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ABSTRACT

Recently mean field theory has been successfully used to analyze properties of
wide, random neural networks. It gave rise to a prescriptive theory for initializing
feed-forward neural networks with orthogonal weights, which ensures that both the
forward propagated activations and the backpropagated gradients are near `2 isome-
tries and as a consequence training is orders of magnitude faster. Despite strong
empirical performance, the mechanisms by which critical initializations confer an
advantage in the optimization of deep neural networks are poorly understood. Here
we show a novel connection between the maximum curvature of the optimization
landscape (gradient smoothness) as measured by the Fisher information matrix
(FIM) and the spectral radius of the input-output Jacobian, which partially explains
why more isometric networks can train much faster. Furthermore, given that or-
thogonal weights are necessary to ensure that gradient norms are approximately
preserved at initialization, we experimentally investigate the benefits of maintaining
orthogonality throughout training, and we conclude that manifold optimization of
weights performs well regardless of the smoothness of the gradients. Moreover, we
observe a surprising yet robust behavior of highly isometric initializations — even
though such networks have a lower FIM condition number at initialization, and
therefore by analogy to convex functions should be easier to optimize, experimen-
tally they prove to be much harder to train with stochastic gradient descent. We
conjecture the FIM condition number plays a non-trivial role in the optimization.

1 INTRODUCTION

Deep neural networks (DNN) have shown tremendous success in computer vision problems, speech
recognition, amortized probabilistic inference, and the modelling of neural data. Despite their
performance, DNNs face obstacles in their practical application, which stem from both the excessive
computational cost of running gradient descent for a large number of epochs, as well as the inherent
brittleness of gradient descent applied to very deep models. A number of heuristic approaches such as
batch normalization, weight normalization and residual connections (He et al., 2016; Ioffe & Szegedy,
2015; Salimans & Kingma, 2016) have emerged in an attempt to address these trainability issues.
Recently mean field theory has been successful in developing a more principled analysis of gradients
of neural networks, and has become the basis for a new random initialization principle. The mean
field approach postulates that in the limit of infinitely wide random weight matrices, the distribution
of pre-activations converges weakly to a Gaussian. Using this approach, a series of works proposed to
initialize the networks in such a way that for each layer the input-output Jacobian has mean singular
values of 1 (Schoenholz et al., 2017). This requirement was further strengthened to suggest that the
spectrum of singular values of the input-output Jacobian should concentrate on 1, and it was shown
that this can only be achieved with random orthogonal weight matrices.

Under these conditions the backpropagated gradients are bounded in `2 norm (Pennington et al.,
2017) irrespective of depth, i.e., they neither vanish nor explode. It was shown experimentally in
(Pennington et al., 2017; Xiao et al., 2018; Chen et al., 2018) that networks with these critical initial
conditions train orders of magnitude faster than networks with arbitrary initializations. The empirical
success invites questions from an optimization perspective on how the spectrum of the hidden layer
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input-output Jacobian relates to notions of curvature of the parameters space, and consequentially to
convergence rate. The largest effective (initial) step size η0 for stochastic gradient descent is inversely
proportional to the local gradient smoothness M (Bottou et al., 2018; Boyd & Vandenberghe, 2004).
Intuitively, the gradient step can be at most as large as the fastest change in the parameter landscape.
Recent attempts have been made to analyze the mean field geometry of the optimization using the
Fisher information matrix (FIM) (Amari et al., 2019; Karakida et al., 2019). The theoretical and
practical appeal of measuring curvature with the FIM is due to among other reasons the fact that the
FIM is necessarily positive (semi-)definite even for non-convex objectives, and due to it its intimate
relationship with the Hessian matrix. Karakida et al. (2019) derived an upper bound on the maximum
eigenvalue, however this bound is not satisfactory since it is agnostic of the entire spectrum of singular
values and therefore cannot differentiate between Gaussian and orthogonal weight initalizations.

In this paper, we develop a new bound on the parameter curvature M given the maximum eigenvalue
of the Fisher information λmax(G) which holds for random neural networks with both Gaussian
and orthogonal weights. We derive this quantity to inspect the relation between the singular value
distribution of the input-output Jacobian and locally maximal curvature of the parameter space.
We use this result to probe different orthogonal, nearly isometric initializations, and observe that,
broadly speaking, networks with a smaller initial curvature train faster and generalize better, as
expected. However, consistent with a previous report (Pennington et al., 2018), we also observe
highly isometric networks perform worse despite having a slowly varying loss landscape ( i.e. small
initial λmax(G)). We conjecture that the long term optimization behavior is depends on trivially on
the smallest eigenvalue m and therefore surprisingly there is a sweetspot with the condition number
being m

M > 1.

We then investigate whether constraining the spectrum of the Jacobian matrix of each layer affects
optimization rate. We do so by training networks using Riemannian optimization to constrain their
weights to be orthogonal, or nearly orthogonal and we find that manifold constrained networks are
insensitive to the maximal curvature at the beginning of training unlike the unconstrained gradient
descent (hereafter “Euclidean”). In particular, we observe that the advantage conferred by optimizing
over manifolds cannot be explained by the improvement of the gradient smoothness as measured by
λmax(G). Finally, we observe that contrary to Bansal et al. (2018)’s results Euclidean networks with
a carefully designed initialization reduce the test misclassification error at approximately the same
rate as their manifold constrained counterparts, and overall attain a higher accuracy.

2 BACKGROUND

2.1 FORMAL DESCRIPTION OF THE NETWORK

Following (Pennington et al., 2017; 2018; Schoenholz et al., 2017), we consider a feed-forward, fully
connected neural network with L hidden layers. Each layer l ∈ {1, . . . , L} is given as a recursion of
the form

xl = φ(hl), hl = Wlxl−1 + bl (1)

where xl are the activations, hl are the pre-activations, Wl ∈ RN l×N l−1

are the weight matrices, bl
are the bias vectors, and φ(·) is the activation function. The input is denoted as x0. The output layer
of the network computes ŷ = g−1(hg) where g is the link function of some generalized linear model
(GLM) and hg = WgxL + bg .
The hidden layer input-output Jacobian matrix JxL

x0 is,

JxL

x0 ,
∂xL

∂x0
=

L∏
l=1

DlWl (2)

where Dl is a diagonal matrix with entries Dl
i,i = φ′(hli). As pointed out in (Pennington et al.,

2017; Schoenholz et al., 2017), the conditioning of the Jacobian matrix affects the conditioning of the
back-propagated gradients for all layers.

2.2 CRITICAL INITIALIZATIONS

Extending the classic result on the Gaussian process limit for wide layer width obtained by (Neal,
1996), recent work (Matthews et al., 2018; Lee et al., 2018) has shown that for deep untrained
networks with elements of their weight matrices Wi,j drawn from a Gaussian distribution N (0,

σ2
W

N l
)
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the empirical distribution of the pre-activations hl converges weakly to a Gaussian distribution
N (0, qlI) for each layer l in the limit of the width N → ∞. Similarly, it has been postulated
that random orthogonal matrices scaled by σW give rise to the same limit. Under this mean-field
condition, the variance of the pre-activation distribution ql is recursively given by,

ql = σ2
W

∫
φ
(√

ql−1h
)

dµ(h) + σ2
b (3)

where µ(h) denotes the standard Gaussian measure
∫

dh√
2π

exp (−h
2

2 ) and σ2
b denotes the variance

of the Gaussian distributed biases (Schoenholz et al., 2017). The variance of the first layer pre-
activations q1 depends on `2 norm squared of inputs q1 =

σ2
W

N1

∥∥p (x0
)∥∥2

2
+ σ2

b. The recursion
defined in equation 3 has a fixed point

q∗ = σ2
W

∫
φ
(√
q∗h
)

dµ(h) + σ2
b (4)

which can be satisfied for all layers by appropriately choosing σW, σb and scaling the input x0.
To permit the mean field analysis of backpropagated signals, the authors (Schoenholz et al., 2017;
Pennington et al., 2017; 2018; Karakida et al., 2019) further assume the propagated activations and
back propagated gradients to be independent. Specifically,
Assumption 1. [Mean field assumptions]
(i) limN→∞ h

d−→ N (0, q∗)
(ii) limN→∞ Cov

[
Jgxi+1h

i,Jgxj+1h
j
]

= 0 for all i 6= j

Under this assumption, the authors (Schoenholz et al., 2017; Pennington et al., 2017) analyze
distributions of singular values of Jacobian matrices between different layers in terms of a small
number of parameters, with the calculations of the backpropagated signals proceeding in a selfsame
fashion as calculations for the forward propagation of activations. The corollaries of Assumption 1
and condition in equation 4 is that φ′(hl) for 1 ≤ l ≤ L are i.i.d. In order to ensure that JxL

x0 is well
conditioned, (Pennington et al., 2017) require that in addition to the variance of pre-activation being
constant for all layers, two additional constraints be met. Firstly, they require that the mean square
singular value of DW for each layer has a certain value in expectation.

χ =
1

N
E
[

Tr
[
(DW)>DW

]]
= σ2

W

∫ [
φ′(
√
q∗h)

]2
dµ(h) (5)

Given that the mean squared singular value of the Jacobian matrix JxL

x0 is (χ)L, setting χ = 1
corresponds to a critical initialization where the gradients are asymptotically stable as L → ∞.
Secondly, they require that the maximal squared singular value s2max of the Jacobian JxL

x0 be bounded.
Pennington et al. (2017) showed that for weights with Gaussian distributed elements, the maximal
singular value increases linearly in depth even if the network is initialized with χ = 1. Fortunately,
for orthogonal weights, the maximal singular value smax is bounded even as L→∞ (Pennington
et al., 2018).

3 THEORETICAL RESULTS: RELATING THE SPECTRA OF JACOBIAN AND
FISHER INFORMATION MATRICES

To better understand the geometry of the optimization landscape, we wish to put a Lipschitz bound on
the gradient, which in turn gives an upper bound on the largest step size of any first order optimization
algorithm. For a general objective function f , the condition is equivalent to

‖∇f(x)−∇f(x′)‖2 ≤M‖x− x′‖2 for all x, x′ ⊂ S ⊆ Rd

The Lipschitz constant ensures that the gradient doesn’t change arbitrarily fast with respect to
x, x′, and therefore ∇f defines a descent direction for the objective over a distance M . In general
estimating the Lipschitz constant is NP-hard (Kunstner et al., 2019), therefore we seek to find local
measures of curvature along the optimization trajectory. As we will show below the approximate
gradient smoothness is tractable for randomly initialized neural networks. The analytical study of
Hessians of random neural networks started with (Pennington & Bahri, 2017), but was limited
to shallow architectures. Subsequent work by Amari et al. (2019) and Karakida et al. (2019) on
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second order geometry of random networks shares much of the spirit of the current work, in that it
proposes to replace the possibly indefinite Hessian with the related Fisher information matrix as a
measure of curvature. The Fisher information matrix plays a fundamental role in the geometry of
probabilistic models under the Kullback-Leibler divergence loss — it defines a (local) Riemannian
metric, which in turn defines distances on the manifold of probability distributions generated by the
model. Notably, the FIM does not define a unique metric on this statistical manifold, and alternative
notions of intrinsic curvature can be derived by replacing the Kullback-Leibler divergence with the
2-Wasserstein distance (Li & Montúfar, 2018). Moreover, since the Fisher information matrix bears a
special relation to the Hessian it can also be seen as defining an approximate curvature matrix for
second order optimization. Recall that the FIM is defined as

Definition. Fisher Information Matrix

G , Epθ(y|x0)

[
Ep(x0)

[
∇θ log pθ(y|x0)∇θ log pθ(y|x0)>

]]
(6)

= Epθ(y|x0)

[
Ep(x0)

[
Jh

g>
θ ∇2

hgLJh
g

θ

]]
= Epθ(y|x0)

[
Ep(x0)

[
H−

∑
k

∇xgLk∇2
θh
g
k

]]
(7)

where L denotes the loss and hg is the output layer. The relation between the Hessian and Fisher
Information matrices is apparent from equation 7, showing that the Hessian H is a quadratic form
of the Jacobian matrices plus the possibly indefinite matrix of second derivatives with respect to
parameters.

Our goal is to express the gradient smoothness using the results of the previous section. Given equa-
tion 7 we can derive an analytical approximation to the Lipschitz bound using the results from
the previous section; i.e. we will express the expected maximum eigenvalue of the random Fisher
information matrix in terms of the expected maximum singular value of the Jacobian JhL

h1 . To
do so, let us consider the output of a multilayer perceptron as defining a conditional probability
distribution pθ(y|x0), where Θ = {vec(W1), . . . , vec(WL),b1, . . . ,bL} is the set of all hidden
layer parameters, and θ is the column vector containing the concatenation of all the parameters in Θ.
As observed by Martens & Grosse (2015) the Fisher of a multilayer network naturally has a block
structure, with each corresponding to the weights and biases of each layer. These blocks with respect
to parameter vectors a, b ∈ Θ can further be expressed as

Ga,b = Jhg

a
>HgJ

hg

b (8)

where the final layer Hessian Hg is defined as∇2
hg log pθ(y|x0). We can re-express the outer product

of the score function∇hg log pθ(y|x0) as the second derivative of the log-likelihood (see equation 6),
provided it satisfies certain technical conditions. What is important for us is that all canonical link
function for generalized linear models, like the softmax function and the identity function allow
this re-writing, and that this re-writing allows us drop the conditional expectation with respect to
pθ
(
y|x0

)
. The Jacobians in equation 8 can be computed iteratively. Importantly the Jacobian from

the output layer to the a-th parameter block is just the product of diagonal activations and weight
matrices multiplied by the Jacobian from the α-th layer to the a-th parameter. We define these
matrices of partial derivatives of the α-th layer pre-activations with respect to the layer specific
parameters separately for Wα and bα as:

Jhα

a = xα−1> ⊗ I for a = vec(Wα) (9)

Jhα

a = I for a = bα (10)

Under the infinitesmally weak correlation assumption (see Assumption 1), we can further simplify
the expression for the blocks of the Fisher information matrix equation 8.

Lemma 1. The expected blocks with respect to weight matrices for all layers α, β 6= 1 are

Gvec(Wα),vec(Wβ) = E
[
xα−1xβ−1

>]⊗ E
[
Jhg

hα
>
HgJ

h
hβ

]
(11)

Lemma 2. The expected blocks with respect to a weight matrix Wα and a bias vector bβ are

Gvec(Wα),bβ = E
[
xα−1

> ⊗ I
]
E
[
Jhg

hα
>
HgJ

hg

hβ

]
(12)
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Figure 1: Network with manifold constrained weights are relatively insensitive to the choice of
initial weight scaling q∗: We compare training loss and test accuracy for Euclidean, Stiefel and
Oblique networks with two different values of q∗. The manifold constrained networks minimize the
training loss at approximately the same rate, being faster than both Euclidean networks. Despite
this, there is little difference between the test accuracy of the Stiefel and Oblique networks and the
Euclidean networks initialized with q∗ = 1/64. Notably, the latter attains a marginally higher test set
accuracy towards the end of training.

The crucial observation here is that in the mean-field limit the expectation of the product of activations
xα−1, xβ−1 is either zero or rank 1 for activations in different layers. The case when both
activations are in the same layer is trivially taken care of by our mean-field assumptions — the term
is equal to the 2nd non-central moment, i.e. the covariance plus potentially a rank one mean term.

Now, leveraging Lemmas 1 and 2 we derive a block diagonal approximation which in turn allows
us to bound the maximum eigenvalue λmax(G). In doing so we will use a corollary of the block
Gershgorin theorem.

Proposition 1 ((informal) Block Gershgorin theorem). The maximum eigenvalue λmax(G) is
contained in a union of disks centered around the maximal eigenvalue of each diagonal block with
radia equal to the sum of the singular values of the off-diagonal terms.

For a rigorous statement of the theorem see Appendix A.1. It is noteworthy that block-diagonal
approximations have been crucial to the application of Fisher Information matrices as preconditioners
in stochastic second order methods (Botev et al., 2017; Martens & Grosse, 2015). These methods
were motivated by practical performance in their choice of number of diagonal blocks used for
preconditioning. Under the mean-field assumptions we are able to show computable bounds on the
error in approximating the spectrum of the Fisher information matrix. The proposition 1 suggest a
simple, easily computable way to bound the expected maximal eigenvalue of the Fisher information
matrix—choose the block with the largest eigenvalue and expected spectral radia for the corresponding
off diagonal terms. We do so by making an auxiliary assumption:

Assumption 2. The maximum singular value of Jhg

hα monotonically increases as α ↓ 1.

We motivate this assumption in a twofold fashion: firstly the work done by Pennington et al. (2017;
2018) shows that the spectral edge, i.e. the maximal, non-negative singular value in the support of of
the spectral distribution increases with depth, secondly it has been commonly observed in numerical
experiments that very deep neural networks have ill conditioned gradients.
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Under this assumption it is sufficient to study the maximal singular value of blocks of the Fisher
information matrix with respect to vec(W1), b1 and the spectral norms of its corresponding off-
diagonal blocks. We define functions Σmax of each block as upper bounds on the spectral bounds of
the respective block. The specific values are given in the following Lemma:
Lemma 3. The maximum expected singular values of the off-diagonal blocks ∀β 6= 1 are bounded
by Σmax(·) :
for weight-to-weight blocks

E
[
σmax

(
Gvec(W1),vec(Wβ)

)]
≤ Σmax

(
Gvec(W1),vec(Wβ)

)
(13)

,
√
Nβ |E [φ(h)]|

∥∥E [x0
]∥∥

2
E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(14)

for weight-to-bias blocks

E
[
σmax

(
Gvec(W1),bβ

)]
≤ Σmax

(
Gvec(W1),bβ

)
(15)

, |E [φ(h)]|E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(16)

and for bias-to-bias blocks

E
[
σmax

(
Gb1,bβ

)]
≤ Σmax

(
Gb1,bβ

)
, E

[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(17)

For proof see Appendix A.2

Note that the expectations for layers > 1 is over random networks realizations and averaged over
data x0; i.e. they are taken with respect to the Gaussian measure, whereas the expectation for first
layer weights is taken with respect to the empirical distribution of x0 (see equation 4). Depending
on the choice of q∗ and therefore implicitly both the rescaling of x0 and the values of E[φ(h)]
the singular values of the weight blocks might dominate those associated with biases dominate —
compare equation 14 and equation 17.
Theorem (Bound on the Fisher Information Eigenvalues). If

∥∥E [x0
]∥∥

2
≤ 1 then eigenvalue associ-

ated with b1 will dominate, giving an upper bound on λmax(G)

E [λmax(G)] ≤ E
[
σmax

(
Gb1,b1

)]
+ Σmax

(
Gb1,vec(W1)

)
+
∑
β>1

Σmax

(
Gb1,bβ

)
+ Σmax

(
Gvec(b1),vec(Wβ)

)
otherwise the maximal eigenvalue of the FIM is bounded by

E [λmax(G)] ≤ E
[
σmax

(
Gvec(W1),vec(W1)

)]
+ Σmax

(
Gb1,vec(W1)

)
+
∑
β>1

Σmax

(
Gvec(W1),bβ

)
+ Σmax

(
Gvec(W1),vec(Wβ)

)
Moreover, it is interesting to note two things. Firstly, E

[
σmax

(
Jhg

h1

)]
factor appear in

all the above summands. Secondly, we can bound σmax for the diagonal blocks with
E [λmax (Hg)]E

[
σmax

(
Jhg

h1

)]2
. These two fact reveal that the FIM maximum eigenvalue is up-

per upperbounded by a quadratic function of the spectral radius of the input-output Jacobian; i.e.
λmax (G) is O

(
σ2
max

(
Jhg

h1

))
.

For proof see Appendix A.4

The functional form of the bound is essentially quadratic in E
[
σmax(Jhg

h1 )
]

since the term appears in
the summand as with powers at most two. This result shows that the strong smoothness, given by
the maximum eigenvalue of the FIM, is proportional to the squared maximum singular value of the
input-output Jacobian (see Fig. 2). Moreover, the bound essentially depends on q∗ via the expectation
E[φ(h)], through Jhg

h1 and implicitly through Hg. For regression problems this dependence is
monotonically increasing in q∗ (Pennington et al., 2018; 2017) since Hg is just the identity. However,
this does not hold for all generalized linear models since λmax(Hg) is not necessarily a monotonically
increasing function of the pre-activation variance at layer hg. We demonstrate this in the case of
softmax regression in the Appendix A.3. Finally, to obtain a specific bound on λmax(G) we might
consider bounding each E

[
σmax(Jhg

hα)
]

appearing in Theorem 3 in terms of its Frobenius norm. The
corresponding result is the eigenvalue bound derived by Karakida et al. (2019).
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Figure 2: Left: at initialization the maximum curvature of the loss landscape (measured by the λmax

of the Fisher correlates highly (ρ = 0.65) with the maximum squared singular value of the Jacobian
Jhg

x0 . The choice of choice of the preactivation variance, q∗ affects not only the conditioning of the
gradients but also the gradient Lipschitz constant. Right: we verify this separately for mean-squared
error, for which a strictly monotonic relationship between q∗ and λmax and Jhg

x0 is predicted, given
that the Hessian of the output layer is the identity. This is corroborated by a correlation coefficient of
ρ = 0.81.

3.1 NUMERICAL EXPERIMENTS

We first verify the bound derived in section 3 for networks with random orthogonal weights. We then
numerically investigate the behavior of the maximum FIM eigenvalue during training with particular
attention being paid to the possible benefits of maintaining orthogonality or near orthogonality during
optimization in relation to unconstrained networks. Following Pennington et al. (2017) we trained a
200 layer tanh network on CIFAR-10 and SVHN1 and we set the width of each layer to be N = 400
and chose the σW, σb in such a way to ensure that mean singular value of the input-output Jacobian
concentrates on 1 but s2max varies as a function of q∗ (see Fig. 2). We considered four different
critical initializations with q∗ =

[
10−4, 1

64 ,
1
2 , 8

]
, which differ both in spread of the singular values

as well as in the resulting training speed and final test accuracy as reported by (Pennington et al.,
2017). In the main text we focus on the smaller values since those networks should be closer to
being isometric and therefore, by our theory, ought to train better. The remaining two networks with
q∗ =

[
1
2 , 8

]
are presented in the Appendix A.5. To test how enforcing strict orthogonality or near

orthogonality affects convergence speed and the maximum eigenvalues of the Fisher information
matrix, we trained Stiefel and Oblique constrained networks and compared them to the unconstrained
“Euclidean” network described in (Pennington et al., 2017). We used a Riemannian version of
ADAM (Kingma & Ba, 2015). When performing gradient descent on non-Euclidean manifolds, we
split the variables into three groups: (1) Euclidean variables (e.g. the weights of the classifier layer,
biases), (2) non-negative scaling σW both optimized using the regular version of ADAM, and (3)
manifold variables optimized using Riemannian ADAM. The initial learning rates for all the groups,
as well as the non-orthogonality penalty (see 43) for Oblique networks were chosen via Bayesian
optimization, maximizing validation set accuracy after 50 epochs. All networks were trained with a
minibatch size of 1000. We trained 5 networks of each kind, and collected eigenvalue and singular
value statistics every 5 epochs, from the first to the fiftieth, and then after the hundredth and two
hundredth epochs.

Based on the bound on the maximum eigenvalue of the Fisher information matrix derived in Section 3,
we predicted that at initialization λmax(G) should covary with σ2

max(Jhg

x0 ). We tested our prediction
using the empirical Fisher information matrix (Kunstner et al., 2019) and we find a significant
correlation between the two (Pearson coefficient ρ = 0.64). We additionally test the relation for
mean-squared error loss, and observe that our theoretical predictions hold better in this case — the
discrepancy can be attributed to the effect of the Hessian of the output layer, and its non-monotonic
relation between preactivation variance and maximum eigenvalue of the Hessian of the GLM layer.
The numerical values are presented in Fig. 2. Additionally we see that both the maximum singular
value and maximum eigenvalue increase monotonically as a function of q∗. Motivated by the previous
work by (Saxe et al., 2014) showing depth independent learning dynamics in linear orthogonal
networks, we included 5 instantiations of this model in the comparison. The input to the linear

1Code available on: https://github.com/PiotrSokol/info-geom
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network was normalized the same way as the critical, non-linear networks with q∗ = 1/64. The
deep linear networks had a substantially larger λmax(G) than its non-linear counterparts initialized
with identically scaled input (Fig. 2). Having established a connection between q∗ the maximum
singular value of the hidden layer input-output Jacobian and the maximum eigenvalue of the Fisher
information, we investigate the effects of initialization on subsequent optimization. As reported
by (Pennington et al., 2017), the learning speed and generalization peak at intermediate values of
q∗ ≈ 10−0.5. This result is counter intuitive given that the maximum eigenvalue of the Fisher
information matrix, much like that of the Hessian in convex optimization, upper bounds the maximal
learning rate (Boyd & Vandenberghe, 2004; Bottou et al., 2018). To gain insight into the effects
of the choice of q∗ on the convergence rate, we trained the Euclidean networks and estimated the
local values of λmax during optimization. At the same time we asked whether we can effectively
control the two aforesaid quantities by constraining the weights of each layer to be orthogonal
or near orthogonal. To this end we trained Stiefel and Oblique networks and recorded the same
statistics. We present training results in Fig. 1, where it can be seen that Euclidean networks with
q∗ ≈ 9× 10−4 perform worse with respect to training loss and test accuracy than those initialized
with q∗ = 1/64. On the other hand, manifold constrained networks are insensitive to the choice of q∗.
Moreover, Stiefel and Oblique networks perform marginally worse on the test set compared to the
Euclidean network with q∗ = 1/64, despite attaining a lower training loss. We observe that reduced
performance of Euclidean networks initialized with q∗ ≈ 9×10−4 may partially be explained by their
rapid increase in λmax(G) within the initial 5 epochs of optimization (see Fig. 3 in the Appendix).
While all networks undergo this rapid increase, it is most pronounced for Euclidean networks with
q∗ ≈ 9× 10−4. The increase λmax(G) correlates with the inflection point in the training loss curve
that can be seen in the inset of Fig. 1. Interestingly, the manifold constrained networks optimize
efficiently despite differences in λmax(G) (Kohler et al., 2019).
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Figure 3: For manifold constrained networks, gradient smoothness is not predictive of optimization
rate. Euclidean networks with a low initial λmax(G) rapidly become less smooth, whereas Euclidean
networks with a larger λmax(G) remain relatively smoother. Notably, the Euclidean network with
q∗ = 1/64 has almost an order of magnitude smaller λmax(G) than the Stiefel and Oblique networks,
but reduces training loss at a slower rate.

4 DISCUSSION

Critical orthogonal initializations have proven tremendously successful in rapidly training very
deep neural networks (Pennington et al., 2017; Chen et al., 2018; Pennington et al., 2018; Xiao
et al., 2018). Despite their elegant derivation drawing on methods from free probability and mean
field theory, they did not offer a clear optimization perspective on the mechanisms driving their
success. With this work we complement the understanding of critical orthogonal initializations by
showing that the maximum eigenvalue of the Fisher information matrix, and consequentially the local
gradient smoothness is proportional to the maximum singular value of the input-output Jacobian.
This gives an information geometric account of why the step size and training speed depend on q∗

via its effect on E
[
smax(JhL

h1 )
]
. We observed in numerical experiments that the paradoxical results

reported in (Pennington et al., 2017) whereby training speed and generalization attains a maximum
for q∗ = 10−0.5 can potentially be explained by a rapid increase of the maximum eigenvalue of
the FIM during training for the networks initialized with Jacobians closer to being isometric (i.e.,
smaller q∗). This increase effectively limits the learning rate during the early phase of optimization
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and highlights the need to analyze the trajectories of training rather than just initializations. Notably
these effects persist under extensive search for the optimal learning rate, indicating the increased
difficulty in training highly isometric neural networks reflects a qualitative change of the optimization
problem. We conjecture that this phenomenon relates to the stability of descent direction in response
to small parameter perturbations. An analysis of the cubic term (Riemmanian connection) would give
insight into the initial change in curvature at initialization, however that currently seems infeasible
both numerically and analytically. In lieu of that, let us consider the stability of neural networks
linearized about their initial parameters. A number of works on overparametrized networks have
derived stability conditions for the linearization both in infinitesmal regimes and also over potentially
infinitely many gradient updates (Chizat et al., 2019; Lee et al., 2019). The crucial property governing
this stability is ensuring that the relative change in parameters is small in proportion to the norm of
the Gram matrix of the gradients of the networks. The latter curiously has a spectrum that coincides
with that of the Fisher information matrix under mean-squared loss (see A.7). Other arguments about
the stability of the linearization have proposed bounds that depend non-trivially on a function of both
the largest and smallest eigenvalues of this Gram matrix (Lee et al., 2019). It is therefore tempting
to understand the behavior of the lowest eigenvalue of this curvature matrix. Lower bounds on the
smallest eigenvalue are typically much harder to obtain, however Karakida et al. (2019) showed
that the smallest eigenvalue of the Fisher scales roughly reciprocally with the maximal one. This
might imply that a low condition number λmax(G0)

λmax(G0)
may be undesirable, and a degree of anisotropy is

necessary for the Fisher information matrix at initialization to be predictive of training performance.
We observe that orthogonal linear networks experience a similar rapid increase in the maximum
eigenvalue of their FIM, while having an FIM condition number that isO(1), up to applying similarity
transform to the input data (see Appendix A.8).

Finally, we compared manifold constrained networks with the Euclidean network, each evaluated with
two initial values of q∗. From these experiments we draw the conclusion that manifold constrained
networks are less sensitive to the initial strong smoothness, unlike their Euclidean counterparts.
Furthermore, we observe that the rate at which Stiefel and Oblique networks decrease training loss is
not dependent on their gradient smoothness, a result which is consistent with the recent analysis of
(Kohler et al., 2019).
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A APPENDIX

A.1 BLOCK GERSHGORIN THEOREM

In Section 3, we considered a block diagonal approximation to the Fisher information matrix and
derived an upper bound on the spectral norm for all the blocks. Using the properties of the off-diagonal
blocks, we can get a more accurate estimate of the maximal eigenvalue of the Fisher information
might be. First, let us consider an arbitrarily partitioned matrix A ∈ RN×N , with spectrum λ(A)
The partitioning is done with respect to the set

π = {pj}Lj=0 (18)

with the elements of the set satisfying 0 < p1 < p2 < . . . < pL = N . Then each block of the matrix
Ai,j is a potentially rectangular matrix in R(pi−pi−1)×(pj−pj−1). We assume that Ai,i is self-adjoint
for all i.

Let us define a disk as
C(c, r) ,

{
λ : ‖c− λ‖ ≤ r

}
. (19)

The theorem as presented in (Tretter, 2008) shows that the eigenvalues of λ(A) are contained in a
union of Gershgorin disks defined as follows

λ(A) ⊂
L⋃
i=1

{
pi−pi−1⋃
k=1

C

λk(Aii),

L∑
j=1,j 6=i

smax(Ai,j)

} (20)

where the inner union is over a set disks for each eigenvalue of the block diagonal Ai,i while the
outer union is over the L blocks in A. The radius of the disk is constant for every eigenvalue in
the ith diagonal block Ai,i and is given by the sum of singular values of the off diagonal blocks.
Therefore, the largest eigenvalue of A lies in

λmax(A) ⊂
L⋃
i=1

C

λmax(Aii),

L∑
j=1,j 6=i

smax(Ai,j)

 (21)

Now suppose A is positive semidefinite. This suggests a strategy for upper-bounding the maximal
eigenvalue of A— picking the disk containing the largest (non-negative) value will upper-bound the
maximal eigenvalue of A:

λmax (A) ≤ max
i

λmax(Aii) +

L∑
j=1,j 6=i

smax(Ai,j)

 (22)

A.2 DERIVATION OF THE EXPECTED SINGULAR VALUES

We present a derivation of the bounds presented in Lemma 3. The singular value bound for the
weight-to-weight blocks is

σmax

(
Gvec(W1),vec(Wβ)

)
= E

[
σmax

(
φ(h)1x0>)]⊗ E

[
σmax

(
Jhg>
h1 HgJ

hg

hβ

)]
(23)

=
√
Nβ |E [φ(h)]|

∥∥E [x0
]∥∥

2
E
[
σmax

(
Jhg>
h1 HgJ

hg

hβ

)]
(24)

where φ(h)1 is a vector of ones times φ(h)

≤
√
Nβ |E [φ(h)]|

∥∥E [x0
]∥∥

2
E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

])
(25)

The singular value bound for the weight-to-bias blocks is

σmax

(
Gvec(W1),bβ

)
≤ E

[
σmax

(
x0> ⊗ I

)]
E
[
σmax

(
Jhg

hα
>HgJ

hg

hβ

)]
(26)

=
∥∥E [x0

]∥∥
2

(E
[
σmax Jhg>

h1 HgJ
hg

hβ

)]
(27)

≤
∥∥E [x0

]∥∥
2
E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(28)
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σmax

(
Gb1,vec(Wβ)

)
≤ E

[
σmax

(
xβ−1> ⊗ I

)]
(29)

=
√
Nβ |E [φ(h)]|E

[
σmax

(
Jhg>
h1 HgJ

hg

hβ

)]
(30)

≤
√
Nβ |E [φ(h)]|E

[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(31)

The singular value bound for the weight-to-bias blocks is

σmax

(
Gb1,bβ

)
= E

[
σmax

(
Jhg>
h1 HgJ

hg

hβ

)]
(32)

≤ E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(33)

A.3 MONTECARLO ESTIMATE OF MAXIMUM EIGENVALUE OF THE HESSIAN OF THE OUTPUT
LAYER FOR 10 WAY SOFTMAX CLASSIFICATION
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Figure 4: Distribution of λmax(Hg) as a function of q∗: In general, increasing the variance of the
distribution of hg does not result in a monotonic increase in the spectral radius of the Hessian of the
GLM layer. We plot the distribution of the maximum eigenvalues as a function of the variance of the
softmax layer obtained from factorizing 10,000 random matrices.

A.4 PROOF OF THEOREM

Using the results from Section A.2, we observe that all the terms off diagonal for the diagonal block
Gvec(W1),vec(W1) are of the form

|E [φ(h)]|
∥∥E [x0

]∥∥
2
E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(34)

and ∥∥E [x0
]∥∥

2
E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(35)

while the diagonal term is

λmax(E
[
x0ᵀx0

]
)E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(36)

then by Gershgorin theorem the eigenvalues for the Gvec(W1),vec(W1) are bounded by

λmax(Gvec(W1),vec(W1)) ≤ E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]

×

λmax(E
[
x0ᵀx0

]
)E
[
σmax

(
Jhg>
h1

)]
+
∑
β

(1 + |E[φ(h)]|)
∥∥E [x0

]∥∥
2
E
[
σmax

(
Jhg

hβ

)]
(37)
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Similarly, for the Gb1,b1 block, we observe that

λmax(Gb1,b1) ≤
(
E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]

)
×

×

∑
β

(1 +
√
Nβ |E[φ(h)]|)

∥∥E [x0
]∥∥

2
E
[
σmax

(
Jhg

hβ

)] (38)

A.5 ADDITIONAL FIGURES
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Figure 5: Training performance for networks with q∗ = 1
2 and q∗ = 8. The behavior of the training

loss as well as the validation accuracy is consistent with the observations that for a large range
of parameters q∗ the manifold constrained networks are insensitive to initialization and gradient
smoothness.
A.6 MANIFOLD OPTIMIZATION

The potentially non-convex constraint set constitutes a Riemannian manifold, when it is locally
isomorphic to Rn, differentiable and endowed with a suitable (Riemannian) metric, which allows us
to measure distances in the tangent space and consequentially also define distances on the manifold.
There is considerable freedom in choosing a Riemannian metric; here we consider the metric inherited
from the Euclidean embedding space which is defined as 〈W,W′〉 , Tr(W′>W). To optimize a
cost function with respect to parameters lying in a non-Euclidean manifold we must define a descent
direction. This is done by defining a manifold equivalent of the directional derivative. An intuitive
approach replaces the movement along a vector t with movement along a geodesic curve γ(t), which
lies in the manifold and connects two points W,W′ ∈M such that γ(0) = W, γ(1) = W′. The
derivative of an arbitrary smooth function f(γ(t)) with respect to t then defines a tangent vector for
each t.

Tangent vector ξW is a tangent vector at W if ξW satisfies γ(0) = W and

ξW ,
df(γ(t))

dt

∣∣∣∣
t=0

, γ′(0)f (39)

The set of all tangents toM at W is referred to as the tangent space toM at W and is denoted
by TWM. The geodesic importantly is then specified by a constant velocity curve γ′′(t) = 0 with
initial velocity ξW. To perform a gradient step, we must then move along ξW while respecting the
manifold constraint. This is achieved by applying the exponential map defined as ExpW(ξW) ,
γ(1), which moves W to another point W′ along the geodesic. While certain manifolds, such
as the Oblique manifold, have efficient closed-form exponential maps, for general Riemannian
manifolds, the computation of the exponential map involves numerical solution to a non-linear
ordinary differential equation (Absil et al., 2007). An efficient alternative to numerical integration
is given by an orthogonal projection onto the manifold. This projection is formally referred to as a
retraction RtW : TWM→M.

Finally, gradient methods using Polyak (heavy ball) momentum (e.g. ADAM (Kingma & Ba, 2015))
require the iterative updating of terms which naturally lie in the tangent space. The parallel translation
Tζ(ξ) : TM⊕

TM → TM generalizes vector composition from Euclidean to non-Euclidean
manifolds, by moving the tangent ξ along the geodesic with initial velocity ζ ∈ T and endpoint W′,
and then projecting the resulting vector onto the tangent space TW′M. As with the exponential map,
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parallel transport T may require the solution of non-linear ordinary differential equation. To alleviate
the computational burden, we consider vector transport as an effective, projection-like solution to
the parallel translation problem. We overload the notation and also denote it as T , highlighting
the similar role that the two mappings share. Technically, the geodesics and consequentially the
exponential map, retraction as well as transport T depend on the choice of the Riemannian metric.
Putting the equations together the updating scheme for Riemannian stochastic gradient descent on
the manifold is

Wt+1 = ΠWt(−ηt gradf) (40)

where Π is either the exponential map Exp or the retraction Rt and gradf is the gradient of the
function f(W) lying in the tangent space TWM.

A.6.1 OPTIMIZING OVER THE OBLIQUE MANIFOLD

(Cho & Lee, 2017) proposed an updating scheme for optimizing neural networks where the weights
of each layer are constrained to lie in the oblique manifold Ob(p, n). Using the fact that the
manifold itself is a product of p unit-norm spherical manifolds, they derived an efficient, closed-
form Riemannian gradient descent updating scheme. In particular the optimization simplifies to the
optimization over Ob(1, n) for each column wi∈{1,...,p} of W.

Oblique gradient The gradient gradf of the cost function f with respect to the weights lying in
Ob(1, n) is given as a projection of the Euclidean gradient Gradfonto the tangent at w

gradf = Gradf − (w>Gradf)w (41)

Oblique exponential map The exponential map Expw moving w to w′ along a geodesic with
initial velocity ξw

Expw = ξw cos(‖w‖) +
w

‖w‖ sin(‖w‖) (42)

Oblique parallel translation The parallel translation T moves the tangent vector ξw along the
geodesic with initial velocity ζw

Tζw(ξw) = ξw −
ζw
‖ζw‖

((1− cos(‖ζw‖)) + w sin(‖ζw‖))
ζw
‖ζw‖

>ξw

Orthogonal penalty which enforces the weight matrices to be near orthogonal.

ρ(λ,W) =
λ

2

∥∥W>W − I
∥∥2
F

(43)

A.6.2 OPTIMIZING OVER THE STIEFEL MANIFOLD

Optimization over Stiefel manifolds in the context of neural networks has been studied by (Harandi &
Fernando, 2016; Wisdom et al., 2016; Vorontsov et al., 2017). Unlike (Wisdom et al., 2016; Vorontsov
et al., 2017) we propose the parametrization using the Euclidean metric, which results in a different
definition of vector transport.

Stiefel gradient The gradient gradf of the cost function f with respect to the weights lying in
St(p, n) is given as a projection of the Euclidean gradient Gradfonto the tangent at W (Edelman
et al., 1999; Absil et al., 2007)

gradf = (I−WW>)Gradf +
1

2
W
(
W>Gradf −Gradf>W

)
Stiefel retraction The retraction RtW(ξW) for the Stiefel manifold is given by the Q factor of the
QR decomposition (Absil et al., 2007).

RtW(ξW) = qf(W + ξW) (44)
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Stiefel vector transport The vector transport T moves the tangent vector ξw along the geodesic
with initial velocity ζw for W ∈ St(p, n) endowed with the Euclidean metric.

Tζw(ξw) =
(
I−YY>

)
ξW +

1

2
Y
(
Y>ξW − ξW>Y

)
(45)

where Y , RtW(ζW). It is easy to see that the transport T consists of a retraction of tangent ζW
followed by the orthogonal projection of ηW at RtW(ζW).

A.6.3 OPTIMIZING OVER NON-COMPACT MANIFOLDS

The critical weight initialization yielding a singular spectrum of the Jacobian tightly concentrating
on 1 implies that a substantial fraction of the pre-activations lie in expectation in the linear regime
of the squashing nonlinearity and as a consequence the network acts quasi-linearly. To relax this
constraint during training we allow the scales of the manifold constrained weights to vary. We chose
to represent the weights as a product of a scaling diagonal matrix and a matrix belonging to the
manifold. Then the optimization of each layer consists in the optimization of the two variables in the
product. In this work we only consider isotropic scalings, but the method generalizes easily to the use
of any invertible square matrix.

It is interesting to contrast our approach with projected gradient descent with a spectral prox function,
or penalizing the Jacobian norm through back propagation. PGD with projections onto compact
spectral balls requires the user to pre-specify the desired spectral radius. On the other hand, both
our approach as well as penalizing the Jacobian norm can be thought of penalizing decreases in
function smoothness in an adaptive way. Finally, our approach is naturally amenable to incorporating
a data-dependent penalty — this would allow us to smoothly vary the spectral radia of the weight
matrices.

A.7 FIM AND NTK HAVE THE SAME SPECTRUM

The empirical Neural Tangent Kernel (NTK) is defined as

Θ̂t,i,j , Jhg

θ Jhg>
θ (46)

which gives a Ng|D| by Ng|D| kernel matrix. By comparison the empirical Fisher information
matrix with a Gaussian likelihood is ∑

i∈|D|

Jh
g>
θ Jh

g

θ (47)

To see that the spectra of these two coincide consider the third order tensor underlying both Jhg

h1i for
i ∈ 1 . . . |D|, additionally consider and unfolding A with dimensions |θ| by Ng|D|; i.e. we construct
a matrix with dimension of number of parameters by number of outputs times number of data points.
Then

G = A>A (48)

Θ̂ = AA> (49)
(50)

and their spectra trivially coincide.
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A.8 LINEAR NEURAL NETWORKS WITH ORTHOGONAL INITIALIZATIONS

0 25 50 75 100 125 150 175 200

Epochs

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

0.00225

Pe
rs

am
pl

e
cr

os
s-

en
tro

py

1 5 200

Epochs

0.0005

0.0010

0.0015

0.0020

25 50 75 100 125 150 175 200

Epochs

35

40

45

50

55

Te
st

ac
cu

ra
cy

[%
]

Stiefel q∗ = 1/64

Linear q∗ = 1/64

Penalized Stiefel q∗ = 1/64

0 25 50 75 100 125 150 175 200

Epochs

101.5

102.0

102.5

103.0

103.5

104.0

G
ra

di
en

ts
m

oo
th

ne
ss

λ
m

a
x
(Ḡ
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Figure 6: Linear neural networks with orthogonal initializations increase rapidly in their maxi-
mum eigenvalue of the empirical Fisher information, similar to their non-linear, nearly isometric
counterparts.
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