Personalized Transformers for Everyone

Anonymous ACL submission

Abstract

Personalized Intelligence (PI) is the problem of provid-
ing customized Al experiences tailored to each individ-
ual user. A related problem is the compartmentalization
of intelligence that maintains a partition between the
personalized and the general models. Existing personal-
ization approaches involve fine-tuning pre-trained mod-
els to create new customized models. However, these
require a significant amount of computation to train,
which scales with model size and the number of users,
inhibiting PI to be realized widely. A compartmental-
ized approach enables a small model to be specialized
for each individual user, which needs to be used to-
gether with a larger model to provide personalization.
By separating personalized and general models, we en-
able higher accuracy, scalability, and stronger privacy
guarantees. In this paper, we aim to design a compart-
mentalized personalization approach that can scale to
millions of users and beyond. We investigate the land-
scape of model fine-tuning techniques and construct new
design adaptations based on the requirements of PI. We
then introduce Personalized Head (PH), a new model
training/inference framework designed for scalable PIL.
We explore the design space of these techniques and
evaluate their efficacy under various production-level
constraints. Specifically, we break down the trade-off
between accuracy, scalability and production deploy-
ment limitations. We present several production-ready
personalization approaches suited for various produc-
tion use case scenarios.

1 Introduction

Personalized Intelligence (PI) is the problem of
providing unique and customized Al experience
tailored for each individual user. Today’s Al in
production is often served with an unified model
shared among all users and the experience remains
largely homogeneous across users. However, cer-
tain problems are highly personal and the task
scope can vary from user to user, which limits the
effectiveness of this single model approach. For
instance, in productivity software, users often use
personalized category labels and tags to organize
their to-do items. For the task of classifying a new
unseen item to a category, a shared model is limited

User 1 Personalized Model

Full Fineadnsd
Language Model

Traditional
Fine-tuning

User 1

User 1
Compartmentalized

Personalization %
Frozen
Shared
[Pre-trained Language Model J

Figure 1: Full-model fine-tuning approach vs. compart-
mentalized personalization training approach.

as each user can have unique category labels and
can interpret them differently. More PI use case
examples are described in Section 2.

In order to capture the user-specific knowledge,
PI tasks require personalized weights and module
to learn from user-specific data. This presents sev-
eral key requirements for solving PIs. First, the
training of the personalized models needs to be
lightweight and fast, as they often happen in an
online settings. Second, the personalized models
need to be parameter efficient. The amount of per-
sonalized models scales with the number of users,
which can be millions or even billions, so the per-
sonalized model size needs to be small so they can
be stored and served at large scale. Third, the per-
sonalized weights need to be compartmentalized
from the original model, in order to protect the pri-
vacy of user data and maintain the integrity of each
user’s model quality.

The goal of this paper is to design an approach
for achieving personalized intelligence at the pro-
duction scale of millions of users and beyond. We
examine a landscape of personalization techniques
and aim to answer the following research questions:

1. How scalable can we achieve with the current
landscape of compartmentalized personaliza-
tion training techniques?

2. What are the design knobs of each technique
and what kind of trade-off do they represent
in the design space?

3. How do the techniques compare under various

production level constraints?

We investigate the current landscape of
parameter-efficient fine-tuning techniques, includ-
ing Adapters (Houlsby et al., 2019) and Prefix Tun-
ing (Li and Liang, 2021). We identify key limita-
tions of these approaches to be the compartmen-
talization of the personalized weights as they are
intertwined with the layers and weights of the orig-
inal model. In addition, these approaches are de-
signed for task-level fine-tuning and it remains an
open question whether they are scalable enough
for creating user-level personalized models. To ad-
dress these, we make two contributions. We first
construct new design adaptations specifically for
personalization, namely Personalized Adapter (PA)
and Personalized Prefix (PP). Secondly, we propose
anew model training and inference framework, Per-
sonalized Head (PH), specifically for personaliza-
tion at scale. In PH, the personalized weights are
completely separated from the original base model.

We explore the design space of all three tech-
niques (PA, PP and PH) and compare their ac-
curacy and scalability. We found that Personal-
ized Prefix (PP) outperforms Personalized Adapter
(PA) and Head (PH) when no deployment con-
straints are considered and all layers of the original
model are augmented with new weights. On the
other hand, under production level deployment con-
straints, there are several viable options across the
three techniques, each with unique advantages de-
pending on the use case.

2 Personalized Intelligence

We describe in details the concept of Personalized
Intelligence and provide three concrete example
use cases that can be found in production today.

2.1 Definition

Personalized Intelligence (PI) is the problem of
creating unique and customized experience of an
Al capability for each individual user. To provide
experience tailored to each user, PI requires user-
specific weights that are trained on user-specific
data. The user-specific weights also serve as com-
partmentalization for the learnt knowledge of each
user to not influence and affect other users’ mod-
els and experience. PI requires every user-specific
models to be query-able and incoming requests are
routed accordingly based on their source. This cre-
ates significant scalability challenges for traditional
fine-tuning approach. Specifically, it is not feasible
to have full size model replicas for each user due to
the ever increasing size of state-of-the-art models.

A similar problem that has been studied recently
is task-specific fine-tuning (Houlsby et al., 2019;
He et al., 2021; Li and Liang, 2021; Hu et al., 2021).
While both problems involve adapting pre-trained
models to new data, task-specific fine-tuning gener-
ates one model per task and only that model needs
to be hosted and served to the users. In contrast,
in personalized intelligence, unique weights and
learning is required for each user and total num-
ber of query-able models scales with number of
users. Furthermore, the task scope is fully defined
at the model creation time for task-specific fine-
tuning, while for personalized intelligence, part of
the problem scope is unique for each user.

In summary, Personalized Intelligence tasks gen-
erally have one or more of the following character-
istics:

* Part of the problem scope is user-specific and
not fully defined at model creation and pre-
training time. The scope can also evolve over-
time, pre- and post-production deployment.

* Unique weights are required on a user-by-user
basis to capture the personalized knowledge
of each user.

* The knowledge learnt from the user-specific
data needs to be compartmentalized as to
avoid potentially contaminating the behavior
of other users’ models and experience.

2.2 Example use-cases of PI

We describe three example production use cases of
Personalized Intelligence, as illustrated in Figure 2.

Category Prediction in Productivity Tools - In
productivity apps such as Todoist and OmniFocus,
users are encouraged to create and organize their
tasks into custom categories or tags (e.g., work,
family, hobbies, etc). The task of classifying an
item to a category/tag by learning from past user be-
havior is an example of Personalized Intelligence,
as the category labels can be drastically different
between users and are not fully defined before-
hand (Figure 2a). A successful category prediction
model needs to train on each user’s data to capture
user’s personal preference. Furthermore, this per-
sonalized knowledge need to be compartmentalized
to avoid affecting other users.

Intent Classification in Dialogue Systems - For
intent classification in dialogue systems, each state
has its own set of candidate intents correspond-
ing to the set of next possible states, as shown in
Figure 2b. Based on the user, the map of dialogue
states can also be different and as a result, the scope

(Wovk) frofesswonﬁ‘

Stuff
r Y= sur”)
el (Family <FunStuff>

Mise Stufe)
\MISC Stuﬁ)

(payaon) Y (Workout\
< \Roulme /

(" side

“\ Husﬂe/“ K/olumeenng

(Chores) Wealhev
J

(Kids)
>
intents: traffic,

order_uber

(a) Each user use unique task cate-

/

Base Model

intents: weather,
traffic, order_uber

intents: confirm, cancel

Cancel

Uber
onfirmation|

(c) Federated learning creates

gories/tags to organize their items in a (b) State-aware classifier have unique candidate customized model based on pro-

todo list app.

intents per state and per user.

prietary data.

Figure 2: Example use cases of Personalized Intelligence (PI) in production today.

of the intent classification for a given user is unique.
Furthermore, the set of candidate intents generally
evolve and grow as new topics and capabilities
are introduced. A fully built-out dialogue system
can feature hundreds or more states (Larson et al.,
2019), which combined with the conversation paths
unique to each user, can lead to a large number of
unique classification problems within one dialogue
system. A personalized intent classification model
is customized to the context of each state and each
user and trained to focus on the state’s candidate
intents and specific type of utterances encountered
from a given user.

Federated Learning - The goal of federated
learning is to train a central model based on
data that is distributed over a large number of
clients (Konec¢ny et al., 2016) (Figure 2¢). Clients
independently compute model updates based on
local data, and client-side updates are eventually
aggregated to update the central model. The orig-
inal motivation for this technique was driven by
the needs of distributed systems, where learning
takes place based on data at the edge (e.g. in mo-
bile phones) which may not always be connected
to the central model. Follow-on work (Gao et al.,
2019) emphasized the privacy-preserving aspects
of federated learning, as the training data itself does
not need to leave its original location at the edge.
Personalized Intelligence techniques can be used
to support federated learning use-cases, as the in-
formation contained in each personalized model
can be transferred to the general model, if needed,
under user control. Instead of assuming that all
knowledge learned at the edge is going to end up in
the general model, PI approach emphasizes privacy-
preservation and compartmentalization to provide
user-specific inference.

3 Training for Personalization

We define the process of training personalized mod-
els. Let M be a pre-trained language model (LM)
and O); its trainable parameters. Consider the
scenario of fine-tuning for an individual user to
create a personalized model. We define U =
{(D1,L1), (D2, L2), ..., (Dn, L)} as the collec-
tion of personalized tasks where i € [1, ..., N| for
N users, D; is the unique data for user ¢ and L; is
the loss function.

3.1 Traditional Fine-Tuning

When applying model M to a downstream task
T with labelled training data D7, an output layer
K with parameters O is usually appended to M.
Then M and K are trained jointly:

O/, Org «— argmin Lp(Dp;©p,0k) (1)
On Ok

This generates ©7y; and O/x. O/, is the fine-
tuned parameters of M, which are the same size
as ©), but with distinct values. Let Q(©) be the
computation complexity required to train a set of
parameters ©. We then define the training com-
plexity of the above fine-tuning operation as:

Q(Ory) + Q(Ork) (2)

The problem of fine-tuning the model to person-
alize for user ¢ is defined as

O/,i, Ok ; — argmin L;(D;; Op, Ok) (3)
ONr,OK

The aggregated training complexity scales linearly
with the number of users, N:

The collection of model parameters to be stored
scales linearly with N as well:

N

N
PRCARED NI (5)
1

1

3.2 Compartmentalized Personalized
Training

When training compartmentalized and personalized

model for user 7, a new set of weights W; are in-

troduced. During training, the base LM parameters

are frozen and only W; and K are updated:

Ohy, Ok — argmin Ly (Dr; O, Ow, Ok)
Ow,Ok
(6)

Note that, compared to the traditional fine-tuning
defined in Equation 1, no ©/,; is generated. During
inference, O/, O/ is combined with the original
O to generate prediction. The aggregated training
complexity for training the personalized model is:

N N

D QOm) +) Q6Ork) (7
1

1

and the total parameters is:

N N
Onr + DOl + > [0kl (8)
1 1

The main goal for a scalable personalization ap-
proach is minimizing size of W;, which will re-
duce the model size and training cost and increase
the maximum users supported N given a certain
amount of compute resources, and optimizing for
prediction accuracy on the collection of personal-
ized tasks U.

4 Personalization Model Architectures

We describe the landscape of three personaliza-
tion techniques studied in this work, Personalized
Adapter (PA), Personalized Prefix (PP) and Person-
alized Head (PH), as illustrated in Figure 3.

4.1 Personalized Adapters

Personalized Adapter (PA) is constructed based
on the Adapter approach, which involves inserting
small trainable feedforward layers into every layer
of the base transformer model (Houlsby et al., 2019;
Pfeiffer et al., 2021; Hu et al., 2021). During train-
ing, the inserted adapter layers are updated while
the base transformer is frozen. In the context of Per-
sonalized Intelligence, the out-of-the-box adapter

approach are not compartmentalized because the
new layers are interleaved with the layers of the
original model. This limits adapter’s applicability
to training for personalization. Specifically, it is
technically challenging to have many adapters shar-
ing the same base model for inference because the
inference execution flow switches back and forth
between the original model and the adapter.

To address this limitation, we formulate Person-
alized Adapter (Figure 3a), where only a subset
of transformer layers are augmented with adapters.
This way, in production, the augmented layers can
be replicated for each user to create compartmen-
talization and the untouched layers in the original
models can be shared across users for inference. In
order to understand the impact of selectively ap-
plying Adapters, we construct a range of different
PA configurations and evaluate their trade-offs in
Section 6.2.

4.2 Personalized Prefix

The Prefix tuning approach prepends trainable
weight vectors to the keys and values weight matri-
ces of the multi-head attention block in each trans-
former layer (Li and Liang, 2021). The new prefix
vectors are used in the attention calculation for at-
tention heads of every transformer layer. Similar to
Adapters, Prefix tuning has the same compartmen-
talization limitation and we construct Personalized
Prefix, where selected layers are augmented with
the prefix vectors, as shown in Figure 3b. We exper-
iment with a range of different PP configurations
in Section 6.3.

4.3 Personalized Head

Inspired by the above approaches and consider-
ing their limitation, we propose a new framework,
Personalized Head (PH). We propose to append a
single layer transformer module after the base trans-
former. During training, only the PH is updated
and the base model weights are frozen. During
inference, the base model processed the input first
and the output embeddings are sent to the PH to
apply the personalized knowledge and generate the
output. Our intuition is we can aggregate and focus
the personalized knowledge into the PH module
and avoid augmenting any of the base model layers.
Figure 3c shows an overview of the PH architec-
ture.

PH follows the Transformer architecture defined
in the original transformer paper (Vaswani et al.,
2017). Each PH has a multi-head self-attention
layer and two fully connected layers, followed by

(a) Personalized Adapter

Pre-trained LM + Adapters

- (7.6
LB

Attn

Layer 12

Layer 12

Layer 2

Layer 2
Attn
FiN
FFN

User X User X

H
]

Layer 1
Attn
FFN

FFN

Layer 1

Input Input

(b) Personalized Prefix

Output

Pre-trained LM + Prefix Weights

Prefix .
bz Self Attention
Prefix .
\Weight 2 Self Attention
Prefix .
\weight 1 Self Attention

(c) Personalized Head

Output

(FFNN + Softmax |
E f Feed Forward

A A A
Self Attention

Shared Pre-trained LM

% Frozen

Input

Figure 3: Three personalization approaches. The purple colored block in each approach represents the personalized
module for each user. (a) Personalized Adapter insert adapter layers inside selective transformer layers; (b)
Personalized Prefix augment the K,V weight matrices of the self-attention block with new personalized weights in
selective transformer layers; (c) Personalized head attach a new personalized transformer layer after the original

transformer.
Dataset Description # Classes | # Train | # Test
SNIPS | Smart assistants questions 7 13,034 | 1,442
Clinc150 Production VA tasks 150 15,100 | 1,500

Table 1: Datasets

layer normalization (Ba et al., 2016). Dropout (Sri-
vastava et al., 2014) is applied to the output of the
fully connected layers.

To help us explore the PH design space and un-
derstand its key design factors, we parameterize the
size of the hidden dimension of the feed-forward
network in the encoder and the number of atten-
tion heads in the attention layer. We investigate
the impact of these design decisions in detail in
Section 6.4.

S Experiments

To investigate the effectiveness of these techniques,
we apply them to personalize the pre-trained BERT
LM to two new classification tasks as the person-
alized problems. We keep the BERT LM frozen
during personalized training and apply each tech-
nique separately to train on the new data. In this
section, we describe in details the experiments and
dataset setup.

5.1 Universal Binary Classification Task

We focus on personalized classification as the PI
task to evaluate the suite of personalization tech-
niques. We aim to design a personalization frame-
work that is generalizable to arbitrary classification
tasks without requiring modification to the model
architecture. To that end, we formulate the multi-

class classification problem as a series of binary
classification tasks. We concatenate the class label
and the text as input and the output layer generates
a binary True/False prediction with a confidence
score. The class with the most confident True pre-
diction is selected as the classification prediction.
We apply this binary classification across all per-
sonalization approaches.

5.2 Datasets

We use the SNIPS dataset (Coucke et al., 2018)
and Clinc-150 dataset (Larson et al., 2019). We
select SNIPS because its intents cover many com-
mon classification topics and it is a representative
dataset widely studied in the literature. We select
Clinc-150 for its focus on the complexity of pro-
duction use cases. It has 150 intents and features
intents and sentences inspired by real virtual assis-
tants in production. An overview of the datasets is
shown in Table 1. Specifically for Clinc, to make
training and evaluation time more manageable, we
randomly sample 10 examples (out of 30) per class
to construct the test set and include the True ex-
amples and randomly sample 2 False examples for
every True example to construct the training set.
The same train and test set construction is used
across all techniques and experiments.

5.3 Implementation

We use the AdapterHub framework (Pfeiffer et al.,
2020) for the experiment on Adapters and Prefix
Tuning. We implement the PHs using the Flair NLP
framework (Akbik et al., 2019) with an underlying

pytorch runtime (Paszke et al., 2019). We use the
uncased BERT encoder as the base LM (Devlin
et al., 2018) for all three approaches. We train
for 50 epochs (unless noted otherwise) and report
F1 score and accuracy on the test set. In terms of
hyper-parameters for PH, we use a batch size of 16
and a learning rate of 0.02, following the standard
in (Halder et al., 2020).

6 Results

We evaluate the landscape of personalization tech-
niques, including Personalized Adapters (PA), Per-
sonalized Prefix (PP) and Personalized Head (PH).
We aim to understand 1) how scalable can we push
these techniques to be, 2) what are the design knobs
that have the most impact on performance and 3)
how do these techniques compare under production-
level constraints.

6.1 Naive Personalization Approaches

Table 2 shows the results for several naive per-
sonalization approaches. Full Model Fine-tuning
- Fine-tuning both LM and linear layer achieves
strong performance but it requires, for each user,
the training of 109 million parameters which gen-
erates a 417MB model. The large computation
cycles and storage capacity becomes untenable for
production use cases that require scaling to many
(millions) users.

Personalization via the linear layer only - We
experiment with only training the linear classifica-
tion layer. It achieves F1-score of 71.12 for SNIPS
and 52.43 for Clinc, significantly underperform the
full fine-tuning approach but only requiring per
user 1.5K parameter.

Personalization via Zeroshot - We also investi-
gate the efficacy of the zeroshot approach. We
use the TARS zeroshot classifier from (Halder
et al., 2020), which uses BERT as the underlying
language model and is pre-trained on a suite of
datasets including AGNews and DBPedia (Zhang
et al., 2015). We test the zeroshot performance of
both the trained TARS classifier and BERT out-of-
the-box. BERT(OOB) achieves F1-score of 2.99
and 0.78 on SNIPS and Clinc, respectively, and
the TARS classifier achieves an F1-score of 35.27
and 23.98 on SNIPS and Clinc, respectively, which
are significantly lower than the reported state-of-
the-art results. This shows that zeroshot approach
requires significant improvement to reach the level
of performance needed for production usage.

6.2 Personalized Adapter

Table 3 shows the performance of Personalized
Adapters on SNIPS and Clinc. As described in
Section 4, we construct Personalized Adapters by
selectively insert adapters to a subset of layers in
the transformer. We observe that the adapter’s abil-
ity to learn personalized knowledge depend heavily
on the number and location of the inserted adapters.
When only adding adapters to a selected set of
layers, we see that inserting adapters to early lay-
ers achieve better performance compared to later
layers, given the same number of adapters. Specif-
ically, inserting adapters for the first half of the
BERT model (1-6 layers) outperform inserting
adapters to the second half (7-12). Moreover, if
the situation only allows for a single transformer
layer to be augmented with new weights, adding
adapter to first layer outperforms the last layer.

Limitation and Trade-off for Production In
Personalized Adapters, personalized layers and
original layers are interleaved and the model needs
to switch between them many times during an infer-
ence. This makes it challenging to have many PAs
live in production to share the same base model. In
addition, the tightly integrated models require the
personalized weights and the original model to be
co-located in the same environment, limiting the
possible deployment configurations, e.g. deploying
personalized weights on user’s devices and sharing
the base model in the cloud. When only augment-
ing selective layers, those layers can be replicated
across users to create a more compartmentalized
approach, at the cost of accuracy. Under this ap-
proach, the most scalable design is applying PAs
on the first layer or first several layers.

6.3 Personalized Prefix

Table 5 shows the result of Personalized Prefix.
Similar to PA, we construct variations of Personal-
ized Prefx by applying prefixes to different layer
combinations. Overall, PP achieves similar perfor-
mance as PA. However, PP requires significantly
more parameters per user. In addition, at lower
parameter count, PA outperforms PP with less pa-
rameters per user. We also observe that applying
prefixes at early layers of the transformers yields
higher accuracy than early layers, similar to PA.
Limitation and Trade-off for Production Per-
sonalized Prefix approach requires 9.87M parame-
ters (37MB) per user when all layers are augmented.
This is a substantial amount of parameters when
considering potentially scaling to millions of users.
However, this technique has the unique property

Params Size SNIPS Clinc
Naive Personalization Approach / User / User F1/ Acc. F1/ Acc.
BERT NA NA 2.99/1.60 0.78/0.47
ZeroShot

TARS NA NA 35.27/26.70 | 23.98/23.67
Fine-tuning BERT 109M 417MB 98.61/98.61 | 95.74/95.07
LM + Linear Layer TARS 109M 417MB 98.13/98.06 | 95.22/94.27
Fine-tuning BERT 1.5K 7KB 68.70/58.67 | 52.43/50.27
Linear Layer Only TARS 1.5K 7KB 71.12/63.11 | 33.27/33.20

Table 2: F1 score and accuracy of zeroshot, fine-tuning the LM + linear head and fine-tuning the linear head
only, evaluated on SNIPS and Clinc-150 datasets. We also show the number of parameters that are required to
be fine-tuned for each approach, as well as the size of the personalized model to be managed for each user as a

representation of the scalability of each approach.

Personalized # Params Size SNIPS Clinc
Adapter / User / User F1/ACC. F1/ACC.
Full (1-12) 894K 3.6MB | 99.02/99.02 | 89.13/89.13
1st half (1-6) 447K 1.8MB | 98.19/98.19 | 89.26/89.26
2nd half (7-12) 447K 1.8MB | 98.54/98.54 | 89.33/89.33
last layer (12) 74.5K 03MB | 97.22/97.22 | 64.80/64.80
first layer (1) 74.5K 0.3MB | 98.06/98.05 | 82.00/82.00

Table 3: Performance and size of personalized adapters.

Personalized # Params Size SNIPS Clinc
Prefix / User / User F1/ACC. F1/ ACC.
Full (1-12) 9.87M 37MB 98.95/98.95 91.80/91.80
1st half (1-6) 4.94M 19MB 98.74 /1 98.75 89.40/89.40
2nd half (7-12) 4.94M 19MB 98.13/98.12 88.70 / 88.60
last layer (12) 823K 3.1MB 95.61/95.63 61.04/61.06
first layer (1) 823K 3.1IMB 97.45/97.43 80.55/80.53

Table 4: Performance and size of personalized prefix.

where the prefix weights can be stored on the user
side and then pass to the base model along with
the input thus achieving complete compartmental-
ization of the personalized weights (Li and Liang,
2021). In a production settings, each user’s prefix
weights can be stored in a separate database and
during inference, first fetch the prefix weights and
then send it to the shared base model. Note that
this approach introduces an additional inference
latency overhead for the step of fetching the prefix
weights for the querying user.

6.4 Personalized Head

For PH, we experiment with a wide range of con-
figurations by varying the hidden dimension of the
feed-forward layer and the number of attention
heads in the PH. For brevity, we include results for
configurations with hidden dimensions from 128 to
2048 and # attention heads of 2, 4, and 8. Results
for additional configurations are included in the
Appendix. We observe that PHs, across all config-
urations, significantly outperform fine-tuning only
the linear layer on both datasets. When comparing
to the baseline of fine-tuning the entire model stack
of the base language model and the linear output
layer, PH achieves similar results for the SNIPS
dataset, while requiring orders of magnitude less

training cost. PH performs similarly as PA and
PP on SNIPS, while underperforms the previous
two approaches on Clinc, which is a more diffi-
cult dataset. As for scalability, PH requires less
parameters than all of PP configurations except for
single layer prefix and requires more parameters
than PA. We have included a deep dive into how to
effectively design and train a PH in the Appendix.

Limitation and Trade-off for Production PHs
are completely detached from the base model and
inference uses both models in combination to gen-
erate its prediction. By having a simple and clear
boundary between the base model and the person-
alized, PH makes it trivial to share the base model
among many users, using existing out-of-the-box
model implementation. It also enables more flex-
ible deployment options, such as cloud and edge
collaboration which has been shown to improve
latency and energy efficiency (Kang et al., 2017),
where PH is deployed on user’s own mobile/edge
device while keeping the large-scale base model in
the cloud.

7 Discussion

We compare across the three personalization tech-
niques and summarize their advantages and disad-
vantages in different production scenarios.

Personalized Adapters (PA) is the most
parameter-efficient approach, achieving the highest
accuracy per parameter. It also slightly outperforms
the other two techniques and the full fine-tuning
baseline for the simpler SNIPS dataset. The disad-
vantage of this approach is the difficulty to share
one base model across many users when multiple
layers are augmented with PA. Therefore, an option
here to use the last layer PA variant and replicate
it across users, when dealing with low complex-
ity personalization tasks and compute resources is
limited.

Personalized Prefix (PP) achieves the highest ac-
curacy among all three approaches but it requires

Params Size SNIPS Clinc
Model / User / User F1/ACC. F1/ACC.
Hidden Dim | # Attn. Heads
8 96.52/96.12 | 76.36/75.93
2048 4 5.52M 2IMB 97.18/96.74 | 76.46/76.47
2 97.33/97.16 | 76.36/75.93
8 97.46 /97.09 75.07/74.40
1024 4 3.94M 15MB 96.76/96.39 | 75.82/75.73
Personalization Head (PH) z 96.77/96.67 76.61/76.60
w/ frozen LM 8 97.05/97.02 | 75.95/76.33
512 4 3.15M 12MB 96.26 / 95.49 70.79/71.20
2 96.94/96.74 | 75.29/75.27
8 95.90/95.70 | 66.99/67.53
256 4 2.76M 11MB 95.64/95.15 68.64 /67.87
2 97.06/96.32 67.68/67.13
8 95.32/95.28 63.43/64.53
128 4 2.5TM 9.8MB 96.32/96.32 62.70 / 63.67
2 96.36 /96.36 63.82/64.60

Table 5: F1 score and accuracy of personalization head.

the most parameters per user. The accuracy ad-
vantage is most prominent on harder tasks, such
as Clinc-150. Therefore, Personalized Prefix is
the preferred solution for more sophisticated per-
sonalization tasks with less demanding scalability
requirement (e.g., smaller user count and/or more
compute resources available).

Personalized Head (PH) represents an unique po-
sition among the three personalization techniques.
It achieves better or similar performance than PA
and PP on the SNIPS dataset and under-perform
them on the Clinc dataset. Because of its com-
plete compartmentalized design, PH is the easiest
to deploy for production. It also enable on-device
deployment and training of the personalized mod-
ule, which protect privacy of user’s data, while the
other techniques require the personalized weights
to co-locate with the base model.

8 Related Work

One of the most common solutions to many natural
language understanding problems today is leverag-
ing large-scale pre-trained transformer-based lan-
guage models (Devlin et al., 2018; Liu et al., 2019)
which are typically trained on language understand-
ing objectives such as Masked Language Mod-
eling and Next Sentence Prediction. These lan-
guage models are then fine-tuned for a specific
task. This transfer of learning to the task of interest
is achieved by tuning all model weights on that new
task. The performance of these LMs have shown
to scale with model size (Kaplan et al., 2020), re-
sulting in massive models consisting of billions of
parameters (Brown et al., 2020; Raffel et al., 2020;
Sanh et al., 2021). When applied to the online set-
ting of personalization training, the applicability
of these language models is severely constrained
as it results in a dedicated model for each user.

This section explores existing works improving the
applicability of transformer models at scale.

Zero-shot learning approaches aim to provide
generalized models for a range of language-based
tasks without needing additional training steps re-
quired by traditional transfer learning approaches.
Recent approaches to this problem frame this as
a text-to-text generation task (Brown et al., 2020;
Raffel et al., 2020; Sanh et al., 2021) with focuses
on prompt design (Perez et al., 2021; Khashabi
et al., 2020). While shown to be effective in tasks
such as QA and summarization, zero-shot perfor-
mance is still lacking when it comes to text clas-
sification (Halder et al., 2020; Wenpeng Yin and
Roth, 2019). This is further shown in our zero-shot
experimental results. Halder et al. (2020) explores
the shortcomings of the existing transfer learning
mechanisms for text classification, proposing the
formalization of text classification as a general bi-
nary classification problem.

9 Conclusion

In this work, we introduce and define a new re-
search problem, Personalized Intelligence (PI).
PI is the problem of creating customized Al ex-
perience that is tailored to each individual user.
PI brings a new host of challenges for existing
fine-tuning techniques, increasing the pressure on
model scalability. We examine a landscape of per-
sonalization techniques and investigate their per-
formance and trade-off and present limitations and
considerations for using each technique under pro-
duction level constraints. Finally, we compare
across all techniques to provide concrete recom-
mendations on the best approach for Personalized
Intelligence given various production scenarios.

References

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics (Demonstrations), pages 54—
59.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Dashan Gao, Yang Liu, Anbu Huang, Ce Ju, Han Yu,
and Qiang Yang. 2019. Privacy-preserving hetero-
geneous federated transfer learning. In 2019 IEEE

International Conference on Big Data (Big Data),
pages 2552-2559.

Kishaloy Halder, Alan Akbik, Josip Krapac, and Roland
Vollgraf. 2020. Task-aware representation of sen-
tences for generic text classification. In Proceedings
of the 28th International Conference on Computa-
tional Linguistics, pages 3202-3213.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
CoRR, abs/2110.04366.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. CoRR, abs/2106.09685.

Yiping Kang, Johann Hauswald, Cao Gao, Austin
Rovinski, Trevor Mudge, Jason Mars, and Lingjia
Tang. 2017. Neurosurgeon: Collaborative intelli-
gence between the cloud and mobile edge. ACM
SIGARCH Computer Architecture News, 45(1):615—
629.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. 2020. Unifiedqa: Crossing format bound-
aries with a single gqa system.

Jakub Konec¢ny, H. Brendan McMahan, Felix X. Yu,
Peter Richtarik, Ananda Theertha Suresh, and Dave
Bacon. 2016. Federated learning: Strategies for im-
proving communication efficiency. In NIPS Work-
shop on Private Multi-Party Machine Learning.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1311-1316, Hong Kong, China. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems

32, pages 8024-8035. Curran Associates, Inc.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning.

http://arxiv.org/abs/2005.14165
https://doi.org/10.1109/BigData47090.2019.9005992
https://doi.org/10.1109/BigData47090.2019.9005992
https://doi.org/10.1109/BigData47090.2019.9005992
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/2110.04366
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2005.00700
http://arxiv.org/abs/2005.00700
http://arxiv.org/abs/2005.00700
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.48550/ARXIV.2101.00190
https://doi.org/10.48550/ARXIV.2101.00190
https://doi.org/10.48550/ARXIV.2101.00190
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/2105.11447
http://arxiv.org/abs/2005.00247
http://arxiv.org/abs/2005.00247
http://arxiv.org/abs/2005.00247

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulié, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2020): Systems
Demonstrations, pages 46—54, Online. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
Manan Dey, M Saiful Bari, Canwen Xu, Urmish
Thakker, Shanya Sharma Sharma, Eliza Szczechla,
Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin
Yong, Harshit Pandey, Rachel Bawden, Thomas
Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma,
Andrea Santilli, Thibault Fevry, Jason Alan Fries,
Ryan Teehan, Stella Biderman, Leo Gao, Tali Bers,
Thomas Wolf, and Alexander M. Rush. 2021. Multi-
task prompted training enables zero-shot task gener-
alization.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929-1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Jamaal Hay Wenpeng Yin and Dan Roth. 2019. Bench-
marking zero-shot text classification: Datasets, eval-
uation and entailment approach. In EMNLP.

Jack Schofield ZDNet. 2012. Is your Gmail re-
ally worth $3,600? Backup now! https://
www.zdnet.com/article/is—-your—-gmail-
really-worth-3600-backup—now/. [On-
line; accessed 16-Jan-2022].

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS.

10

https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://www.aclweb.org/anthology/2020.emnlp-demos.7
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
http://arxiv.org/abs/2110.08207
https://arxiv.org/abs/1909.00161
https://arxiv.org/abs/1909.00161
https://arxiv.org/abs/1909.00161
https://arxiv.org/abs/1909.00161
https://arxiv.org/abs/1909.00161
https://www.zdnet.com/article/is-your-gmail-really-worth-3600-backup-now/
https://www.zdnet.com/article/is-your-gmail-really-worth-3600-backup-now/
https://www.zdnet.com/article/is-your-gmail-really-worth-3600-backup-now/
https://www.zdnet.com/article/is-your-gmail-really-worth-3600-backup-now/
https://www.zdnet.com/article/is-your-gmail-really-worth-3600-backup-now/

A Appendix

A.1 How to effectively train a PH

We conduct experiments aimed at understanding
the learning behavior of PHs and gain insights into
how to design and deploy an effective PH for real-
world use cases. We aim to answer the following
questions: 1) How to effectively train PHs in pro-
duction? 2) How does the PH configuration affect
its learning behavior? 3) Do larger PHs achieve
better performance and does there exist a sweet
spot of PH design that is the most compute and
data efficient?

Impact of Data vs. Epoch on Training PHs

We study the impact of the scale of training data
and the number of training epochs on the PH per-
formance. In real-time training in production, there
is often limited training data and training cycles
available. Therefore, it is imperative to understand
how to train a PH in a compute and data efficient
manner. To this end, we construct a SNIPS sub-
dataset by random sampling 100 training examples
per class (1400 samples in total) and keep the full
SNIPS test set. We train the spectrum of PH de-
signs for 50 epochs and then 50 more epochs (100
epochs in total) and record the test set F1-score
at both points. We then select another 100 train-
ing samples per class to add to the training set and
repeat the same experiment. Table 6 shows the av-
erage F1 scores, as well as improvement gained by
increasing training data, training epochs, and both.

We observe that increasing the training data from
100 per class to 200 per class provides a signifi-
cantly higher F1 score increase (+19.85 on aver-
age), compared to training for more epochs (+5.98
average). This behavior is consistent across the var-
ious PH configurations. This is intuitive because
100 training samples/class represents only 5.3% of
the full SNIPS training set and does not provide ro-
bust coverage of the problem space. Increasing the
training data scale should be the priority over more
training iterations in the early stages of applying a
PH to a personalized problem.

PH Design Analysis Two main design choices
for PHs are the hidden dimension of the encoder
block and the number of attention heads in the
multi-attention layer. We study how these design
choices impact the learning behavior of the PH. We
conduct a set of experiments where we gradually
increase the amount of training data or epochs and
measure the F1-score at each stopping point. This
is to simulate a training setup in production, where
the model gradually gets exposed to more training

11

data as the applications collect more personalized
data from the users.

Hidden Dimension Size Figure 4 shows the F1
score of PHs with different hidden dimensions as
they are trained with more epochs on the same
amount of training data. We experiment with 50,
100, 150, and 200 training examples per class for
25, 50, 75, and 100 epochs. Conversely, Figure 5
shows the F1 score of the same suite of PHs as they
are trained with more training examples for the
same number of training epochs. We make several
observations.

First, we observe that when exposure to training
data is limited in the early stages of training, PH
training can exhibit unpredictable behavior. This
is shown in the leftmost graphs of Figure 4 and 5,
where the model performance is not improved with
additional training data or more training epochs.

Furthermore, larger PHs perform better than
smaller PHs but with diminishing returns at higher
ends, indicating a sweet spot of PH design. We
observe 512 to be the sweet spot of PH design
for SNIPS as it performs better or similar to the
other configurations across all experiments. This
finding is corroborated with results on the Clinc-
150 dataset. Figure 6 shows the F1 score of PHs
with varying hidden dimensions on both SNIPS and
Clinc-150. We observe similar trends for dimin-
ishing return in performance for Clinc as the PH
design gets larger. Similarly, 512 is the inflection
point of F1 score improvement, making it the sweet
spot PH design for Clinc. Furthermore, we observe
a slower rate of F1 score improvement with respect
to hidden dimension size for Clinc than SNIPS.
This can be explained with the observation that
Clinc is a more diverse and challenging task with
significantly more classes than SNIPS, as described
in Section 5.2,

of Attention Heads We study the impact of at-
tention heads on PHs performance. Figure 7 shows
F1 score w.r.t hidden dimensions per attention head.
We follow the design in (Vaswani et al., 2017)
where the hidden dimensions of the feed-forward
layer are effectively distributed evenly among the
available attention heads. We observe that PHs
achieve better performance with higher hidden di-
mensions per head but eventually see diminishing
returns.

A.2 Scalability

We study the scalability of the PH approach and
its impact on production deployment. To help us
holistically evaluate a personalization approach,

PH Hidden Dimensions

16 32 64 128 —— 256 —— 512 —— 1024 —— 2048
50 exs/class 100 exs/class 150 exs/class 200 exs/class
1.0
0.8 A . . .
[
S
" §7 - - -
-
w
0.4 1 1 1
0.2 4 T T T T T T T 1 T T T T T T T
25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100
Epochs
Figure 4: F1 Score w.r.t # training epochs, for fixed amounts of data.
PH Hidden Dimensions
16 32 64 128 —— 256 —— 512 —— 1024 —— 2048
25 epochs 50 epochs 75 epochs 100 epochs
1.0
0.8 - . . .
[
S
5 0.6 1 1 1
-
w
0.4 1 1 1
0.2 4 T Y T T T T T T T T T T T T T
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
Training Examples Per Class
Figure 5: F1 Score w.r.t # training data, for fixed amounts of epochs.
1.0 1.0
0.9 4 0.9 -
0.8 1 0.8 -
< <
o o
& 0.7 4 % 0.7 1
s T
0.6 1 0.6
051 SNIPS 051 SNIPS
~+— CLINC150 ~+— CLINC150
0.4 T T T T T T T T 0.4 T T T T T T T
64 128 256 512 1024 2048 8 16 32 64 128 256 512

16 32

PH Hidden Dimensions

Figure 6: F1 score of PH w.r.t. hidden dimension size

we first introduce a new metric, Personalization
Efficiency (PE):

F — score?

- Training Cost x Model Size

PE ©)]
This new metric considers both the model perfor-
mance and the computation requirements of train-
ing and inference. We use the number of trainable
parameters as an approximation for training cost in

12

PH - Hidden dimensions per attention head

Figure 7: F1 score of PH w.r.t. hidden dims per head

this study. Figure 8 shows the efficiency of 4 PH
configurations normalized to the fine-tuning BERT
baseline. We show that PHs achieve efficiency up
to 155X compared to the fine-tuning baseline.

Furthermore, for SNIPS we observe smaller PHs
generally measure higher in efficiency than larger
PHs but see a diminishing return. For Clinc, 512
achieves the highest efficiency of the PHs tested.
This corroborates our recommendation earlier that

epoch=50 epoch=100 epoch=50 epoch=100
Hidden Dims # Params Size # data/class=100 | # data/class=100 # data/class=200 | # data/class=200
2048 2.7M 10.5MB 65.92 70.43 (+4.50) 78.12 (+12.20) 92.99 (+27.70)
1024 3.2M 12.0MB 57.42 65.39 (+7.97) 80.17 (+22.75) 93.72 (+36.30)
512 3.9M 15.0MB 61.75 67.01 (+5.26) 83.72 (+21.97) 93.99 (+32.24)
256 5.5M 21.0MB 57.40 63.58 (+6.18) 79.85 (+22.45) 94.58 (+37.18)

Table 6: F1 score (and differential) with increasing training data and/or training for more epochs

512 is the sweet spot for PH design.

BERT H_256
TARS —mmm H_512

- H 1024
- H 2048 40% A

150x q

,_.
N
o
X
w
S
x

100x q

N
o
X

~
a
x

Relative Model Size

v
=3
x

10% A

Personalization Efficiency

N
o
4

[m——— B

-
x

SNIPS Clinc-150

Figure 9: Data Scala-

Figure 8: Personalization Efﬁ—bility

ciency

We also quantify the potential storage overhead
required for personalized models. Figure 9 shows
the additional storage overhead required by the per-
sonalized models per individual user relative to the
existing user data in production. We use Gmail
as an example application. We calculate approx-
imately the current per-user data usage based on
a report that Gmail user creates up to 1.4MB of
data per day and 3 years is the average account
lifetime (ZDNet, 2012). Figure 9 shows that the
proposed PHs constitute 1% - 1.5% of additional
storage overhead across all 4 sizes, while the fine-
tuning baselines would incur around 40% addi-
tional storage overhead per user.

A.3 More PH configurations

hidden dim # attn. heads SNIPS Clinc
8 95.89 57.85

64 4 96.32 54.41
2 96.03 56.60

8 96.32 51.37

32 4 96.24 50.83
2 95.15 46.92

8 94.87 49.92

16 4 94.43 49.99
2 94.94 50.28

8 83.09 52.58

8 4 80.86 52.66
2 86.34 53.29

Table 7: F1 score of PHs with smaller sizes.

Table 7 shows the F1 score of PHs with 64, 32,
16, and 8 hidden dimensions, on SNIPS and Clinc
datasets. This is an extension to the result shown
in Table 5. We observe similar trends carry over to
this set of even smaller PHs. This shows that even

13

a tiny PH can adapt LM well to the SNIPS task. On
the other hand, the smaller PHs are not as effective
for the more challenging Clinc datasets.

A.4 Training for more epochs on Clinc

Table 8 shows the F1 scores of PHs of 4 different
sizes on Clinc when training for an additional 50
epochs (100 epochs in total). This shows that PHs
performance continues to improve with more train-
ing iterations, indicating that continuing training
for more iterations are beneficial in improving PH
performance.

hidden dim Clinc
78.29
77.25
77.78
75.82
75.05
74.98
65.29
65.72
63.63
51.35
53.24
52.84

attn. heads

2048

512

128

32

00 | 00 1|00 B 00)

Table 8: F1 score of PHs trained on Clinc-150 dataset
for an additional 50 epochs (100 epochs in total)

A.5 Analyzing # of attention heads

Figure 10 and 11 analyze the impact of # attention
heads on the performance of PHs. We conduct ex-
periments similar to that in Section A.1. We grad-
ually increase the amount of training data while
holding the training epochs fixed and measure the
F1 score at each stopping point, and vice versa. We
observe that, compared to hidden dimension sizes,
of attention heads has less effect on the learning
behavior and capacity of the PHs.

PH Attenion Heads

2 — 4 — 8
25 epochs 50 epochs
i)
08 4 1 /
06 - ==
——
04 1 4
=
0z T T T T T T T
g 50 100 150 00 50 100 150 200
E " 75 epochs 100 epochs
s P
08 - At p e
Pt
06 4 1
04 4 1
02 T T T T T T T
50 100 150 00 50 100 150 200

Training Examples Per Class

Figure 10: With the same number of training epochs,
the impact of training data on performance.

PH Attenion Heads
2 — 4 — 8

50 exs/class 100 exs/class

02 T T T T T T T
5 50] w5 50] 100

o
2
o " 150 exs/class 200 exs/class
081]
05 / 1
04 4 1
02 = T T T T T T T
5 50 75 0w 25 50 75 100

Epochs.

Figure 11: With the same amount of training examples
per class, the impact of epochs on performance.

