
Exp 3: Paired Associative Inference
This task is thought to capture the essence of reasoning – the 
appreciation of distant relationships among elements distributed across 
multiple facts or memories. It has been shown to benefit from the 
addition of adaptive computation. PonderNet matched the performance 
of SotA methods (Banino et al, 2020) even though it was not designed 
specifically for this task.

Experiment 2: bAbI
We trained PonderNet on the bAbI question answering dataset (Weston 
et al, 2015) on the joint 10k training set. We found that PonderNet 
matched SotA results, faster and with a lower average error.

Introduction
1. Standard neural networks have fixed computational complexity.

2. Problems have an inherent complexity that is independent of input size
3. Adjusting the computational budget (“ponder time”) of an algorithm 

can improve its accuracy, as well as its generalization capabilities to 
examples not seen during training.

4. Prior methods to learn to ponder suffer from unstable learning, require 
brittle fine-tuning of parameters and/or do not scale up.

5. We present a novel approach to learning to ponder in deep neural 
networks named PonderNet.

Contributions
1. Architecture:  in PonderNet, the halting node predicts the probability 

of halting conditional on not having halted before. We compute the 
exact probability of halting at each step as a geometric distribution.

2. Loss:  we don’t regularize PonderNet to explicitly minimize the number 
of computing steps, but incentivize exploration instead. The pressure 
of using computation efficiently happens naturally as a form of 
Occam’s razor.

3. Inference: PonderNet is probabilistic both in terms of number of 
computational steps and the prediction produced by the network.

PonderNet: Learning to Ponder
Andrea Banino*, Jan Balaguer*, Charles Blundell

* Equal Contribution

Experiment 1: Parity task
In this task, the input is an array of fixed sized filled with ±1 and 0. The task is to learn whether the number of non-zero items is odd or even. When 
evaluated on a held-out test set, we found that  PonderNet was more accurate (Fig 1a top) and required less compute steps (Fig 1a bottom) than SotA 
baseline methods (ACT; Graves, 2016). We also found that PonderNet’s accuracy extrapolated better outside of the training distribution, and devoted 
more computation during extrapolation trials (Fig 1b; training with inputs including 1-48 ones, evaluating with 49-96 ones).

We also explored the effect of the regularization hyper-parameters, and found that both accuracy and compute steps were more robust to 
hyper-parameter choice in PonderNet (Fig 2b and 2c) than in ACT (Fig 2a).

Figure 1                                                                                                                           Figure 2

Method
PonderNet assumes a trainable step function s of the form:

PonderNet unrolls the step function for up to N computation steps, and
derives the exact probability of stopping after n computation steps:

The loss function of PonderNet is:

Discussion
We introduced PonderNet, a new algorithm for learning to adapt the computational complexity of neural networks. It optimizes a novel objective function 
that combines prediction accuracy with a regularization term that incentivizes exploration over the pondering time.

We demonstrated on the parity task that a neural network equipped with PonderNet can increase its computation to extrapolate beyond the data seen 
during training. Also, we showed that our methods achieved the highest accuracy in complex domains such as question answering and multi-step 
reasoning.

Adapting existing recurrent architectures to work with PonderNet is very easy: it simply requires to augment the step function with an additional halting 
unit, and to add an extra term to the loss. Critically, we showed that this extra loss term is robust to the choice of the hyper-parameter that defines a 
prior on how likely is that the network will halt, which is an important advancement over ACT.


