantages and disad- 541

vantages in different production scenarios. 542

Personalized Adapters (PA) is the most 543

parameter-efficient approach, achieving the highest 544

accuracy per parameter. It also slightly outperforms 545

the other two techniques and the full fine-tuning 546

baseline for the simpler SNIPS dataset. The disad- 547

vantage of this approach is the difficulty to share 548

one base model across many users when multiple 549

layers are augmented with PA. Therefore, an option 550

here to use the last layer PA variant and replicate 551

it across users, when dealing with low complex- 552

ity personalization tasks and compute resources is 553

limited. 554

Personalized Prefix (PP) achieves the highest ac- 555

curacy among all three approaches but it requires 556
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Model
# Params

/ User
Size

/ User
SNIPS

F1 / ACC.
Clinc

F1 / ACC.

Personalization Head (PH)
w/ frozen LM

Hidden Dim # Attn. Heads

2048
8

5.52M 21MB
96.52 / 96.12 76.36 / 75.93

4 97.18 / 96.74 76.46 / 76.47
2 97.33 / 97.16 76.36 / 75.93

1024
8

3.94M 15MB
97.46 / 97.09 75.07 / 74.40

4 96.76 / 96.39 75.82 / 75.73
2 96.77 / 96.67 76.61 / 76.60

512
8

3.15M 12MB
97.05 / 97.02 75.95 / 76.33

4 96.26 / 95.49 70.79 / 71.20
2 96.94 / 96.74 75.29 / 75.27

256
8

2.76M 11MB
95.90 / 95.70 66.99 / 67.53

4 95.64 / 95.15 68.64 / 67.87
2 97.06 / 96.32 67.68 / 67.13

128
8

2.57M 9.8MB
95.32 / 95.28 63.43 / 64.53

4 96.32 / 96.32 62.70 / 63.67
2 96.36 / 96.36 63.82 / 64.60

Table 5: F1 score and accuracy of personalization head.

the most parameters per user. The accuracy ad-557

vantage is most prominent on harder tasks, such558

as Clinc-150. Therefore, Personalized Prefix is559

the preferred solution for more sophisticated per-560

sonalization tasks with less demanding scalability561

requirement (e.g., smaller user count and/or more562

compute resources available).563

Personalized Head (PH) represents an unique po-564

sition among the three personalization techniques.565

It achieves better or similar performance than PA566

and PP on the SNIPS dataset and under-perform567

them on the Clinc dataset. Because of its com-568

plete compartmentalized design, PH is the easiest569

to deploy for production. It also enable on-device570

deployment and training of the personalized mod-571

ule, which protect privacy of user’s data, while the572

other techniques require the personalized weights573

to co-locate with the base model.574

8 Related Work575

One of the most common solutions to many natural576

language understanding problems today is leverag-577

ing large-scale pre-trained transformer-based lan-578

guage models (Devlin et al., 2018; Liu et al., 2019)579

which are typically trained on language understand-580

ing objectives such as Masked Language Mod-581

eling and Next Sentence Prediction. These lan-582

guage models are then fine-tuned for a specific583

task. This transfer of learning to the task of interest584

is achieved by tuning all model weights on that new585

task. The performance of these LMs have shown586

to scale with model size (Kaplan et al., 2020), re-587

sulting in massive models consisting of billions of588

parameters (Brown et al., 2020; Raffel et al., 2020;589

Sanh et al., 2021). When applied to the online set-590

ting of personalization training, the applicability591

of these language models is severely constrained592

as it results in a dedicated model for each user.593

This section explores existing works improving the 594

applicability of transformer models at scale. 595

Zero-shot learning approaches aim to provide 596

generalized models for a range of language-based 597

tasks without needing additional training steps re- 598

quired by traditional transfer learning approaches. 599

Recent approaches to this problem frame this as 600

a text-to-text generation task (Brown et al., 2020; 601

Raffel et al., 2020; Sanh et al., 2021) with focuses 602

on prompt design (Perez et al., 2021; Khashabi 603

et al., 2020). While shown to be effective in tasks 604

such as QA and summarization, zero-shot perfor- 605

mance is still lacking when it comes to text clas- 606

sification (Halder et al., 2020; Wenpeng Yin and 607

Roth, 2019). This is further shown in our zero-shot 608

experimental results. Halder et al. (2020) explores 609

the shortcomings of the existing transfer learning 610

mechanisms for text classification, proposing the 611

formalization of text classification as a general bi- 612

nary classification problem. 613

9 Conclusion 614

In this work, we introduce and define a new re- 615

search problem, Personalized Intelligence (PI). 616

PI is the problem of creating customized AI ex- 617

perience that is tailored to each individual user. 618

PI brings a new host of challenges for existing 619

fine-tuning techniques, increasing the pressure on 620

model scalability. We examine a landscape of per- 621

sonalization techniques and investigate their per- 622

formance and trade-off and present limitations and 623

considerations for using each technique under pro- 624

duction level constraints. Finally, we compare 625

across all techniques to provide concrete recom- 626

mendations on the best approach for Personalized 627

Intelligence given various production scenarios. 628

8



References629

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif630
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.631
Flair: An easy-to-use framework for state-of-the-art632
nlp. In Proceedings of the 2019 Conference of the633
North American Chapter of the Association for Com-634
putational Linguistics (Demonstrations), pages 54–635
59.636

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-637
ton. 2016. Layer normalization. arXiv preprint638
arXiv:1607.06450.639

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie640
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind641
Neelakantan, Pranav Shyam, Girish Sastry, Amanda642
Askell, Sandhini Agarwal, Ariel Herbert-Voss,643
Gretchen Krueger, Tom Henighan, Rewon Child,644
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,645
Clemens Winter, Christopher Hesse, Mark Chen, Eric646
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,647
Jack Clark, Christopher Berner, Sam McCandlish,648
Alec Radford, Ilya Sutskever, and Dario Amodei.649
2020. Language models are few-shot learners.650

Alice Coucke, Alaa Saade, Adrien Ball, Théodore651
Bluche, Alexandre Caulier, David Leroy, Clément652
Doumouro, Thibault Gisselbrecht, Francesco Calta-653
girone, Thibaut Lavril, et al. 2018. Snips voice plat-654
form: an embedded spoken language understanding655
system for private-by-design voice interfaces. arXiv656
preprint arXiv:1805.10190.657

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and658
Kristina Toutanova. 2018. Bert: Pre-training of deep659
bidirectional transformers for language understand-660
ing. arXiv preprint arXiv:1810.04805.661

Dashan Gao, Yang Liu, Anbu Huang, Ce Ju, Han Yu,662
and Qiang Yang. 2019. Privacy-preserving hetero-663
geneous federated transfer learning. In 2019 IEEE664
International Conference on Big Data (Big Data),665
pages 2552–2559.666

Kishaloy Halder, Alan Akbik, Josip Krapac, and Roland667
Vollgraf. 2020. Task-aware representation of sen-668
tences for generic text classification. In Proceedings669
of the 28th International Conference on Computa-670
tional Linguistics, pages 3202–3213.671

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-672
Kirkpatrick, and Graham Neubig. 2021. Towards a673
unified view of parameter-efficient transfer learning.674
CoRR, abs/2110.04366.675

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,676
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-677
mundo, Mona Attariyan, and Sylvain Gelly. 2019.678
Parameter-efficient transfer learning for nlp.679

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan680
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu681
Chen. 2021. Lora: Low-rank adaptation of large682
language models. CoRR, abs/2106.09685.683

Yiping Kang, Johann Hauswald, Cao Gao, Austin 684
Rovinski, Trevor Mudge, Jason Mars, and Lingjia 685
Tang. 2017. Neurosurgeon: Collaborative intelli- 686
gence between the cloud and mobile edge. ACM 687
SIGARCH Computer Architecture News, 45(1):615– 688
629. 689

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. 690
Brown, Benjamin Chess, Rewon Child, Scott Gray, 691
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 692
Scaling laws for neural language models. CoRR, 693
abs/2001.08361. 694

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab- 695
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh 696
Hajishirzi. 2020. Unifiedqa: Crossing format bound- 697
aries with a single qa system. 698
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A Appendix789

A.1 How to effectively train a PH790

We conduct experiments aimed at understanding791

the learning behavior of PHs and gain insights into792

how to design and deploy an effective PH for real-793

world use cases. We aim to answer the following794

questions: 1) How to effectively train PHs in pro-795

duction? 2) How does the PH configuration affect796

its learning behavior? 3) Do larger PHs achieve797

better performance and does there exist a sweet798

spot of PH design that is the most compute and799

data efficient?800

Impact of Data vs. Epoch on Training PHs801

We study the impact of the scale of training data802

and the number of training epochs on the PH per-803

formance. In real-time training in production, there804

is often limited training data and training cycles805

available. Therefore, it is imperative to understand806

how to train a PH in a compute and data efficient807

manner. To this end, we construct a SNIPS sub-808

dataset by random sampling 100 training examples809

per class (1400 samples in total) and keep the full810

SNIPS test set. We train the spectrum of PH de-811

signs for 50 epochs and then 50 more epochs (100812

epochs in total) and record the test set F1-score813

at both points. We then select another 100 train-814

ing samples per class to add to the training set and815

repeat the same experiment. Table 6 shows the av-816

erage F1 scores, as well as improvement gained by817

increasing training data, training epochs, and both.818

We observe that increasing the training data from819

100 per class to 200 per class provides a signifi-820

cantly higher F1 score increase (+19.85 on aver-821

age), compared to training for more epochs (+5.98822

average). This behavior is consistent across the var-823

ious PH configurations. This is intuitive because824

100 training samples/class represents only 5.3% of825

the full SNIPS training set and does not provide ro-826

bust coverage of the problem space. Increasing the827

training data scale should be the priority over more828

training iterations in the early stages of applying a829

PH to a personalized problem.830

PH Design Analysis Two main design choices831

for PHs are the hidden dimension of the encoder832

block and the number of attention heads in the833

multi-attention layer. We study how these design834

choices impact the learning behavior of the PH. We835

conduct a set of experiments where we gradually836

increase the amount of training data or epochs and837

measure the F1-score at each stopping point. This838

is to simulate a training setup in production, where839

the model gradually gets exposed to more training840

data as the applications collect more personalized 841

data from the users. 842

Hidden Dimension Size Figure 4 shows the F1 843

score of PHs with different hidden dimensions as 844

they are trained with more epochs on the same 845

amount of training data. We experiment with 50, 846

100, 150, and 200 training examples per class for 847

25, 50, 75, and 100 epochs. Conversely, Figure 5 848

shows the F1 score of the same suite of PHs as they 849

are trained with more training examples for the 850

same number of training epochs. We make several 851

observations. 852

First, we observe that when exposure to training 853

data is limited in the early stages of training, PH 854

training can exhibit unpredictable behavior. This 855

is shown in the leftmost graphs of Figure 4 and 5, 856

where the model performance is not improved with 857

additional training data or more training epochs. 858

Furthermore, larger PHs perform better than 859

smaller PHs but with diminishing returns at higher 860

ends, indicating a sweet spot of PH design. We 861

observe 512 to be the sweet spot of PH design 862

for SNIPS as it performs better or similar to the 863

other configurations across all experiments. This 864

finding is corroborated with results on the Clinc- 865

150 dataset. Figure 6 shows the F1 score of PHs 866

with varying hidden dimensions on both SNIPS and 867

Clinc-150. We observe similar trends for dimin- 868

ishing return in performance for Clinc as the PH 869

design gets larger. Similarly, 512 is the inflection 870

point of F1 score improvement, making it the sweet 871

spot PH design for Clinc. Furthermore, we observe 872

a slower rate of F1 score improvement with respect 873

to hidden dimension size for Clinc than SNIPS. 874

This can be explained with the observation that 875

Clinc is a more diverse and challenging task with 876

significantly more classes than SNIPS, as described 877

in Section 5.2, 878

# of Attention Heads We study the impact of at- 879

tention heads on PHs performance. Figure 7 shows 880

F1 score w.r.t hidden dimensions per attention head. 881

We follow the design in (Vaswani et al., 2017) 882

where the hidden dimensions of the feed-forward 883

layer are effectively distributed evenly among the 884

available attention heads. We observe that PHs 885

achieve better performance with higher hidden di- 886

mensions per head but eventually see diminishing 887

returns. 888

A.2 Scalability 889

We study the scalability of the PH approach and 890

its impact on production deployment. To help us 891

holistically evaluate a personalization approach, 892
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we first introduce a new metric, Personalization893

Efficiency (PE):894

PE “
F ´ score2

Training Cost ˆ Model Size
(9)895

This new metric considers both the model perfor-896

mance and the computation requirements of train-897

ing and inference. We use the number of trainable898

parameters as an approximation for training cost in899
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Figure 7: F1 score of PH w.r.t. hidden dims per head

this study. Figure 8 shows the efficiency of 4 PH 900

configurations normalized to the fine-tuning BERT 901

baseline. We show that PHs achieve efficiency up 902

to 155X compared to the fine-tuning baseline. 903

Furthermore, for SNIPS we observe smaller PHs 904

generally measure higher in efficiency than larger 905

PHs but see a diminishing return. For Clinc, 512 906

achieves the highest efficiency of the PHs tested. 907

This corroborates our recommendation earlier that 908
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Hidden Dims # Params Size
epoch=50

# data/class=100
epoch=100

# data/class=100
epoch=50

# data/class=200
epoch=100

# data/class=200
2048 2.7M 10.5MB 65.92 70.43 (+4.50) 78.12 (+12.20) 92.99 (+27.70)
1024 3.2M 12.0MB 57.42 65.39 (+7.97) 80.17 (+22.75) 93.72 (+36.30)
512 3.9M 15.0MB 61.75 67.01 (+5.26) 83.72 (+21.97) 93.99 (+32.24)
256 5.5M 21.0MB 57.40 63.58 (+6.18) 79.85 (+22.45) 94.58 (+37.18)

Table 6: F1 score (and differential) with increasing training data and/or training for more epochs

512 is the sweet spot for PH design.909
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Figure 8: Personalization Effi-
ciency
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Figure 9: Data Scala-
bility

We also quantify the potential storage overhead910

required for personalized models. Figure 9 shows911

the additional storage overhead required by the per-912

sonalized models per individual user relative to the913

existing user data in production. We use Gmail914

as an example application. We calculate approx-915

imately the current per-user data usage based on916

a report that Gmail user creates up to 1.4MB of917

data per day and 3 years is the average account918

lifetime (ZDNet, 2012). Figure 9 shows that the919

proposed PHs constitute 1% - 1.5% of additional920

storage overhead across all 4 sizes, while the fine-921

tuning baselines would incur around 40% addi-922

tional storage overhead per user.923

A.3 More PH configurations924

hidden dim # attn. heads SNIPS Clinc

64
8 95.89 57.85
4 96.32 54.41
2 96.03 56.60

32
8 96.32 51.37
4 96.24 50.83
2 95.15 46.92

16
8 94.87 49.92
4 94.43 49.99
2 94.94 50.28

8
8 83.09 52.58
4 80.86 52.66
2 86.34 53.29

Table 7: F1 score of PHs with smaller sizes.

Table 7 shows the F1 score of PHs with 64, 32,925

16, and 8 hidden dimensions, on SNIPS and Clinc926

datasets. This is an extension to the result shown927

in Table 5. We observe similar trends carry over to928

this set of even smaller PHs. This shows that even929

a tiny PH can adapt LM well to the SNIPS task. On 930

the other hand, the smaller PHs are not as effective 931

for the more challenging Clinc datasets. 932

A.4 Training for more epochs on Clinc 933

Table 8 shows the F1 scores of PHs of 4 different 934

sizes on Clinc when training for an additional 50 935

epochs (100 epochs in total). This shows that PHs 936

performance continues to improve with more train- 937

ing iterations, indicating that continuing training 938

for more iterations are beneficial in improving PH 939

performance. 940

hidden dim # attn. heads Clinc

2048
2 78.29
4 77.25
8 77.78

512
2 75.82
4 75.05
8 74.98

128
2 65.29
4 65.72
8 63.63

32
2 51.35
4 53.24
8 52.84

Table 8: F1 score of PHs trained on Clinc-150 dataset
for an additional 50 epochs (100 epochs in total)

A.5 Analyzing # of attention heads 941

Figure 10 and 11 analyze the impact of # attention 942

heads on the performance of PHs. We conduct ex- 943

periments similar to that in Section A.1. We grad- 944

ually increase the amount of training data while 945

holding the training epochs fixed and measure the 946

F1 score at each stopping point, and vice versa. We 947

observe that, compared to hidden dimension sizes, 948

# of attention heads has less effect on the learning 949

behavior and capacity of the PHs. 950
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Figure 10: With the same number of training epochs,
the impact of training data on performance.

Figure 11: With the same amount of training examples
per class, the impact of epochs on performance.
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