
Published as a conference paper at ICLR 2020

LAZY-CFR: FAST AND NEAR-OPTIMAL REGRET MIN-
IMIZATION FOR EXTENSIVE GAMES WITH IMPERFECT
INFORMATION

Yichi Zhou, Tongzheng Ren, Dong Yan, Jialian Li, Jun Zhu∗
Dept. of Comp. Sci. & Tech., BNRist Center, Institute for AI, Tsinghua University; RealAI
{vofhqn,rtz19970824,sproblvem}@gmail.com,lijialian7@163.com,
dcszj@tsinghua.edu.cn

ABSTRACT

Counterfactual regret minimization (CFR) methods are effective for solving two-
player zero-sum extensive games with imperfect information. However, the vanilla
CFR has to traverse the whole game tree in each round, which is time-consuming
in large-scale games. In this paper, we present Lazy-CFR, a CFR algorithm that
adopts a lazy update strategy to avoid traversing the whole game tree in each round.
We prove that the regret of Lazy-CFR is almost the same as the regret of the vanilla
CFR and only needs to visit a small portion of the game tree. Thus, Lazy-CFR is
provably faster than CFR. Empirical results consistently show that Lazy-CFR is
fast in practice.

1 INTRODUCTION

Extensive games provide a mathematical framework for modeling the sequential decision-making
problems with imperfect information, which is common in economic decisions, negotiations and
security. We focus on solving two-player zero-sum extensive games with imperfect information
(TEGI). In a TEGI, there is an environment with uncertainty and two players on opposite sides (Koller
& Megiddo, 1992).

Counterfactual regret minimization (CFR) (Zinkevich et al., 2008) provides a state-of-the-art approach
for solving TEGIs with much progress in practice (Brown & Sandholm, 2017b; Moravčík et al.,
2017; Brown & Sandholm, 2019a). Regret minimization techniques are first introduced to solve
TEGIs based on the observation that minimizing the regrets of both players makes the time-averaged
strategy converge to the Nash Equilibrium (NE) (Nisan et al., 2007). CFR (Zinkevich et al., 2008)
further bounds the original regret with a summation of many immediate counterfactual regrets on each
information set (infoset). These immediate counterfactual regrets are defined by the counterfactual
rewards and can be iteratively minimized by existing online learning algorithms, e.g., regret matching
(RM) (Blackwell et al., 1956).

A limitation of CFR is that it requires traversing the whole game tree in each round, which is time-
consuming in large-scale games due to the fact that we have to apply RM to every immediate regret
in each round. Existing works on avoiding traversing the whole game tree can be mainly divided
into two categories: Pruning-based CFR (Brown & Sandholm, 2015; 2017a) and Monte-Carlo CFR
(MC-CFR) (Lanctot et al., 2009). These algorithms can significantly speed up the vanilla CFR in
practice. However, pruning-based algorithms may degenerate in the worst case. And the performance
of MC-CFR depends on the structure of the game and the chosen online learning algorithm.

Contributions: In this paper, we explore another approach to address the problem.

• We present an algorithm named Lazy-CFR, which exploits a lazy update technique to avoid
traversing the whole game tree. Lazy-CFR divides the time horizon into segments, i.e.,
disjoint subsets with consecutive elements, and updates the strategy only at the beginning of
each segment and keeps the strategy the same within each segment. By this way we only
need to access each infoset at the beginning of each segment.

∗J.Z is the corresponding author.
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• We then extend the analysis on the regret of the vanilla CFR in (Burch, 2018) to Lazy-
CFR. We show that the regret of Lazy-CFR is almost the same as that of the vanilla CFR.
Combining with the analysis on the number of updates in Lazy-CFR, we show that Lazy-
CFR converges much faster than the vanilla CFR in theory, with some extra cost of memory.

• Finally, we bound the regret from below. By comparing with the regret lower bound, we
show that the regret upper bounds of Lazy-CFR and the vanilla CFR are near-optimal.

We empirically evaluate Lazy-CFR, the vanilla CFR, MC-CFR (Lanctot et al., 2009), CFR+ (Bowling
et al., 2017) and MC-CFR+ on the standard benchmarks, Leduc Hold’em (Southey et al., 2005) and
heads-up flop hold’em poker (Brown et al., 2019). It is noteworthy that the same idea of Lazy-CFR
can also be applied to CFR+, and we name the resulted algorithm Lazy-CFR+. The analysis on
Lazy-CFR can be directly applied to Lazy-CFR+. Experiments show that Lazy-CFR and Lazy-CFR+
works well in practice as suggested by the theory.

2 NOTATIONS AND PRELIMINARIES

We first introduce the notations and definitions of extensive games and TEGIs. Then we introduce an
online learning concept of regret minimization, followed by CFR, which is based on the connection
between TEGIs and regret minimization. For clarity, most important notations appeared in this work
and their descriptions are listed in the look-up table in appendix A.

2.1 EXTENSIVE GAMES

Extensive games (see Osborne & Rubinstein, 1994, pg. 200 for a formal definition) compactly model
the decision-making problems with sequential interactions among multiple agents. An extensive
game can be represented by a game tree H of histories, where a history is a sequence of actions in the
past. Suppose that there are N players participating in an extensive game and let c denote the chance
player which is usually used to model the uncertainty in the environment. Let [N ] := {1, · · · , N}.
A player function P is a mapping from H to [N ] ∪ {c} such that P (h) is the player who takes an
action after h. And each player i ∈ [N ] receives a reward ui(h) ∈ [−1, 1] at a terminal history h.

Let A(h) denote the set of valid actions of P (h) after h, that is, ∀a ∈ A(h), (h, a) ∈ H . Let
A = maxh |A(h)|. A strategy of player i is a function σi that assigns h a distribution over A(h) if
P (h) = i. A strategy profile σ consists of the strategy for each player, that is, σ = {σ1, · · · , σN}.
We will use σ−i to refer to all the strategies in σ except σi. And we use the pair (σi, σ−i) to denote
the full strategy profile. In games with imperfect information, actions of other players are partially
observable to player i ∈ [N ]. So for player i, some different histories may not be distinguishable.
Thus, the game tree can be partitioned into disjoint information sets (infoset). Let Ii denote the
collection of player i’s infosets. We have that two histories h, h′ ∈ I ∈ Ii are not distinguishable to
player i. Thus, σi must assign the same distribution over actions to all histories in infoset I ∈ Ii
if P (I) = i. With a little abuse of notations, we let σi(I) denote the strategy of player i on infoset
I ∈ Ii. It is clear that infosets of a player also form a tree, called infoset tree.

We let πσ(h) denote the probability of arriving at history h. Obviously, we can decompose πσ(h)
into the product of each player’s contribution, that is, πσ(h) =

∏
[N ]∪{c} π

i
σ(h). Similarly, we

define πσ(I) =
∑
h∈I πσ(h) as the probability of arriving at infoset I and let πiσ(I) denote the

corresponding contribution of player i. Let π−iσ (h) and π−iσ (I) denote the product of the contributions
on arriving at h and I , respectively, of all players except player i.

With the above notations, a two-player zero-sum extensive game with imperfect information (TEGI)
is an extensive game with N = 2 and u1(h) + u2(h) = 0 for all terminal histories.

In game theory, the solution of a game is often referred to a Nash equilibrium (NE) (Osborne &
Rubinstein, 1994). In this paper, we concern on computing an approximation of an NE, namely an
ε-NE (Nisan et al., 2007). With a little abuse of notations, let ui(σ) denote the expected reward
of player i if all players take actions according to σ. An ε-NE is a strategy profile σ such that
∀i ∈ [N ], ui(σ) ≥ maxσ′,i u

i((σ′,i, σ−i))− ε. And the ε-NE in a TEGI can be efficiently computed
by regret minimization; see later in this section.
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2.2 REGRET MINIMIZATION

Now we introduce regret, a core concept in online learning (Cesa-Bianchi & Lugosi, 2006). Many
powerful online learning algorithms can be framed as minimizing some kinds of regret, therefore
known as regret minimization algorithms. Generally, the regret is defined as follows:
Definition 1 (Regret). Consider the case where a player takes actions repeatedly. At each round, the
player selects an action wt ∈ Σ, where Σ is the set of valid actions. At the same time, the environment
selects a reward function ft. Then, the overall reward of the player is

∑T
t=1 ft(wt), and the regret is

defined as RT = maxw′∈Σ

∑T
t=1 ft(w

′)−
∑T
t=1 ft(wt).

One important example of online learning is online linear optimization (OLO) in which ft is a linear
function. If Σ is the set of distributions over some discrete set, an OLO can be solved by standard
regret minimization algorithms, e.g., regret matching (RM) (Blackwell et al., 1956; Abernethy
et al., 2011) or AdaHedge (Freund & Schapire, 1997). As CFR employs RM or AdaHedge as a
sub-procedure, we summarize them as follows:
Definition 2 (Online linear optimization (OLO), regret matching (RM) and AdaHedge). Consider
the online learning problem with linear rewards. In each round t, an agent plays a mixed strategy
wt ∈ ∆(A), where ∆(A) is the set of distributions, while an adversary selects a vector ct ∈ R|A|.
The reward of the agent at this round is 〈wt, ct〉 where 〈·, ·〉 denotes the operator of inner product.
The goal of the agent is to minimize the regret: RoloT = maxw∈∆(A)

∑T
t=1〈w, ct〉 −

∑T
t=1〈wt, ct〉.

Let RoloT,+(a) = max(0,
∑T
t=1 ct(a) −

∑T
t=1〈wt, ct〉), in RM, wt+1(a) = Rolot,+(a)/

∑
a′ R

olo
t,+(a′),

if maxa′ R
olo
t,+(a′) > 0, and wt+1(a) = 1

|A| otherwise. According to the result in (Blackwell et al.,
1956), RM has the following regret bound:1

RoloT ≤ O


√√√√|A| T∑

t=1

max
a

c2t (a)

 . (1)

Let st(a) = exp(−ηt
∑t
t′=1 ct′(a)), AdaHedge picks wt(a) = st(a)/(

∑
a′ st(a

′)), where ηt is the
learning rate that can be tuned adaptively (De Rooij et al., 2014). According to (De Rooij et al.,

2014), Adahedge has the regret bound RoloT ≤ O
(√

log |A|
∑T
t=1 maxa∈A c2t (a)

)
.

2.3 COUNTERFACTUAL REGRET MINIMIZATION (CFR)

CFR is developed on a connection between ε-NE and regret minimization. This connection is
naturally established by considering repeatedly playing a TEGI as an online learning problem. It is
worthy to note that there are two online learning problems in a TEGI, one for each player.

Suppose player i takes σit at time step t and let σt = (σ1
t , σ

2
t ). Consider the online learning

problem for player i by setting wt := σit and f it (σ
i) := ui((σi, σ−it )). The regret for player i is

RiT := maxσi R
i
T (σi), where RiT (σi) :=

∑T
t=1 u

i((σi, σ−it ))−
∑T
t=1 u

i((σit, σ
−i
t )). Furthermore,

consider the time-averaged strategy σ̄iT (I) :=
∑
t π

i
σt

(I)σit(I)∑
t π

i
σt

(I) . Then, it is well-known that :

Lemma 1 ((Nisan et al., 2007)). If ∀i, 1
TR

i
T ≤ ε/2, then (σ̄1

T , σ̄
2
T ) is an ε-NE.

Specifically, let σ|I→σ′(I) denote the strategy generated by modifying σ(I) to σ′(I) and ui(σ, I)
denote the reward of player i conditioned on arriving at the infoset I if the strategy σ is executed.
(Zinkevich et al., 2008) decomposes the regret RiT into the summation of immediate regrets as 2:

RiT (σ) =
∑
t

∑
I∈Ii,P (I)=i

πiσ(I)π−iσt (I)(ui(σt|I→σ(I), I)− ui(σt, I)) (2)

1In this work, we use second-order bounds of RM and AdaHedge. These bounds can be easily derived from
known results, and we put the derivation of them in Appendix B

2(Zinkevich et al., 2008) directly upper bounded Ri
T by the counterfactual regret, i.e., Eq. (3), and omitted

the derivation of Eq. (2). So we present the derivation of Eq. (2) in Appendix C.
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Further, (Zinkevich et al., 2008) upper bounds Eq. (2) by the counterfactual regret:

RiT (σ) ≤
∑

I∈Ii,P (I)=i

(∑
t

max(0, π−iσt (I)(ui(σt|I→σ(I), I)− ui(σt, I)))

)
(3)

For convenience, we call π−iσt (I)ui(σt|I→a, I) the counterfactual reward of action a at round t.
Notice that Eq. (3) essentially decomposes the regret of a TEGI into O(|I|) OLOs. So that, in each
round, we can apply RM directly to each individual OLO to minimize the counterfactual regret. And
the original regret maxσ R

i
T (σ) is also minimized since the counterfactual regret is an upper bound.

3 LAZY-CFR: A LAZY UPDATE ALGORITHM FOR TEGIS

The above CFR procedure that applies RM to solve each OLO has to traverse the whole game tree,
which is very time-consuming in large scale games. In this section, we present Lazy-CFR, an efficient
CFR algorithm with a lazy update strategy based on the insight that updating the strategy on every
infoset is not indispensable. Intuitively, this is because the regret is determined by the norm of the
vector of counterfactual reward on each node (see Eq. (1)); and on most nodes, the corresponding
norm is very small, since π−iσt is a probability (see Eq. (3)), thereby can be updated in a lazy manner.

3.1 LAZY UPDATE FOR OLOS

Figure 1: An illustration on RM with lazy up-
date for OLOs. On the top is the standard
RM; on the bottom is the RM with lazy update.
Their lengths of time are 6 and 2 respectively.

We start by presenting a lazy update strategy for
an OLO in Defn. 2. As illustrated in Fig. 1, a
lazy update algorithm for OLOs consists of two
steps: (1) It divides the set of time steps [T ] into n
intervals, that is, {ti, ti+1, · · · , ti+1−1}ni=1 where
1 = t1 < t2 · · · < tn+1 = T + 1. (2) It updates
wt at time steps t = ti for some i and keeps wt the
same within each segment. That is, the OLO with
T steps collapses into a new OLO with n steps and
accordingly the vector selected by the adversary in
the collapsed OLO at time step j is c′j =

∑tj+1−1
t=tj

ct, where ct is the vector selected by the adversary
in the original OLO at time step t.

Algorithm 1 Lazy-CFR
Input: a constant B > 0.
while t < T do

for all i ∈ {1, 2} do
Q = {Ir} where Ir is the root of the infos-
ets tree.
while Q is not empty. do

Pop I from Q.
Update the strategy on I via RM.
For I ′ ∈ γ(I), if mt(I

′) ≥ B, push I ′
into Q, i.e., Q = Q ∪ {I ′}.

end while
end for
for all h ∈ H such that the strategy on some
history after h has been modified. do

Update the reward vector on h.
end for

end while
Output the time-averaged strategy.

According to the known result in Eq. (1),
the regret of the RM with lazy update (Lazy-
RM) is bounded by O(

√
A
∑n
i=1 maxa c′2i (a)).

Thus, if the segmentation rule is under a rea-
sonable design, that is,

∑n
i=1 maxa c

′
i(a)2 ≈∑T

j=1 maxa cj(a)2, then the regrets of Lazy-
RM and the vanilla RM are similar in amount.
As we shall show soon, we can expect a reason-
able segmentation rule in CFR.

Though Lazy-RM does not need to update the
strategy at each round, a straightforward imple-
mentation of Lazy-RM still has a running time
of O(AT ), which is the same as applying RM
directly. This is because we have to compute∑ti+1

t=ti+1 ct. Fortunately, this problem can be
addressed in TEGIs by exploiting the structure
of the game tree (see Sec. 3.2).

3.2 LAZY-CFR

We now use lazy update to solve TEGIs. According to Eq. (3), the regret minimization procedure can
be divided into O(|I|) OLOs, one for each infoset. Specifically, for each infoset I ∈ Ii, P (I) = i,
we divide the set of time steps [T ] into n(I) segments {tj(I), · · · , tj+1(I)− 1}n(I)

j=1 , following step
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Figure 2: An illustration on how to update α. In time step t, the strategy on h1, h2, h5 is modified
with P (h1), P (h2), P (h5) 6= i. β can be updated in a similar way.

(1). Let rj(I, a) =
∑tj+1(I)−1

t=tj(I)
π−iσt (I)ui(σt|I→a, I) denote the summation of the counterfactual

rewards over segment j, and let rj(I) = [rj(I, a)]a∈A(I) denote the vector consisting of rj(I, a).
Similar to lazy update for OLOs, we only update the strategy on infoset I at tj(I). Let σ′j(I) denote
the strategy after the j-th update on infoset I , that is, σt(I) := σ′j(I) for t ∈ [tj(I), tj+1(I) − 1].
According to Eq. (1), we can bound the regret of the collapsed OLO on infoset I as RlazyT (I) :=

maxσ∈Σ(I)

∑n(I)
j=1 〈σ − σ′j(I), rj(I)〉 ≤

√
A
∑n(I)
j=1 maxa r2

j (I, a).

The above procedure is quite straightforward. However, as discussed above, in order to have an
efficient implementation, one critical step is to define a proper segmentation rule of each OLO. Below,
we present one rule for Lazy-CFR, with which we can: 1) achieve a regret similar in amount to the
regret of the vanilla CFR; 2) avoid updating the whole game tree; and 3) compute rj(I) efficiently.

Specifically, let τt(I) denote the last time step we update the strategy on infoset I before time t.
We have τt(h) = τt(I) for h ∈ I . Let mt(I) :=

∑t
τ=τt(I)+1 π

−i
στ (I) denote the summation of

reach probabilities after τt(I), which is contributed by all players except i. Let subt(I) denote the
subtree rooted at infoset I . For convenience, for I ∈ Ii if P (I) = i, we call I a decision point.
Let γ(I) denote the set of decision points after I such that every I ′ in the path from I to I ′′ ∈ γ(I)
is not a decision point. Formally, γ(I) is a subset of subt(I) such that ∀I ′ ∈ γ(I), P (I ′) = i and
∀I ′′ ∈ subt(I), if I ′′ is an ancestor of I ′ ∈ γ(I), then P (I ′′) 6= i or I ′′ = I . For convenience, we
suppose P (Ir) = i where Ir is the infoset of the empty history. Then, our segmentation rule is
defined as a procedure that updates the strategies on infosets recursively as follows: 1) We update
the strategy on Ir in every round; 2) For infoset I , if we update the strategy on I at time step t, the
time steps from τt(I) + 1 to t forms a segment in the Lazy-RM of I . That is, we compute rj(I) for
the corresponding j and then apply RM to I; 3) after updating the strategy on infoset I , we keep on
updating the strategies on the infosets from γ(I) with mt ≥ B where B > 0 is a constant.

Alg. 1 presents an outline of Lazy-CFR. We’ll formally analyze its performance in Sec. 4 and now we
briefly discuss why Alg. 1 converges faster than CFR. Let’s tentatively assume that we can compute
mt and rj efficiently (See Sec. 3.2.1 for details), then the convergence rate of Lazy-CFR depends on
the total number of updates on strategy and its regret. As for the number of updates on strategy, it
is obviously upper bounded by 1

B
∑T
t=1

∑
I π
−i
σt (I) which is much smaller than T |I| as π−iσt (I) is

probability. As for the regret, it is easy to see that in Alg. 1, mt(I) ≤ d(I)B where d(I) is the depth
of I in the tree. With ‖rj(I)‖2 ≤ maxtmt(I) and Eq. (1), we can upper bound the regret of the
Lazy-RM on I by O(Bd(I)

√
An(I)) ≤ O(Bd(I)

√
AT ). Therefore, the overall regret, i.e., Eq. (2),

of Lazy-CFR is O(|I|DB
√
AT ). This regret bound is the same to the bound of CFR in (Zinkevich

et al., 2008) within a gap of DB which is usually a logarithm of |I|. In Sec. 4, we further refine this
bound and show it is comparable with the best known regret bound of CFR in (Burch, 2018).
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3.2.1 IMPLEMENTATION

As mentioned in Sec. 3.1, if we compute mt(I) and rj(I) directly, we still have to spend O(AT )
time on each infoset. In this section, we show how to efficiently implement Alg. 1 by exploiting the
structure of the game tree. More specifically, we define data structures (DS) used in the computations
of mt, rj and then show when and how to update them. Updating these data structures can be
implemented by depth first search (DFS) and we only spend O(1) time to update the DSs on each
history visited by DFS. The detailed pseudo-code is in Appx E.

W.L.O.G., we consider the DSs used in Lazy-CFR for player i. First, we store ui(h|σt) in DS
U(h) and the strategy profile in Γ(I), i.e., U(h) = ui(h|σt),Γi(I) = σit(I) at time step t.
And how to update U and Σ is standard as other CFR algorithms. Recall that our target is to
compute mt(I) =

∑
h∈I mt(h) =

∑
h∈I

∑t
t′=τt(I)+1 π

−i
σt′

(h) and rj(I, a) =
∑
h rj(h, a) =∑

h∈I
∑t
t′=τt(I)+1 π

−i
σt′

(h)ui((h, a)|σt′) where (h, a) denotes the successor of h after action a. It is
noteworthy that we do not need to compute mt and rj for every history in every round. Instead, we
just need to make sure mt(h) and rj(h, a) can be computed efficiently when Alg. 1 visits h.

Before diving into details, we intuitively explain how to efficiently compute rj(h) and mt(h).
For mt(h), suppose we have stored

∑τt(pa(h))
t=τt(h) π−it (h) in some data structure α(h), then we can

compute mt(h) as mt(h) =
∑
h′:h∈subt(h′) α(h′)Γ−i(h′, h) where Γ(h′, h) denotes the probability

of reaching h from h′ contributed by Γ−i. As for rj(h), suppose the strategy on histories in subt(h)
is never modified during [τt(h), t], then we can compute rj(h) = mt(h)U(h) in time O(1), as U(h)
is also fixed in [τt(h), t]. In Alg. 1, it is possible that the opponent’s strategy on some h′′ ∈ subt(h)
is modified during [τt(h), t], thus, we need more data structures to maintain the cumulative reach
probability and cumulative counterfactual reward.

More specifically, we use two additional DSs α(h) and β(h, a). In α(h), we store summations of
reach probabilities and we store a summation of counterfactural rewards in β(h, a). These DSs
should satisfy the following properties:

Property 1. In round t, α, β, α̂ should satisfy:

1. α(h) =
∑t1(h)
t′=τt(h)+1 π

−i
σt′

(h), β(h, a) =
∑t1(h)
t′=τt(h)+1 π

−i
σt′

(h)ui((h, a)|σt′) and α̂(h) =∑t2(h)
t′=t1(h)+1 π

−i
σt′

(h) for τt(h) ≤ t1(h) ≤ t2(h) ≤ t. We will introduce t1, t2 soon.

2. 1) If h′ = pa(h), then t1(h′) = t2(h); 2) If h is the root, t2(h) = t. So that [τt(h), t] =⋃
h′:h∈subt(h′)[t1(h′) + 1, t2(h′)].

3. For all h′ ∈ subt(h), P (h′) 6= i, the strategy on h′ is never modified on time steps between
t1(h) and t2(h). So that for t′ ∈ [t1(h), t2(h)] and h′ ∈ subt(h), π−iσt′ (h, h

′) = π−iΓ (h, h′).

Intuitively, t1(h) is the last time step that U(h) is modified and t2(h) is the last time step that the
strategy on pa(h) is modified. Before discussing how to update these DSs, we discuss how to use
them to compute mt and rj . It is easy to check that Eq. (4) is true with Prop. 1, we have:

mt(h) =
∑

h′:h∈subt(h′)

α(h′)π−iΓ (h′, h), rj(h, a) = β(h, a) + (mt(h)− α(h))U((h, a)) (4)

where π−iΓ (h′, h) denotes the probability from h′ to h contributed by −i with strategy profile Γ. We
postpone the derivation of Eq. (4) to Appx. E. With the fact thatmt(h) = mt(pa(h))π−iΓ (pa(h), h)+
+α(h) where pa(h) is the parent of h, computing mt only spends O(1) time on each node as when
visiting h, mt(pa(h)) must have been computed in DFS.

The last challenge is how to update these DSs to satisfy the desired properties in Prop 1. Specifically,
let S1,t denote the set of histories such that if h ∈ S, the strategy on subt(h) is modified at round
t and S2,t = {h : h /∈ S1,t, pa(h) ∈ S1,t}. As illustrated in Fig. 2, we only update DSs on
St = S1,t ∪ S2,t as:

Update on the DSs: 1) If Γ on the infoset of h is modified, set α(h) = β(h, a) = 0; else 2) for
h ∈ St, and set α(h) = mt(h), β(h, a) = mt(h)U((h, a)).
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With above update rule, it is easy to check that if Prop 1 is true at t, then it is still true at t+ 1.

Lazy-CFR+ and Lazy-LCFR: We can also apply lazy update to CFR+ (Bowling et al., 2017) and
LCFR (Brown & Sandholm, 2019a), which are improvements of CFR. To get Lazy-CFR+ and
Lazy-LCFR, we only need to replace RM by the corresponding OLO solvers, and use their methods
of computing time-averaged strategy as in (Bowling et al., 2017) and (Brown & Sandholm, 2019a)
respectively.

4 THEORETICAL ANALYSIS

We now present the theoretical results, starting with the regret for members of CFR with lazy update.

4.1 REGRET UPPER BOUND

We extend the regret analysis on the vanilla CFR in (Burch, 2018) to the members of CFR with
lazy update. Specifically, let ξi(σ) =

∑D
d=1

√∑
I:d(I)=d π

i
σ(I), ξ = maxi,σ ξ

i(σ) and η(σ) =

ξi(σ)
√
AmaxI,j(

∑tj+1(I)

t=tj(I)+1 π
−i
σt (I)) which are parameters depending on the structure of the game

and segmentation rule. Thm. 1 provides a regret bound for a CFR algorithm with an arbitrary
segmentation rule. By applying Thm. 1, we can get the regret bound of CFR and Lazy-CFR which
are comparable with Corollary 2 in (Burch, 2018).

Theorem 1. The regret of CFR with lazy update can be bounded as RiT (σ) ≤ O(
√
Tη(σ)).

Lemma 2. With RM, the regret of the vanilla CFR is bounded by O(ξ
√
AT ) and the regret of

Lazy-CFR is bounded by O(ξ
√
DAT ).

Proof. It is easy to see that for the vanilla CFR, we have η(σ) ≤ ξi(σ)
√
A and for Lazy-CFR, we

have η(σ) ≤ ξi(σ)
√
AD. With Thm. 1, we get the regret bounds.

4.2 TIME AND SPACE COMPLEXITY

With the implementation in Sec. 3.2.1 and Appx E, the running time of Lazy-CFR is bounded by
O(
∑
t |St|). Obviously,

∑
t |St| = O(maxσ

∑
t)π
−i
σ (h). Thus, we can bound Lazy-CFR’s time

complexity as:

Lemma 3 (Time complexity). The time complexity of Alg. 1 is O(T maxσ
∑
h π
−i
σ (h)).

To show how small maxσ
∑
I π
−i
σ (I) is, we make the following mild assumption which leads to

Corollary 1.

Assumption 1. 1, If P (h) = i, then P ((h, a)) 6= i; 2, The tree of infosets for each player is a full
A-ary tree; 3, Every infoset in the tree of infosets is corresponding to n nodes in the history tree.

Corollary 1. If a TEGI satisfies Assumption 1, then ∀σ,
∑
h∈Ii π

−i
σ (h) = O(n

√
|Ii|).

According to Lemmas 2 3 and 1, the regret of Lazy-CFR is about O(
√
D) times larger than that of

CFR, whilst the running time is about O(
√
|I|) times faster than CFR per round under Assumption

1. Thus, according to Lemmas 1, 2 and with a bit algebra calculation, we know that Alg. 1 is
about O(

√
|I|/D) times faster than the vanilla CFR to achieve the same approximation error. The

improvement is significant in large scale TEGIs.

Space complexity: A potential limitation of Lazy-CFR is that its space complexity is O(|H|) as we
have to store the data structures α, β, α̂ on histories. In contrast, the space complexity is O(|I|) for
some popular implementation of CFR. In heads-up flop hold’em poker (FHP) (Brown et al., 2019),
we have |H| ≈ 1012 and |I| ≈ 109. Accordingly, Lazy-CFR needs about 10 TB to store the data
structures while CFR needs about 10 GB, which is still affordable in common storage systems. Note
that we do not optimize the space complexity in this work. It is worth of a systematical investigation
to derive an algorithm as fast as Lazy-CFR without additional memories, e.g., by designing a better
segmentation rule as well as a better implementation.

7
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(a) Leduc-6 (b) Leduc-8 (c) FHP

Figure 3: Convergence for Lazy-(CFR, CFR+, LCFR), MC-(CFR, CFR+, LCFR), CFR, CFR+,
LCFR and MC-LCFR-P.

4.3 REGRET LOWER BOUND

In the analysis of lower bound, we consider the standard adversarial setting in online learning, in
which an adversary selects σ−it and a reward function uit : Z → [−1, 1] where Z is the set of terminal
nodes in the infoset tree of player i. Thus, to get a lower bound, we need to explicitly construct σ−it
and uit(I), I ∈ Z. This setting is consistent with the analysis of the regret upper bound, in which we
do not make any assumption on how uit, σ

−i
t changes over rounds. Intuitively, by extending the lower

bound analysis of OLO (Cesa-Bianchi & Lugosi, 2006) to infoset tree structured problem, we bound
Eq. 2 from below as in Thm. 2 and for the proof, see Appendix D.

Theorem 2. For an algorithm A generating σit given the history in the past, let RiT,A denote the

regret of A in the first T rounds, we have limA→∞ limT→∞minA maxπ−iσt ,ut
RiT,A

ξi
√
T/D logA

≥ 1.

By comparing the regret lower bound in Theorem 2 and the regret upper bounds of CFR and
Lazy-CFR as in Lem 2, we can see that the regret of CFR and Lazy-CFR are both near-optimal.

5 RELATED WORK

Monte-Carlo and pruning-based methods: There are several variants of CFR which attempt to
avoid traversing the whole game tree at each round. Monte-Carlo based CFR (MC-CFR) (Lanctot
et al., 2009; Burch N, 2012) uses Monte-Carlo sampling to avoid updating the strategy on infosets
with small probability of arriving at. Pruning-based variants (Brown & Sandholm, 2017a; 2015) skip
the branches of the game tree if they do not affect the regret, but their performance can deteriorate to
the vanilla CFR in the worst case. And dynamic thresholding (Brown et al., 2017) directly prunes the
branches with small reach probabilities. In this work, we do not compare with pruning-based method
(Brown & Sandholm, 2019b) since the pruning technique is orthogonal to lazy update.

Existing analyses of regret: Lanctot et al. (2009); Burch N (2012); Burch (2018) refined the regret
upper bound of CFR. Our analysis is essentially an extension of the regret analysis on the vanilla
CFR in (Burch, 2018) to other variants of CFR with lazy-update.

6 EXPERIMENT

In this section, we empirically evaluate our algorithm against existing CFR variants. We measure the
exploitability of these algorithms. The exploitability of a strategy (σ1, σ2) can be interpreted as the
approximation error to the Nash equilibrium. The exploitability is defined as maxσ′,1 u

1((σ′,1, σ2))+
maxσ′,2 u

2((σ1, σ′,2)).

Experiments are conducted on variants of two common benchmarks in imperfect-information game
solving: (1) the Leduc hold’em (Southey et al., 2005) which is a simplifed version of the heads-up
no-limit hold’em poker with 6 cards; and (2) heads-up flop hold’em poker (Brown et al., 2019) (FHP)
which is similar to heads-up no-limit Texas hold’em poker without the last two rounds of betting.

In our experiments of Leduc Hold’em poker, we restrict players not to bid more than 6 or 8 times the
big blind. The number of infosets in the generated game trees are about 40000 and 455000 for each
player, respectively. We run each algorithm on each Leduc Hold’em game for 30000 seconds. In the
experiments of FHP, to control the size of the game, we consider a simplified game such that in the

8
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deck, there are 2 suits and 5 cards in each suit. And we restrict players not to bid more than 7 times
the big blind. The size of the game is about 109. We measure algorithms by the number of nodes
touched which is independent with implementation and hard-ware.

We empirically compare Lazy-(CFR,CFR+,LCFR) with existing methods, including the vanilla CFR,
CFR+, LCFR, MC-(CFR,CFR+,LCFR) and MC-LCFR with negative regret-pruning (MC-LCFR-P)
which was used in developing Pluribus (Brown & Sandholm, 2019b). In our experiments, we use
RM (RM+) as the OLO solver. In Lazy-(CFR,CFR+,LCFR), we set B ∈ {0.1, 1.0}. We evaluate the
CFR, CFR+, LCFR variants which prunes the histories with π−iσt (h) = 0 in the recursive tree walk as
they don’t affect the regret. For MC-(CFR,CFR+,LCFR), we use the external-sampling scheme. In
the experiments on MC-LCFR-P, we use the following parameters: we run MC-LCFR in the first 20
minutes; after that, in each iteration, we run MC-LCFR with probability 0.05 and run MC-LCFR-P
with probability 0.95; in MC-LCFR-P, we prune those branches with average regret less than −2
times the big blind.

Fig. 3 presents the results. We can see that the performance of Lazy-CFR(+) has a similar performance
to CFR(+) on the variants of Leduc Hold’em. This is because in the experiments of CFR(+) on Leduc
Hold’em, there are a large portion of histories with π−it (h) = 0 on average. And on the larger game,
Lazy-CFR(+) significantly outperforms CFR(+). The performance of Lazy-LCFR is much worse
than LCFR on all games. This might be because our segmentation rule is designed for OLO with a
uniform weight in each iteration. And LCFR assigns more weights on later iterations.

7 CONCLUSIONS

In this work, we propose a new framework to develop efficient variants of CFR with an analysis
shows that our algorithm is provably faster than the vanilla CFR. The final algorithm runs fast in
practice, but with some extra cost on space complexity. It is worth of a systematical study to reduce
the space complexity.
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A THE TABLE OF NOTATIONS

We provide a table of some important notations in our paper in this section.

Notation Explanation
[n] the set {1, 2, · · · , n}
[a, b] the set {a, a+ 1, · · · , b}
H The tree of histories
I Infomation set
D the depth of the game tree
d(I) and d(h) the depths of I and h
c the chance player
h history
Z ⊆ H the set of leaves of the game tree
(h, a) the successor of h after action a
(I, a) the successor of I after action a
Ii, I Ii is the infoset tree of player i and I = I1 ∪ I2

P The player function, i.e., P (h) and P (I) are the players who take actions on h and I , respectively.
σi the strategy of player i;
σ the strategy of all players;
σ−i the strategy of all players except player i
σ(h), σ(I) σ(h) = σP (h)(h) and σ(I) = σP (I)(I)
πσ(h), πσ(I) the reach probability of h and I contributed by all players
πiσ(h), πiσ(I) the reach probability of h and I contributed by player i
π−iσ (h), π−iσ (I) the reach probability of h and I contributed by all players except i
π−i(h′, h) the reach probability from h′ to h contributed by all players except i if h ∈ subt(h′)
ui(h), h ∈ Z the reward received by player i at leaf h
ui(σ) the reward received by player i with strategy profile σ
ui(h|σ) the reward received by player i at h with strategy profile σ
σ|I→σ′(I) the strategy profile generated from σ by replacing σ(I) by σ′(I)
pa(h), pa(I) the parents of h and I respectively
subt(h), subt(I) the subtree rooted at h and I respectively
γ(I), I ∈ Ii a subset of subt(I) such that for all I ′ ∈ γ(I) then P (I ′) = i;

consider I ′′ ∈ subt(I), if I ′′ is an ancestor of I ′, then P (I ′′) 6= i
〈a, b〉 the inner product of vectors a and b
wt the action selected by the player at time step t
ct the reward vector at time step t
RoloT the regret of the OLO, i.e., RoloT = maxw∈∆(A)

∑T
t=1〈w, ct〉 −

∑T
t=1〈wt, ct〉

∆(A) the set of distributions over set A
RiT (σi) RiT (σi) =

∑T
t=1 u

i(σi, σ−it )−
∑T
t=1 u

i((σit, σ
−i
t ))

RiT the regret of player i, i.e., RiT = maxσi R
i
T (σi)

σ̄iT the time-averaged strategy with σ̄iT (I) =
∑T
t=1 π

i
σt

(I)σt(I)∑T
t=1 π

i
σt

(I)

τt(I), τt(h) the last time step we update the strategy on infoset I (history h) before time t
mt(h) the sum of reach probabilities, mt(h) =

∑t
t′=τt(h)+1 π

−i
σt′

(h)
mt(I) mt(I) =

∑
h∈I mt(h)

rj(h, a) the sum of counterfactural rewards over the j-th segment of h
rj(I, a) rj(I, a) =

∑
h∈I rj(h, a)

U(h) data structure with U(h) = ui(h|σt) at time step t
Σ data structure with Σ(I) = σt(I) at time step t
α, β, α̂ data structures such that, at time step t, mt(h) = α(h) +

∑
h′:h∈subt(h) α̂(h)π−iΓ (h) and

rj(h, a) = βj(h, a) + U((h, a))
∑
h′:h∈subt(h′) α̂(h)π−iΓ (h)

ξi(σ) a parameter depends on the structure of the game tree with ξi(σ) =
∑
I∈Ii,P (I)=i π

i
σ(I)

ξ ξ = maxi,σ ξ
i(σ)

η(σ) a parameter depends on the segmentation rule with η(σ) = Aξi(σ) maxI,j(
∑tj+1(I)

t=tj(I)+1 π
−i
σt (I))
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B DERIVATION OF REGRET BOUNDS OF RM AND ADAHEDGE

The regret upper bound of RM and AdaHedge used in this work can be easily derived from previous
works. We include their derivations only for completeness.

Derivation of Eq. (1). The standard analysis of RM in Cor 2.1 on pg. 13 in (Cesa-Bianchi & Lugosi,
2006) shows the regret of RM is bounded by:

RoloT ≤ O


√√√√√ T∑

t=1

|A|∑
a=1

 |A|∑
a′=1

wt(a′)ct(a′)− ct(a)

2


Obviously, we have |
∑|A|
a′=1 wt(a

′)ct(a
′)| ≤ maxa |ct(a)| since wt is a vector of probability. We

have:
|A|∑
a=1

 |A|∑
a′=1

wt(a
′)ct(a

′)− ct(a)

2

≤
∑
a

4 max
a

c2t (a) = 4|A|max
a

c2t (a).

We finished the proof.

Derivation of the regret bound of AdaHedge. Let vt denote the variance of reward if we take a ran-
dom action according to the distribution wt defined in AdaHedge. Theorem 6 in (De Rooij et al.,
2014) provides a second-order bound as:

RoloT ≤ κ
√

log |A|
∑
t

vt +
4

3
log |A|+ 2

where κ is a constant. It is known that for a random variable x ∈ [a, b], its variance is no more than
(a− b)2/4. Thus, vt ≤ maxa c

2
t (a). We finished the proof.
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C PROOF OF THEOREM 1

We now extend the proof of the Theorem 1 in (Burch, 2018) to CFR with lazy update. We first intro-
duce some additional terminology. Consider B ⊆ Ii, let ξ(B) = maxσ−i

∑
I∈B

∑
h∈I π

−i
σ−i(h).

Now we prove Theorem 1.

Proof. Let κ denote the constant involved in Eq. (1). With Eq. (2) and the regret bound of RM, we
have

1

T
RiT (σ) =

1

T

∑
t

∑
I∈Ii,P (I)=i

πiσ(I)π−iσt (I)(ui(σt|I→σ(I), I)− ui(σt, I))

≤ κ
∑

I∈Ii,P (I)=i

πiσ(I)

√√√√n(I)∑
j=1

Amax
a

(rj(I, a))2/T 2


And then apply Jensen’s inequality and with some calculations, we have

1

T
RiT (σ)

≤ κ
∑
I∈Ii

πiσ(I)

√√√√A

n(I)∑
j=1

max
a

r2
j (I, a)/T 2


= κ

D∑
d=1

(∑
I′,t,d(I)=d π

i
σ(I ′)π−iσt (I ′)∑

I′,t,d(I′)=d π
i
σ(I ′)π−iσt (I ′)

)
·
∑

I:d(I)=d

πiσ(I)

√√√√A

n(I)∑
j=1

max
a

r2
j (I, a)/T 2


= κ

D∑
d=1

 ∑
I′,t,d(I′)=d

πiσ(I ′)π−iσt (I ′)

 ∑
I:d(I)=d

(
πiσ(I)∑

I′,t,d(I′)=d π
i
σ(I ′)π−iσt (I ′)

)
√√√√A

n(I)∑
j=1

max
a

r2
j (I, a)/T 2


= κ

D∑
d=1

 ∑
I′,t,d(I′)=d

πiσ(I ′)π−iσt (I ′)

 ∑
I:d(I)=d

(
πiσ(I)

∑
t π
−i
σt (I)∑

I′,t,d(I′)=d π
i
σ(I ′)π−iσt (I ′)

)
√√√√A

∑n(I)
j=1 maxa r2

j (I, a)(∑
t π
−i
σt (I)

)2
T 2


= κ

D∑
d=1

 ∑
I′,t,d(I′)=d

πiσ(I ′)π−iσt (I ′)

 ∑
I:d(I)=d

( ∑
t π

i
σ(I)π−iσt (I)∑

I′,t,d(I′)=d π
i
σ(I ′)π−iσt (I ′)

)
√√√√A

∑n(I)
j=1 maxa r2

j (I, a)(∑
t π
−i
σt (I)

)2
T 2


≤ κ

D∑
d=1

 ∑
I′,t,d(I′)=d

πiσ(I ′)π−iσt (I ′)

√√√√A
∑

I:d(I)=d

( ∑
t π

i
σ(I)π−iσt (I)∑

I′,t,d(I′)=d π
i
σ(I ′)π−iσt (I ′)

)
·

(∑n(I)
j=1 maxa r2

j (I, a)(∑
t π
−i
σt (I)

)2
T 2

)
The Jensen’s inequality applies here, in which we move the term of probability outside the square root into it.

= κ

D∑
d=1


√√√√√A

 ∑
I′,t,d(I′)=d

πiσ(I ′)π−iσt (I ′)

 ∑
I:d(I)=d

(
πiσ(I)

∑n(I)
j=1 maxa r2

j (I, a)∑
t π
−i
σt (I)T 2

)
≤ κ

D∑
d=1

√√√√A
1

T

∑
I:d(I)=d

πiσ(I)

∑n(I)
j=1 maxa r2

j (I, a)∑T
t=1 π

−i
σt (I)


The last inequality utilizes the fact that

∑
I′,t,d(I′)=d π

i
σ(I ′)π−iσt (I ′) ≤ T as π−iσt (I)πiσ(I) is the

probability of arriving at infoset I under strategy (σi, σ−it ) and there is at most 1 infoset been arrived
at each level.
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It is easy to see that maxa r
2
j (I, a) ≤ (

∑tj+1(I)

t=tj(I)+1 π
−i
σt (I))2. With straight-forward computations,

we finish the proof:

A
∑

I:d(I)=d

πiσi(I)

∑n(I)
j=1 (

∑tj+1(I)

t=tj(I)+1 π
−i
σt (I))2∑

t π
−i
σt (I)

≤ A
∑

I:d(I)=d

πiσi(I) max
j

(

tj+1∑
t=tj(I)+1

π−iσt (I)), this is because
∑
i x

2
i∑

i xi
≤ max

i
xi if xi ≥ 0,

∑
i

xi > 0

≤ A

(∑
I∈Ii

πiσ(I)

)
max
I,j

 tj+1∑
t=tj(I)+1

π−iσt (I)



D THE REGRET LOWER BOUND ANALYSIS

Recall that the analysis on the regret upper bound is under the standard adversarial setting in online
learning, that is, it does not depend on how the opponent’s strategy and the utility vary over time
steps. So we here make the same adversarial assumption that there is an adversary choose both σ−it
and uit. It is worthy to note that in our construction of the adversary, the utility function may also
vary over time.

For convenience, let −i denote all the players except i, and let ζ = {σ̂i : σ̂i =

arg maxσi
∑D
d′=1

∑
I∈Ii,P (I)=i π

i
σi(I)}. Let D := {I ∈ Ii : ∃σi ∈ ζ, πiσi(I) > 0}. It can be

shown that D forms a subtree of Ii. Intuitively, our construction on σ−it and uit can be divided into
two stages:

1. For I ∈ Z, I /∈ D, uit(I) = −1 for all t. This enforces player i take actions on D, otherwise,
it will always receive reward −1.

2. In each round t, for I ∈ D, I /∈ Z,P (I) 6= i, we first generate a random variable a(I) ∼
Multinomial(1, 1

A(I) ), 3 and then set σ−it (I, a(I)) = 1, and σ−it (I, a) = 0 for a 6= a(I).
Intuitively, this step separates RiT into O((ξi)2) isolated OLOs, each of which is of A
actions and would be repeated for about O(T/(ξi)2) rounds, since only one of them will be
triggered on in each time step according to our construction on σ−it . Thus, combined with the
lower bound proved by (Cesa-Bianchi & Lugosi, 2006), each OLO incurs a regret of about
Ω(
√
T logA/ξi), and we can informally provide a lower bound of Ω((ξi)2/ξi

√
T logA) =

Ω(ξi
√
T logA), which is formally described in Theorem 2.

Before proving Theorem 2, we first address some trivial cases and show some intuitions on the way
we construct the worst case of σ−it and uit.

Let ϕi(σ) =
∑
I∈Ii π

i
σ(I). It is easy to see that ϕi(σ) > (ξi(σ))2/D. And we are going to

show that limA→∞ limT→∞minA maxπ−i,uR
i
T,A/

√
ϕiT logA ≥ 1. To start, we make an implicit

assumption that |A(I)| ≥ 2,∀I ∈ Ii, P (I) = i. Otherwise we can merge these infosets as we have
no choice but choose the only action, which contributes nothing to the regret. In addition, we assume
i and −i take actions alternatively.

We now show that it is sufficient to focus on the subtree D (Note that D is a subtree rooted at Ir). By
setting ut(I) = −1 for I ∈ Z and I /∈ D, we know that player i will not take actions to go out of
D. And if player −i goes out of D, this round will contribute nothing to the regret as player i will
always receive reward −1.

Moreover, we assume P (pa(I)) = i,∀I ∈ Z. Otherwise, we can merge the subtree rooted at
pa(I), I ∈ Z into one single leaf node (i.e. an infoset I ∈ Z after the mergence), and P (pa(I)) =
i,∀I ∈ Z in the new merged infoset tree.

3This step is informal here. See later in this section for a formal construction.
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The following property will be useful in our proof.
Lemma 4. Let ϕiD(σi) =

∑
I∈D π

i
σi(I). Moreover, let ζ ′ = {σi : σi(I, a) = 0, for P (I) = i, I ∈

D, (I, a) /∈ D}. Then ∀σiD, (σiD)′ ∈ ζ ′, we have that ϕiD,σiD
= ϕiD,(σiD)′

.

Proof. To start, let ϕiD(σi, I) = 1
πiσi

(I)

∑
I′∈subt(I),P (I′)=i π

i
σi(I

′), I ∈ D, where subt(I) means

the subtree rooted at I (Note that it’s possible that I ′ ∈ subt(I), I ′ /∈ D). Let ϕiD(I) =
maxσi ϕ

i
D(σi, I), and σi,∗ = arg maxσi ϕ

i
D(σi, I). We first show that, ∀I ∈ D, P (I) = i,

ϕiD(J i(I, aj)) = ϕiD(J i(I, ak)), j, k ∈ |AD(I)| where AD(I) consists of a ∈ A(I) such that
J i(I, a) ∈ D.

With the definition of D, ∀I ∈ D, ∃σi0 ∈ ζ, s.t. πi
σi0

(I) > 0. If ϕiD(J i(I, aj)) 6= ϕiD(J i(I, ak)),

W.L.O.G. we assume ϕiD(J i(I, aj)) < ϕiD(J i(I, ak)), then ∀σi0 such that πi
σi0

(I) > 0, we have

ϕiD(σi0, I) =1 +
∑

a∈A(I)

σi0(I, a)ϕiD(σi0, J
i(I, a))

≤1 +
∑

a∈A(I)

σi0(I, a)ϕiD(J i(I, a))

≤1 + [
∑

a∈A(I),a 6=aj ,ak

σi0(I, a)ϕiD(J i(Ir, a))] + [σi0(I, aj) + σi0(I, ak)]ϕi(J iD(I, ak))

With the last inequality, we can construct a (σi0)′ with ϕiD((σi0)′, Ir) ≥ ϕiD(σi0, Ir) and (σi0)′(I ′) 6=
σi0(I ′) only if I ′ ∈ subt(I). Formally, we define (σi0)′ as:

• (σi0)′(I ′) = σi0(I ′), I ′ /∈ subt(I)

• (σi0)′(I ′) = σi,∗(I ′), I ′ ∈ subt(I), I ′ 6= I

• (σi0)′(I, a) = σi0(I, a), a 6= aj , ak

• (σi0)′(I, aj) = 0

• (σi0)′(I, ak) = σi0(I, aj) + σi0(I, ak)

As σi0 ∈ ζ, ϕiD((σi0)′, Ir) = ϕiD(σi0, Ir), which means σi0(I, aj) = 0, due to πi
σi0

(I) > 0. Thus,

∀σi0 such that πi
σi0

(I) > 0, we have πi
σi0

(J i(I, aj)) = 0, which means J i(I, aj) /∈ D (notice that

if πi
σi0

(I) = 0, πi
σi0

(J i(I, aj)) = 0), that is contradict to our assumption J i(I, aj) ∈ D. Thus

ϕiD(J i(I, aj)) = ϕiD(J i(I, ak)), aj , ak ∈ AD(I).

Now we can show that ϕiD(σi, I) = ϕiD(I),∀σi,∀I with mathematical induction.

Let D denotes the depth of D. As we assume P (pa(I)) = i,∀I ∈ Z, P (Ir) = i if D is odd and
P (Ir) = −i if D is even. We separately discuss them as follows:

• D = 1: Obviously ϕiD(σi, Ir) = ϕD(Ir) = 1.

• D is even: If ∀a ∈ AD(Ir), J i(Ir, a) satisfies that ϕiD(σi, J i(Ir, a)) = ϕD(J i(Ir, a)),
then

ϕiD(σi, Ir) =
∑

a∈AD(I)

ϕiD(σi, J i(Ir, a))

=
∑

a∈AD(I)

ϕiD(J i(Ir, a))

=ϕiD(Ir)

Thus we get ϕiD(σi, Ir) = ϕiD(Ir).
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• D is odd and D 6= 1: If ∀a ∈ AD(Ir), J i(Ir, a) satisfies that ϕiD(σi, J i(Ir, a)) =
ϕD(J i(Ir, a)), then ∀σi ∈ ζ ′,

ϕiD(σi, Ir)

=1 +
∑

a∈AD(I)

σi(Ir, a)ϕiD(σi, J i(Ir, a))

=1 +
∑

a∈AD(I)

σi(Ir, a)ϕiD(J i(Ir, a))

=1 + [
∑

a∈AD(I)

σi(Ir, a)] · ϕiD(J i(Ir, aj)),∀aj ∈ AD(I) (due to ϕiD(Ir, aj) = ϕiD(Ir, ak), ∀aj , ak ∈ AD(I))

=1 + ϕiD(J i(Ir, aj))

=ϕiD(Ir) (as ∀σi, ϕiD(σi, Ir) = 1 + ϕiD(J i(Ir, a)), a ∈ AD(I) is independent of σi)

We can get ϕiD(σi, Ir) = ϕiD(Ir) as well.

So ∀σi,∀A,ϕiD(σi, Ir) = ϕiD(Ir). As ϕiD,σi = ϕiD(σi, I) = ϕiD(I) is independent from σi, we
finally prove this lemma.

As ϕiD,σi is independent of the choice of σi, we will drop the subscript σi, that is, we will use ϕiD
instead of ϕiD,σi in the following proof.

Now we prove Theorem 2.

Proof. As we discussed before, it’s sufficient to focus on the subtreee D, so all of the terms (e.g. the
regret) in the following proof are defined on D, not Ii.

For D, P (pa(I)) = i,∀I ∈ Z, we use the following procedure to generate σ−it and uit for each
round:

• ut(I) ∼ Bernoulli(0.5), ∀I ∈ Z.

• ∀I ∈ D, P (I) 6= i, we define pD(I) as:

pD(I) = [
ϕiD(J i(I, a1))∑

a∈AD(I) ϕ
i
D(J i(I, a))

, · · · ,
ϕiD(J i(I, a|AD(I)|))∑
a∈AD(I) ϕ

i
D(J i(I, a))

]

Notice that this term only depends on D, so once we determine D, we can immediately get
this pD(I). Each turn we first sample a(I) from Multinomial(1, pD(I)), then let σ−it (I) =
a(I).

In the following proof we denote this generating procedure asM and use the notation EM[·] as the
expectation over this generating procedure.

Let nt(I), I ∈ D denotes the cumulative arriving time player i arrives at I in the first t rounds. With
a little abuse of notation, we use the term RiT (I), I ∈ D to represent the regret of the subtree rooted
at I in the first T turns, i.e.

RiT (I) = max
σi

T∑
t=1

ui((σi, σ−it ), I)− ui((σit, σ−it ), I)), I ∈ D

We will prove that limA→∞ limT→∞ EMRiT,alg/
√

ϕiDT logA

2 ≥ 1,∀ alg with mathematical induc-
tion, where RiT,alg is defined in Theorem 2. Notice that under the assumption that P (pa(I)) =

i,∀I ∈ Z, P (Ir) = i if D is odd while P (Ir) = −i if D is even. In our proof we will discuss them
separately.
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• D = 1: As (Auer et al., 1995; Freund & Schapire, 1997; Cesa-Bianchi & Lugosi,
2006; Dani et al., 2008) have shown, for K-arm online linear optimization problem,

limK→∞ limT→∞
EMRiT,alg√

T logK
2

≥ 1,∀ alg, which is consistent to our proposition with

ϕiD = 14.

• D is even: From the definition we can get that ϕiD(Ir) =
∑
a∈AD(Ir) ϕ

i
D(J i(Ir, a)).

If limA→∞ limT→∞ EMRiT (J i(Ir, a))/

√
ϕiZ(Ji(Ir,a))T logA

2 ≥ 1,∀a ∈ AD(Ir),∀alg,
then

lim
A→∞

lim
T→∞

EMRiT,alg(Ir)√
ϕiD(Ir)T logA

2

= lim
A→∞

lim
T→∞

∑
a∈AD(Ir) EMRinT (Ji(Ir,a)),alg(J

i(Ir, a))√
ϕiD(Ir)T logA

2

= lim
|AD(Ir)|→∞

∑
a∈AD(Ir)

lim
A→∞

lim
nT (Ji(Ir,a))→∞

EMRinT (Ji(I,a)),alg(J
i(Ir, a))√

ϕiD(Ji(Ir,a))nT (Ji(Ir,a)) logA

2

×

√
ϕiD(J i(Ir, a))nT (J i(Ir, a))

ϕiD(Ir)T

≥ lim
A→∞

lim
T→∞

∑
a∈AD(Ir)

1× ϕiD(J i(I, a))∑
a∈AD(Ir) ϕ

i
D(J i(I, a))

=1

In the first equation, we decompose the overall expected regret to the summation of regrets
on subtrees. This decomposition can be derived in a similar way to that of Eq. (2) in
Appendix C.

In the second equation we transform the limitation of T into limitation of
nT (J i(Ir, a)),∀a ∈ AD(Ir). As the adversary selects action aj with probability
pD(Ir)j > 0 where pD(Ir)j denotes the j-th element of pD(Ir), when T → ∞, the
nT (J i(Ir, a))→∞,∀a ∈ AD(Ir) as well.

The inequality is from induction and limT→∞ nT (J i(Ir, a))/T = pD(I)j , aj ∈ AD(Ir)
due to the strong law of large numbers.

• D is odd and D 6= 1: For convenience, let RiT,alg,imm(Ir) =

maxa∈AD(Ir)

∑T
t=1 ut(σt|Ir→a, Ir) − ut(σt, Ir) denote the immediate regret on

the root node for algorithm alg. We first show that under our construction
EMRiT,alg,imm(Ir) ≥ 0,∀ alg.

4(Cesa-Bianchi & Lugosi, 2006) proves that for K-arm online linear optimization problem,
supT,K maxut

ERT,alg√
T logK/2

≥ 1, however the supremum can only get with K → ∞ and T/K → ∞ as

they use the property of maximum of infinite normal random variable and central limit theorem (CLT) corre-
spondingly. Here for clarity we equivalently change supremum into limit in our proof.
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Notice that in our construction, EM
∑T
t=1 ut(σt|Ir→a, Ir) = 0.5T, ∀a ∈ AD(Ir). Mean-

while, EM
∑T
t=1 ut(σt, Ir) = 0.5T as well. Thus,

EM
T∑
t=1

ut(σt, Ir) =
1

A

∑
a∈AD(Ir)

EMut(σt|Ir→a, Ir)

=EM
1

A

∑
a∈AD(Ir)

ut(σt|Ir→a, Ir)

≤EM max
a∈AD(Ir)

ut(σt|Ir→a, Ir)

This inequality is true for all σt (i.e. alg), and we can get

EMRiT,alg,imm(Ir) = EM max
a∈AD(Ir)

T∑
t=1

ut(σt|Ir→a, Ir)− ut(σt, Ir) ≥ 0, ∀ alg

Then, similar to the case when D is even, we can get:

lim
A→∞

lim
T→∞

EMRiT,alg(Ir)√
ϕiD(Ir)T logA

2

= lim
A→∞

lim
T→∞

EM[RiT,alg,imm(Ir) +
∑
a∈AD(Ir)[R

i
nT (Ji(Ir,a)),alg(J

i(Ir, a))]]√
ϕiD(Ir)T logA

2

≥0 + lim
A→∞

lim
T→∞

∑
a∈AD(Ir),nT (Ji(Ir,a))<∞

EMRinT (Ji(Ir,a)),alg(J
i(Ir, a))√

ϕiD(Ir)T logA

2

+ lim
|AD(Ir)|→∞

∑
a∈AD(Ir),nT (Ji(Ir,a))→∞

lim
A→∞

lim
nT (Ji(Ir,a))→∞,

EMRinT (Ji(Ir,a)),alg(J
i(Ir, a))√

ϕiD(Ir)T logA

2

≥0 + 0 + lim
A→∞

lim
T→∞

∑
a∈AD(Ir),nT (Ji(Ir,a))→∞

√
ϕiD(J i(Ir, a))nT (J i(Ir, a))

ϕiD(Ir)T

≥ lim
A→∞

lim
T→∞

√∑
a∈AD(Ir),nT (Ji(Ir,a))→∞ ϕiD(J i(Ir, a))nT (J i(Ir, a))

ϕiD(Ir)T

= lim
A→∞

√
ϕiD(Ir)− 1

ϕiD(Ir)

=1

Similarly, we decompose the overall expected regret to each subtree in the first equation.

Notice that ∀ alg, limT→∞
∑
a∈AD(Ir),nT (Ji(Ir,a))<∞ EMRinT (Ji(Ir,a)),alg < ∞,

limT→∞
∑
a∈AD(Ir),nT (Ji(Ir,a))<∞ EMRinT (Ji(Ir,a)),alg/

√
T = 0. Thus the second in-

equality is true. The last inequality is true by
∑
i

√
ai ≥

√∑
i ai.

Notice that
∑
a∈AD(Ir) ϕ

i
D(J i(Ir, a))nT (J i(Ir, a)) = (ϕiD(Ir) − 1)T (We can see

this by nT (J i(Ir, a)) =
∑T
t=1 σ

i
t(Ir, a) and ∀t,

∑
a∈AD(Ir) ϕ

i
D(J i(Ir, a))σit(Ir, a) =

ϕiD(Ir) − 1, which can be simply derived by the definition of ϕiD and P (Ir) = i), and

limT→∞
∑
a∈AD(Ir),nT (Ji(Ir,a))<∞

ϕiZ(Ji(Ir,a))nT (Ji(Ir,a))

ϕiZ(Ir)T
= 0. Thus we can get the

limitation of T →∞.
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Thus, with mathematical induction, we prove that limT→∞,A→∞ EM RiT√
ϕiDT logA

2

≥ 1, while with

the definition of D and Lemma 4, we can get ϕiD = ϕi, thus we can get the mini-max lower bound in
Theorem 2.

E THE DETAILS OF IMPLEMENTATION

We now discuss the detailed implementation of Lazy-CFR. To start, we derive Eq. (4). According to
Property 1, we have:

mt(h) =

t∑
t′=τt(h)+1

π−iσt′ (h)

=
∑

h′:h∈subt(h′)

t2(h′)∑
t′=t1(h′)+1

π−iσt′ (h)

=
∑

h′:h∈subt(h′)

t2(h′)∑
t′=t1(h′)+1

π−iσt′ (h
′)π−iσt′ (h

′, h)

=
∑

h′:h∈subt(h′)

π−iσΓ
(h′, h)α̂(h′)

The first equation is the definition of mt; the second line is according to Prop 1.2; the third line is
derived from the definition of α and π−iσ and the last line is due to Property 1.3. Similarly, we can
write rj as:

rj(h, a) =

t∑
t′=τt(h)+1

π−iσt′ (h)ui((h, a)|σt′)

=
∑

h′:h∈subt(h′)

t2(h′)∑
t′=t1(h′)+1

π−iσt′ (h)ui((h, a)|σt′)

= α(h) +
∑

h′ 6=h:h∈subt(h′)

t2(h′)∑
t′=t1(h′)+1

π−iσt′ (h
′)π−iσt′ (h

′, h)ui((h, a)|σt′)

= α(h) + U((h, a))
∑

h′ 6=h:h∈subt(h′)

π−iσΓ
(h′, h)α̂(h′)

We now present how to implement of the ideas in 3.2.1.
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Algorithm 2 A detailed implementation of Lazy-CFR
1: A two-player zero-sum extensive game.
2: Randomly initialize Γ.
3: ∀h ∈ H, i ∈ {1, 2}, compute the counterfactual reward U i(h) = ui(h|Γ), f lagi(h) = −1.
4: ∀I ∈ I, s(I) = 0,∀a ∈ A(I), r(I, a) = 0.
5: while t < T do
6: for all i ∈ {1, 2} do
7: αi(hr)+ = 1.0.
8: UPDATE1(Iir, i) where Iir is the root of infoset tree Ii.
9: end for

10: ∀i ∈ {1, 2} UPDATE2(hr, i, t) where hr denotes the root of the history tree.
11: end while
12: RETURN σ̄.

Algorithm 3 UPDATE1(I, i, t)
1: m(I) = 0
2: for all h ∈ I do
3: θi(h) = (θi(pa(h)) + α̂i(pa(h)))× π−iΓ (pa(h), h).
4: m(I)+ = αi(h) + θi(h)
5: end for
6: if m(I) ≥ 1 then
7: if P (I) = i then
8: for all a ∈ A(I) do
9: UPDATE1((I, a), t).

10: end for
11: ∀h ∈ I, updflag(h, t, i).
12: ∀a ∈ A(I), r(I, a) = 0.
13: for all a ∈ A(I), h ∈ I do
14: r(I, a)+ = β(h, a) + θi(h)U i((h, a)).
15: end for
16: Γi(I) =RM(r(I)).
17: else
18: ∀a ∈ A(I), UPDATE1((I,a),i, t).
19: end if
20: end if

Algorithm 4 updflag(h, t, i)

1: if h is not the root of history tree and flagi(h) 6= t then
2: flagi(h) = t.
3: updflag(pa(h), t, i).
4: end if

Algorithm 5 UPDATE2(h, i, t)

1: Let i′ denote the opponent of player i.
2: if flagi(h) = t then
3: ∀a ∈ A(h) UPDATE2((h, a), i, t).
4: update U1(h) and U2(h).
5: αi(h) = 0.
6: α̂i

′
(h) = 0.

7: ∀a ∈ A(h), βi
′
(h, a) = 0.

8: else
9: αi

′
(h)+ = (θi

′
(pa(h)) + α̂i

′
(pa(h)))× π−i

′

Γ′ (pa(h), h).
10: α̂i

′
(h)+ = (θi

′
(pa(h)) + α̂i

′
(pa(h)))× π−i

′

Γ′ (pa(h), h).
11: ∀a ∈ A(h), βi

′
(h, a)+ = U i

′
(h, a)(θi

′
(pa(h)) + α̂i

′
(pa(h)))× π−i

′

Γ′ (pa(h), h).
12: end if
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