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ABSTRACT

The universal approximation theorem, in one of its most general versions, says
that if we consider only continuous activation functions σ, then a standard feedfor-
ward neural network with one hidden layer is able to approximate any continuous
multivariate function f to any given approximation threshold ε, if and only if σ
is non-polynomial. In this paper, we give a direct algebraic proof of the theorem.
Furthermore we shall explicitly quantify the number of hidden units required for
approximation. Specifically, if X ⊆ Rn is compact, then a neural network with
n input units, m output units, and a single hidden layer with

(
n+d
d

)
hidden units

(independent of m and ε), can uniformly approximate any polynomial function
f : X → Rm whose total degree is at most d for each of its m coordinate func-
tions. In the general case that f is any continuous function, we show there exists
some N ∈ O(ε−n) (independent of m), such that N hidden units would suffice
to approximate f . We also show that this uniform approximation property (UAP)
still holds even under seemingly strong conditions imposed on the weights. We
highlight several consequences: (i) For any δ > 0, the UAP still holds if we re-
strict all non-bias weights w in the last layer to satisfy |w| < δ. (ii) There exists
some λ > 0 (depending only on f and σ), such that the UAP still holds if we
restrict all non-bias weights w in the first layer to satisfy |w| > λ. (iii) If the
non-bias weights in the first layer are fixed and randomly chosen from a suitable
range, then the UAP holds with probability 1.

1 INTRODUCTION AND OVERVIEW

A standard (feedforward) neural network with n input units, m output units, and with one or more
hidden layers, refers to a computational model N that can compute a certain class of functions
ρ : Rn → Rm, where ρ = ρW is parametrized by W (called the weights of N ). Implicitly,
the definition of ρ depends on a choice of some fixed function σ : R → R, called the activation
function of N . Typically, σ is assumed to be continuous, and historically, the earliest commonly
used activation functions were sigmoidal.

A key fundamental result justifying the use of sigmoidal activation functions was due to Cybenko
(1989), Hornik et al. (1989), and Funahashi (1989), who independently proved the first version of
what is now famously called the universal approximation theorem. This first version says that if
σ is sigmoidal, then a standard neural network with one hidden layer would be able to uniformly
approximate any continuous function f : X → Rm whose domain X ⊆ Rn is compact. Hornik
(1991) extended the theorem to the case when σ is any continuous bounded non-constant activation
function. Subsequently, Leshno et al. (1993) proved that for the class of continuous activation
functions, a standard neural network with one hidden layer is able to uniformly approximate any
continuous function f : X → Rm on any compact X ⊆ Rn, if and only if σ is non-polynomial.

Although a single hidden layer is sufficient for the uniform approximation property (UAP) to hold,
the number of hidden units required could be arbitrarily large. Given a subclass F of real-valued
continuous functions on a compact set X ⊆ Rn, a fixed activation function σ, and some ε > 0,
let N = N(F , σ, ε) be the minimum number of hidden units required for a single-hidden-layer
neural network to be able to uniformly approximate every f ∈ F within an approximation error
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threshold of ε. If σ is the rectified linear unit (ReLU) x 7→ max(0, x), then N is at least Ω( 1√
ε )

when F is the class of C2 non-linear functions (Yarotsky, 2017), or the class of strongly convex
differentiable functions (Liang & Srikant, 2016); see also (Arora et al., 2018). If σ is any smooth
non-polynomial function, then N is at most O(ε−n) for the class of C1 functions with bounded
Sobolev norm (Mhaskar, 1996); cf. (Pinkus, 1999, Thm. 6.8), (Maiorov & Pinkus, 1999). As a key
highlight of this paper, we show that if σ is an arbitrary continuous non-polynomial function, then
N is at most O(ε−n) for the entire class of continuous functions. In fact, we give an explicit upper
bound for N in terms of ε and the modulus of continuity of f , so better bounds could be obtained
for certain subclasses F , which we discuss further in Section 4. Furthermore, even for the wider
class F of all continuous functions f : X → Rm, the bound is still O(ε−n), independent of m.

To prove this bound, we shall give a direct algebraic proof of the universal approximation theorem,
in its general version as stated by Leshno et al. (1993) (i.e. σ is continuous and non-polynomial). An
important advantage of our algebraic approach is that we are able to glean additional information
on sufficient conditions that would imply the UAP. Another key highlight we have is that if F is
the subclass of polynomial functions f : X → Rm with total degree at most d for each coordinate
function, then

(
n+d
d

)
hidden units would suffice. In particular, notice that our bound N ≤

(
n+d
d

)
does not depend on the approximation error threshold ε or the output dimension m.

We shall also show that the UAP holds even under strong conditions on the weights. Given any
δ > 0, we can always choose the non-bias weights in the last layer to have small magnitudes no
larger than δ. Furthermore, we show that there exists some λ > 0 (depending only on σ and the
function f to be approximated), such that the non-bias weights in the first layer can always be chosen
to have magnitudes greater than λ. Even with these seemingly strong restrictions on the weights, we
show that the UAP still holds. Thus, our main results can be collectively interpreted as a quantitative
refinement of the universal approximation theorem, with extensions to restricted weight values.

Outline: Section 2 covers the preliminaries, including relevant details on arguments involving dense
sets. Section 3 gives precise statements of our results, while Section 4 discusses the consequences
of our results. Section 5 introduces our algebraic approach and includes most details of the proofs of
our results; details omitted from Section 5 can be found in the appendix. Finally, Section 6 concludes
our paper with further remarks.

2 PRELIMINARIES

2.1 NOTATION AND DEFINITIONS

Let N be the set of non-negative integers, let 0n be the zero vector in Rn, and let Mat(k, `) be the
vector space of all k-by-` matrices with real entries. For any function f : Rn → Rm, let f [t] denote
the t-th coordinate function of f (for each 1 ≤ t ≤ m). Given α = (α1, . . . , αn) ∈ Nn and any
n-tuple x = (x1, . . . , xn), we write xα to mean xα1

1 · · ·xαnn . If x ∈ Rn, then xα is a real number,
while if x is a sequence of variables, then xα is a monomial, i.e. an n-variate polynomial with a
single term. LetWn,m

N := {W ∈ Mat(n + 1, N) ×Mat(N + 1,m)} for each N ≥ 1, and define
Wn,m =

⋃
N≥1W

n,m
N . If the context is clear, we supress the superscripts n,m inWn,m

N andWn,m.

Given any X ⊆ Rn, let C(X) be the vector space of all continuous functions f : X → R. We use
the convention that every f ∈ C(X) is a function f(x1, . . . , xn) in terms of the variables x1, . . . , xn,
unless n = 1, in which case f is in terms of a single variable x (or y). We say f is non-zero if f is not
identically the zero function on X . Let P(X) be the subspace of all polynomial functions in C(X).
For each d ∈ N, let P≤d(X) (resp. Pd(X)) be the subspace consisting of all polynomial functions
of total degree ≤ d (resp. exactly d). More generally, let C(X,Rm) be the vector space of all
continuous functions f : X → Rm, and define P(X,Rm), P≤d(X,Rm), Pd(X,Rm) analogously.

Throughout, we assume that σ ∈ C(R). For every W = (W (1),W (2)) ∈ W , let w(k)
j be the j-th

column vector of W (k), and let w(k)
i,j be the (i, j)-th entry of W (k) (for k = 1, 2). The index i

begins at i = 0, while the indices j, k begin at j = 1, k = 1 respectively. For convenience, let
ŵ

(k)
j denote the truncation of w(k)

j obtained by removing the first entry w(k)
0,j . Define the function

ρσW : Rn → Rm so that for each 1 ≤ j ≤ m, the j-th coordinate function ρσ [j]
W is given by the map

x 7→ w
(2)
0,j +

∑N
i=1 w

(2)
i,j σ(w

(1)
i · (1, x)),
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where “·” denotes dot product, and (1, x) denotes a column vector in Rn+1 formed by concatenating
1 before x. The class of functions that neural networks N with one hidden layer can compute is
precisely {ρσW : W ∈ W}, where σ is called the activation function ofN (or of ρσW ). Functions ρσW
satisfying W ∈ WN correspond to neural networks with N hidden units (in its single hidden layer).
Every w(k)

i,j is called a weight in the k-th layer, where w[k]
i,j is called a bias weight (resp. non-bias

weight) if i = 0 (resp. i 6= 0).

Notice that we do not apply the activation function σ to the output layer. This is consistent with
previous approximation results for neural networks. The reason is simple: σ ◦ ρσ [j]

W (restricted to
domain X ⊆ Rn) cannot possibly approximate f : X → R if there exists some x0 ∈ X such
that σ(X) is bounded away from f(x0). If instead f(X) is contained in the closure of σ(X), then
applying σ to ρσ [j]

W has essentially the same effect as allowing for bias weights w(2)
0,j .

Although some authors, e.g. (Leshno et al., 1993), do not explicitly include bias weights in the
output layer, the reader should check that if σ is not identically zero, say σ(y0) 6= 0, then having a
bias weight w(2)

0,j = c is equivalent to setting w(2)
0,j = 0 (i.e. no bias weight in the output layer) and

introducing an (N + 1)-th hidden unit, with corresponding weights w(1)
0,N+1 = y0, w(1)

i,N+1 = 0 for
all 1 ≤ i ≤ n, and w(2)

N+1,j = c
σ(y0) ; this means our results also apply to neural networks without

bias weights in the output layer (but with one additional hidden unit).

2.2 ARGUMENTS INVOLVING DENSE SUBSETS

A key theme in this paper is the use of dense subsets of metric spaces. We shall consider several
notions of “dense”. First, recall that a metric on a set S is any function d : S × S → R such that for
all x, y, z ∈ S, the following conditions hold:

(i) d(x, y) ≥ 0, with equality holding if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ d(x, y) + d(y, z).

The set S, together with a metric on S, is called a metric space. For example, the usual Euclidean
norm for vectors in Rn gives the Euclidean metric (u, v) 7→ ‖u− v‖2, hence Rn is a metric space.
In particular, every pair inWN can be identified with a vector in R(m+n+1)N , soWN , together with
the Euclidean metric, is a metric space.

Given a metric spaceX (with metric d), and some subset U ⊆ X , we say that U is dense inX (w.r.t.
d) if for all ε > 0 and all x ∈ X , there exists some u ∈ U such that d(x, u) < ε. Arbitrary unions
of dense subsets are dense. If U ⊆ U ′ ⊆ X and U is dense in X , then U ′ must also be dense in X .

A basic result in algebraic geometry says that if p ∈ P(Rn) is non-zero, then {x ∈ Rn : p(x) 6= 0}
is a dense subset of Rn (w.r.t. the Euclidean metric). This subset is in fact an open set in the Zariski
topology, hence any finite intersection of such Zariski-dense open sets is dense; see (Eisenbud,
1995). More generally, the following is true: Let p1, . . . , pk ∈ P(Rn), and suppose that X := {x ∈
Rn : pi(x) = 0 for all 1 ≤ i ≤ k}. If p ∈ P(X) is non-zero, then {x ∈ X : p(x) 6= 0} is a dense
subset ofX (w.r.t. the Euclidean metric). In subsequent sections, we shall frequently use these facts.

Let X ⊆ Rn be a compact set. (Recall that X is compact if it is bounded and contains all of
its limit points.) For any real-valued function f whose domain contains X , the uniform norm of
f on X is ‖f‖∞,X := sup{|f(x)| : x ∈ X}. More generally, if f : X → Rm, then we define
‖f‖∞,X := max{‖f [j]‖∞,X : 1 ≤ j ≤ m}. The uniform norm of functions onX gives the uniform
metric (f, g) 7→ ‖f − g‖∞,X , hence C(X) is a metric space.

2.3 BACKGROUND ON APPROXIMATION THEORY

Theorem 2.1 (Stone–Weirstrass theorem). Let X ⊆ Rn be compact. For any f ∈ C(X), there
exists a sequence {pk}k∈N of polynomial functions in P(X) such that limk→∞ ‖f − pk‖∞,X = 0.

Let X ⊆ R be compact. For all d ∈ N and f ∈ C(X), define

Ed(f) := inf{‖f − p‖∞,X : p ∈ P≤d(X)}. (1)
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A central result in approximation theory, due to Chebyshev, says that for fixed d, f , the infimum in
(1) is attained by some unique p∗ ∈ P≤d(R); see (Rivlin, 1981, Chap. 1). (Notice here that we
define p∗ to have domain R.) This unique polynomial p∗ is called the best polynomial approximant
to f of degree d.

Given a metric space X with metric d, and any uniformly continuous function f : X → R, the
modulus of continuity of f is a function ωf : [0,∞]→ [0,∞] defined by

ωf (δ) := sup{|f(x)− f(y)| : x, y ∈ X, d(x, y) ≤ δ}.

By the Heine–Cantor theorem, any continuous f with a compact domain is uniformly continuous.

Theorem 2.2 (Jackson’s theorem; see (Rivlin, 1981, Cor. 1.4.1)). Let d ≥ 1 be an integer, and let
Y ⊆ R be a closed interval of length r ≥ 0. Suppose f ∈ C(Y ), and let p∗ be the best polynomial
approximant to f of degree d. Then ‖f − p∗‖∞,Y = Ed(f) ≤ 6ωf ( r2d ).

3 MAIN RESULTS

Throughout this section, let X ⊆ Rn be a compact set.

Theorem 3.1. Let d ≥ 2 be an integer, and let f ∈ P≤d(X,Rm) (i.e. each coordinate function f [t]

has total degree≤ d). If σ ∈ C(R)\P≤d−1(R), then for every ε > 0, there exists someW ∈ W(n+d
d )

such that ‖f − ρσW ‖∞,X < ε. Furthermore, the following holds:
(i) Given any λ > 0, we can choose this W to satisfy the condition that |w(2)

i,j | < λ for all

non-bias weights w(2)
i,j (i.e. i 6= 0) in the second layer.

(ii) There exists some λ′ > 0, depending only on f and σ, such that we could choose the
weights of W in the first layer to satisfy the condition that ‖ŵ(1)

j ‖2 > λ′ for all j.

Theorem 3.2. Let f ∈ C(X,Rm), and suppose σ ∈ C(R)\P(R). Then for every ε > 0, there exists
an integer N ∈ O(ε−n) (independent of m), and some W ∈ WN , such that ‖f − ρσW ‖∞,X < ε.
In particular, if we let D := sup{‖x − y‖2 : x, y ∈ X} be the diameter of X , then we can set
N =

(
n+dε
dε

)
, where dε := min{d ∈ Z : d ≥ 2, ωf [t](D2d ) < ε

6 for all 1 ≤ t ≤ m}. (Note that dε
is well-defined, since limδ→0+ ωf [t](δ) = 0 for each t.) Furthermore, we could choose this W to
satisfy either (i) or (ii), where (i), (ii) are conditions on W as described in Theorem 3.1.

Theorem 3.3. Let f ∈ C(X,Rm), and suppose that σ ∈ C(R)\P(R). Then there exists λ > 0
(which depends only on f and σ) such that for every ε > 0, there exists an integer N (independent
of m) such that the following holds:

Let W ∈ WN such that each ŵ
(1)
j ∈ Rn (for 1 ≤ j ≤ N ) is chosen uniformly at random

from the set {u ∈ Rn : ‖u‖2 > λ}. Then, with probability 1, there exist choices for the
bias weights w(1)

0,j (for 1 ≤ j ≤ N ) in the first layer, and (both bias and non-bias) weights

w
(2)
i,j in the second layer, such that ‖f − ρσW ‖∞,X < ε.

Moreover,N ∈ O(ε−n) for general f ∈ C(X,Rm), and we can letN =
(
n+d
d

)
if f ∈ P≤d(X,Rm).

4 DISCUSSION

The universal approximation theorem (version of Leshno et al. (1993)) is an immediate consequence
of Theorem 3.2 and the observation that σ must be non-polynomial for the UAP to hold, which
follows from the fact that the uniform closure of P≤d(X) is P≤d(X) itself, for every integer d ≥ 1.
Alternatively, we could infer the universal approximation theorem by applying the Stone–Weirstrass
theorem (Theorem 2.1) to Theorem 3.1.

Given fixed n,m, d, a compact set X ⊆ Rn, and σ ∈ C(R)\P≤d−1(R), Theorem 3.1 says that
we could use a fixed number N of hidden units (independent of ε) and still be able to approximate
any function f ∈ P≤d(X,Rm) to any desired approximation error threshold ε. Our ε-free bound,
although possibly surprising to some readers, is not the first instance of an ε-free bound: Neural net-
works with two hidden layers of sizes 2n+ 1 and 4n+ 3 respectively are able to uniformly approx-
imate any f ∈ C(X), provided that we use a (somewhat pathological) activation function (Maiorov
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& Pinkus, 1999); cf. (Pinkus, 1999). Lin et al. (2017) showed that for fixed n, d, and a fixed smooth
non-linear σ, there is a fixed N (i.e. ε-free), such that a neural network with N hidden units is able
to approximate any f ∈ P≤d(X). An explicit expression for N is not given, but we were able to
infer from their constructive proof that N = 4

(
n+d+1

d

)
− 4 hidden units are required, over d − 1

hidden layers (for d ≥ 2). In comparison, we require less hidden units and a single hidden layer.

Our proof of Theorem 3.2 is an application of Jackson’s theorem (Theorem 2.2) to Theorem 3.1,
which gives an explicit bound in terms of the values of the modulus of continuity ωf of the function f
to be approximated. The moduli of continuity of several classes of continuous functions have explicit
characterizations. For example, given constants k > 0 and 0 < α ≤ 1, recall that a continuous
function f : X → R (for compact X ⊆ Rn) is called k-Lipschitz if |f(x) − f(y)| ≤ k‖x − y‖ for
all x, y ∈ X , and it is called α-Hölder if there is some constant c such that |f(x)−f(y)| ≤ c‖x−y‖α
for all x, y ∈ X . The modulus of continuity of a k-Lipschitz (resp. α-Hölder) continuous function
f is ωf (t) = kt (resp. ωf (t) = ctα), hence Theorem 3.2 implies the following corollary.
Corollary 4.1. Suppse σ ∈ C(R)\P(R).

(i) If f : [0, 1]n → R is k-Lipschitz continuous, then for every ε > 0, there exists some
W ∈ WN that satisfies ‖f − ρσW ‖∞,X < ε, where N =

(
n+d 3kε e

n

)
.

(ii) If f : [0, 1]n → R is α-Hölder continuous, then there is a constant k such that for every
ε > 0, there exists some W ∈ WN that satisfies ‖f − ρσW ‖∞,X < ε, where N =

(
n+d
d

)
,

and d = d 1
2 (kε )1/αe.

An interesting consequence of Theorem 3.3 is the following: The freezing of lower layers of a neural
network, even in the extreme case that all frozen layers are randomly initialized and the last layer is
the only “non-frozen” layer, does not necessarily reduce the representability of the resulting model.
Specifically, in the single-hidden-layer case, we have shown that if the non-bias weights in the
first layer are fixed and randomly chosen from some suitable fixed range, then the UAP holds with
probability 1, provided that there are sufficiently many hidden units. Of course, this representability
does not reveal anything about the learnability of such a model. In practice, layers are already
pre-trained before being frozen. It would be interesting to understand quantitatively the difference
between having pre-trained frozen layers and having randomly initialized frozen layers.

Theorem 3.3 can be viewed as a result on random features, which were formally studied in relation
to kernel methods (Rahimi & Recht, 2007). In the case of ReLU activation functions, Sun et al.
(2019) proved an analog of Theorem 3.3 for the approximation of functions in a reproducing kernel
Hilbert space; cf. (Rahimi & Recht, 2008). For a good discussion on the role of random features in
the representability of neural networks, see (Yehudai & Shamir, 2019).

The UAP is also studied in other contexts, most notably in relation to the depth and width of neural
networks. Lu et al. (2017) proved the UAP for neural networks with hidden layers of bounded
width, under the assumption that ReLU is used as the activation function. Soon after, Hanin (2017)
strengthened the bounded-width UAP result by considering the approximation of continuous convex
functions. Recently, the role of depth in the expressive power of neural networks has gathered
much interest (Delalleau & Bengio, 2011; Eldan & Shamir, 2016; Mhaskar et al., 2017; Montúfar
et al., 2014; Telgarsky, 2016). We do not address depth in this paper, but we believe it is possible
that our results can be applied iteratively to deeper neural networks, perhaps in particular for the
approximation of compositional functions; cf. (Mhaskar et al., 2017).

5 AN ALGEBRAIC APPROACH FOR PROVING UAP

We begin with a “warm-up” result. Subsequent results, even if they seem complicated, are actually
multivariate extensions of this “warm-up” result, using very similar ideas.
Theorem 5.1. Let p(x) be a real polynomial of degree d with all-non-zero coefficients, and let
a1, . . . , ad+1 be real numbers. For each 1 ≤ j ≤ d + 1, define fj : R → R by x 7→ p(ajx). Then
f1, . . . , fd+1 are linearly independent if and only if a1, . . . , ad+1 are distinct.

Proof. For each 0 ≤ i, k ≤ d and each 1 ≤ j ≤ d+1, let f (i)
j (resp. p(i)) be the i-th derivative of fj

(resp. p), and let α(i)
k be the coefficient of xk in p(i)(x). Recall that the Wronskian of (f1, . . . , fd+1)

is defined to be the determinant of the matrixM(x) := [f (i−1)
j (x)]1≤i,j≤d+1. Since f1, . . . , fd+1 are
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polynomial functions, it follows that (f1, . . . , fd+1) is a sequence of linearly independent functions
if and only if its Wronskian is not the zero function (LeVeque, 1956, Thm. 4.7(a)). Clearly, if
ai = aj for i 6= j, then detM(x) is identically zero. Thus, it suffices to show that if a1, . . . , ad+1

are distinct, then the evaluation detM(1) of this Wronskian at x = 1 gives a non-zero value.

Now, the (i, j)-th entry of M(1) equals ai−1
j p(i−1)(aj), so M(1) = M ′M ′′, where M ′ is an upper

triangular matrix whose (i, j)-th entry equals α(i−1)
j−i , and M ′′ = [ai−1

j ]1≤i,j≤d+1 is the transpose of
a Vandermonde matrix, whose determinant is

det(M ′′) =
∏

1≤i<j≤d+1

(aj − ai).

Note that the k-th diagonal entry ofM ′ is α(k−1)
0 = (k−1)!α(0)

k−1, which is non-zero by assumption,
so det(M ′) 6= 0. Thus, if a1, . . . , ad+1 are distinct, then detM(1) = det(M ′) det(M ′′) 6= 0.

Definition 5.2. Given N ≥ 1, W ∈ Wn,m
N , x0 ∈ Rn, and any function g : R → R, let Fg,x0(W )

denote the sequence of functions (f1, . . . , fN ), such that each fj : Rn → R is defined by the map
x 7→ g(ŵ(1)

j · (x− x0)). Also, define the set
gW ind

n,N ;x0
:= {W ∈ Wn,m

N : Fg,x0
(W ) is linearly independent}.

Note that the value of m is irrelevant for defining gW ind
n,N ;x0

.

Remark 5.3. Given a = (a1, . . . , an) ∈ Rn, consider the ring automorphism ϕ : P(Rn)→ P(Rn)
induced by xi 7→ xi − ai for all 1 ≤ i ≤ n. For any f1, . . . , fk ∈ P(Rn) and scalars α1, . . . , αk ∈
R, note that α1f1 + · · · + αkfk = 0 if and only if α1ϕ(f1) + · · · + αkϕ(fk) = 0, thus linear
independence is preserved under ϕ. Consequently, if the function g in Definition 5.2 is polynomial,
then gW ind

n,N ;x0
=
gW ind

n,N ;0n
for all x0 ∈ Rn.

Corollary 5.4. Let m be arbitrary. If p ∈ Pd(R) has all-non-zero coefficients, then
pW ind

1,d+1;0 is a
dense subset ofW1,m

d+1 (in the Euclidean metric).

Proof. For all 1 ≤ j < j′ ≤ N , let Aj,j′ := {W ∈ W1,m
d+1 : w(1)

1,j′ − w(1)
1,j 6= 0}, and note that Aj,j′

is dense inW1,m
d+1. So by Theorem 5.1, pW ind

1,d+1;0 =
⋂

1≤j<j′≤N Aj,j′ is also dense inW1,m
d+1.

As we have seen in the proof of Theorem 5.1, Vandermonde matrices play an important role. To
extend this theorem (and Corollary 5.4) to the multivariate case, we need a generalization of the
Vandermonde matrix as described in (D’Andrea & Tabera, 2009). (Other generalizations of the
Vandermonde matrix exist in the literature.) First, define the sets

Λn≤d := {(α1, . . . , αn) ∈ Nn : α1 + · · ·+ αn ≤ d};
Mn
≤d := {(x 7→ xα) ∈ P(Rn) : α ∈ Λn≤d}.

It is easy to show that |Λn≤d| =
(
n+d
d

)
, and that the setMn

≤d of monomial functions forms a basis
for P≤d(Rn). Sort the n-tuples in Λn≤d in colexicographic order, i.e. (α1, . . . , αn) < (α′1, . . . , α

′
n)

if and only if αi < α′i for the largest index i such that αi 6= α′i. Let λ1 < · · · < λ(n+d
d ) denote all the(

n+d
d

)
n-tuples in Λn≤d after sorting. Analogously, let q1, . . . q(n+d

d ) be all the monomial functions
inMn

≤d in this order, i.e. each qk : Rn → R is given by the map x 7→ xλk . Given any sequence
(v1, . . . , v(n+d

d )) of vectors in Rn, the generalized Vandermonde matrix associated to it is
Q = Q[v1, . . . , v(n+d

d )] := [qi(vj)]1≤i,j≤(n+d
d ). (2)

Definition 5.5. Given anyW ∈ Wn,m(n+d
d

), we define the non-bias Vandermonde matrix ofW to be the
generalized Vandermonde matrixQ[W ] := [qi(ŵ

(1)
j )]1≤i,j≤(n+d

d ) associated to (ŵ
(1)
1 , . . . , ŵ(1)(n+d

d

)).

Theorem 5.6. Let m be arbitrary, let p ∈ Pd(Rn), and suppose that p has all-non-zero coefficients.
Also, suppose that p1, . . . , pk ∈ P(Wn,m(n+d

d

)) are fixed polynomial functions on the non-bias weights
of the first layer. Define the following sets:

U := {W ∈ Wn,m(n+d
d

) : pi(W ) = 0 for all 1 ≤ i ≤ k};
pU ind := {W ∈ U : Fp,0n(W ) is linearly independent}.

If there exists W ∈ U such that the non-bias Vandermonde matrix of W is non-singular, then
pU ind

is dense in U (w.r.t. the Euclidean metric).
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Proof. We essentially extend the ideas in the proofs of Theorem 5.1 and Corollary 5.4, using the
notion of generalized Wronskians; see Appendix A.1 for proof details.

Corollary 5.7. Let m be arbitrary. If p ∈ P(R) is a fixed polynomial function of degree d with
all-non-zero coefficients, then

pW ind
n,
(n+d
d

)
;0n

is a dense subset ofWn,m(n+d
d

).

Proof. By Theorem 5.6, it suffices to show that there is some W ∈ Wn,m(n+d
d

) such that the non-bias
Vandermonde matrix of W is non-singular; see Appendix A.2 for proof details.

Remark 5.8. The proof of Corollary 5.7 still holds even if we restrict every non-bias weight w(1)
i,j

in the first layer to satisfy |w(1)
i,j | < λ for some fixed constant λ > 0.

For the rest of this section, let {λk}k∈N be a divergent increasing sequence of positive real numbers,
and let {Yk}k∈N be a sequence of closed intervals of R, such that Yk′ ⊆ Yk whenever k′ ≤ k, and
such that each interval Yk = [y′k, y

′′
k ] has length λk. Let d ≥ 1 be an integer, and suppose σ ∈ C(R).

For each k ∈ N, let σk be the best polynomial approximant to σ|Yk of degree d. Given r > 0 and
any integer N ≥ 1, define the closed ball BNr := {x ∈ RN : ‖x‖2 ≤ r}.
Lemma 5.9. If d ≥ 2, limk→∞Ed(σ|Yk) = ∞, and λk ∈ Ω(kγ) for some γ > 0, then for every
ε > 0, there is a subsequence {kt}t∈N of N, and a sequence {ykt}t∈N of real numbers, such that
y′kt < ykt < y′′kt , σ(ykt) = σkt(ykt), and

min{|ykt − y′kt |, |ykt − y
′′
kt
|}

|y′kt − y
′′
kt
|

>
1

d+ 1
− ε,

for all t ∈ N. (See Appendix B for proof details.)

The proofs of the next three lemmas can be found in Appendix C.
Lemma 5.10. For any constant γ > 0,

lim
k→∞

‖σk − σ‖∞,Yk
(λk)1+γ

= 0.

Lemma 5.11. Let K ≥ N ≥ 1 be integers, let r0, . . . , rN ≥ 1 be fixed real numbers, and let S(λ)
be a set {p0(λ), . . . , pN (λ)} of N + 1 affinely independent points in RK , parametrized by λ > 0,
where each point pi(λ) has (Cartesian) coordinates (λripi,1, . . . , λ

ripi,K) for some fixed non-zero
scalars pi,1, . . . , pi,K . Let ∆(λ) be the convex hull of S(λ), i.e. ∆(λ) is an N -simplex, and for each
0 ≤ i ≤ N , let hi(λ) be the height of ∆(λ) w.r.t. apex pi(λ). Let h(λ) := max{hi(λ) : 0 ≤ i ≤ N}
and rmin := min{r1, . . . , rN}. If rj > rmin for some 0 ≤ j ≤ N , then there exists some γ > 0
such that h(λ) ∈ Ω(λrmin+γ).
Lemma 5.12. Let M,N ≥ 1 be integers, let τ > 0, and let 0 < θ < 1. Suppose ϕ : RM → RN is
a continuous open map such that ϕ(0M ) = 0N , and ϕ(λx) ≥ λϕ(x) for all x ∈ RM , λ > 0. Let
{Uk}k∈N be a sequence where each Uk is a dense subspace of BMλk\B

M
θλk

. Then for every δ > 0,
there exists some (sufficiently large) k ∈ N, and some points u0, . . . , uN in Uk, such that for each
point p ∈ BNτ , there are scalars b0, . . . , bN ≥ 0 satisfying p =

∑N
i=0 biϕ(ui), b0 + · · · + bN = 1,

and |bi − 1
N | < δ for all 0 ≤ i ≤ N .

Outline of strategy for proving Theorem 3.1. The first crucial insight is that P≤d(Rn), as a real
vector space, has dimension

(
n+d
d

)
. Our strategy is to consider N =

(
n+d
d

)
hidden units. Every

hidden unit represents a continuous function gj : X → R determined by its weights W and the
activation function σ. If g1, . . . , gN can be well-approximated (on X) by linearly independent poly-
nomial functions in P≤d(Rn), then we can choose suitable linear combinations of theseN functions
to approximate all coordinate functions f [t] (independent of how large m is). To approximate each
gj , we consider a suitable sequence {σλk}∞k=1 of degree d polynomial approximations to σ, so that
gj is approximated by a sequence of degree d polynomial functions {ĝWj,k}∞k=1. We shall also vary
W concurrently with k, so that ‖ŵ(1)

j ‖2 increases together with k. By Corollary 5.7, the weights
can always be chosen so that ĝW1,k, . . . , ĝ

W
N,k are linearly independent.

The second crucial insight is that every function in P≤d(Rn) can be identified geometrically as a
point in Euclidean

(
n+d
d

)
-space. We shall choose the bias weights so that ĝW1,k, . . . , ĝ

W
N,k correspond

7
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to points on a hyperplane, and we shall consider the barycentric coordinates of the projections of
both f [t] and the constant function onto this hyperplane, with respect to ĝW1,k, . . . , ĝ

W
N,k. As the

values of k and ‖ŵ(1)
j ‖2 increase, both projection points have barycentric coordinates that approach

( 1
N , . . . ,

1
N ), and their difference approaches 0; cf. Lemma 5.12. This last observation, in particular,

when combined with Lemma 5.9 and Lemma 5.10, is a key reason why the minimum number N of
hidden units required for the UAP to hold is independent of the approximation error threshold ε.

Proof of Theorem 3.1. Fix some ε > 0, and for brevity, let N =
(
n+d
d

)
. Theorem 3.1 is trivially

true when f is constant, so assume f is non-constant. Fix a point x0 ∈ X , and define f0 ∈ C(X,Rm)

by f [t]
0 := f [t] − f [t](x0) for all 1 ≤ t ≤ m. Next, let rX(x0) := sup{‖x − x0‖2 : x ∈ X}, and

note that rX(x0) <∞, since X is compact. By replacing X with a closed tubular neighborhood of
X if necessary, we may assume without loss of generality that rX(x0) > 0.

Define {λk}k∈N, {Yk}k∈N and {σk}k∈N as before, with an additional condition that λk ∈ Ω(kτ )
for some τ > 0. Assume without loss of generality that there exists a sequence {yk}k∈N of real
numbers, such that y′k < yk < y′′k , σ(yk) = σk(yk), and

min{|yk − y′k|, |yk − y′′k |}
λk

=
min{|yk − y′k|, |yk − y′′k |}

|y′k − y′′k |
>

1

d+ 2
, (3)

for all k ∈ N. The validity of this assumption in the case limk→∞Ed(σ|Yk) = ∞ is given by
Lemma 5.9. If instead limk→∞Ed(σ|Yk) < ∞, then as k → ∞, the sequence {σk}k∈N converges
to some σ̂ ∈ P≤d(R). Hence, the assumption is also valid in this case, since for any ŷ ∈ R such
that σ(ŷ) = σ̂(ŷ), we can always choose {Yk}k∈N to satisfy y′k+y′′k

2 = ŷ for all k ∈ N, which then

allows us to choose {yk}k∈N that satisfies limk→∞
min{|yk−y′k|,|yk−y

′′
k |}

λk
= 1

2 >
1
d+2 .

By Lemma 5.10, we may further assume that ‖σk−σ‖∞,Yk <
ε(λk)1+γ

C for all k ∈ N, where C > 0
and γ > 0 are constants whose precise definitions we give later. Also, for any W ∈ Wn,m

N , we can
choose σ′ ∈ C(R) that is arbitrarily close to σ in the uniform metric, such that ‖ρσW − ρσ

′

W ‖∞,X is
arbitrarily small. Since σ ∈ C(R)\P≤d−1(R) by assumption, we may hence perturb σ if necessary,
and assume without loss of generality that every σk is a polynomial of degree d with all-non-zero
coefficients, such that σk(yk) 6= 0.

For every r > 0 and k ∈ N, letW ′r := {W ∈ Wn,m
N : ‖ŵ(1)

j ‖2 ≤ r for all 1 ≤ j ≤ N}, and define

λ′k := sup
{
r > 0 : {yk + ŵ(1)

j · (x− x0) ∈ R : x ∈ X,W ∈ W ′r} ⊆ Yk for all 1 ≤ j ≤ N
}
.

Each λ′k is well-defined, since rX(x0) <∞. Note also that λ′krX(x0) = min{|yk − y′k|, |yk − y′′k |}
by definition, hence it follows from (3) that λk

λ′k
< (d + 2)rX(x0). In particular, {λ′k}k∈N is a

divergent increasing sequence of positive real numbers.

Given any p ∈ P≤d(Rn), let ν(p) ∈ RN denote the vector of coefficients with respect to the basis
{q1(x − x0), . . . , qN (x − x0)} (i.e. if ν(p) = (ν1, . . . , νN ), then p(x) =

∑
1≤i≤N νiqi(x − x0)),

and let ν̂(p) ∈ RN−1 be the truncation of ν(p) by removing the first coordinate. Note that q1(x)
is the constant monomial, so this first coordinate ν1 is the coefficient of the constant term. For
convenience, let νi(p) (resp. ν̂i(p)) be the i-th entry of ν(p) (resp. ν̂(p)).

For each k ∈ N, W ∈ W ′λ′k , 1 ≤ j ≤ N , define functions gWj,k, ĝWj,k in C(X) by x 7→ σ(w(1)
j · (1, x))

and x 7→ σk(w(1)
j · (1, x)) respectively. By definition, νi(ĝWj,k) can be treated as a function of W ,

and note that νi(ĝλWj,k ) = λdeg qiνi(ĝ
W
j,k) for any λ > 0. (Here, deg qi denotes the total degree of qi.)

Since deg qi = 0 only if i = 1, it then follows that ν̂i(ĝλWj,k ) ≥ λν̂i(ĝWj,k) for all λ > 0.

For each k ∈ N, define the “shifted” function σ′k : Yk → R by y 7→ σk(y + yk). Next, let
W ′′k := σ′kW ind

n,N ;x0
∩ (W ′λ′k\W

′
0.5λ′k

), and suppose W ∈ W ′′k . Note that in the definition ofW ′′k , we
do not impose any restrictions on the bias weights. Thus, given any such W , we could choose the
bias weights of W (1) to be w(1)

j,0 = yk − ŵ(1)
j · x0 for all 1 ≤ j ≤ N . This implies that each ĝWj,k

represents the map x 7→ σk(ŵ(1)
j ·(x−x0)+yk), hence ĝWj,k(x0) = σk(yk) = σ(yk). Consequently,

8
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by the definitions of Yk andW ′λ′k , we infer that
‖gWj,k − ĝWj,k‖∞,X <

ε(λk)1+γ

C
. (4)

By Corollary 5.7 and Remark 5.3,W ′′k is dense in (W ′λ′k\W
′
0.5λ′k

), so such a W exists (with its bias
weights given as above). By the definition of σ

′
kW ind

n,N ;x0
, we infer that {ĝW1,k, . . . , ĝWN,k} is linearly

independent and hence spans P≤d(X). Thus, for every 1 ≤ t ≤ m, there exist a[t]
1,k, . . . , a

[t]
N,k ∈ R,

which are uniquely determined once k is fixed, such that f [t]
0 = a

[t]
1,kĝ

W
1,k+· · ·+a[t]

N,kĝ
W
N,k. Evaluating

both sides of this equation at x = x0, we then get

a
[t]
1,k + · · ·+ a

[t]
N,k = 0. (5)

For each ` ∈ R, define the hyperplane H` := {(u1, . . . , uN ) ∈ RN : u1 = `}. Recall that q1(x)
is the constant monomial, so the first coordinate of each ν(ĝWj,k) equals σ(yk), which implies that
ν(ĝW1,k), . . . , ν(ĝWN,k) are N points on Hσ(yk)

∼= RN−1. Let cf := max{‖ν̂(f [t])‖2 : 1 ≤ t ≤ m}.
(This is non-zero, since f is non-constant.) Note that 0N−1 and ν̂(f [t]) (for all t) are points in
BN−1
cf

. So for any δ > 0, Lemma 5.12 implies that there exists some sufficiently large k ∈ N such
that we can choose some W ∈ W ′′k , so that there are non-negative scalars b[t]j,k, b

′
j,k (for 1 ≤ j ≤ N ,

1 ≤ t ≤ m) contained in the interval ( 1
N − δ,

1
N + δ) that satisfy the following:

b
[t]
1,k + · · ·+ b

[t]
N,k = b′1,k + · · ·+ b′N,k = 1 (for all 1 ≤ t ≤ m);

0N−1 =
∑N
j=1 b

′
j,kν̂(ĝWj,k); ν̂(f [t]) =

∑N
j=1 b

[t]
j,kν̂(ĝWj,k) (for all 1 ≤ t ≤ m).

Note that ν(f
[t]
0 + σ(yk)) = b

[t]
1,kν(ĝW1,k) + · · · + b

[t]
N,kν(ĝWN,k) and (0N−1, σ(yk)) = b′1,kν(ĝW1,k) +

· · ·+ b′N,kν(ĝWN,k), so we get

f
[t]
0 =

(
b
[t]
1,k − b

′
1,k

)
ĝW1,k + · · ·+

(
b
[t]
N,k − b

′
N,k

)
ĝWN,k.

Since a[t]
1,k, . . . , a

[t]
N,k are unique (for fixed k), we infer that a[t]

j,k = b
[t]
j,k − b′j,k for each 1 ≤ j ≤ N .

Thus, for this sufficiently large k, it follows from b[t]j,k, b
′
j,k ∈ ( 1

N − δ,
1
N + δ) that

a
[t]
j,k ≥ ( 1

N − δ)− ( 1
N + δ) ≥ −2δ. (6)

Let Sk := {ν̂(ĝW1,k), . . . , ν̂(ĝWN,k)}, let ∆k be the convex hull of Sk, and for each j, let hj(∆k)

be the height of ∆k w.r.t. apex ν̂(ĝWj,k). Let h(∆k) := max{hj(∆k) : 1 ≤ j ≤ N}. Since
ν̂i(ĝ

λW
j,k ) = λdeg qi ν̂i(ĝ

W
j,k) for all i, and since d ≥ 2 (i.e. deg qN > 1), it follows from Lemma 5.11

that there exists some γ > 0 such that h(∆k) ∈ Ω((λ′k)1+γ). Using this particular γ > 0, we infer
that there exists some constant 0 < C ′ <∞ such that (λ′k)1+γ

h(∆k) < C ′ for all sufficiently large k.

Note that 2δ is an upper bound of the normalized difference for each barycentric coordinate of the
two points ν̂(f [t]) and 0N−1 (contained in BN−1

cf
), which satisfies

2δ ≤ cf
h(∆k)

=
cf

(λk)1+γ
·
(
λk
λ′k

)1+γ

· (λ′k)1+γ

h(∆k)
<

cf
(λk)1+γ

[(d+ 2)rX(x0)]1+γC ′. (7)

Now, define C := 2Ncf [(d + 2)rX(x0)]1+γC ′ > 0. Thus, for sufficiently large k, it follows from
(5), (6) and (7) that

|a[t]
1,k|+ · · ·+ |a

[t]
N,k| ≤ a

[t]
1,k + · · ·+ a

[t]
N,k + 4Nδ = 4Nδ ≤ C

(λk)1+γ
(8)

For this sufficiently large k, define g ∈ C(X,Rm) by g[t] = a
[t]
1,kg

W
1,k + · · · + a

[t]
N,kg

W
N,k for each t.

Using (4) and (8), it follows that

‖f [t]
0 − g[t]‖∞,X = ‖a[t]

1,k(gW1,k − ĝW1,k) + · · ·+ a
[t]
N,k(gWN,k − ĝWN,k)‖∞,X

≤ |a[t]
1,k| · ‖g

W
1,k − ĝW1,k‖∞,X + · · ·+ |a[t]

N,k| · ‖g
W
N,k − ĝWN,k‖∞,X

< ε.

9
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Finally, for all 1 ≤ t ≤ m, let w(2)
j,t = a[t]

j,k for each 1 ≤ j ≤ N , and let w(2)
0,t = f [t](x0). This gives

ρσ [t]
W = g[t] + f [t](x0). Therefore, the identity f [t] = f [t]

0 + f [t](x0) implies ‖f − ρσW ‖∞,X < ε.

Notice that for all δ > 0, we showed in (6) that there is a sufficiently large k such that a[t]
j,k ≥ −2δ.

A symmetric argument yields a[t]
j,k ≤ 2δ. Thus, for all λ > 0, we can choose W so that all non-bias

weights in W (2) are contained in the interval (−λ, λ); this proves assertion (i) of the theorem.

Note also that we do not actually require δ > 0 to be arbitrarily small. Suppose instead that we
choose k ∈ N sufficiently large, so that the convex hull of Sk contains 0N−1 and ν̂(f [t]) (for all t).
In this case, observe that our choice of k depends only on f (via ν̂(f [t])) and σ (via the definition of
{λk}k∈N). The inequality (7) still holds for any δ satisfying b[t]j,k, b

′
j,k ∈ ( 1

N − δ,
1
N + δ) for all j, t.

Thus, our argument to show ‖f − ρσW ‖∞,X < ε holds verbatim, which proves assertion (ii).

Proof of Theorem 3.2. Fix some ε > 0, and consider an arbitrary t ∈ {1, . . . ,m}. For each integer
d ≥ 1, let p[t]

d be the best polynomial approximant to f [t] of degree d. By Theorem 2.2, we have
‖f [t] − p[t]

d ‖∞,X ≤ 6ωf [t](D2d ) for all d ≥ 1, hence it follows from the definition of dε that

‖f [t] − p[t]
dε
‖∞,X ≤ 6ωf [t]( D

2dε
) < ε.

Define ε′ := ε−max{6ωf [t]( D
2dε

) : 1 ≤ t ≤ m}. Note that ε′ > 0, and ‖f [t]−p[t]
dε
‖∞,X ≤ ε−ε′ (for

all 1 ≤ t ≤ m). By Theorem 3.1, there exists someW ∈ W(n+dε
dε

) satisfying ‖p[t]
dε
−ρσ [t]

W ‖∞,X < ε′

for all 1 ≤ t ≤ m, which implies

‖f [t] − ρσ [t]
W ‖∞,X ≤ ‖f [t] − p[t]

dε‖∞,X + ‖p[t]
dε − ρ

σ [t]
W ‖∞,X < (ε− ε′) + ε′ = ε,

therefore ‖f − ρσW ‖∞,X < ε. Conditions (i) and (ii) follow from Theorem 3.1. Finally, note that
ωf [t](D2d ) ∈ O( 1

d ) (for fixedD), i.e. dε ∈ O( 1
ε ), hence

(
n+dε
dε

)
= n(n−1)...(n−dε+1)

n! ∈ O(ε−n).

Proof of Theorem 3.3. Most of the work has already been done earlier in the proofs of Theorem
3.1 and Theorem 3.2. The key observation is that det(Q[W ]) is a non-zero polynomial in terms of
the weights W , hence {det(Q[W ]) 6= 0 : W ∈ W(n+d

d

)} is dense in W(n+d
d

), or equivalently, its
complement has Lebesgue measure zero.

6 CONCLUSION AND FURTHER REMARKS

Theorem 5.6 is rather general, and could potentially be used to prove analogs of the universal ap-
proximation theorem for other classes of neural networks, such as convolutional neural networks
and recurrent neural networks. In particular, finding a single suitable set of weights (as a represen-
tative of the infinitely many possible sets of weights in the given class of neural networks), with the
property that its corresponding “non-bias Vandermonde matrix” (see Definition 5.5) is non-singular,
would serve as a straightforward criterion for showing that the UAP holds for the given class of
neural networks (with certain weight constraints). We formulated this criterion to be as general as
we could, with the hope that it would applicable to future classes of “neural-like” networks.

We believe our algebraic approach could be emulated to eventually yield a unified understanding
of how depth, width, constraints on weights, and other architectural choices, would influence the
approximation capabilities of arbitrary neural networks.

Finally, we end our paper with an open-ended question. The proofs of our results in Section 5 seem
to suggest that non-bias weights and bias weights play very different roles. We could impose very
strong restrictions on the non-bias weights and still have the UAP. What about the bias weights?
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A GENERALIZED WRONSKIANS AND THE PROOF OF THEOREM 5.6

First, we recall the notion of generalized Wronskians as given in (LeVeque, 1956, Chap. 4.3). Let
∆0, . . . ,∆N−1 be any N differential operators of the form

∆k =
(
∂
∂x1

)α1 · · ·
(
∂
∂xn

)αn
, where α1 + · · ·+ αn ≤ k.

Let f1, . . . , fN ∈ P(Rn). The generalized Wronskian of (f1, . . . , fN ) associated to ∆0, . . . ,∆N−1

is defined as the determinant of the matrix M = [∆i−1fj(x)]1≤i,j≤N . In general, (f1, . . . , fN ) has
multiple generalized Wronskians, corresponding to multiple choices for ∆0, . . . ,∆N−1.

A.1 PROOF OF THEOREM 5.6

For brevity, let N =
(
n+d
d

)
and let x = (x1, . . . , xn). Recall that λ1 < · · · < λN are all the

n-tuples in Λn≤d in the colexicographic order. For each 1 ≤ i, k ≤ N , write λk = (λk,1, . . . , λk,n),

define the differential operator ∆λk =
(
∂
∂x1

)λk,1 · · · ( ∂
∂xn

)λk,n , and let α(i)
λk

be the coefficient of
the monomial qk(x) in ∆λip(x). Consider an arbitrary W ∈ U , and for each 1 ≤ j ≤ N , define
fj ∈ P≤d(Rn) by the map x 7→ p(w

(1)
1,jx1, . . . , w

(1)
n,jxn). Note that Fp,0n(W ) = (f1, . . . , fN )

by definition. Next, define the matrix MW (x) := [∆ifj(x)]1≤i,j≤N , and note that detMW (x) is
the generalized Wronskian of (f1, . . . , fN ) associated to ∆1, . . . ,∆N . In particular, this generalized
Wronskian is well-defined, since the definition of the colexicographic order implies that λk,1 + · · ·+
λk,n ≤ k for all possible k. Similar to the univariate case, (f1, . . . , fN ) is linearly independent if
(and only if) its generalized Wronskian is not the zero function (Wolsson, 1989). Thus, to show that
W ∈ pU ind, it suffices to show that the evaluation detMW (1n) of this generalized Wronskian at
x = 1n gives a non-zero value, where 1n denotes the all-ones vector in Rn.

Observe that the (i, j)-th entry of MW (1n) equals (ŵ
(1)
j )λi(∆λip)(ŵ

(1)
j ), hence we can check that

MW (1n) = M ′M ′′, where M ′ is an N -by-N matrix whose (i, j)-th entry is given by

M ′i,j =

{
α

(i)
λj−λi , if λj − λi ∈ Λn≤d;

0, if λj − λi 6∈ Λn≤d;

and where M ′′ = Q[W ] is the non-bias Vandermonde matrix of W .

It follows from the definition of the colexicographic order that λj − λi necessarily contains at least
one strictly negative entry whenever j < i, hence we infer that M ′ is upper triangular. The diagonal
entries ofM ′ are α(1)

0n
, α

(2)
0n
, . . . , α

(N)
0n

, and note that α(i)
0n

= (λi,1! · · ·λi,n!)α
(1)
λi

for each 1 ≤ i ≤ N ,
where λi,1! · · ·λi,n! denotes the product of the factorials of the entries of the n-tuple λi. In particular,
λi,1! · · ·λi,n! 6= 0, and α(1)

λi
, which is the coefficient of the monomial qi(x) in p(x), is non-zero.

Thus, det(M ′) 6= 0.

We have come to the crucial step of our proof. If we can show that det(M ′′) = det(Q[W ]) 6= 0,
then det(MW (1n)) = det(M ′) det(M ′′) 6= 0, and hence we can infer that W ∈ pU ind. This
means that pU ind contains the subset U ′ ⊆ U consisting of all W such that Q[W ] is non-singular.
Note that det(Q[W ]) is a polynomial in terms of the non-bias weights in W (1) as its variables,
so we could write this polynomial as r = r(W ). Consequently, if we can find a single W ∈ U
such that Q[W ] is non-singular, then r(W ) is not identically zero on U , which then implies that
U ′ = {W ∈ U : r(W ) 6= 0} is dense in U (w.r.t. the Euclidean metric).
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A.2 PROOF OF COROLLARY 5.7

Let N :=
(
n+d
d

)
. By Theorem 5.6, it suffices to show that there exists some W ∈ Wn,m

N such that
the non-bias Vandermonde matrix of W is non-singular. Consider W ∈ Wn,m

N such that w(1)
i,j =

(w(1)
1,j )

(d+1)i . Recall that the monomials inMn
≤d are arranged in colexicographic order, i.e.

1, x1, x
2
1, . . . , x

d
1, x2, x1x2, x

2
1x2, . . . , x

2
2, x1x

2
2, . . . , x

d
n.

Thus, there are fixed integers 0 = β1 < β2 < · · · < βN , such that the (i, j)-th entry of Q[W ] is
(w(1)

1,j )
βi . Such matrices are well-studied in algebraic combinatorics, and the determinant ofQ[W ] is

a Schur polynomial; see (Stanley, 1999). In particular, if we choose positive pairwise distinct values
for w(1)

1,j (for 1 ≤ j ≤ N ), then Q[W ] is non-singular, since a Schur polynomial can be expressed as
a (non-negative) sum of certain monomials; see (Stanley, 1999, Sec. 7.10) for details.

B AN ANALOG OF KADEC’S THEOREM AND THE PROOF OF LEMMA 5.9

Throughout this section, suppose σ ∈ C(R) and let d ≥ 1 be an integer. We shall use the same
definitions for {λk}k∈N, {Yk}k∈N and {σk}k∈N as given immediately after Remark 5.8. Our goal
for this section is to prove Theorem B.1 below, so that we can infer Lemma 5.9 as a consequence
of Theorem B.1. Note that Theorem B.1 is an analog of the well-known Kadec’s theorem (Kadec,
1960) from approximation theory. To prove Theorem B.1, we shall essentially follow the proof of
Kadec’s theorem as given in (Kadec, 1963).

We begin with a crucial observation. For every best polynomial approximant σk to σ|Yk of degree
d, it is known that there are (at least) d+ 2 values

y′k ≤ a
(k)
0 < a

(k)
1 < · · · < a

(k)
d+1 ≤ y

′′
k ,

and some sign δk ∈ {±1}, such that σ(a
(k)
i )− σk(a

(k)
i ) = (−1)iδkEd(σ|Yk) for all 0 ≤ i ≤ d+ 1;

see (Rivlin, 1981, Thm. 1.7). Define

∆k := max
{∣∣∣a(k)

i − y′k
y′′k − y′k

− i

d+ 1

∣∣∣ : 0 ≤ i ≤ d+ 1
}
.

Theorem B.1. If limk→∞Ed(σ|Yk) =∞, then for any γ > 0, we have lim inf
k→∞

∆kλk
kγ

= 0.

Proof. For every k ∈ N, define the functions ek := σ − σk and φk+1 := σk − σk+1 = ek+1 − ek.
Note that ek ∈ C(R) and φk+1 ∈ P≤d(R). Since y′k+1 ≤ a(k)

i ≤ y′′k+1 by assumption, it follows
from the definition of σk+1 that −Ed(σ|Yk+1

) ≤ ek+1(a(k)
i ) ≤ Ed(σ|Yk+1

). By the definition of
a(k)
i , we have ek(a(k)

i ) = (−1)iδkEd(σ|Yk). Consequently,

Ed(σ|Yk)− Ed(σ|Yk+1
) ≤ (−1)iδk(ek − ek+1)(a(k)

i ) ≤ Ed(σ|Yk) + Ed(σ|Yk+1
),

or equivalently, −Ed(σ|Yk)− Ed(σ|Yk+1
) ≤ (−1)iδkφk+1(a(k)

i ) ≤ Ed(σ|Yk+1
)− Ed(σ|Yk).

Since Yk ⊆ Yk+1 implies Ed(σ|Yk) ≤ Ed(σ|Yk+1
), it follows that a2i−1 ≤ a(k)

i ≤ a2i (for each 0 ≤
i ≤ d+ 1), where a2i−1 and a2i are the roots of the equation |φk+1(y)| = Ed(σ|Yk+1

)−Ed(σ|Yk).

If Ed(σ|Yk+1
) = Ed(σ|Yk), then σk+1 = σk by definition, so we could set a(k+1)

i = a(k)
i for all i,

i.e. there is nothing to prove in this case. Henceforth, assumeEd(σ|Yk+1
) 6= Ed(σ|Yk), and consider

the polynomial function

φ(y) :=
φk+1(y − y′k)

Ed(σ|Yk+1
)− Ed(σ|Yk)

.

It then follows from (Kadec, 1963, Lem. 2) that

∆k ≤
θ

d+ 1
+

1

λk
√

(d+ 1)θ
arcosh

Ed(σ|Yk+1
) + Ed(σ|Yk)

Ed(σ|Yk+1
)− Ed(σ|Yk)

, (9)

where θ is an arbitrary real number satisfying 0 < θ < 1
2 .
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Since lim
k→∞

Ed(σ|Yk) = ∞ by assumption, the infinite product
∞∏
k=0

Ed(σ|Yk+1
)

Ed(σ|Yk)
diverges, and thus

the series
∞∑
k=0

Ed(σ|Yk+1
)− Ed(σ|Yk)

Ed(σ|Yk+1
) + Ed(σ|Yk)

also diverges. It then follows from (9) that

∞∑
k=0

1

cosh
[(

∆k − θ
d+1

)
λk
√

(d+ 1)θ
] =∞,

hence
∞∑
k=0

1

(∆kλk)D
= ∞ for any D > 1. If we compare the divergent series

∞∑
k=0

1

(∆kλk)D
with

the convergent series
∞∑
k=0

1

k1+τ
(for any τ > 0), we thus get

lim inf
k→∞

∆kλk
k(1+τ)/D

= 0.

Therefore, the assertion follows by letting γ = 1+τ
D .

Proof of Lemma 5.9. Fix ε > 0. By Theorem B.1, we have lim inf
k→∞

∆kλk
kγ

= 0 for any γ > 0.

Thus, by the definition of lim inf , there exists a subsequence {k′t}t∈N of N such that∣∣∣∣∆k′t
λk′t

(k′t)
γ

∣∣∣∣ < ε

for all t ∈ N (given any γ > 0). Since λk is at least Ω(kγ) for some γ > 0, we can use this particular

γ to get that lim inf
t→∞

λk′t
(k′t)

γ > 0. Consequently, there is a subsequence {kt}t∈N of {k′t}t∈N such that

|∆kt | < ε for all t ∈ N. Since d ≥ 2 by assumption, it then follows that

1

d+ 1
− ε <

a
(kt)
1 − y′kt
λkt

<
a

(kt)
2 − y′kt
λkt

<
d

d+ 1
+ ε. (10)

Now σ−σkt is continuous, so by the definition of a(kt)
i , there is some a(kt)

1 < ykt < a
(kt)
2 such that

σ(ykt) = σkt(ykt). From (10), we thus infer that
min{|ykt−y

′
kt
|,|ykt−y

′′
kt
|}

λkt
> 1

d+1−ε as desired.

C PROOFS OF REMAINING LEMMAS

C.1 PROOF OF LEMMA 5.10

Theorem 2.2 gives ‖σk−σ‖∞,Yk = Ed(σ|Yk) ≤ 6ωσ|Yk (λk2d ). Recall that any modulus of continuity
ωf is subadditive (i.e. ωf (x+ y) ≤ ωf (x) + ωf (y) for all x, y); see (Rivlin, 1981, Chap. 1). Thus
for fixed d, we have ωσ|Yk (λk2d ) ∈ O(λk), which implies

(
k 7→ ‖σk − σ‖∞,Yk

)
∈ o(λ1+γ

k ).

C.2 PROOF OF LEMMA 5.11

Our proof of Lemma 5.11 is a straightforward application of both the Cayley–Menger determinant
formula and the Leibniz determinant formula. For each 0 ≤ i ≤ N , let Ŝi(λ) := S(λ)\{pi(λ)}, and
let ∆̂i(λ) be the convex hull of Ŝi(λ). Let V(∆(λ)) (resp. V(∆̂i(λ))) denote the N -dimensional
(resp. (N − 1)-dimensional) volume of ∆(δ) (resp. ∆̂i(λ)). Define the (N + 2)-by-(N + 2)
matrix M(λ) = [Mi,j(λ)]0≤i,j≤N+1 as follows: Mi,j(λ) = ‖pi(λ)−pj(λ)‖22 for all 0 ≤ i, j ≤ N ;
MN+1,i(λ) = Mi,N+1(λ) = 1 for all 0 ≤ i ≤ N ; and MN+1,N+1(λ) = 0.

The Cayley–Menger determinant formula gives [V(∆(λ))]2 = (−1)N+1

(N !)22N
det(M(λ)). Analogously,

if we letM ′(λ) be the square submatrix ofM(λ) obtained by deleting the first row and column from
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M(λ), then [V(∆̂0(λ))]2 = (−1)N

((N−1)!)22N−1 det(M ′(λ)). Now, V(∆(λ)) = 1
N V(∆̂0(λ))h0(λ), so

[h0(λ)]2 =
−1

2N

det(M(λ))

detM ′(λ)
. (11)

Without loss of generality, assume that r0 ≥ r1 ≥ . . . . Also, for any integer k ≥ 0, let Sk be the set
of all permutations on {0, . . . , k}, and let S′k be the subset of Sk consisting of all permutations that
are not derangements. (Recall that τ ∈ Sk is called a derangement if τ(i) 6= i for all 0 ≤ i ≤ k.)
The diagonal entries of M(λ) are all zeros, so by the Leibniz determinant formula, we get

det(M(λ)) =
∑

τ∈S′N+1

sgn(τ)
∏

0≤i≤N+1

Mi,τ(i)(λ),

where sgn(τ) denotes the sign of the permutation τ . Note that Mi,j(λ) ∈ Θ(λ2 max{ri,rj}) for all
0 ≤ i, j ≤ N satisfying i 6= j. (Here, Θ refers to Θ-complexity.) Consequently, using the fact that
Mi,N+1(λ) = MN+1,i = 1 for all 0 ≤ i ≤ N , we get that det(M(λ)) ∈ Θ(λ2RN ), where

RN =

{
2r0 + · · ·+ 2r(N−2)/2 = 2

∑(N−2)/2
t=0 rt, if N is even;

2r0 + · · ·+ 2r(N−3)/2 + r(N−1)/2 = −r(N−1)/2 +
∑(N−1)/2
t=0 rt; if N is odd.

The even case corresponds to the derangement τ ∈ SN+1 given by τ(i) = N − i for 0 ≤ i ≤ N−2
2 ,

τ(N2 ) = N + 1, τ(N + 1) = N
2 ; while the odd case corresponds to the derangement τ ∈ SN+1

given by τ(i) = N − i for 0 ≤ i ≤ N−3
2 , τ(N−1

2 ) = N+1
2 , τ(N+1

2 ) = N + 1, τ(N + 1) = N−1
2 .

A formula for det(M ′(λ)) can be analogously computed. Consequently, it follows from (11) that
[h0(λ)]2 ∈ Θ

(
λ2[2r0−rbN/2c]

)
. Now, r0 ≥ rbN/2c by assumption, and r0 (being the largest) must

satisfy r0 > rmin, thus h0(λ) ∈ Ω(λr0), and the assertion follows by taking γ = r0 − rmin.

C.3 PROOF OF LEMMA 5.12

Consider any open neighborhood U of 0M . Since ϕ is open and ϕ(0M ) = 0N , the image ϕ(U)
must contain an open neighborhood of 0N . Thus for any ε > 0, we can always choose N + 1 points
w0, . . . , wN in BMε \{0M}, such that the convex hull of {ϕ(w0), . . . , ϕ(wN )} contains the point
0N . Since ϕ(λx) ≥ λϕ(x) for all x ∈ RM , λ > 0, and since ϕ is continuous, it then follows from
definition that for every k ∈ N, we can chooseN+1 points u(k)

0 , . . . , u(k)
N inUk, such that the convex

hull of U ′k := {ϕ(u(k)
0 ), . . . , ϕ(u(k)

N )} contains 0N . Define rk := sup{r > 0 : BNr ⊆ ϕ(Bmλk)} for
each k ∈ N, and note also that limk→∞ rk =∞. Thus, given a ball BNr of any desired radius, there
is some (sufficiently large) k such that the convex hull of U ′k contains BNr .

Now, since θλk < ‖u(k)
j ‖2 ≤ λk and ϕ(λu(k)

j ) ≥ λϕ(u(k)
j ) for all 0 ≤ j ≤ N , λ > 0, we infer that

none of the points ϕ(u(k)
0 ), . . . , ϕ(u(k)

N ) are contained in the ball BNθrk . Consequently, as k → ∞,
we have θrk →∞, and therefore the barycentric coordinate vector (b0, . . . , bN ) (w.r.t. U ′k) of every
point in the fixed ballBNτ would converge to ( 1

N , . . . ,
1
N ) (which is the barycentric coordinate vector

of the barycenter w.r.t. U ′k); this proves our assertion.

D CONJECTURED OPTIMALITY OF UPPER BOUND O(ε−n) IN THEOREM 3.2

It was conjectured by Mhaskar (1996) that there exists some smooth non-polynomial function σ,
such that at least Ω(ε−n) hidden units is required to uniformly approximate every function in the
class S of C1 functions with bounded Sobolev norm. As evidence that this conjecture is true, a
heuristic argument was provided in (Mhaskar, 1996), which uses a result by DeVore et al. (1989);
cf. (Pinkus, 1999, Thm. 6.5). To the best of our knowledge, this conjecture remains open. If
this conjecture is indeed true, then our upper bound O(ε−n) in Theorem 3.2 is optimal for general
continuous non-polynomial activation functions.

For specific activation functions, such as the logistic sigmoid function, or any polynomial spline
function of fixed degree with finitely many knots (e.g. the ReLU function), it is known that the
minimum number N of hidden units required to uniformly approximate every function in S must
satisfy (N logN) ∈ Ω(ε−n) (Maiorov & Meir, 2000); cf. (Pinkus, 1999, Thm. 6.7). Hence there is
still a gap between the lower and upper bounds for N in these specific cases. It would be interesting
to find optimal bounds for these cases.
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