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ABSTRACT

In this paper, we present an approach to learn recomposable motor primitives
across large-scale and diverse manipulation demonstrations. Current approaches to
decomposing demonstrations into primitives often assume manually defined primi-
tives and bypass the difficulty of discovering these primitives. On the other hand,
approaches in primitive discovery put restrictive assumptions on the complexity of
a primitive, which limit applicability to narrow tasks. Our approach attempts to cir-
cumvent these challenges by jointly learning both the underlying motor primitives
and recomposing these primitives to form the original demonstration. Through
constraints on both the parsimony of primitive decomposition and the simplicity
of a given primitive, we are able to learn a diverse set of motor primitives, as
well as a coherent latent representation for these primitives. We demonstrate, both
qualitatively and quantitatively, that our learned primitives capture semantically
meaningful aspects of a demonstration. This allows us to compose these prim-
itives in a hierarchical reinforcement learning setup to efficiently solve robotic
manipulation tasks like reaching and pushing.

1 INTRODUCTION

We have seen impressive progress over the recent years in learning based approaches to perform a
plethora of manipulation tasks (Levine et al., 2016; Andrychowicz et al., 2018; Levine et al., 2018;
Pinto & Gupta, 2016; Agrawal et al., 2016). However, these systems are typically task-centric savants
– able to only execute a single task that they were trained for. This is because these systems, whether
leveraging demonstrations or environmental rewards, attempt to learn each task tabula rasa, where
low to high level motor behaviours, are all acquired from scratch in context of the specified task. In
contrast, we humans are adept at a variety of basic manipulation skills e.g. picking, pushing, grasping
etc., and can effortlessly perform these diverse tasks via a unified manipulation system.

Figure 1: Sample motor programs that emerge by discovering the space of motor programs from a diverse set
of robot demonstration data in an unsupervised manner. These motor programs facilitate understanding the
commonalities across various demonstrations, and accelerate learning for downstream tasks.

How can we step-away from the paradigm of learning task-centric savants, and move towards building
similar unified manipulation systems? We can begin by not treating these tasks independently, but
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via instead exploiting the commonalities across them. One such commonality relates to the primitive
actions executed to accomplish the tasks – while the high-level semantics of tasks may differ
significantly, the low and mid-level motor programs across them are often shared e.g. to either pick
or push an object, one must move the hand towards it. This concept of motor programs can be
traced back to the work of Lashley, who noted that human motor movements consist of ‘orderly
sequences’ that are not simply sequences of stimulus-response patterns. The term ‘motor programs’ is
however better attributed to Keele (1968) as being representative of ‘muscle commands that execute a
movement sequence uninfluenced by peripheral feedback’, though later works shifted the focus from
muscle commands to the movement itself, while allowing for some feedback (Adams, 1971). More
directly relevant to our motivation is Schmidt’s notion of ‘generalized’ motor programs (Schmidt,
1975) that can allow abstracting a class of movement patterns instead of a singular one. In this work,
we present an approach to discover the shared space of (generalized) motor programs underlying a
variety of tasks, and show that elements from this space can be composed to accomplish diverse tasks.
Not only does this allow understanding the commonalities and shared structure across diverse skills,
the discovered space of motor programs can provide a high-level abstraction using which new skills
can be acquired quickly by simply learning the set of desired motor programs to compose.

We are not the first to advocate the use of such mid-level primitives for efficient learning or gener-
alization, and there have been several reincarnations of this idea over the decades, from ‘operators’
in the classical STRIPS algorithm (Fikes & Nilsson, 1971), to ‘options’ (Sutton et al., 1999) or
‘primitives’ (Schaal et al., 2005) in modern usage. These previous approaches however assume a set
of manually defined/programmed primitives and therefore bypass the difficulty of discovering them.
While some attempts have been made to simultaneously learn the desired skill and the underlying
primitives, learning both from scratch is difficult, and are therefore restricted to narrow tasks. Towards
overcoming this difficulty, we observe that instead of learning the primitives from scratch in the
context of a specific task, we can instead discover them using demonstrations of a diverse set of tasks.
Concretely, by leveraging demonstrations for different skills e.g. pouring, grasping, opening etc., we
discover the motor programs (or movement primitives) that occur across these.

We present an approach to discover movement primitives from a set of unstructured robot demon-
stration i.e. demonstrations without additional parsing or segmentation labels available. This is a
challenging task as each demonstration is composed of a varying number of unknown primitives,
and therefore the process of learning entails both, learning the space of primitives as well as un-
derstanding the available demonstrations in context of these. Our approach is based on the insight
that an abstraction of a demonstrations into a sequence of motor programs or primitives, each of
which correspond to an implied movement sequence, and must yield back the demonstration when
the inferred primitives are ‘recomposed’. We build on this and formulate an unsupervised approach
to jointly learn the space of movement primitives, as well as a parsing of the available demonstrations
into a high-level sequence of these primitives.

We demonstrate that our method allows us to learn a primitive space that captures the shared motions
required across diverse skills, and that these motor programs can be adapted and composed to further
perform specific tasks. Furthermore, we show that these motor programs are semantically meaningful,
and can be recombined to solved robotic tasks using reinforcement learning. Specifically, solving
reaching and pushing tasks with reinforcement learning over the space of primitives achieves 2 orders
of magnitude faster training than reinforcement learning in the low-level control space.

2 RELATED WORK

Our work is broadly related to several different lines of work which either learn task policies from
demonstrations, or leverage known primitives for various applications, or learn primitives in context
of known segments. While we discuss these relations in more detail below, we note that previous
primitive based approaches either require: a) a known and fixed primitive space, or b) annotated
segments each corresponding to a primitive. In contrast, we learn the space of primitives without
requiring this segmentation annotation, and would like to emphasize that ours is the first work to do
so for a diverse set of demonstrations spanning multiple tasks.

Learning from Demonstration: The field of learning from demonstrations (LfD) (Nicolescu &
Mataric, 2003) has sought to learn to perform tasks from a set of demonstrated behaviors. A number
of techniques exist to do so, including cloning the demonstrated behavior (Esmaili et al., 1995),
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fitting a parametric model to the demonstrations (Kober & Peters, 2009; Peters et al., 2013), or first
segmenting the demonstrations and fitting a model to each of the resultant segments (Niekum et al.,
2012; Krishnan et al., 2018; Murali et al., 2016; Meier et al., 2011). We point the reader to Argall
et al. (2009) for a comprehensive overview of the field. Rather than directly learn to perform tasks, we
use demonstrations to learn a diverse set of composable and reusable primitives, or motor-programs
that may be used to perform a variety of downstream tasks.

Learning and Sequencing Motion Primitives: Several works (Kober & Peters, 2009; Peters et al.,
2013) learn motion primitives from demonstrations using predetermined representations of skills such
as Dynamic Movement Primitives (DMPs) (Schaal et al., 2005). A few other works have approached
the problem from an optimization perspective (Dragan et al., 2015). Given these primitives, a question
that arises is how to then sequence learned skills to perform downstream tasks. Several works have
attempted to answer this question - (Neumann et al., 2014) builds a layered approach to adapt, select,
and sequence DMPs. Konidaris et al. (2012); Konidaris & Barto (2009) segments demonstrations
into sequences of skills, and also merge these skills into skill-trees. However, the predetermined
representations of primitives adopted in these works can prove restrictive. In particular, it prevents
learning arbitrarily expressive motions and adapting these motions to a generic downstream task. We
seek to move away from these fixed representations of primitives, and instead learn representations of
primitives along with the primitives themselves.

Latent Variable Models: The family of latent variable models (LVMs) provides us with fitting
machinery to do so. Indeed, the success of LVMs in learning representations in deep learning has
inspired several recent works (Co-Reyes et al., 2018; Kipf et al., 2019; Haarnoja et al., 2018; Lynch
et al., 2019) to learn latent representations of trajectories. SeCTAR (Co-Reyes et al., 2018) builds a
latent variable conditioned policy and model that are constrained to be consistent with one another,
and uses the learned policies and model for hierarchical reinforcement learning. The CompILE
framework (Kipf et al., 2019) seeks to learn variable length trajectory segments from demonstrations
instead, and uses latent variables to represent these trajectory segments, but is evaluated in relatively
low-dimensional domains. We adopt a similar perspective to these works and learn continuous latent
variable representations (or abstractions) of trajectory segments.

Hierarchical RL and the Options Framework: The related field of hierarchical reinforcement
learning (HRL) learns a layering of policies that each abstract away details of control of the policies
of a lower level. The Options framework (Sutton et al., 1999) also learns similar temporal abstractions
over sequences of atomic actions. While promising, its application has traditionally been restricted to
simple domains due to the difficulty of jointly learning internal option policies along with a policy
over those options. Recent works have managed to do so with only a reward function as feedback. The
Option-Critic framework (Bacon et al., 2017) employs a policy-gradient formulation of options to do
so, while the Option-Gradient (Smith et al., 2018) learns options in an off-policy manner. In contrast
with most prior work in the options framework, (Daniel et al., 2016; Fox et al., 2017; Krishnan et al.,
2017) learn options from a set of demonstrations, rather than in the RL setting. In similar spirit to
these works, we too seek to learn abstractions from a given set of demonstrations, however unlike
DDO (Fox et al., 2017), DDCO (Krishnan et al., 2017), and CompILE (Kipf et al., 2019), we can
learn primitives beyond a discrete set of options in a relatively high dimensional domain.

Hierarchical representations of demonstrations: The idea of hierarchical task representations has
permeated into LfD as well. In contrast to reasoning about demonstrations in a flat manner, one may
also infer the hierarchical structure of tasks performed in demonstrations. A few recent works have
striven to do so, by representing these tasks as programs (Xu et al., 2018; Sun et al., 2018), or as task
graphs (Huang et al., 2019). Both Xu et al. (2018) and Huang et al. (2019) address generalizing to
new instances of manipulation tasks in the low-shot regime by abstracting away low-level controls.

The idea of policy sketches, i.e. a sketch of the sub-tasks to be accomplished in a particular task, has
become popular (Andreas et al., 2017; Shiarlis et al., 2018). Andreas et al. (2017) learn modular
policies in the RL setting provided with such policy sketches. Shiarlis et al. (2018) provides a
modular LfD framework based on this idea of policy sketches. While all of these works address
learning policies at various levels from demonstrations, unlike our approach, they each assume access
to heavy supervision over demonstrations to do so.
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Figure 2: An overview of our approach. Our abstraction network takes in an observed demonstration τobs and
predict a sequence of latent variables {z}. These {z} are each decoded into their corresponding motor programs
via the motor program network. We finally recompose these motor programs into the recomposed trajectory.

3 APPROACH

We seek to discover the space of motor programs directly from unstructured demonstrations in an
unsupervised manner, and show that these can help understanding similarities across tasks as well as
quickly quickly adapting to and solving new tasks. Building on ideas of Keele (1968) and Schmidt
(1975), we define a motor program M as a movement pattern that may be executed in and of itself,
without access to sensory feedback. Concretely, a ‘movement sequence’ or a motor program M is a
sequence of robot joint configurations. Our goal is to learn the space of such movement patterns that
are present across a diverse set of tasks. We do so via learning a ‘motor program network’ that maps
elements z ∈ Rn to corresponding movement sequences i.e.M : z −→M .

Given a set of N unlabelled demonstrations {τi}i=1,2,...,N that consist of sequences of robot states
{s1, s2, ..., sT } ∈ S, our aim is to learn the shared space of motor programs via the motor program
network M. However, as each demonstration τi is unannotated, we do not apriori know what
subsequences of the demonstration correspond to a distinct motor program. Therefore, to learn motor
programs from these demonstrations, we need to simultaneously learn to understand the demonstrated
trajectories in terms of composition of motor programs. Thus in addition to learning the networkM,
we also learn a mapping A from each demonstrated trajectory τi to the underlying sequence of motor
programs {M1,M2, ...,MK} (and associated latent variables {z1, z2, ..., zK}) executed during the
span of the trajectory. We call this mapping A : τi −→ {M1,M2, ...,MK} the abstraction network,
as it abstracts away the details of the trajectory into the set of motor programs (i.e., abstractions). Note
that both the abstraction and motor program networks are learned using only a set of demonstrations
from across diverse tasks.

3.1 PRIMITIVE DISCOVERY VIA RECOMPOSITION

Our central insight is that we can jointly learn the space of motor programs and the abstraction of the
demonstration by enforcing that the implied ‘recomposition’ is faithful to the original demonstration.
Concretely, an abstraction of a demonstration into a sequence of motor programs, each of which
corresponds to an implied motion sequence, must yield back the original demonstration when the
inferred motor programs are decoded and ‘recomposed’. We operationalize this insight to jointly
train the motor program and abstraction networks from demonstrations.

Learning Overview and Objective: Our approach is outlined in Fig 2, where given an input
demonstration trajectory τobs, we use the abstraction network to predict a sequence of (a variable
number of) latent codes {zk}. These are each decoded into corresponding sub-trajectories via the
learned motor program networkM.

{zk} = A(τobs); τ̄k =M(zk) (1)
Given the decoding of the predicted motor programs, we can recompose these sub-trajectories
to obtain a recomposed demonstration trajectory τrec, and penalize the discrepancy between the
observed and the recomposed demonstrations. Denoting by ⊕ the concatenation operator, our loss
for a given demonstration τobs is therefore characterized as:

τrec = τ̄1 ⊕ τ̄2 · · · ⊕ τ̄K ; L(τobs;M,A) = ∆(τobs, τrec) (2)
As the trajectories τobs, τrec are possibly of different lengths, we use a pairwise matching cost between
the two trajectories, where the optimal alignment is computed via dynamic time warping (Berndt &
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Clifford, 1994). This provides us with a more robust cost measure that handles different prediction
lengths, is invariant to minor velocity perturbations, and enables the model to discard regions of
inactivity in the demonstrations. Given two trajectories τa ≡ (s1 · · · sM ), τb ≡ (s1 · · · sN ), and a
distance metric δ over the state space, the discrepancy measure between trajectories can be defined as
the matching cost for the optimal matching path P among all possible valid matching paths P (i.e.
paths satisfying monotonicity, continuity, and boundary conditions (Berndt & Clifford, 1994)):

∆(τa, τb) = min
P∈P

∑
(m,n)∈P

δ(τa[m], τb[n]) (3)

As the recomposed trajectory comprises of distinct primitives, each of which implies a sequence of
states, we sometimes observe discontinuities i.e. large state changes between the boundaries of these
primitives. To prevent this, we additionally incorporate a smoothness loss Lsm(τrec) that penalizes
the state change across consecutive time-steps if they are larger than a certain margin. Our overall
objective, comprising of the reconstruction objective and the smoothness prior, can allow us to jointly
learn the space of motor programs and the abstraction of trajectories in an unsupervised manner.

Network Architecture and Implementation Details. We parameterize our motor program network
M and our abstraction network A as neural networks. In particular, the motor program network
is a 4 layer LSTM (Graves et al., 2013) that takes a single 64 dimensional latent variable z as
input, and predicts a sequence of 16 dimensional states. For our abstraction network, we adopt the
Transformer (Vaswani et al., 2017) architecture to take in a varying length 16 dimensional continuous
joint angle trajectory τ as input, and predict a variable number of latent variables {z}, that correspond
to the sequence of motor programs {M} executed during trajectory τ . We find the transformer
architecture to be superior to LSTMs for processing long trajectories, due to its capacity to attend to
parts of the trajectory as required.

Our abstraction network A predicts a varying number of primitives by additionally predicting a
‘continuation probability’ pk after each motor program variable zk. We then predict an additional
primitive only if the sampled discrete variable from pk is 1, and therefore also need to learn the
prediction of these probabilities. While the loss function above can directly yield gradients to the
predicted motor program encoding zk viaM, we use gradients using REINFORCE Williams (1992)
(with ∆(τobs, τrec) + Lsm(τrec) as negative reward) to learn prediction of pk.

3.2 ENFORCING SIMPLICITY AND PARSIMONY

While the objective described so far can in principle allow us to jointly learn the space of motor
programs and understand the demonstration trajectories as a composition of these, there are additional
properties we would wish to enforce to the bias the learning towards more desirable solutions. As an
example, our framework presented so far can allow a solution where each demonstration is a motor
program by itself i.e. the abstraction network can learn to map each demonstration to a unique z,
and the primitive decoder can then decode this back. However, this is not a suitable solution as the
learned motor programs are not ‘simple’. On the other extreme, a very simple notion of a motor
program is one that models each transition independently. However, this is again undesirable as this
does not ‘abstract’ away the details of control or represent the demonstration as a smaller number of
motor programs. Therefore, in addition to enforcing that the learned motor programs recompose the
demonstrations, we also need to enforce simplicity and parsimony of these motor programs.

We incorporate these additional biases by adding priors in the objective or model space. To encourage
the abstraction model to learn parsimonious abstractions of the input demonstrations, we penalize
the number of motor primitives used to recompose the trajectory, by adding a small constant to the
negative reward used to train the continuation probability pk if the corresponding sample yielded
an additional primitive. To enforce simplicity of motor primitives, we observe that the trajectories
yielded by a classical planner (in our case, RRT-Connect) e.g. to go from an initial to final state are
‘simple’ and we therefore initialize the motor primitive network using the decoder of a pretrained
autoencoder on random planner trajectories for (start, goal) state pairs. Note that this notion of
‘plannability’ as ‘simplicity’ is merely one plausible alternative, and alternate ones can be explored
e.g. ‘linearity’ (Kroemer et al., 2015) or ‘predictability of motion’ (Wolpert & Kawato, 1998).
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Figure 3: Visualization of the embedding of the latent representation of motor programs learned by our model
(depicted on the left are the start configurations of each motor program, displayed at the corresponding position
in the embedded space), and a set of sample primitives unrolled in time (depicted on the right). Each row
corresponds to one primitive, annotated with semantic labels of what this motor primitive resembles.

4 EXPERIMENTS

We would like to ascertain how well our approach is capable of achieving our objective of successfully
discovering and learning a good representation of the space of motor programs. Further, we seek to
verify whether despite being learned in an unsupervised manner without semantic grounding, the
learned primitive space is semantically meaningful. We would also like to evaluate how well they
can be used to solve downstream RL tasks. We first provide a description of the data we wish to
learn primitives from, followed by describing our quantitative and qualitative experiments towards
verifying these three axes.

Dataset: We use the MIME dataset (Sharma et al., 2018) to train and evaluate our model. The
dataset consists of over 8000 kinesthetic demonstrations of 20 tasks (such as pouring, pushing, bottle
opening, stacking objects, etc.) collected on a real-world Baxter Robot. While the dataset has head
and hand-mounted RGBD data, we use the Baxter joint angle trajectories to train our model. We
consider a 16 dimensional space as our input and prediction space, consisting of 7 joints for each of
the 2 arms, along with a scalar value for each gripper (we ignore torso and head joints). We emphasize
this is a higher dimensional domain than most other related works consider. The gripper values are
re-scaled to a 0− 1 range, while the joint angles are unnormalized. We temporally down-sample all
joint angle data by a constant factor of 20 from the original data frequency of 100 Hz.

We randomly sample a train set of 5900 demonstrations from all 20 tasks, with a validation set of
1600 trajectories, and a held-out test set of 850 trajectories. To help evaluate the learned motor
programs, we manually annotate a set of 60 test trajectories (3 trajectories from each task) with
temporal segmentation annotations, as well as semantic labels of 10 primitives (such as reaching,
twisting, pushing, etc.) that occur in these 60 trajectories. Note that these labels are purely for
evaluation, our model does not have access to these annotations during training.

4.1 VISUALIZING THE SPACE OF PRIMITIVES

We would first like to evaluate the quality of the learned abstractions in and of themselves, i.e. Is
our approach able to discover the space of motor programs, and learn a good representation of
this space? We qualitatively answer this question by visualizing the latent representation space of
motor primitives learned by our model. We first randomly sample a set of 500 trajectories unseen
during training, then pass these trajectories through our model, and retrieve the predicted latent
variables {z} for each of these trajectories and their corresponding movement sequences {τ}. We
then embed the latent variables in a 2-dimensional space using T-SNE (van der Maaten & Hinton,
2008), and visualize the corresponding movement sequences at their corresponding position in this
2-D embedded space, as in Fig. 3. We provide a GIF version of Fig. 3 (and other visualizations) at
https://sites.google.com/view/discovering-motor-programs/home.
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Figure 4: Depiction of execution of the learned primitives on real world Baxter robot. Each row is a single
primitive, while columns show progress of the primitive over time. Row 1 depicts a left handed reaching
primitive, while row 2 shows a right handed returning primitive. More visualizations provided in supplementary
material, and videos are provided in the webpage.

We observe that clusters of movement sequences emerge in this embedded space based on the relative
motions executed during the course of these trajectory segments (similar latent variables correspond
to similar movement sequences and vice versa). While these clusters are not explicitly semantically
labelled by our approach, the motions in these clusters correlate highly with traditional notions of
skills in robot manipulation, i.e. reaching motions (top and top-left clusters), returning motions
(bottom cluster), bi-manual motions (visible to the bottom right of the left most cluster and the bottom
of the right most cluster), etc. We visualize a few such primitives (reaching, twisting, grasping,
bi-manual pulling, etc.) among these to the right of Fig. 3. This shows our model learns smooth
mappingsM andA, and is capable of discovering such primitives in an unsupervised manner without
explicit temporal segmentation or semantic labels, which we believe is an encouraging result.

Interestingly, the model learns abstractions that pick up on the trend of the motion, rather than
distinguishing between whether the left or right hand is used for the motion. This is particularly
notable in the case of reaching and returning motions, where both left and right-handed reaching and
returning motions appear alongside each other in their respective clusters in the embedded space.

4.1.1 EXECUTING PRIMITIVES ON A REAL ROBOT

We would ideally like the learned primitives from our model to be useful on a real Baxter robot
platform, and be suitably smooth, feasible, and correspond to the motions executed in simulation (i.e.
be largely unaffected by the noise of execution on a real robot). To verify whether our model is indeed
able to learn such primitives, we execute a small set of learned primitives on a real Baxter robot, by
feeding in the trajectory predicted by the model into a simple position controller. We visualize the
results of this execution in Fig. 4, (see project webpage for videos). Despite not explicitly optimizing
for feasibility or transfer to a real robot, the use of real-world Baxter data to train our model heavily
biases the model towards primitives that are inherently feasible, relatively smooth and can be executed
on a real robot without any subsequent modifications.

4.2 SEMANTIC SEGMENTATION TRANSFER USING LEARNED ABSTRACTIONS

As the ‘recomposed’ trajectory can be aligned to the original demonstration via sequence alignment,
our predicted abstractions induce a partitioning of the demonstrated trajectory (corresponding to
the aligned boundaries of the predicted primitives). We test whether the predicted abstraction and
induced partitions are consistent across different demonstrations from the same task. To this end, we
select 3 instances of the “Drop Object” task (Sharma et al., 2018) from the annotated test set, and
retrieve the induced segmentations of the demonstration. We then visualize these segmentations and
motor programs predicted for each of these 3 demonstrations as depicted in Fig. 5, along with the
ground truth semantic labels of primitives for each of the demonstrations.

The alignment between a recomposed trajectory and the original demonstration also allows us to
transfer semantic annotations from a demonstration to the predicted primitives, by simply copying
labels from the demonstration to their aligned timepoints in the primitives. Therefore using our
small set of annotated demonstrations, we can construct a small library of semantically annotated
primitives. Given a novel, unseen demonstration, we can compute its predicted primitives and assign
each a semantic label by copying the label of the nearest primitive from the library. This allows
us to transfer semantic segmentations from our small annotated test set to unseen demonstrations.
Our model’s transfer of semantic segmentation achieves label accuracy on the set of 30 held out
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Figure 5: Visualization of consistent segmentations. Each row represents a different instance of a “Drop Objects”
task from the MIME Dataset, while each column represents a time-step in the demonstration. White frames
represent predicted segmentation points, while colored boxes represent ground truth semantic annotations. Red
boxes are reaching primitives, blue boxes are grasping, orange boxes are placing, and green boxes are returning
primitives. We see our model predicts 4 motor programs - reaching, grasping, placing the object a small distance
away, and returning. This is consistent with the true semantic annotations of these demonstrations, and the
overall sequence of primitives expected of the “Drop Box” task.

(a) Sparse Baxter Reacher Task (b) Sparse Baxter Pushing Task

Figure 6: RL training curves with and without motor programs. Solid lines denote mean success rate, while
shaded region denotes ±1 standard deviation across 10 random seeds.

trajectories (across all 20 tasks) of 58%, while a supervised LSTM baseline that predicts semantic
labels from trajectories (trained on 30 annotated test trajectories) achieves 54% accuracy.

The consistency of our abstractions coupled with the ability to transfer semantic segmentations across
demonstrations shows our model is capable of understanding commonalities across demonstrations,
and is able to reason about various demonstrations in terms of motor programs shared across them,
despite being trained in an unsupervised manner.

4.3 COMPOSING PRIMITIVES FOR HIERARCHICAL RL

One of our primary motivations for learning motor programs is that they can be composed together to
solve downstream robotic tasks. To evaluate whether the motor programs learned by our model are
indeed useful for such downstream tasks, we adopt a hierarchical reinforcement learning setup (as
described in detail in the supplementary). For a given task, we train a policy to predict the sequence
of motor programs to execute. Given the predicted latent representations, each motor program is
decoded into its corresponding motion sequence using the previously learned motor program network.
We retrieve a sequence of desired joint velocities from this motion sequence and use a joint velocity
controller to execute these “low-level” actions on the robot. The motor program network and the joint
velocity controller together serve as an “abstraction” of the low-level control that is executed on the
robot. Hence, the policy must learn to predict motor programs that correspond to motion sequences
useful for solving the task at hand.

As demonstrated in Fig. 6, training a policy using motor programs is several orders of magnitude
more efficient than training with direct low-level actions. For the sparse reaching task, the motor
program policy learns within 50 motor program queries, 2 orders of magnitude speedup in low-level
control time-steps. For the sparse pushing task, the motor program policy learns within 1000 motor
program queries, or a 2X speedup with respect to low-level control time-steps. We note that executing
a motor program corresponds to 50 low level control steps (see appendix for details). However, as
these motor programs are executed without environment feedback, the improvement in efficiency in
terms of environment interactions is all the more significant.
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5 CONCLUSION

We have presented an unsupervised approach to discover motor programs from a set of unstructured
robot demonstrations. Through the insight that learned motor programs should recompose into the
original demonstration while being simplistic, we discover a coherent and diverse latent space of
primitives on the MIME (Sharma et al., 2018) dataset. We also observed that the learned primitives
were semantically meaningful, and useful for efficiently learning downstream tasks in simulation.
We hope that the contributions from our work enable learning and executing primitives in a plethora
of real-world robotic tasks. It would also be interesting to leverage the learned motor programs in
context of continual learning, to investigate how the discovered space can be adapted and expanded
in context of novel robotic tasks.
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A APPENDIX

A.1 EXECUTING PRIMITIVES ON A REAL ROBOT

We provide additional visualizations of primitives being executed on the real robot below.
As mentioned in the main paper, dynamic GIFs of these visualizations may be found at
https://sites.google.com/view/discovering-motor-programs/home.

Figure 7: Depiction of execution of additional learned primitives on real world Baxter robot. As in Fig. 4, each
row is a single primitive, while columns show progress of the primitive over time. Row 1 depicts a left handed
returning primitive, row 2 depicts a right handed pushing primitive, row 3 depicts a left handed pushing primitive
(in a different configuration to the left handed one), and finally row 4 depicts a right handed twisting primitive.

Our results webpage https://sites.google.com/view/discovering-motor-programs/home also contains
visualizations of predicted combinations of primitives being executed on the real robot (as well as
in simulation), along with corresponding demonstrations for comparison. We note that both the
individual primitives, as well as the combinations of primitives are executed quite smoothly and
naturally, and lead to motions that correspond highly to the original demonstrations. This indicates
such combinations of primitives can indeed be used towards downstream tasks on the real robot.

A.2 DETAILS OF HIERARCHICAL REINFORCEMENT LEARNING SETUP

For our hierarchical reinforcement learning experiments, we perform policy learning on two sparse
reward (Andrychowicz et al., 2017) tasks on a simulated Baxter Robot: (a) Reaching, and (b) Pushing.
For the reaching task, the robot’s end-effector needs to reach a specific location in space, while for
the pushing task, the robot needs to push a block on the table to a specific location.

For Baxter-Reaching task, the goal is to get the right-hand’s end-effector to a pre-defined goal (x,y,z)
state. The reward is a sparse reward with epsilon=0.05m; So if the end-effector reaches within 5 cm
of the goal, it gets a reward of +1, otherwise it gets a reward of 0. For Baxter-Push, the goal is to get
a block (cube) to the desired goal with epsilon=0.05m. To do this, the robot needs to hit/push the
block to the goal. There is no other dense reward to encourage the robot to hit the block.

We train both our motor program policy and the baseline control policy using Proximal Policy Opti-
mization (Schulman et al., 2017). Note that the motor program policy outputs the latent representation
z. Each z expands into a 10 length trajectory according the motor program network. To reach each of
these trajectory states, a PD velocity controller is used for 5 time-steps. The baseline control policy
directly outputs the velocity control action.

We note that our PPO baseline implements the same action for 10 timesteps, in a manner similar to
frame-skipping, as is common in RL. We found that varying the number of timesteps frame-skipping
was applied for did not have a significant effect on the performance of PPO.
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