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Abstract We present Improved Max-value Entropy search for Multi-Objective Bayesian optimization

with Constraints (MESMOC+) for the constrained optimization of expensive-to-evaluate

black-boxes. It is based on minimizing the entropy of the solution of the problem in function

space (i.e., the Pareto front) to guide the search for the optimum. Its cost is linear in the

number of black-boxes, and due to its expression, it can be used in a decoupled evaluation

setting in which we chose where and also what black-box (objective or constraint) to evaluate.

Our synthetic experiments show that MESMOC+ has similar performance to other state-of-

the-art acquisition functions, but it is faster to execute, simpler to implement and it is more

robust with respect to the number of samples of the Pareto front.

1 Introduction

Consider the problem of optimizing 𝐾 objectives 𝑓1(x), . . . , 𝑓𝐾 (x) while fulfilling 𝐶 constraints

𝑐1(x), . . . , 𝑐𝐶 (x), over a bounded input space in X ⊂ R𝑑 , where 𝑑 is the dimensionality of X . For

example, we might want to maximize the speed of a robot while minimizing its energy consumption

(Ariizumi et al., 2014), and avoiding breaking any of its joints. Another example is to minimize

simultaneously the classification error and the prediction time of a deep neural network (DNN)

while the DNN is constrained to not exceeding a certain amount of memory.

In these problems, most of the times there is no single optimal point but a set of optimal points

called the Pareto set X★
(Collette and Siarry, 2004). The objective values associated to the points in

X★
constitute the Pareto front Y★

. All the points in X★
are optimal because they are not dominated

by any other point in X . In a minimization context, a point x1 dominates x2 if 𝑓𝑘 (x1) ≤ 𝑓𝑘 (x2),
∀𝑘 ∈ {1, ..., 𝐾}, with at least one strictly minor inequality. Thus, given X★

it is impossible to

improve the value in one objective without deteriorating the other objectives. Moreover, the points

in X★
must be feasible, i.e., they must satisfy 𝑐 𝑗 (x★) ≥ 0, ∀x★ ∈ X★,∀𝑗 = {1, ...,𝐶}. The potential

size of X★
is infinite, so it must be approximated by a finite set of points.

The problems described have three main characteristics. (i) There is no analytical form for

the objectives nor the constraints, i.e., the black-boxes. (ii) The evaluations may be contaminated

by noise. (iii) New evaluations are expensive in some way, e.g., economically or temporally. To

solve this type of problems while minimizing the number of evaluations, one can use Bayesian

optimization (BO) (Brochu et al., 2009). BO methods first use a model to estimate the potential

values of the black-boxes in unexplored regions of the space X . Usually, Gaussian processes

(GPs) (Rasmussen and Williams, 2006) are the models employed (Shahriari et al., 2015). Then, an

acquisition function is used to measure the expected utility of evaluating the black-boxes at each

input point of X given the model’s predictions. The maximizer of the acquisition function is the

next location to evaluate. This process is repeated for a fixed number of iterations. After this,

the models are optimized to obtain an approximate solution of the optimization problem. This

approach is expected to be very useful if the black-boxes are very expensive to evaluate, and the

acquisition function is very cheap to compute (Shahriari et al., 2015).
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In the context of constrained multi-objective BO problems, current acquisition functions are

divided in two groups. Adaptations of expected hyper-volume improvement (EHI) (Emmerich and

Klinkenberg, 2008), and entropy search. The hyper-volume is the space of points above the Pareto

front, assuming minimization, and is maximized by the solution of the optimization problem.

Adaptations of EHI need to deal with an intractable integral from a constrained definition of EHI.

They approximate this integral by Monte Carlo. Examples of these techniques are (Feliot et al.,

2017; Daulton et al., 2020, 2021). However, some of them have problems estimating the acquisition

function, which is zero almost everywhere after a few evaluations (Daulton et al., 2020, 2021).

Moreover, none of these methods can handle decoupled scenarios in which one chooses not only

the next point to evaluate but also what black-box to evaluate next.

PESMOC is an acquisition function of the second group (Garrido-Merchán and Hernández-

Lobato, 2019). PESMOC approximates an intractable expression that evaluates the expected reduc-

tion in the entropy of X★
. For this PESMOC, uses expectation propagation (EP), an approximate

method that is costly and difficult to implement. MESMOC is a simpler and faster alternative to

PESMOC that is based on approximately evaluating the expected reduction in the entropy of the

Pareto front Y★
(Belakaria et al., 2021). Nevertheless, the approximation of MESMOC is very crude

and it simply tries to maximize each objective and constraint independently. Appendix B has more

details about this. Both PESMOC and MESMOC can deal with decoupled evaluations. {𝑃𝐹 }2𝐸𝑆
is another information-based strategy that reduces the entropy of Y★

. It uses variational infer-

ence to approximate the mutual information and it allows for parallel evaluations. If non-parallel

evaluations are considered, {𝑃𝐹 }2𝐸𝑆 is outperformed by our method (Qing et al., 2022).

As an alternative to MESMOC, we provide here a more accurate approximation to the expected

reduction in the entropy of Y★
. We call our method MESMOC+. At each iteration, MESMOC+

chooses to evaluate the point that is expected to reduce the most the entropy of Y★
. Reducing the

entropy of Y★
means that more information about the solution of the problem is available, so we

are closer to finding the problem’s solution (Villemonteix et al., 2009; Hennig and Schuler, 2012).

2 Improved Max-value Entropy Search for Multi-objective BO with Constraints

Let D = {(x𝑛, y𝑛)}𝑁𝑛=1 be the set of evaluations performed up to iteration 𝑁 , where x𝑛 is the point
evaluated in the 𝑛-th iteration and y𝑛 is a vector with the values of the 𝐾+𝐶 black-boxes at x𝑛 , i.e.,
y𝑛 = (𝑓1(x𝑛), . . . , 𝑓𝐾 (x𝑛), 𝑐1(x𝑛), . . . , 𝑐𝐶 (x𝑛)). MESMOC+ tries to reduce the entropy of Y★

after

performing an evaluation at x𝑁+1. Therefore, MESMOC+’s acquisition function is:

𝛼 (x) = 𝐻
(
Y★|D

)
− Ey

[
𝐻

(
Y★|D ∪ {(x, y)}

) ]
, (1)

where 𝐻
(
Y★|D

)
is the entropy of the Y★

, given the current dataset D; 𝐻 (Y★|D ∪ {(x, y)}) is the
entropy of Y★

after including the new data point (x, y) in the dataset; and the expectation Ey [·] is
calculated over the potential values for y at x, according to the GPs.

Evaluating the entropy of Y★
is very challenging. In order to avoid this problem, we follow

(Hernández-Lobato et al., 2016) and rewrite (1) in an equivalent form, as in (Wang and Jegelka,

2017), by noting that (1) is the mutual information between Y★
and y, 𝐼 (Y★

; y) (Hernández-Lobato
et al., 2014, 2016). Therefore, since 𝐼 (Y★

; y) = 𝐼 (y;Y★), we can swap the roles of Y★
and y in (1)

and MESMOC+’s acquisition function becomes:

𝛼 (x) = 𝐻 (y|D, x) − EY★

[
𝐻

(
y|D, x,Y★

) ]
, (2)

where the first term of the r.h.s is the entropy of the current GPs predictive distribution,

which is Gaussian. Namely, 𝐻 (y|D, x) =
∑𝐾
𝑘=1

log(2𝜋𝑒𝑣 𝑓
𝑘
(x))/2 + ∑𝐶

𝑗=1 log(2𝜋𝑒𝑣𝑐𝑗 (x))/2; and
EY★ [𝐻

(
y|D, x,Y★

)
] is the expected entropy of the predictive distribution conditioned to Y★

being

the solution of the problem. This second term is intractable. To approximate the expectation we
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use Monte Carlo sampling and sample Y★
in an equivalent way to how Garrido-Merchán and

Hernández-Lobato (2019) generate samples of X★
. We explain our approach for approximating the

entropy of the conditional predictive distribution in the next section.

2.1 Approximating the Conditional Predictive Distribution
Consider first a noiseless scenario and let f = {𝑓1(x), . . . , 𝑓𝐾 (x)} and c = {𝑐1(x), . . . , 𝑐𝐶 (x)}. The
expression of 𝑝 (f, c|D, x,Y★) is obtained using Bayes’ rule:

𝑝 (f, c|D, x,Y★) = 𝑍−1𝑝 (f, c|D, x)𝑝 (Y★|f, c) , (3)

where 𝑍−1
is a normalization constant, 𝑝 (f, c|D, x) is the predictive distribution for the black-boxes

given D at x, and 𝑝 (Y★|f, c) is the probability that Y★
is a valid Pareto front given f and c. Note

that 𝑝 (f, c|D, x) is simply a product of Gaussians given by the predictive distribution of each GP.

The factor 𝑝 (Y★|f, c) in (3) removes all configurations of the objectives and constraints values,

(f, c), that are incompatible with Y★
being the Pareto front of the problem. Therefore, 𝑝 (Y★|f, c)

must be 0 when c does not violate the constraints (i.e, c does satisfy 𝑐 𝑗 (x) ≥ 0,∀𝑗 ∈ {1, ...,𝐶}), and f
is not Pareto dominated by any f★ ∈ Y★

. Similarly, 𝑝 (Y★|f, c) is 1 if all points f★ in the Pareto front

Y★
dominate f , or if c violates the constraints (i.e. at least one constraint is negative at x). Thus,

𝑝 (Y★|f, c) ∝ ∏
f★∈Y★

(
1 − ∏𝐶

𝑗=0 Θ(𝑐 𝑗 )
∏𝐾
𝑘=0

Θ
(
𝑓 ★
𝑘
− 𝑓𝑘

) )
∝ ∏

f★∈Y★ Ω(f★, f, c) , (4)

where Θ(·) is the Heaviside step function, 𝑓𝑘 = 𝑓𝑘 (x), 𝑐 𝑗 = 𝑐 𝑗 (x), 𝑓 ★𝑘 is the 𝑘-th value of the

vector of values f★ of Y★
and Ω(f★, f, c) = 1 − ∏𝐶

𝑗=0 Θ(𝑐 𝑗 )
∏𝐾
𝑘=0

Θ
(
𝑓 ★
𝑘
− 𝑓𝑘

)
. Note that (4) will

be 1, if Ω(f★, f, c) is 1 for all the f★ in Y★
. To make Ω(f★, f, c) be 1, either

∏𝐶
𝑗=0 Θ(𝑐 𝑗 (x)) or∏𝐾

𝑘=0
Θ

(
𝑓 ★
𝑘
− 𝑓𝑘 (x)

)
must be 0. This happens if all the values of c are greater or equal to 0 or if all

the values of f★ are lower or equal to those of f , except one which must be strictly minor.

The computation of the entropy of (3) is intractable. Therefore, we need to approximate this

distribution. Importantly, we would like the acquisition function to be cheap compared to the cost

of evaluating the black-boxes. For this reason, we use Assumed Density Filtering (ADF) (Boyen

and Koller, 1998; Minka, 2001). ADF simply approximates each non-Gaussian factor in (3) using

a Gaussian. Unlike EP, ADF refines each non-Gaussian factor only one time. Thus, ADF is faster

and simpler than EP. Since the predictive distribution of a GP is Gaussian, the only non-Gaussian

factors are the Ω(f★, f, c) factors in (4). Recall that we assume independence among the objectives

and constraints. Since the Gaussian distribution is closed under the product operation and the

factors Ω(f★, f, c) only involve independent Gaussian random variables, the approximation of (3)

is a factorizing Gaussian. In Appendix C we describe the specific ADF updates.

2.2 The MESMOC+ Acquisition Function
After the execution of ADF, the variances of the objectives and the constraints of the predictive

distribution at x, conditioned to the Pareto frontY★
, are available. Since we use ADF to approximate

Gaussian distributions to (3), the approximate entropy has a similar form to that of 𝐻 (f, c|D, x).
Thus, our approximation of (2) is just 𝐻 (f, c|D, x) minus entropy of 𝑝 (f, c|D, x,Y★). Importantly,

however, as a consequence of the step functions, ADF tends to decrease little the variance of

approximate distributions. Therefore, when the unconditioned variance is small e.g., 10−5, ADF may

reduce that variance too much e.g., 10−6. If we now calculate the entropy reduction, the result will

be an acquisition value much larger than what it should be (so the acquisition function will always

tend to evaluate similar points). To solve this, we modified MESMOC+’s acquisition function to

take into account the absolute reduction in the variance instead, and ignore the log operation. Thus,

the final expression of MESMOC+, after adding observational noise, is:

𝛼 (x) ≈
𝐾∑︁
𝑘=1

(
𝑣
𝑓

𝑘
+ (𝜎 𝑓

𝑘
)2

)
+

𝐶∑︁
𝑗=1

(
𝑣𝑐𝑗 + (𝜎𝑐𝑗 )2

)
− 1

𝑀

𝑀∑︁
𝑚=1

[
𝐾∑︁
𝑘=1

(
𝑣
𝑓

𝑘
+ (𝜎 𝑓

𝑘
)2

)
+

𝐶∑︁
𝑗=1

(
𝑣𝑐𝑗 + (𝜎𝑐𝑗 )2

)]
, (5)
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where𝑀 is the number of samples of Y★
, (̧𝜎

𝑓

𝑘
)2 and (𝜎𝑐𝑗 )2 are the noise variances of the objectives

and constraints, respectively, 𝑣
𝑓

𝑘
= 𝑣

𝑓

𝑘
(x) , 𝑣𝑐𝑗 = 𝑣𝑐𝑗 (x) , 𝑣

𝑓

𝑘
= 𝑣

𝑓

𝑘
(x|Y★

(𝑚) ), 𝑣
𝑐
𝑗 = 𝑣

𝑐
𝑗 (x|Y★

(𝑚) ) are the
variances of the predictive distribution before and after conditioning toY★

. This expression is a sum

across the objectives and constraints. Therefore, it can be used to identify what black-box to evaluate

next in a decoupled evaluation scenario. Note that the acquisition of each black box depends on the

other black-boxes (more details, in Appendix C). The cost of evaluating (5) is O(𝑀 (𝐾 +𝐶) |Y★|).
We approximate Y★

using 50 points. Appendix D shows visually the computation of (5).

3 Experiments

We compare MESMOC+ and its decoupled variant MESMOC+dec with BMOO (Feliot et al., 2017),

which is based on EHI, and with PESMOC, MESMOC, and random search (RANDOM). BMOO and

PESMOC are provided in the Bayesian optimization software Spearmint. We have also implemented

in that software MESMOC+ and MESMOC, closely following the code provided by Belakaria

et al. (2021). The code for MESMOC+ can be found at https://github.com/fernandezdaniel/
Spearmint. Regarding the probabilistic models, we use GPs with a Matérn52 kernel with ARD. To

maximize the acquisition function we use L-BFGS and a grid of 𝑑 × 1000 points to choose a good

starting point. The gradients of the acquisition function are approximated by differences. We report

average results of each experiment after 100 repetitions. The recommendations of each method are

obtained by optimizing the means of the GPs at each iteration. To avoid recommending infeasible

solutions we follow Garrido-Merchán and Hernández-Lobato (2019).

We consider two synthetic experiments where the underlying functions of the black-boxes

are samples from a GP. The input space of each black-box is the interval [0, 1]. We consider two

scenarios: one with noiseless observations, and another where the observations are contaminated

with standard Gaussian noise with variance 0.1. The performance of each method is measured as

the relative difference (in log-scale) of the hyper-volume of the recommendation made and the

maximum hyper-volume, as a function of the evaluations made The maximum hyper-volume is

obtained by an exhaustive search. The maximum hyper-volume is found using a grid of points.

Infeasible recommendations have an associated hyper-volume equal to 0. The first experiment has

a 4-dimensional input and the methods have to optimize 2 objectives while fulfill 2 constraints. In

this experiment, for learning the hyper-parameters of the GPs (the actual amplitude is 1 and all the

length-scales are 1) we use slice sampling with 10 samples. For each sample, MESMOC+, MESMOC

and PESMOC generate a different sample of Y★
, Y★

and X★
, respectively.

The first row of Figure 1 show the results of the first experiment. We observe that the best

methods are MESMOC+, PESMOC and PESMOCdec. MESMOC+dec also achieves good results

when there is no noise. In these experiments, MESMOC+ is highly superior to MESMOC, which

performs poorly in the noisy settings. MESMOCdec also performs poorly in general. This is

probably as a consequence of the poor approximation of the acquisition function in MESMOC

and MESMOCdec. See Appendix E for further details. In Table 1 we display the average time in

seconds per iteration of MESMOC+, MESMOC and PESMOC and their decoupled variants in this

first experiment. We observe that the times of MESMOC+ and MESMOC+dec are significantly

lower than those of PESMOC and PESMOCdec, respectively, thanks to their cheaper approximation.

Regarding MESMOC, it is just a little faster than MESMOC+ but its performance is much worse.

Wang and Jegelka (2017) show that max-value entropy search is more robust than predictive
entropy search (PES) with respect to the number of samples of the solution of the optimization

problem. We check this comparing MESMOC+ and PESMOC in the second experiment (we have

not included MESMOC in the comparison because of its bad performance). This experiment has a

6-dimensional input, 4 objectives and 2 constraints. For the robustness comparison, we sample 1,

10 and 100 times Y★
and X★

for MESMOC+ and PESMOC, respectively. For learning the hyper-

parameters of the GPs (again, the actual amplitude is 1 and all the length-scales are 1.5) we maximize

4
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the marginal likelihood, and to avoid over-fitting we use use 20 random initial evaluations of each

black-box for each method. The second row of Figure 1 shows the results obtained. We observe a

higher robustness of MESMOC+ than PESMOC with respect to𝑀 . MESMOC+1 is always better

than PESMOC1. As we increase𝑀 , the differences among them become smaller. This confirms that

MESMOC+ is better than PESMOC+ when𝑀 is small.
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Figure 1: Average log hyper-volume relative difference between the recommendation of each method

and the maximum hyper-volume, with respect to the number of evaluations made.

Table 1: Average execution time per iteration (in sec.) in the 4D experiment.

MESMOC+ MESMOC+dec MESMOC MESMOCdec PESMOC PESMOCdec

12.48±1.15 25.73±3.94 10.34±0.84 12.09±0.83 29.71±3.70 89.33±5.36

4 Conclusions

Wehave developedMESMOC+, amethod formulti-objective Bayesian optimizationwith constraints.

MESMOC+ selects the next point to evaluate as the one that is expected to reduce the most the

entropy of the solution of the optimization problem in the function space (i.e. the Pareto front

Y★
). Since MESMOC+’s acquisition is expressed as a sum of acquisition functions, one per each

different black-box, its computational cost is linear in the number of black-boxes. Moreover, it

can be used in a decoupled evaluation setting in which one chooses not only the point at which

to evaluate the black-boxes, but also what black-box to evaluate next. MESMOC+ improves the

approximation of the acquisition function performed by MESMOC, an already existing acquisition

function targeting the reduction of the entropy of the Pareto front. Specifically, the approximation

of the acquisition function performed by MESMOC+ is more accurate than that of MESMOC. This

is translated in better optimization results. Our experiments show that MESMOC+ is competitive

with other state-of-the-art methods for BO, but MESMOC+ is significantly faster to execute. This is

a consequence of measuring the expected reduction of the entropy of the Pareto front Y★
instead

of the Pareto set X★
. Moreover, MESMOC+ is more robust with respect to the number of Monte

Carlo samples of Y★
needed to approximate the acquisition function. Finally, we have observed

that the decoupled variant of MESMOC+ sometimes obtains better results than the coupled variant.
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(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes] [We have read the
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(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] [The data we are using are synthetic and does not

contain personally identifiable information or offensive content.]

B Limitations of MESMOC
Max-value entropy search for multi-objective optimization with constraints (MESMOC) is an acquisi-

tion function developed independently (Belakaria et al., 2021), which also minimizes the entropy of

Y★
, as MESMOC+ does. Thus, the expression considered byMESMOC for the acquisition function is

also given by Eq. (2). However, the proposed approximation for the entropy of 𝑝 (y|D, x,Y★) is very
different. In Belakaria et al. (2021), they focus on maximizing the objectives, while we are interested

in minimization. Consider a maximization scenario. Ignore the constraints initially. Let the sampled

Pareto frontier be Y★ = {z1, . . . , z𝑆 } with 𝑆 the size of Y★
and each z𝑗 , for 𝑗 = 1, . . . , 𝑆 , a vector of

size𝐾 with the associated objective values. Let the 𝑗-th component of z𝑖 be 𝑧
𝑗

𝑖
. Belakaria et al. (2021)

argue that a sufficient condition for some point y being compatible with Y★
as the solution of the

problem is that 𝑦 𝑗 ≤ max{𝑧 𝑗
1
, . . . , 𝑧

𝑗

𝑆
} ∀𝑗 ∈ {1, . . . , 𝐾} (recall a maximization scenario). That is, the

value of y for the 𝑗-th objective cannot be larger than the largest value for that objective, according

to Y★
. However, this condition is not complete because y can be optimal, (i.e., y is incompatible with

Y★
) even if none of its values are larger than the maximum value for the corresponding objective.

E.g., let 𝐾 = 2 and Y★ = {(1, 0), (0, 1)}. Consider now the point y = (0.7, 0.7). The components of y
are smaller than 1 = max{𝑧 𝑗

1
, . . . , 𝑧

𝑗

𝑆
}∀𝑗 ∈ {1, . . . , 𝐾}, but this point is optimal and non-dominated

by any of the points in Y★
. This means that y is not compatible with Y★

. However, the condition

employed in Belakaria et al. (2021), i.e., that y must satisfy 𝑦 𝑗 ≤ max{𝑧 𝑗
1
, . . . , 𝑧

𝑗

𝑆
} ∀𝑗 ∈ {1, . . . , 𝐾},

will consider (0.7, 0.7) as a potential point to be predicted by the conditional predictive distribution

given Y★
, 𝑝 (y|D, x,Y★), which is incorrect. The constraints are incorporated in Belakaria et al.

(2021) in an ad-hoc way, simply by enforcing that 𝑐 𝑗 (x) ≤ max{𝑧 𝑗
1
, . . . , 𝑧

𝑗

𝑆
} for 𝑗 = 1, . . . ,𝐶 , where

{z̃𝑖}𝑆𝑖=1 are the constraint values associated to the points in Y★
. That is, the constraint values have

to be smaller than the maximum constraint values associated to the Pareto front Y★
, as it is done

with the objectives. There is no justification for this.

Summing up, the conditional predictive distribution is given by a factorizing truncated Gaussian

distribution. In particular, for the objectives each 𝑓𝑗 (x) ≤ max{𝑧 𝑗
1
, . . . , 𝑧

𝑗

𝑆
} ∀𝑗 ∈ {1, . . . , 𝐾}, and for

the constraints, each 𝑐 𝑗 (x) ≤ max{𝑧 𝑗
1
, . . . , 𝑧

𝑗

𝑆
} for 𝑗 = 1, . . . ,𝐶 . The entropy of a truncated Gaussian

distribution has a closed-form expression (Wang and Jegelka, 2017). Therefore, the approximate

acquisition function of MESMOC is

𝛼 (x) ≈ 1

𝑀

𝑀∑︁
𝑚=1


𝐾∑︁
𝑘=1

©­«
𝜚
𝑓

𝑘,𝑚
𝜙 (𝜚 𝑓

𝑘,𝑚
)

2Φ(𝜚 𝑓
𝑘,𝑚

)
− logΦ(𝜚 𝑓

𝑘,𝑚
)ª®¬ +

𝐶∑︁
𝑗=1

(
𝜚𝑐𝑗,𝑚𝜙 (𝜚𝑐𝑗,𝑚)
2(Φ(𝜚𝑐

𝑗,𝑚
)) − log(Φ(𝜚𝑐𝑗,𝑚))

)]
, (6)

where 𝜚
𝑓

𝑘,𝑚
= 𝜚

𝑓

𝑘,𝑚
(x), 𝜚𝑐𝑗,𝑚 = 𝜚𝑐𝑗,𝑚 (x),

𝜚
𝑓

𝑘,𝑚
(x) =

𝜁★
𝑘,𝑚

−𝑚𝑓

𝑘
(x)

(𝑣 𝑓
𝑘
(x))1/2

, 𝜚𝑐𝑗,𝑚 (x) =
𝜍★𝑗,𝑚 −𝑚𝑐

𝑗 (x)
(𝑣𝑐
𝑗
(x))1/2

, (7a,7b)

and

𝜁★
𝑘,𝑚

= min{𝑧𝑘,𝑚
1
, . . . , 𝑧

𝑘,𝑚

𝑆
} ∀𝑘 ∈ {1, . . . , 𝐾} , 𝜍★𝑗,𝑚 = max{𝑧 𝑗,𝑚

1
, . . . , 𝑧

𝑗,𝑚

𝑆
} ∀𝑗 ∈ {1, . . . ,𝐶} , (8)

and 𝑆 the size of Y★
(𝑚) , i.e., the𝑚-th sample of Y★

. The samples of Y★
are obtained as in MESMOC+.

Namely, by optimizing samples from the GP posterior distribution using a random feature approxi-

mation. Moreover, 𝑧
𝑘,𝑚
𝑠 is the 𝑘-th objective value associated to the 𝑠-th point in Y★

(𝑚) , and 𝑧
𝑗,𝑚
𝑠 is

9



the 𝑗-th constraint value associated to the 𝑠-th point in Y★
(𝑚) . Note that (6) also involves a sum of

one acquisition function per constraint and objective, which means that MESMOC can be used in a

decoupled evaluation setting.

Critically, in the provided code in Belakaria et al. (2021), the implementation considered that

Y★
(𝑚) is given by the Pareto front sample, and all the evaluations performed so far. The consequence

is that the acquisition proposed in Belakaria et al. (2021) is simply the sum of the standard MES

acquisition function for each objective and constraint (Wang and Jegelka, 2017). This makes sense,

and is equivalent to maximizing all the objectives and constraints independently. Maximizing each

objective is expected to give good solutions. Maximizing each constraint is expected to provide

feasible solutions. This makes, however, difficult finding interesting points of the Pareto frontier

that are not close to the maximum values of each objective. Such a strategy is hence expected to be

sub-optimal. Besides this, the optimization of the resulting acquisition function in Belakaria et al.

(2021) is restricted to those regions of the input space in which the GP means for the constraints are

strictly positive. This becomes problematic in problems in which finding feasible points is difficult.

In particular, if all the observations are infeasible, the GP means for the constraints will be negative

in all the input space (even though the associated GP variance can be high). This will make the BO

method to fail. If that is the case, a simple solution is to choose randomly the next point to evaluate.

C Obtaining the Approximate Truncated Gaussians by ADF

C.1 Introduction to ADF

AssumedDensity Filtering (ADF) is a technique that is often used to calculate approximate posteriors

Boyen and Koller (1998), and in this work, we use it to approximate the predictive distributions

conditioned to the Pareto Y★
front by truncated Gaussians. When ADF is used to approximate

a distribution of interest to 𝑝 (a), a distribution 𝑞(a) is first chosen from a family of distributions

convenient for us to work with. This 𝑞(a) distribution is adjusted to approximate the target

distribution 𝑝 (a). For this, ADF minimizes the Kullback-Leibler divergence between 𝑝 (a) and 𝑞(a),
i.e. it minimizes𝐾𝐿(𝑝 (a) | |𝑞(a)). Following (Wang and Jegelka, 2017) we chose a truncated Gaussian

for 𝑞(a), thus it belongs to the exponential family. Minimizing the divergence of Kullback-Leibler

when we are approaching one distribution by another that belongs to the exponential family is

equivalent to matching moments between the two distributions. Namely, we are going to adjust

the means and variances of several truncated Gaussian distributions to approximate the predictive

distributions conditioned to Y★
. This adjustment of means and variances is made while processing

the points of a Y★
sample.

C.2 ADF Updates for MESMOC+

ADF approximates 𝑝 (f, c|D, x,Y★) using a distribution 𝑞(f, c) that is Gaussian. Specifically,

ADF minimizes, in an iterative way, the Kullback-Leibler divergence between 𝑝 (f, c|D, x,Y★) =
𝑍−1Ω(f★, f, c)𝑝 (Y★|f, c) and 𝑞(f, c), with respect to 𝑞, where 𝑍 is a normalization constant, for

each f★ ∈ Y★
. Minimizing the Kullback-Leibler divergence when the approximate distribution 𝑞

is Gaussian is equivalent to matching moments between the two distributions, 𝑝 and 𝑞 (Minka,

2001). Therefore, we are going to adjust the means and covariances of 𝑞 to have the same mean and

covariances as 𝑝 (f, c) = 𝑍−1Ω(f★, f, c)𝑞(f, c). This process is repeated iteratively for each factor

Ω(f★, f, c). Note that there is one different factor for each f★ in Y★
. It is possible to understand

this process as replacing each Ω(f★, f, c) using an approximate Gaussian factor (Minka, 2001). Of

course, the processing order of each Ω(f★, f, c) affects the approximation. We simply process the

factors in a random order.

Now, we describe how to use ADF to obtain the updates for the means and variances of the

resulting Gaussian, after incorporating each Ω(f★, f, c) factor. Let 𝑞(f, c) = 𝑝 (f, c|D, x). That is, we

10



initialize 𝑞 to the predictive distribution given by the GP at x. Let a = (f, c). We can express 𝑝 (f, c)
as a product of an arbitrary function 𝑡 (a) multiplied by a Gaussian distributionN (a|𝝁, 𝚺). Namely,

𝑍 =

∫
𝑡 (a)N (a|𝝁, 𝚺)𝑑a, 𝑝 (a) = 𝑍−1𝑡 (a)N (a|𝝁, 𝚺) , (9)

where our arbitrary factor 𝑡 (a) is Ω(f★, f, c), and N (a|𝝁, 𝚺) is simply 𝑞(a). with where 𝝁 y 𝚺 are

the vector of means and the covariance matrix of a under 𝑞, respectively. Because we assume

independence among the GPs, 𝚺 is diagonal.

Then, we can use the following expressions from (Minka, 2001) to refine the mean and variance

of de updated 𝑞 distribution after incorporating Ω(f★, f, c):

E𝑝 (a) [a] = 𝝁 + 𝚺

𝜕 log(𝑍 )
𝜕𝝁

,

E𝑝 (a) [aaT] − E𝑝 (a) [a]E𝑝 (a) [a]T = 𝚺 − 𝚺

(
𝜕 log(𝑍 )
𝜕𝝁

(
𝜕 log(𝑍 )
𝜕𝝁

)
T

− 2

𝜕 log(𝑍 )
𝜕𝚺

)
𝚺 .

(10)

Hence, to use ADF, we need to compute 𝑍 and the partial derivatives of log(𝑍 ) respect to the

means and variances of the objectives and constraints at x. The computation of 𝑍 is as follows:

𝑍 =

∫
𝑝 (f, c|D, x)Ω(f★, f, c)𝑑f𝑑c

=

∫
𝑝 (f, c|D, x)

(
1 −

𝐶∏
𝑗=0

Θ(𝑐 𝑗 (x))
𝐾∏
𝑘=0

Θ
(
𝑓 ★
𝑘
− 𝑓𝑘 (x)

))
𝑑f𝑑c

= 1 −
𝐶∏
𝑗=0

Φ(𝛾𝑐𝑗 )
𝐾∏
𝑘=0

Φ(𝛾 𝑓
𝑘
) ,

(11)

where Φ(·) is the cumulative probability distribution of Gaussian, and:

𝛾
𝑓

𝑘
=
𝑓 ★
𝑘
−𝑚𝑓

𝑘
(x)

(𝑣 𝑓
𝑘
(x))1/2

, 𝛾𝑐𝑗 =
𝑚𝑐
𝑗 (x)

(𝑣𝑐
𝑗
(x))1/2

, (11a,11b)

where 𝑚
𝑓

𝑘
(x), 𝑣 𝑓

𝑘
(x), 𝑚𝑐

𝑘
(x) and 𝑣𝑐

𝑘
(x) are the mean and variance values of the 𝑘-th and 𝑗-th

predictive distributions of the objectives and constraints at x. At the same time, these are the values

of the derivatives
𝜕 log(𝑍 )
𝜕𝑚

𝑓

𝑘

,
𝜕 log(𝑍 )
𝜕𝑣

𝑓

𝑘

,
𝜕 log(𝑍 )
𝜕𝑚𝑐

𝑗
and

𝜕 log(𝑍 )
𝜕𝑣𝑐

𝑗
:

𝜕 log(𝑍 )
𝜕𝑚

𝑓

𝑘

=
(𝑍 − 1)
𝑍Φ(𝛾 𝑓

𝑘
)

(
−N (𝛾 𝑓

𝑘
|0, 1)

(𝑣 𝑓
𝑘
)1/2

)
,

𝜕 log(𝑍 )
𝜕𝑣
𝑓

𝑘

,=
(𝑍 − 1)
𝑍Φ(𝛾 𝑓

𝑘
)

(
N (𝛾 𝑓

𝑘
|0, 1)

−𝛾 𝑓
𝑘

2𝑣
𝑓

𝑘

)
, (12)

𝜕 log(𝑍 )
𝜕𝑚𝑐

𝑗

=
(𝑍 − 1)
𝑍Φ(𝛾𝑐

𝑗
)

(
N (𝛾𝑐𝑗 |0, 1)
(𝑣𝑐
𝑗
)1/2

)
,

𝜕 log(𝑍 )
𝜕𝑣𝑐
𝑗

=
(𝑍 − 1)
𝑍Φ(𝛾𝑐

𝑗
)

(
N (𝛾 𝑓

𝑗
|0, 1)

−𝛾𝑐𝑗
2𝑣𝑐
𝑗

)
, (13)

where 𝑣
𝑓

𝑘
= 𝑣

𝑓

𝑘
(x) and 𝑣𝑐𝑗 = 𝑣𝑐𝑗 (x).

Algorithm 1 shows the ADF steps for computing the mean and variance of the approximate

conditional predictive distribution. We can see that in each iteration the values of m̃𝑓
, ṽ𝑓 , m̃𝑐

and

ṽ𝑐 are updated using the values calculated in the derivatives of Eq. (12) and Eq. (13). We can also

notice that the order of processing the f★ points of the Pareto front sample will influence the final
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result for the means and variances of the approximate conditional predictive distribution. For this

reason, we have established this order as random.

Algorithm 1: ADF Algorithm

Input: m𝑓
, v𝑓 , m𝑐

and v𝑐

1 Initialize: m̃𝑓 = m𝑓
, ṽ𝑓 = v𝑓 , m̃𝑐 = m𝑐

and ṽ𝑐 = v𝑐

2 for each f★ in Y★ do
3 𝜸 𝑓 = (f★ −m𝑓 )/

√
v𝑓

4 𝜸𝑐 = m𝑐/
√
v𝑐

5 𝑍 = 1 − ∏𝐶
𝑗=0 Φ(𝛾𝑐𝑗 )

∏𝐾
𝑘=0

Φ(𝛾 𝑓
𝑘
)

6 m̃𝑓 = m̃𝑓 + ṽ𝑓 𝜕 log(𝑍 )
𝜕m̃𝑓

7 ṽ𝑓 = ṽ𝑓 − ṽ𝑓
(
𝜕 log(𝑍 )
𝜕m̃𝑓

(
𝜕 log(𝑍 )
𝜕m̃𝑓

)
T

− 2
𝜕 log(𝑍 )
𝜕ṽ𝑓

)
ṽ𝑓

8 m̃𝑐 = m̃𝑐 + ṽ𝑐 𝜕 log(𝑍 )
𝜕m̃𝑓

9 ṽ𝑐 = ṽ𝑐 − ṽ𝑐
(
𝜕 log(𝑍 )
𝜕m̃𝑐

(
𝜕 log(𝑍 )
𝜕m̃𝑐

)
T

− 2
𝜕 log(𝑍 )
𝜕ṽ𝑐

)
ṽ𝑐

10 return m̃𝑓
, ṽ𝑓 , m̃𝑐

and ṽ𝑐 ;

D The MESMOC+ Acquisition Function in a toy problem

Figure 2 shows the execution of MESMOC+ in a toy problem with two objectives and one constraint

and one-dimensional input. We consider a single sample of Y★
. The first column displays the

current state of the GP predictive distribution for the objectives and the constraints. We show the

predictive mean alongside with a one standard deviation confidence interval. The second column

shows a sample of each black-box function and the corresponding Pareto front. The points of the

Pareto front dominate all other points for which the corresponding values of the constraint are

positive. In the third column of this figure, we display the predictive distribution of the black-boxes

after conditioning to Pareto front sample (shown in the second column) using ADF. The fourth

column is the resulting acquisition function of MESMOC+, for each black-box. This acquisition

function is the absolute difference of the predictive variances before and after conditioning (shown

in the first column and third column, respectively). So, the regions where this difference is greatest

are where MESMOC+ expects to gain the most information (in terms of variance reduction) about

the solution to the problem.

Figure 3 show the acquisition function obtained in the problem of Figure 2, but in a coupled

evaluation scenario. Therefore, the acquisition in Figure 3 is simply the sum of the acquisition of

all the black-boxes in the fourth column of Figure 2. We can notice that the maximizer in Figure

3 is different from the individual maximizers of the black-boxes. We can also observe that the

maximum in the coupled setting is larger than the individual maximum of the decoupled setting.

However, the sum of the individual maximums is larger than the maximum of the coupled setting.

Therefore, we expect that a decoupled evaluation setting will be more useful to gain information

about the solution to the optimization problem.

E Quality of the Approximation of the Acquisition Function

We compare in a simple problem the acquisition function ofMESMOC+ andMESMOCwith the exact

acquisition function described in Eq. (2). Since, the problem considered has only two objectives

and one constraint, in this setting, quadrature methods are feasible to evaluate the entropy of

𝑝 (y|D, x,Y★) (but with a much higher computational cost than MESMOC+ and MESMOC). A

quadrature method is expected to provide an approximation that is almost equal to that of the
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Figure 2: Different steps needed to compute MESMOC+’s acquisition function in a decoupled setting

for two objectives and one constraint. (First column) Predictive distribution for each black-

box function conditioned the current inputs, using a GP as probabilistic model. (Second

column) Samples of each black-box and corresponding Pareto front Y★
(𝑚) in the feasible

space displayed using red crosses. (Third column) Predictive distribution of each black-box

function conditioned toY★
(𝑚) being the solution to the optimization problem. (Fourth column)

Acquisition function MESMOC+’s obtained by the absolute difference in the predictive

variances before and after the conditioning.

exact acquisition. To compute the entropy of the coupled example in Figure 4 we have solved the

following integral by quadrature:

𝐻 (f, 𝑐 |D, x,Y★) = −
∫ ∞

−∞
𝑍−1𝑝 (f, 𝑐 |D, x)𝑝 (Y★|f, 𝑐) log(𝑍−1𝑝 (f, 𝑐 |D, x)𝑝 (Y★|f, 𝑐))𝑑f𝑑𝑐, (14)

where f = (𝑓1, 𝑓2), 𝑓1 = 𝑓1(x)), 𝑓2 = 𝑓2(x)) and 𝑐 = 𝑐 (x).
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Figure 3: Acquisition function of MESMOC+ for the coupled setting. In this case 𝛼 (·) is simply the

sum of the acquisition functions of the three black-boxes shown in Figure 2.

To compute the entropy in the decoupled case, first, we have marginalized the two random

variables corresponding to the black-boxes for which we are not computing the entropy. Next, we

computed the entropy of the black box of interest. We obtained the entropies of the black-boxes of

the decoupled example of Fig. 5 using quadrature to solve these integrals:

Υ𝑐 =

∫ ∞

−∞
𝑍−1𝑝 (f, 𝑐 |D, x)𝑝 (Y★|f, 𝑐)𝑑f, 𝐻 (𝑐 |f,D, x,Y★) = −

∫ ∞

−∞
𝑍−1Υ𝑐 log(Υ𝑐)𝑑𝑐 (15)

Υ𝑓1 =

∫ ∞

−∞
𝑍−1𝑝 (f, 𝑐 |D, x)𝑝 (Y★|f, 𝑐)𝑑 𝑓2𝑑𝑐, 𝐻 (𝑓1 |𝑓2, 𝑐, f,D, x,Y★) = −

∫ ∞

−∞
𝑍−1Υ𝑓1 log(Υ𝑓1)𝑑 𝑓1

(16)

Υ𝑓2 =

∫ ∞

−∞
𝑍−1𝑝 (f, 𝑐 |D, x)𝑝 (Y★|f, 𝑐)𝑑 𝑓1𝑑𝑐, 𝐻 (𝑓2 |𝑓1, 𝑐,D, x,Y★) = −

∫ ∞

−∞
𝑍−1Υ𝑓2 log(Υ𝑓2)𝑑 𝑓2 (17)

The left column of Figure 4 shows the current state of the predictive distributions for the

objectives and constraints. The right column shows the sum of the acquisition function forMESMOC

and MESMOC+. For MESMOC+, we show the results for the proposed method and the method

that considers the logarithm of the variance described. We call this method MESMOC+log. Lastly,

we also show the results of the quadrature method (Exact) using adaptative quadrature. We can

notice that the approximation of MESMOC+log seems to be the most accurate, closely followed

by MESMOC+. By contrast, the approximation of MESMOC does not look similar to the exact

acquisition. Furthermore, MESMOC manually imposes that the acquisition will have a negative

value at any point where the mean GP of any of the constraints is negative. This causes it to have a

very different value from the exact acquisition in those regions of the input space.

In Figure 5 we make a comparison of the quality of the approximation in a decoupled scenario.

The figure on the top-left of Figure 4 shows the current observations and predictive distributions for

the objectives and constraints. The remaining figures show the acquisition function for MESMOC,
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Figure 4: (left) GP predictive distributions for the objectives and constraints. (right) The corresponding

estimated acquisition function of each method, MESMOC+, MESMOC+log and MESMOC,

and the exact acquisition (Exact). Best seen in color.

MESMOC+ and MESMOC+log, and the results of the quadrature method (Exact). We can observe

that MESMOC+ and MESMOC+log are very similar to the exact acquisition, for all the black-box

functions. Specifically, where MESMOC+ and MESMOC+log take large values, the exact acquisition

takes large values, and where the exact acquisition decreases, MESMOC+ and MESMOC+log also

decrease. By contrast, MESMOC’s approximation is dissimilar to the exact acquisition, for all the

black-boxes. Furthermore, since MESMOC aims to maximize the constraints, it sometimes gives

importance to evaluating the constraints in regions where there may be no expected benefit at all.

This behavior can be problematic in the decoupled scenario, where MESMOC can waste useful

evaluations simply on trying to maximize a constraint that is already feasible. Figure 5 shows

precisely this behavior.
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Figure 5: (Top left) GP predictive distributions for the objectives and constraints. (Top right to bottom

right) The estimated acquisition function of each method, MESMOC+, MESMOC+log and

MESMOC, and the exact acquisition (Exact) for each black-box. Best seen in color.
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