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ABSTRACT

In this paper, we address the problem of reducing the memory footprint of con-
volutional network architectures. We introduce a vector quantization method that
aims at preserving the quality of the reconstruction of the network outputs rather
than its weights. The principle of our approach is that it minimizes the loss recon-
struction error for in-domain inputs. Our method only requires a set of unlabelled
data at quantization time and allows for efficient inference on CPU by using byte-
aligned codebooks to store the compressed weights. We validate our approach by
quantizing a high performing ResNet-50 model to a memory size of 5 MB (20x
compression factor) while preserving a top-1 accuracy of 76.1% on ImageNet ob-
ject classification and by compressing a Mask R-CNN with a 26 x factorﬂ

1 INTRODUCTION

There is a growing need for compressing the best convolutional networks (or ConvNets) to sup-
port embedded devices for applications like robotics and virtual/augmented reality. Indeed, the
performance of ConvNets on image classification has steadily improved since the introduction
of AlexNet (Krizhevsky et all 2012). This progress has been fueled by deeper and richer ar-
chitectures such as the ResNets (He et al., |2015) and their variants ResNeXts (Xie et al., |2017)
or DenseNets (Huang et al.,2017)). Those models particularly benefit from the recent progress made
with weak supervision (Mahajan et al.,|2018;; |Yalniz et al.| 2019} [Berthelot et al., 2019). Compres-
sion of ConvNets has been an active research topic in the recent years, leading to networks with a
71% top-1 accuracy on ImageNet object classification that fit in 1 MB (Wang et al.,|2018b).

In this work, we propose a compression method particularly adapted to ResNet-like architectures.
Our approach takes advantage of the high correlation in the convolutions by the use of a structured
quantization algorithm, Product Quantization (PQ) (Jégou et al., 2011). More precisely, we exploit
the spatial redundancy of information inherent to standard convolution filters (Denton et al.,[2014).
Besides reducing the memory footprint, we also produce compressed networks allowing efficient
inference on CPU by using byte-aligned indexes, as opposed to entropy decoders (Han et al.|[2016).

Our approach departs from traditional scalar quantizers (Han et al., |2016) and vector quantiz-
ers (Gong et al., [2014; |Carreira-Perpinan & Idelbayev, 2017) by focusing on the accuracy of the
activations rather than the weights. This is achieved by leveraging a weighted k-means technique.
To our knowledge this strategy (see Section [3)) is novel in this context. The closest work we are
aware of is the one by |Choi et al.| (2016)), but the authors use a different objective (their weighted
term is derived from second-order information) along with a different quantization technique (scalar
quantization). Our method targets a better in-domain reconstruction, as depicted by Figure[]

Finally, we compress the network sequentially to account for the dependency of our method to
the activations at each layer. To prevent the accumulation of errors across layers, we guide this
compression with the activations of the uncompressed network on unlabelled data: training by dis-
tillation (Hinton et al.l 2014) allows for both an efficient layer-by-layer compression procedure and
a global fine-tuning of the codewords. Thus, we only need a set of unlabelled images to adjust
the codewords. As opposed to recent works by Mishra & Marr (2017) or [Lopes et al.|(2017), our
distillation scheme is sequential and the underlying compression method is different (PQ vs. scalar).

'Code and compressed models: https://github.com/facebookresearch/kill-the-bits|
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Figure 1: Tllustration of our method. We approximate a binary classifier ¢ that labels images as
dogs or cats by quantizing its weights. Standard method: quantizing ¢ with the standard objective
function (T)) promotes a classifier Pgandara that tries to approximate ¢ over the entire input space
and can thus perform badly for in-domain inputs. OQur method: quantizing ¢ with our objective
function (2) promotes a classifier Pactivations that performs well for in-domain inputs. Images lying in
the hatched area of the input space are correctly classified by @activations but incorrectly by ¢siandard-

We show that applying our approach to the semi-supervised ResNet-50 of Yalniz et al.
leads to a 5MB memory footprint and a 76.1% top-1 accuracy on ImageNet object
classification (hence 20x compression vs. the original model). Moreover, our approach generalizes
to other tasks such as image detection. As shown in Section f.3] we compress a Mask R-CNN
with a size budget around 6 MB (26x compression factor) while maintaining a
competitive performance.

2 RELATED WORK

There is a large body of literature on network compression. We review the works closest to ours and
refer the reader to two recent surveys (Guol 2018} [Cheng et all 2017) for a comprehensive overview.

Low-precision training. Since early works like those of |Courbariaux et al| (2015), researchers
have developed various approaches to train networks with low precision weights. Those approaches
include training with binary or ternary weights (Shayer et al, 2017; [Zhu et al 2016} [Li & Liu
2016} [Rastegari et al.}, 2016} McDonnell, 2018)), learning a combination of binary bases (Lin et al.
2017) and quantizing the activations (Zhou et al. [2016; [2017; Mishra et al. 2017). Some of these
methods assume the possibility to employ specialized hardware that speed up inference and improve
power efficiency by replacing most arithmetic operations with bit-wise operations. However, the
back-propagation has to be adapted to the case where the weights are discrete.

Quantization. Vector Quantization (VQ) and Product Quantization (PQ) have been extensively
studied in the context of nearest-neighbor search (Jegou et al.} 2011} [Ge et all 2014} [Norouzi & Fleet,
[2013). The idea is to decompose the original high-dimensional space into a cartesian product of
subspaces that are quantized separately with a joint codebook. To our knowledge, |Gong et al.| (2014)
were the first to introduce these stronger quantizers for neural network quantization, followed by
|Carreira-Perpifian & Idelbayev|(2017). As we will see in the remainder of this paper, employing this
discretization off-the-shelf does not optimize the right objective function, and leads to a catastrophic
drift of performance for deep networks.

Pruning. Network pruning amounts to removing connections according to an importance criteria
(typically the magnitude of the weight associated with this connection) until the desired model
size/accuracy tradeoff is reached (LeCun et al [1990). A natural extension of this work is to prune
structural components of the network, for instance by enforcing channel-level

or filter-level (Cuo et all sparsity. However, these methods alternate between pruning and
re-training steps and thus typically require a long training time.
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Dedicated architectures. Architectures such as SqueezeNet (Iandola et al., 2016)), NASNet (Zoph
et al.,2017), ShuffleNet (Zhang et al.,|2017; Ma et al., |2018]), MobileNets (Sandler et al., 2018) and
EfficientNets (Tan & Le, 2019) are designed to be memory efficient. As they typically rely on
a combination of depth-wise and point-wise convolutional filters, sometimes along with channel
shuffling, they are less prone than ResNets to structured quantization techniques such as PQ. These
architectures are either designed by hand or using the framework of architecture search (Howard
et al., |2019). For instance, the respective model size and test top-1 accuracy of ImageNet of a
MobileNet are 13.4 MB for 71.9%, to be compared with a vanilla ResNet-50 with size 97.5 MB for
a top-1 of 76.2%. Moreover, larger models such as ResNets can benefit from large-scale weakly- or
semi-supervised learning to reach better performance (Mahajan et al. 2018} |Yalniz et al.,2019).

Combining some of the mentioned approaches yields high compression factors as demonstrated
by Han et al. with Deep Compression (DC) (Han et al.l [2016) or more recently by Tung & Mori
(Tung & Mori, 2018)). Moreover and from a practical point of view, the process of compressing
networks depends on the type of hardware on which the networks will run. Recent work directly
quantizes to optimize energy-efficiency and latency time on a specific hardware (Wang et al., 2018a).
Finally, the memory overhead of storing the full activations is negligible compared to the storage of
the weights for two reasons. First, in realistic real-time inference setups, the batch size is almost
always equal to one. Second, a forward pass only requires to store the activations of the current layer
—which are often smaller than the size of the input— and not the whole activations of the network.

3 OUR APPROACH

In this section, we describe our strategy for network compression and we show how to extend our ap-
proach to quantize a modern ConvNet architecture. The specificity of our approach is that it aims at
a small reconstruction error for the outputs of the layer rather than the layer weights themselves. We
first describe how we quantize a single fully connected and convolutional layer. Then we describe
how we quantize a full pre-trained network and finetune it.

3.1 QUANTIZATION OF A FULLY-CONNECTED LAYER

We consider a fully-connected layer with weights W € RCn*Cox and, without loss of generality,
we omit the bias since it does not impact reconstruction error.

Product Quantization (PQ). Applying the PQ algorithm to the columns of W consists in evenly
splitting each column into m contiguous subvectors and learning a codebook on the resulting mCiy
subvectors. Then, a column of W is quantized by mapping each of its subvector to its nearest
codeword in the codebook. For simplicity, we assume that C}, is a multiple of m, i.e., that all the
subvectors have the same dimension d = Ci, /m.

More formally, the codebook C = {cy,...,cx} contains k codewords of dimension d. Any col-
umn w; of W is mapped to its quantized version q(w;) = (c;,,...,¢;,,) where i; denotes the
index of the codeword assigned to the first subvector of w;, and so forth. The codebook is then
learned by minimizing the following objective function:

IW = W= [[w; —a(w,)]3, (D
J

where W denotes the quantized weights. This objective can be efficiently minimized with k-means.
When m is set to 1, PQ is equivalent to vector quantization (VQ) and when m is equal to Cy,, it is
the scalar k-means algorithm. The main benefit of PQ is its expressivity: each column w; is mapped
to a vector in the product C = C x --- x C, thus PQ generates an implicit codebook of size k™.

Our algorithm. PQ quantizes the weight matrix of the fully-connected layer. However, in prac-
tice, we are interested in preserving the output of the layer, not its weights. This is illustrated in the
case of a non-linear classifier in Figure[I} preserving the weights a layer does not necessarily guar-
antee preserving its output. In other words, the Frobenius approximation of the weights of a layer is
not guaranteed to be the best approximation of the output over some arbitrary domain (in particular
for in-domain inputs). We thus propose an alternative to PQ that directly minimizes the reconstruc-
tion error on the output activations obtained by applying the layer to in-domain inputs. More pre-
cisely, given a batch of B input activations x € RPZ*%n_we are interested in learning a codebook C
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that minimizes the difference between the output activations and their reconstructions:

ly =515 =D lIx(w; — a(w;))II3, 2)
j

where y = xW is the output and y = xW its reconstruction. Our objective is a re-weighting of
the objective in Equation (I)). We can thus learn our codebook with a weighted k-means algorithm.
First, we unroll x of size B x Cj, into X of size (B x m) x d i.e. we split each row of x into m
subvectors of size d and stack these subvectors. Next, we adapt the EM algorithm as follows.

(1) E-step (cluster assignment). Recall that every column w; is divided into m subvectors of
dimension d. Each subvector v is assigned to the codeword c; such that

c; = argmin [|X(c — v)||3. 3)
ceC

This step is performed by exhaustive exploration. Our implementation relies on broadcast-
ing to be computationally efficient.

(2) M-step (codeword update). Let us consider a codeword ¢ € C. We denote (v)per, the
subvectors that are currently assigned to c. Then, we update ¢ < c*, where

c¢* = argmin Z 1%(c —v,)l[3. 4
ceRd pel.

This step explicitly computes the solution of the least-squares proble Our implemen-
tation performs the computation of the pseudo-inverse of x before alternating between the
Expectation and Minimization steps as it does not depend on the learned codebook C.

We initialize the codebook C by uniformly sampling k vectors among those we wish to quantize.
After performing the E-step, some clusters may be empty. To resolve this issue, we iteratively
perform the following additional steps for each empty cluster of index <. (1) Find codeword cq
corresponding to the most populated cluster ; (2) define new codewords ¢, = cp+e and ¢; = ¢p—e,
where e ~ A(0, £I) and (3) perform again the E-step. We proceed to the M-step after all the empty
clusters are resolved. We set ¢ = 1le—8 and we observe that its generally takes less than 1 or 2 E-M
iterations to resolve all the empty clusters. Note that the quality of the resulting compression is
sensitive to the choice of x.

3.2 CONVOLUTIONAL LAYERS

Despite being presented in the case of a fully-connected layer, our approach works on any set of
vectors. As a consequence, our apporoach can be applied to a convolutional layer if we split the
associated 4D weight matrix into a set of vectors. There are many ways to split a 4D matrix in a
set of vectors and we are aiming for one that maximizes the correlation between the vectors since
vector quantization based methods work the best when the vectors are highly correlated.

Given a convolutional layer, we have C, filters of size K x K x Cj,, leading to an overall 4D
weight matrix W € RCou*CnxKxK The dimensions along the output and input coordinate have
no particular reason to be correlated. On the other hand, the spatial dimensions related to the filter
size are by nature very correlated: nearby patches or pixels likely share information. As depicted
in Figure[2] we thus reshape the weight matrix in a way that lead to spatially coherent quantization.
More precisely, we quantize W spatially into subvectors of size d = K x K using the following
procedure. We first reshape W into a 2D matrix of size (Cj, X K X K) X Cyy. Column j of the
reshaped matrix W, corresponds to the 4 filter of W and is divided into Cj, subvectors of size
K x K. Similarly, we reshape the input activations x accordingly to x; so that reshaping back the
matrix x; W, yields the same result as x « W. In other words, we adopt a dual approach to the one
using bi-level Toeplitz matrices to represent the weights. Then, we apply our method exposed in
Section to quantize each column of W, into m = Cj, subvectors of size d = K x K with k
codewords, using X, as input activations in . As a natural extension, we also quantize with larger
subvectors, for example subvectors of size d = 2 x K x K, see Sectionfor details.

*Denoting X" the Moore-Penrose pseudoinverse of X, we obtain ¢* = XX (Zpe ; vp)
. .
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Figure 2: We quantize Cy, filters of size C}; x K x K using a subvector size of d = K x K. In
other words, we spatially quantize the convolutional filters to take advantage of the redundancy of
information in the network. Similar colors denote subvectors assigned to the same codewords.

In our implementation, we adapt the reshaping of W and x to various types of convolutions. We ac-
count for the padding, the stride, the number of groups (for depthwise convolutions and in particular
for pointwise convolutions) and the kernel size. We refer the reader to the code for more details.

3.3 NETWORK QUANTIZATION

In this section, we describe our approach for quantizing a neural network. We quantize the network
sequentially starting from the lowest layer to the highest layer. We guide the compression of the
student network by the non-compressed teacher network, as detailled below.

Learning the codebook. We recover the current input activations of the layer, i.e. the input activa-
tions obtained by forwarding a batch of images through the guantized lower layers, and we quantize
the current layer using those activations. Experimentally, we observed a drift in both the reconstruc-
tion and classification errors when using the activations of the non-compressed network rather than
the current activations.

Finetuning the codebook. We finetune the codewords by distillation (Hinton et al., |2014)) using
the non-compressed network as the teacher network and the compressed network (up to the cur-
rent layer) as the student network. Denoting v, (resp. ys) the output probabilities of the teacher
(resp. student) network, the loss we optimize is the Kullback-Leibler divergence £ = KL(ys, y1)-
Finetuning on codewords is done by averaging the gradients of each subvector assigned to a given
codeword. More formally, after the quantization step, we fix the assignments once for all. Then,
denoting (b, ),c1, the subvectors that are assigned to codeword ¢, we perform the SGD update with

a learning rate n
1 oL
R ITADE )

Experimentally, we find the approach to perform better than finetuning on the target of the images
as demonstrated in Table |3} Moreover, this approach does not require any labelled data.

3.4 GLOBAL FINETUNING

In a final step, we globally finetune the codebooks of all the layers to reduce any residual drifts
and we update the running statistics of the BatchNorm layers: We empirically find it beneficial to
finetune all the centroids after the whole network is quantized. The finetuning procedure is exactly
the same as described in Section [3.3] except that we additionally switch the BatchNorms to the
training mode, meaning that the learnt coefficients are still fixed but that the batch statistics (running
mean and variance) are still being updated with the standard moving average procedure.

We perform the global finetuning using the standard ImageNet training set for 9 epochs with an
initial learning rate of 0.01, a weight decay of 10~* and a momentum of 0.9. The learning rate is
decayed by a factor 10 every 3 epochs. As demonstrated in the ablation study in Table 3] finetuning
on the true labels performs worse than finetuning by distillation. A possible explanation is that
the supervision signal coming from the teacher network is richer than the one-hot vector used as a
traditional learning signal in supervised learning (Hinton et al.,|[2014).



Published as a conference paper at ICLR 2020

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We quantize vanilla ResNet-18 and ResNet-50 architectures pretrained on the ImageNet dataset
(Deng et al., 2009). Unless explicit mention of the contrary, the pretrained models are taken from
the PyTorch model zocﬂ We run our method on a 16 GB Volta V100 GPU. Quantizing a ResNet-
50 with our method (including all finetuning steps) takes about one day on 1 GPU. We detail our
experimental setup below. Our code and the compressed models are open-sourced.

Compression regimes. We explore a large block sizes (resp.small block sizes) compression regime
by setting the subvector size of regular 3x3 convolutions to d=9 (resp.d = 18) and the sub-
vector size of pointwise convolutions to d = 4 (resp.d = 8). For ResNet-18, the block size
of pointwise convolutions is always equal to 4. The number of codewords or centroids is set to
k € {256,512,1024, 2048} for each compression regime. Note that we clamp the number of cen-
troids to min(k, Coy X m/4) for stability. For instance, the first layer of the first stage of the
ResNet-50 has size 64x 64x 1 x1, thus we always use k = 128 centroids with a block size d = 8.
For a given number of centroids k, small blocks lead to a lower compression ratio than large blocks.

Sampling the input activations. Before quantizing each layer, we randomly sample a batch of
1024 training images to obtain the input activations of the current layer and reshape it as described
in Section [3.2] Then, before each iteration (E+M step) of our method, we randomly sample 10, 000
rows from those reshaped input activations.

Hyperparameters. We quantize each layer while performing 100 steps of our method (sufficient
for convergence in practice). We finetune the centroids of each layer on the standard ImageNet
training set during 2,500 iterations with a batch size of 128 (resp 64) for the ResNet-18 (resp.ResNet-
50) with a learning rate of 0.01, a weight decay of 10~* and a momentum of 0.9. For accuracy and
memory reasons, the classifier is always quantized with a block size d = 4 and k = 2048 (resp.
k = 1024) centroids for the ResNet-18 (resp., ResNet-50). Moreover, the first convolutional layer
of size 7 x 7 is not quantized, as it represents less than 0.1% (resp., 0.05%) of the weights of a
ResNet-18 (resp.ResNet-50).

Metrics. We focus on the tradeoff between accuracy and memory. The accuracy is the top-1 error
on the standard validation set of ImageNet. The memory footprint is calculated as the indexing cost
(number of bits per weight) plus the overhead of storing the centroids in floatl6. As an example,
quantizing a layer of size 128 x 128 x 3 x 3 with k=256 centroids (1 byte per subvector) and a
block size of d = 9 leads to an indexing cost of 16 kB for m = 16,384 blocks plus the cost of
storing the centroids of 4.5 kB.

4.2 IMAGE CLASSIFICATION RESULTS

We report below the results of our method applied to various ResNet models. First, we compare our
method with the state of the art on the standard ResNet-18 and ResNet-50 architecture. Next, we
show the potential of our approach on a competitive ResNet-50. Finally, an ablation study validates
the pertinence of our method.

Vanilla ResNet-18 and ResNet-50. We evaluate our method on the ImageNet benchmark for
ResNet-18 and ResNet-50 architectures and compare our results to the following methods: Trained
Ternary Quantization (TTQ) (Zhu et al.l |2016), LR-Net (Shayer et al.l|2017), ABC-Net (Lin et al.,
2017), Binary Weight Network (XNOR-Net or BWN) (Rastegari et al., 2016), Deep Compression
(DC) (Han et al., 2016) and Hardware-Aware Automated Quantization (HAQ) (Wang et al., [2018a)).
We report the accuracies and compression factors in the original papers and/or in the two surveys
(Guol 2018} |Cheng et al.| [2017) for a given architecture when the result is available. We do not
compare our method to DoReFa-Net (Zhou et al., 2016) and WRPN (Mishra et al., [2017) as those
approaches also use low-precision activations and hence get lower accuracies, e.g., 51.2% top-1
accuracy for a XNOR-Net with ResNet-18. The results are presented in Figure[d.2] For better read-
ability, some results for our method are also displayed in Table|l] We report the average accuracy
and standard deviation over 3 runs. Our method significantly outperforms state of the art papers for

3https://pytorch.org/docs/stable/torchvision/models



Published as a conference paper at ICLR 2020

ResNet-18 on ImageNet ResNet-50 on ImageNet
70 HAQ (4 bits) DC (4 bits)
76 -
: k=2048
ABC-Net (M=5) k:zoig 1024 HAQ@bits), o “ Tk=1024
68 ¢ & - & DC (3 bits) o k=512
= k=2048
.
- TTQ o203 =74 ek=256
S s A 56 S5
et ABC-Net (M=3) omk=1024 =3 u k=1024
g k=512 g
Z e ABC-Net (M=2) . s k=512
5 . 5] -
2 LR-Net (2 bits) N =71 HAQ (2 bits),
62| ® Ours, small blocks ABC-Net (M=1) ® Ours, small blocks
Ours, large blocks k22561 7% & Ours, large blocks
m Ours, large blocks BWN - urs, large blocks
A Reference methods A . 69/ A Reference methods A . k=256
60{ — Original model AR-Net(Ibity | | Original model DC (2 bits) ]
0 10 20 30 40 0 5 10 15 20 25 30
Compression factor (original network size: 44.6MB) Compression factor (original network size: 97.5MB)

Figure 3: Compression results for ResNet-18 and ResNet-50 architectures. We explore two com-
pression regimes as defined in Section small block sizes (block sizes of d=4 and 9) and large
block sizes (block sizes d=8 and 18). The results of our method for k£ = 256 centroids are of
practical interest as they correspond to a byte-compatible compression scheme.

Table 1: Results for vanilla ResNet-18 and ResNet-50 architectures for & = 256 centroids.
Model (original top-1) \ Compression  Sizeratio Model size  Top-1 (%)

Small blocks ~ 29x 1.54 MB  65.81 +0.04
ResNet-18 (69.76%) ‘ Largeblocks ~ 43x  1.03MB  61.10 +0.03
Small blocks 19x 509MB  73.79 £0.05
ResNet-50 (76.15%) ‘ Large blocks ~ 31x 3.19MB  68.21£0.04

various operating points. For instance, for a ResNet-18, our method with large blocks and k£ = 512
centroids reaches a larger accuracy than ABC-Net (M = 2) with a compression ratio that is 2x
larger. Similarly, on the ResNet-50, our compressed model with k¥ = 256 centroids in the large
blocks setup yields a comparable accuracy to DC (2 bits) with a compression ratio that is 2x larger.

The work by Tung & Mori (Tung & Mori, 2018) is likely the only one that remains competitive
with ours with a 6.8 MB network after compression, with a technique that prunes the network and
therefore implicitly changes the architecture. The authors report the delta accuracy for which we
have no direct comparable top-1 accuracy, but their method is arguably complementary to ours.

Semi-supervised ResNet-50. Recent works (Mahajan et al., 2018; |Yalniz et all [2019) have
demonstrated the possibility to leverage a large collection of unlabelled images to improve the per-
formance of a given architecture. In particular, Yalniz et al. (Yalniz et al., 2019) use the publicly
available YFCC-100M dataset (Thomee et al., 2015)) to train a ResNet-50 that reaches 79.1% top-1
accuracy on the standard validation set of ImageNet. In the following, we use this particular model
and refer to it as semi-supervised ResNet-50. In the low compression regime (block sizes of 4 and 9),
with & = 256 centroids (practical for implementation), our compressed semi-supervised ResNet-50
reaches 76.12% top-1 accuracy. In other words, the model compressed to 5 MB attains the perfor-
mance of a vanilla, non-compressed ResNet50 (vs.97.5MB for the non-compressed ResNet-50).

Comparison for a given size budget. To ensure a fair comparison, we compare our method for
a given model size budget against the reference methods in Table [2] It should be noted that our
method can further benefit from advances in semi-supervised learning to boosts the performance of
the non-compressed and hence of the compressed network.

Ablation study. We perform an ablation study on the vanilla ResNet-18 to study the respective
effects of quantizing using the activations and finetuning by distillation (here, finetuning refers both
to the per-layer finetuning and to the global finetuning after the quantization described in Section [3).
We refer to our method as Act + Distill. First, we still finetune by distillation but change the quanti-
zation: instead of quantizing using our method (see Equation (2))), we quantizing using the standard
PQ algorithm and do not take the activations into account, see Equation (IJ). We refer to this method
as No act + Distill. Second, we quantize using our method but perform a standard finetuning using
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Table 2: Best test top-1 accuracy on ImageNet for a given size budget (no architecture constraint).

Size budget  Best previous published method Ours

~1 MB 70.90% (HAQ (Wang et al., 2018a)), MobileNet v2)  64.01% (vanilla ResNet-18)
~5 MB 71.74% (HAQ (Wang et al., | 2018a)), MobileNet vl)  76.12% (semi-sup.ResNet-50)
~10 MB 75.30% (HAQ (Wang et al., 2018a), ResNet-50) 77.85% (semi-sup.ResNet-50)

Table 3: Ablation study on ResNet-18 (test top-1 accuracy on ImageNet).

Compression \ Centroids £k No act + Distill Act + Labels Act + Distill (ours)

256 64.76 65.55 65.81
512 66.31 66.82 67.15

Small blocks 1024 67.28 67.53 67.87
2048 67.88 67.99 68.26

256 60.46 61.01 61.18

Laree blocks 512 63.21 63.67 63.99
g 1024 64.74 65.48 65.72
2048 65.94 66.21 66.50

the image labels (Act + Labels). The results are displayed in Table [3] Our approach consistently
yields significantly better results. As a side note, quantizing all the layers of a ResNet-18 with the
standard PQ algorithm and without any finetuning leads to top-1 accuracies below 25% for all oper-
ating points, which illustrates the drift in accuracy occurring when compressing deep networks with
standard methods (as opposed to our method).

4.3 IMAGE DETECTION RESULTS

To demonstrate the generality of our method, we compress the Mask R-CNN architecture used for
image detection in many real-life applications (He et al.|2017)). We compress the backbone (ResNet-
50 FPN) in the small blocks compression regime and refer the reader to the open-sourced compressed
model for the block sizes used in the various heads of the network. We use k = 256 centroids for
every layer. We perform the fine-tuning (layer-wise and global) using distributed training on 8
V100 GPUs. Results are displayed in Table @] We argue that this provides an interesting point of
comparison for future work aiming at compressing such architectures for various applications.

5 CONCLUSION

We presented a quantization method based on Product Quantization that gives state of the art re-
sults on ResNet architectures and that generalizes to other architectures such as Mask R-CNN. Our
compression scheme does not require labeled data and the resulting models are byte-aligned, al-
lowing for efficient inference on CPU. Further research directions include testing our method on a
wider variety of architectures. In particular, our method can be readily adapted to simultaneously
compress and transfer ResNets trained on ImageNet to other domains. Finally, we plan to take the
non-linearity into account to improve our reconstruction error.

Table 4: Compression results for Mask R-CNN (backbone ResNet-50 FPN) for k = 256 centroids
(compression factor 26 x).

Model | Size Box AP Mask AP
Non-compressed | 170 MB 37.9 34.6
Compressed 6.51 MB 33.9 30.8
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