
Published as a conference paper at ICLR 2020

SINGLE EPISODE POLICY TRANSFER IN REINFORCE-
MENT LEARNING

Jiachen Yang
Georgia Institute of Technology, USA
jiachen.yang@gatech.edu

Brenden Petersen
Lawrence Livermore National Laboratory, USA
petersen33@llnl.gov

Hongyuan Zha
Georgia Institute of Technology, USA
zha@cc.gatech.edu

Daniel Faissol
Lawrence Livermore National Laboratory, USA
faissol1@llnl.gov

ABSTRACT

Transfer and adaptation to new unknown environmental dynamics is a key challenge
for reinforcement learning (RL). An even greater challenge is performing near-
optimally in a single attempt at test time, possibly without access to dense rewards,
which is not addressed by current methods that require multiple experience rollouts
for adaptation. To achieve single episode transfer in a family of environments with
related dynamics, we propose a general algorithm that optimizes a probe and an
inference model to rapidly estimate underlying latent variables of test dynamics,
which are then immediately used as input to a universal control policy. This
modular approach enables integration of state-of-the-art algorithms for variational
inference or RL. Moreover, our approach does not require access to rewards at
test time, allowing it to perform in settings where existing adaptive approaches
cannot. In diverse experimental domains with a single episode test constraint, our
method significantly outperforms existing adaptive approaches and shows favorable
performance against baselines for robust transfer.

1 INTRODUCTION

One salient feature of human intelligence is the ability to perform well in a single attempt at a
new task instance, by recognizing critical characteristics of the instance and immediately executing
appropriate behavior based on experience in similar instances. Artificial agents must do likewise in
applications where success must be achieved in one attempt and failure is irreversible. This problem
setting, single episode transfer, imposes a challenging constraint in which an agent experiences—and
is evaluated on—only one episode of a test instance.

As a motivating example, a key challenge in precision medicine is the uniqueness of each patient’s
response to therapeutics (Hodson, 2016; Bordbar et al., 2015; Whirl-Carrillo et al., 2012). Adaptive
therapy is a promising approach that formulates a treatment strategy as a sequential decision-making
problem (Zhang et al., 2017; West et al., 2018; Petersen et al., 2019). However, heterogeneity among
instances may require explicitly accounting for factors that underlie individual patient dynamics. For
example, in the case of adaptive therapy for sepsis (Petersen et al., 2019), predicting patient response
prior to treatment is not possible. However, differences in patient responses can be observed via
blood measurements very early after the onset of treatment (Cockrell and An, 2018).

As a first step to address single episode transfer in reinforcement learning (RL), we propose a general
algorithm for near-optimal test-time performance in a family of environments where differences in
dynamics can be ascertained early during an episode. Our key idea is to train an inference model
and a probe that together achieve rapid inference of latent variables—which account for variation in
a family of similar dynamical systems—using a small fraction (e.g., 5%) of the test episode, then
deploy a universal policy conditioned on the estimated parameters for near-optimal control on the
new instance. Our approach combines the advantages of robust transfer and adaptation-based transfer,
as we learn a single universal policy that requires no further training during test, but which is adapted
to the new environment by conditioning on an unsupervised estimation of new latent dynamics.

1

Published as a conference paper at ICLR 2020

In contrast to methods that quickly adapt or train policies via gradients during test but assume access
to multiple test rollouts and/or dense rewards (Finn et al., 2017; Killian et al., 2017; Rakelly et al.,
2019), we explicitly optimize for performance in one test episode without accessing the reward
function at test time. Hence our method applies to real-world settings in which rewards during test are
highly delayed or even completely inaccessible—e.g., a reward that depends on physiological factors
that are accessible only in simulation and not from real patients. We also consider computation time
a crucial factor for real-time application, whereas some existing approaches require considerable
computation during test (Killian et al., 2017). Our algorithm builds on variational inference and RL
as submodules, which ensures practical compatibility with existing RL workflows.

Our main contribution is a simple general algorithm for single episode transfer in families of
environments with varying dynamics, via rapid inference of latent variables and immediate execution
of a universal policy. Our method attains significantly higher cumulative rewards, with orders
of magnitude faster computation time during test, than the state-of-the-art model-based method
(Killian et al., 2017), on benchmark high-dimensional domains whose dynamics are discontinuous
and continuous in latent parameters. We also show superior performance over optimization-based
meta-learning and favorable performance versus baselines for robust transfer.

2 SINGLE EPISODE TRANSFER IN RL: PROBLEM SETUP

Our goal is to train a model that performs close to optimal within a single episode of a test instance with
new unknown dynamics. We formalize the problem as a family (S,A, T , R, γ), where (S,A, R, γ)
are the state space, action space, reward function, and discount of an episodic Markov decision process
(MDP). Each instance of the family is a stationary MDP with transition function Tz(s′|s, a) ∈ T .
When a set Z of physical parameters determines transition dynamics (Konidaris and Doshi-Velez,
2014), each Tz has a hidden parameter z ∈ Z that is sampled once from a distribution PZ and held
constant for that instance. For more general stochastic systems whose modes of behavior are not
easily attributed to physical parameters, Z is induced by a generative latent variable model that
indirectly associates each Tz to a latent variable z learned from observed trajectory data. We refer
to “latent variable” for both cases, with the clear ontological difference understood. Depending on
application, Tz can be continuous or discontinuous in z. We strictly enforce the challenging constraint
that latent variables are never observed, in contrast to methods that use known values during training
(Yu et al., 2017), to ensure the framework applies to challenging cases without prior knowledge.

This formulation captures a diverse set of important problems. Latent space Z has physical meaning
in systems where Tz is a continuous function of physical parameters (e.g., friction and stiffness) with
unknown values. In contrast, a discrete set Z can induce qualitatively different dynamics, such as a
2D navigation task where z ∈ {0, 1} decides if the same action moves in either a cardinal direction
or its opposite (Killian et al., 2017). Such drastic impact of latent variables may arise when a single
drug is effective for some patients but causes serious side effects for others (Cockrell and An, 2018).

Training phase. Our training approach is fully compatible with RL for episodic environments. We
sample many instances, either via a simulator with controllable change of instances or using off-policy
batch data in which demarcation of instances—but not values of latent variables—is known, and
train for one or more episodes on each instance. While we focus on the case with known change of
instances, the rare case of unknown demarcation can be approached either by preprocessing steps
such as clustering trajectory data or using a dynamic variant of our algorithm (Appendix C).

Single test episode. In contrast to prior work that depend on the luxury of multiple experience
rollouts for adaptation during test time (Doshi-Velez and Konidaris, 2016; Killian et al., 2017; Finn
et al., 2017; Rakelly et al., 2019), we introduce the strict constraint that the trained model has access
to—and is evaluated on—only one episode of a new test instance. This reflects the need to perform
near-optimally as soon as possible in critical applications such as precision medicine, where an
episode for a new patient with new physiological dynamics is the entirety of hospitalization.

3 SINGLE EPISODE POLICY TRANSFER

We present Single Episode Policy Transfer (SEPT), a high-level algorithm for single episode transfer
between MDPs with different dynamics. The following sections discuss specific design choices in
SEPT, all of which are combined in synergy for near-optimal performance in a single test episode.

2

Published as a conference paper at ICLR 2020

3.1 POLICY TRANSFER THROUGH LATENT SPACE

Our best theories of natural and engineered systems involve physical constants and design parameters
that enter into dynamical models. This physicalist viewpoint motivates a partition for transfer learning
in families of MDPs: 1. learn a representation of latent variables with an inference model that rapidly
encodes a vector ẑ of discriminative features for a new instance; 2. train a universal policy π(a|s, z)
to perform near-optimally for dynamics corresponding to any latent variable in Z; 3. immediately
deploy both the inference model and universal policy on a given test episode. To build on the
generality of model-free RL, and for scalability to systems with complex dynamics, we do not
expend computational effort to learn a model of Tz(s′|s, a), in contrast to model-based approaches
(Killian et al., 2017; Yao et al., 2018). Instead, we leverage expressive variational inference models
to represent latent variables and provide uncertainty quantification.

In domains with ground truth hidden parameters, a latent variable encoding is the most succinct
representation of differences in dynamics between instances. As the encoding ẑ is held constant for
all episodes of an instance, a universal policy π(a|s, z) can either adapt to all instances when Z is
finite, or interpolate between instances when Tz is continuous in z (Schaul et al., 2015). Estimating
a discriminative encoding for a new instance enables immediate deployment of π(a|s, z) on the
single test episode, bypassing the need for further fine-tuning. This is critical for applications where
further training complex models on a test instance is not permitted due to safety concerns. In contrast,
methods that do not explicitly estimate a latent representation of varied dynamics must use precious
experiences in the test episode to tune the trained policy (Finn et al., 2017).

In the training phase, we generate an optimized1 dataset D := {τ i}Ni=1 of short trajectories, where
each τ i := (si1, a

i
1, . . . , s

i
Tp
, aiTp) is a sequence of early state-action pairs at the start of episodes of

instance Ti ∈ T (e.g. Tp = 5). We train a variational auto-encoder, comprising an approximate
posterior inference model qφ(z|τ) that produces a latent encoding ẑ from τ and a parameterized
generative model pψ(τ |z). The dimension chosen for ẑ may differ from the exact true dimension
when it exists but is unknown; domain knowledge can aid the choice of dimensionality reduction.
Because dynamics of a large variety of natural systems are determined by independent parameters
(e.g., coefficient of contact friction and Reynolds number can vary independently), we consider a
disentangled latent representation where latent units capture the effects of independent generative
parameters. To this end, we bring β-VAE (Higgins et al., 2017) into the context of families of
dynamical systems, choosing an isotropic unit Gaussian as the prior and imposing the constraint
DKL(qφ(z|τ i)‖p(z)) < ε. The β-VAE is trained by maximizing the variational lower bound
L(ψ, φ; τ i) for each τ i across D:

max
ψ,φ

log pψ(τ i) ≥ L(ψ, φ; τ i) := −βDKL(qφ(z|τ i)‖p(z)) + Eqφ(z|τ i)
[
log pψ(τ i|z)

]
(1)

This subsumes the VAE (Kingma and Welling, 2014) as a special case (β = 1), and we refer to both
as VAE in the following. Since latent variables only serve to differentiate among trajectories that
arise from different transition functions, the meaning of latent variables is not affected by isometries
and hence the value of ẑ by itself need not have any simple relation to a physically meaningful z even
when one exists. Only the partition of latent space is important for training a universal policy.

Earlier methods for a family of similar dynamics relied on Bayesian neural network (BNN) approxi-
mations of the entire transition function st+1 ∼ T̂ (BNN)

z (st, at), which was either used to perform
computationally expensive fictional rollouts during test time (Killian et al., 2017) or used indirectly
to further optimize a posterior over z (Yao et al., 2018). Our use of variational inference is more
economical: the encoder qφ(z|τ) can be used immediately to infer latent variables during test, while
the decoder pψ(τ |z) plays a crucial role for optimized probing in our algorithm (see Section 3.3).

In systems with ground truth hidden parameters, we desire two additional properties. The encoder
should produce low-variance encodings, which we implement by minimizing the entropy of qφ(z|τ):

min
φ
H(qφ(z|τ)) := −

∫
z

qφ(z|τ) log qφ(z|τ)dz =
D

2
log(2π) +

1

2

D∑
d=1

(
1 + log σ2

d

)
(2)

under a diagonal Gaussian parameterization, where σ2
d = Var(qφ(z|τ)) and dim(z) = D. We add

−H(qφ(z|τ)) as a regularizer to equation 1. Second, we must capture the impact of z on higher-
1In the sense of machine teaching, as explained fully in Section 3.3

3

Published as a conference paper at ICLR 2020

order dynamics. While previous work neglects the order of transitions (st, at, st+1) in a trajectory
(Rakelly et al., 2019), we note that a single transition may be compatible with multiple instances
whose differences manifest only at higher orders. In general, partitioning the latent space requires
taking the ordering of a temporally-extended trajectory into account. Therefore, we parameterize
our encoder qφ(z|τ) using a bidirectional LSTM—as both temporal directions of (st, at) pairs are
informative—and we use an LSTM decoder pψ(τ |z) (architecture in Appendix E.2). In contrast to
embedding trajectories from a single MDP for hierarchical learning (Co-Reyes et al., 2018), our
purpose is to encode trajectories from different instances of transition dynamics for optimal control.

3.2 TRANSFER OF A UNIVERSAL POLICY

We train a single universal policy π(a|s, z) and deploy the same policy during test (without further
optimization), for two reasons: robustness against imperfection in latent variable representation and
significant improvement in scalability. Earlier methods trained multiple optimal policies {π∗i (a|s)}Ni=1

on training instances with a set {zi}Ni=1 of hidden parameters, then employed either behavioral cloning
(Yao et al., 2018) or off-policy Q-learning (Arnekvist et al., 2019) to train a final policy π(a|s, z)
using a dataset {(st, ẑi; at ∼ π∗i (a|st))}. However, this supervised training scheme may not be
robust (Yu et al., 2017): if π(a|s, z) were trained only using instance-specific optimal state-action
pairs generated by π∗i (a|s) and posterior samples of ẑ from an optimal inference model, it may
not generalize well when faced with states and encodings that were not present during training.
Moreover, it is computationally infeasible to train a collection {π∗i }Ni=1—which is thrown away
during test—when faced with a large set of training instances from a continuous set Z . Instead, we
interleave training of the VAE and a single policy π(a|s, z), benefiting from considerable computation
savings at training time, and higher robustness due to larger effective sample count.

3.3 OPTIMIZED PROBING FOR ACCELERATED LATENT VARIABLE INFERENCE

To execute near-optimal control within a single test episode, we first rapidly compute ẑ using a short
trajectory of initial experience. This is loosely analogous to the use of preliminary medical treatment
to define subsequent prescriptions that better match a patient’s unique physiological response. Our
goal of rapid inference motivates two algorithmic design choices to optimize this initial phase. First,
the trajectory τ used for inference by qφ(z|τ) must be optimized, in the sense of machine teaching
(Zhu et al., 2018), as certain trajectories are more suitable than others for inferring latent variables that
underlie system dynamics. If specific degrees of freedom are impacted the most by latent variables,
an agent should probe exactly those dimensions to produce an informative trajectory for inference.
Conversely, methods that deploy a single universal policy without an initial probing phase (Yao et al.,
2018) can fail in adversarial cases, such as when the initial placeholder ẑ used in πθ(a|s, ·) at the
start of an instance causes failure to exercise dimensions of dynamics that are necessary for inference.
Second, the VAE must be specifically trained on a dataset D of short trajectories consisting of initial
steps of each training episode. We cannot expend a long trajectory for input to the encoder during test,
to ensure enough remaining steps for control. Hence, single episode transfer motivates the machine
teaching problem of learning to distinguish among dynamics: our algorithm must have learned both
to generate and to use a short initial trajectory to estimate a representation of dynamics for control.

Our key idea of optimized probing for accelerated latent variable inference is to train a dedicated
probe policy πϕ(a|s) to generate a dataset D of short trajectories at the beginning of all training
episodes, such that the VAE’s performance on D is optimized2. Orthogonal to training a meta-policy
for faster exploration during standard RL training (Xu et al., 2018), our probe and VAE are trained
for the purpose of performing well on a new test MDP. For ease of exposition, we discuss the case
with access to a simulator, but our method easily allows use of off-policy batch data. We start each
training episode using πϕ for a probe phase lasting Tp steps, record the probe trajectory τp into
D, train the VAE using minibatches from D, then use τp with the encoder to generate ẑ for use
by πθ(a|s, ẑ) to complete the remainder of the episode (Algorithm 1). At test time, SEPT only
requires lines 5, 8, and 9 in Algorithm 1 (training step in 9 removed; see Algorithm 2). The reward
function for πϕ is defined as the VAE objective, approximated by the variational lower bound (1):
Rp(τ) := L(ψ, φ; τ) ≤ log pψ(τ). This feedback loop between the probe and VAE directly trains the

2In general, D is not related to the replay buffer commonly used in off-policy RL algorithms.

4

Published as a conference paper at ICLR 2020

Algorithm 1 Single Episode Policy Transfer: training phase
1: procedure SEPT-TRAIN
2: Initialize encoder φ, decoder ψ, probe policy ϕ, control policy θ, and trajectory buffer D
3: for each instance Tz with transition function sampled from T do
4: for each episode on instance Tz do
5: Execute πϕ for Tp steps and store trajectory τp into D
6: Use variational lower bound (1) as the reward to train πϕ by descending gradient (3)
7: Train VAE using minibatches from D for gradient ascent on (1) and descent on (2)
8: Estimate ẑ from τp using encoder qφ(z|τ)
9: Execute πθ(a|s, z) with ẑ for remaining time steps and train it with suitable RL algorithm

10: end for
11: end for
12: end procedure

probe to help the VAE’s inference of latent variables that distinguish different dynamics (Figure 1).
We provide detailed justification as follows. First we state a result derived in Appendix A:

Proposition 1. Let pϕ(τ) denote the distribution of trajectories induced by πϕ. Then the gradient of
the entropy H(pϕ(τ)) is given by

∇ϕH(pϕ(τ)) = Epϕ(τ)
[
∇ϕ

Tp−1∑
i=0

log(πϕ(ai|si))(− log pϕ(τ))
]

(3)

Noting that dataset D follows distribution pϕ and that the VAE is exactly trained to maximize the log
probability ofD, we use L(ψ, φ; τ) as a tractable lowerbound on log pϕ(τ). Crucially, to generate op-
timal probe trajectories for the VAE, we take a minimum-entropy viewpoint and descend the gradient
(3). This is opposite of a maximum entropy viewpoint that encourages the policy to generate diverse
trajectories (Co-Reyes et al., 2018), which would minimize log pϕ(τ) and produce an adversarial
dataset for the VAE—hence, optimal probing is not equivalent to diverse exploration. The degenerate
case of πϕ learning to “stay still” for minimum entropy is precluded by any source of environmental
stochasticity: trajectories from different instances will still differ, so degenerate trajectories result
in low VAE performance. Finally we observe that equation 3 is the defining equation of a simple
policy gradient algorithm (Williams, 1992) for training πϕ, with log pϕ(τ) interpreted as the cumu-
lative reward of a trajectory generated by πϕ. This completes our justification for defining reward
Rp(τ) := L(ψ, φ; τ). We also show empirically in ablation experiments that this reward is more
effective than choices that encourage high perturbation of state dimensions or high entropy (Section 6).

𝜋𝜑 L.B.𝜏p
𝑧̂

Maximize

Use variational lower bound (L.B.) as reward to train 𝜋𝜑 via policy gradient

𝜋𝜃
Generate short

trajectory VAE

Use latent 𝑧̂ as input to 𝜋𝜃

Figure 1: πϕ learns to generate an optimal dataset for
the VAE, whose performance is the reward for πϕ. En-
coding ẑ by the VAE is given to control policy πθ.

The VAE objective function may not per-
fectly evaluate a probe trajectory generated
by πϕ because the objective value increases
due to VAE training regardless of πϕ. To
give a more stable reward signal to πϕ, we
can use a second VAE whose parameters
slowly track the main VAE according to
ψ′ ← αψ + (1− α)ψ′ for α ∈ [0, 1], and
similarly for φ′. While analogous to target
networks in DQN (Mnih et al., 2015), the
difference is that our second VAE is used
to compute the reward for πϕ.

4 RELATED WORK

Transfer learning in a family of MDPs with different dynamics manifests in various formulations
(Taylor and Stone, 2009). Analysis of ε-stationary MDPs and ε-MDPs provide theoretical grounding
by showing that an RL algorithm that learns an optimal policy in an MDP can also learn a near-optimal
policy for multiple transition functions (Kalmár et al., 1998; Szita et al., 2002).

5

Published as a conference paper at ICLR 2020

Imposing more structure, the hidden-parameter Markov decision process (HiP-MDP) formalism
posits a space of hidden parameters that determine transition dynamics, and implements transfer by
model-based policy training after inference of latent parameters (Doshi-Velez and Konidaris, 2016;
Konidaris and Doshi-Velez, 2014). Our work considers HiP-MDP as a widely applicable yet special
case of a general viewpoint, in which the existence of hidden parameters is not assumed but rather is
induced by a latent variable inference model. The key structural difference from POMDPs (Kaelbling
et al., 1998) is that given fixed latent values, each instance from the family is an MDP with no hidden
states; hence, unlike in POMDPs, tracking a history of observations provides no benefit. In contrast
to multi-task learning (Caruana, 1997), which uses the same tasks for training and test, and in contrast
to parameterized-skill learning (Da Silva et al., 2012), where an agent learns from a collection of
rewards with given task identities in one environment with fixed dynamics, our training and test
MDPs have different dynamics and identities of instances are not given.

Prior latent variable based methods for transfer in RL depend on a multitude of optimal policies
during training (Arnekvist et al., 2019), or learn a surrogate transition model for model predictive
control with real-time posterior updates during test (Perez et al., 2018). Our variational model-free
approach does not incur either of these high computational costs. We encode trajectories to infer
latent representation of differing dynamics, in contrast to state encodings in (Zhang et al., 2018).
Rather than formulating variational inference in the space of optimal value functions (Tirinzoni et al.,
2018), we implement transfer through variational inference in a latent space that underlies dynamics.
Previous work for transfer across dynamics with hidden parameters employ model-based RL with
Gaussian process and Bayesian neural network (BNN) models of the transition function (Doshi-Velez
and Konidaris, 2016; Killian et al., 2017), which require computationally expensive fictional rollouts
to train a policy from scratch during test time and poses difficulties for real-time test deployment.
DPT uses a fully-trained BNN to further optimize latent variable during a single test episode, but
faces scalability issues as it needs one optimal policy per training instance (Yao et al., 2018). In
contrast, our method does not need a transition function and can be deployed without optimization
during test. Methods for robust transfer either require access to multiple rounds from the test MDP
during training (Rajeswaran et al., 2017), or require the distribution over hidden variables to be
known or controllable (Paul et al., 2019). While meta-learning (Finn et al., 2017; Rusu et al., 2019;
Zintgraf et al., 2019; Rakelly et al., 2019) in principle can take one gradient step during a single
test episode, prior empirical evaluation were not made with this constraint enforced, and adaptation
during test is impossible in settings without dense rewards.

5 EXPERIMENTAL SETUP

We conducted experiments on three benchmark domains with diverse challenges to evaluate the
performance, speed of reward attainment, and computational time of SEPT versus five baselines in
the single test episode3. We evaluated four ablation and variants of SEPT to investigate the necessity
of all algorithmic design choices. For each method on each domain, we conducted 20 independent
training runs. For each trained model, we evaluate on M independent test instances, all starting with
the same model; adaptations during the single test episode, if done by any method, are not preserved
across the independent test instances. This means we evaluate on a total of 20M independent test
instances per method per domain. Hyperparameters were adjusted using a coarse coordinate search
on validation performance. We used DDQN with prioritized replay (Van Hasselt et al., 2016; Schaul
et al., 2016) as the base RL component of all methods for a fair evaluation of transfer performance;
other RL algorithms can be readily substituted.

Domains. We use the same continuous state discrete action HiP-MDPs proposed by Killian et al.
(2017) for benchmarking. Each isolated instance from each domain is solvable by RL, but it is
highly challenging, if not impossible, for naïve RL to perform optimally for all instances because
significantly different dynamics require different optimal policies. In 2D navigation, dynamics are
discontinuous in z ∈ {0, 1} as follows: location of barrier to goal region, flipped effect of actions (i.e.,
depending on z, the same action moves in either a cardinal direction or its opposite), and direction of
a nonlinear wind. In Acrobot (Sutton et al., 1998), the agent applies {+1, 0,−1} torques to swing a
two-link pendulum above a certain height. Dynamics are determined by a vector z = (m1,m2, l1, l2)
of masses and lengths, centered at 1.0. We use four unique instances in training and validation,

3Code for all experiments is available at https://github.com/011235813/SEPT.

6

https://github.com/011235813/SEPT

Published as a conference paper at ICLR 2020

SEPT BNN EPOptMAML Avg Oracle0

10

20

30

40

50

St
ep

s t
o

so
lv

e

(a) 2D navigation

SEPT BNN EPOptMAML Avg Oracle60

80

100

120

140

160

St
ep

s t
o

so
lv

e

(b) Acrobot

0 10 20 30 40 50
Step

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

re
wa

rd

1e3
SEPT
BNN
EPOpt-adv
MAML
Average
Oracle

(c) 2D navigation

0 25 50 75 100 125 150 175 200
Step

4

3

2

1

0

Cu
m

ul
at

iv
e

re
wa

rd

1e1
SEPT
BNN
EPOpt-adv
MAML
Average
Oracle

(d) Acrobot

0 200 400 600 800 1000
Step

0

1

2

3

4

5

Cu
m

ul
at

iv
e

re
wa

rd

1e6
SEPT
EPOpt-adv
MAML
Average
Oracle

(e) HIV

SEPT SEPT-NP DynaSEPT TotalVar MaxEnt0

10

20

30

40

St
ep

s t
o

so
lv

e

(f) 2D navigation

SEPT SEPT-NP TotalVar MaxEnt60

70

80

90

100

110

St
ep

s t
o

so
lv

e

(g) Acrobot

0 10 20 30 40 50
Step

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

re
wa

rd

1e3
SEPT
SEPT-NP
DynaSEPT
TotalVar
MaxEnt

(h) 2D navigation

0 25 50 75 100 125 150 175 200
Step

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Cu
m

ul
at

iv
e

re
wa

rd

1e1
SEPT
SEPT-NP
TotalVar
MaxEnt

(i) Acrobot

0 200 400 600 800 1000
Step

0

1

2

3

4

5

Cu
m

ul
at

iv
e

re
wa

rd

1e6
SEPT
SEPT-NP
DynaSEPT
TotalVar
MaxEnt

(j) HIV

Figure 2: (a-e): Comparison against baselines. (a-b): Number of steps to solve 2D navigation and
Acrobot in a single test episode; failure to solve is assigned a count of 50 in 2D nav and 200 in
Acrobot. (c-e): Cumulative reward versus test episode step. BNN requires long computation time and
showed low rewards on HIV, hence we report 3 seeds in Figure 4b. (f-j): Ablation results. DynaSEPT
is out of range in (g), see Figure 4a. Error bars show standard error of mean over all test instances
over 20 training runs per method.

constructed by sampling ∆z uniformly from {−0.3,−0.1, 0.1, 0.3} and adding it to all components
of z. During test, we sample ∆z from {−0.35,−0.2, 0.2, 0.35} to evaluate both interpolation and
extrapolation. In HIV, a patient’s state dynamics is modeled by differential equations with high
sensitivity to 12 hidden variables and separate steady-state regions of health, such that different
patients require unique treatment policies (Adams et al., 2004). Four actions determine binary
activation of two drugs. We have M = 10, 5, 5 for 2D navigation, Acrobot, and HIV, respectively.

Baselines. First, we evaluated two simple baselines that establish approximate bounds on test
performance of methods that train a single policy: as a lower bound, Avg trains a single policy π(a|s)
on all instances sampled during training and runs directly on test instances; as an upper bound in the
limit of perfect function approximation for methods that use latent variables as input, Oracle π(a|s, z)
receives the true hidden parameter z during both training and test. Next we adapted existing methods,
detailed in Appendix E.1, to single episode test evaluation: 1. we allow the model-based method
BNN (Killian et al., 2017) to fine-tune a pre-trained BNN and train a policy using BNN-generated
fictional episodes every 10 steps during the test episode; 2. we adapted the adversarial part of EPOpt
(Rajeswaran et al., 2017), which we term EPOpt-adv, by training a policy π(a|s) on instances with
the lowest 10-percentile performance; 3. we evaluate MAML as an archetype of meta-learning
methods that require dense rewards or multiple rollouts (Finn et al., 2017). We allow MAML to use a
trajectory of the same length as SEPT’s probe trajectory for one gradient step during test. We used
the same architecture for the RL module of all methods (Appendix E.2). To our knowledge, these
model-free baselines are evaluated on single-episode transfer for the first time in this work.

Ablations. To investigate the benefit of our optimized probing method for accelerated in-
ference, we designed an ablation called SEPT-NP, in which trajectories generated by the con-
trol policy are used by the encoder for inference and stored into D to train the VAE. Second,
we investigated an alternative reward function for the probe, labeled TotalVar and defined as
R(τ) := 1/Tp

∑Tp−1
t=1

∑dim(S)
i=1 |st+1,i − st,i| for probe trajectory τ . In contrast to the minimum

entropy viewpoint in Section 3.3, this reward encourages generation of trajectories that maximize
total variation across all state space dimensions. Third, we tested the maximum entropy viewpoint on
probe trajectory generation, labeled MaxEnt, by giving negative lowerbound as the probe reward:
Rp(τ) := −L(ψ, φ; τ). Last, we tested whether DynaSEPT, an extension that dynamically decides
to probe or execute control (Appendix C), has any benefit for stationary dynamics.

6 RESULTS AND DISCUSSION

2D navigation and Acrobot are solved upon attaining terminal reward of 1000 and 10, respectively.
SEPT outperforms all baselines in 2D navigation and takes significantly fewer number of steps to
solve (Figures 2a and 2c). While a single instance of 2D navigation is easy for RL, handling multiple

7

Published as a conference paper at ICLR 2020

2 4 6 8
Length of probe phase

0

200

400

600

800

1000

Cu
m

ul
at

iv
e

re
wa

rd

(a) 2D navigation

2 5 8 11
Length of probe phase

25
20
15
10

5
0

Cu
m

ul
at

iv
e

re
wa

rd

(b) Acrobot

2 5 8 11
Length of probe phase

4.0

4.1

4.2

4.3

4.4

4.5

Cu
m

ul
at

iv
e

re
wa

rd

1e6

(c) HIV

2 4 6 8
Latent dimension

0

200

400

600

800

Cu
m

ul
at

iv
e

re
wa

rd

(d) 2D navigation

2 4 6 8
Latent dimension

35
30
25
20
15
10

5
0

Cu
m

ul
at

iv
e

re
wa

rd

(e) Acrobot

6 8 10 12
Latent dimension

4.0

4.1

4.2

4.3

4.4

4.5

Cu
m

ul
at

iv
e

re
wa

rd

1e6

(f) HIV

Figure 3: Cumulative reward on test episode for different Tp (a-c) and different dim(z) (d-f). 8M
independent test instances for each hyperparameter setting.

instances is highly non-trivial. EPOpt-adv and Avg almost never solve the test instance—we set “steps
to solve” to 50 for test episodes that were unsolved—because interpolating between instance-specific
optimal policies in policy parameter space is not meaningful for any task instance. MAML did not
perform well despite having the advantage of being provided with rewards at test time, unlike SEPT.
The gradient adaptation step was likely ineffective because the rewards are sparse and delayed. BNN
requires significantly more steps than SEPT, and it uses four orders of magnitude longer computation
time (Table 4), due to training a policy from scratch during the test episode. Training times of all
algorithms except BNN are in the same order of magnitude (Table 3).

In Acrobot and HIV, where dynamics are continuous in latent variables, interpolation within policy
space can produce meaningful policies, so all baselines are feasible in principle. SEPT is statistically
significantly faster than BNN and Avg, is within error bars of MAML, while EPOpt-adv outperforms
the rest by a small margin (Figures 2b and 2d). Figure 5 shows that SEPT is competitive in terms
of percentage of solved instances. As the true values of latent variables for Acrobot test instances
were interpolated and extrapolated from the training values, this shows that SEPT is robust to out-of-
training dynamics. BNN requires more steps due to simultaneously learning and executing control
during the test episode. On HIV, SEPT reaches significantly higher cumulative rewards than all
methods. Oracle is within the margin of error of Avg. This may be due to insufficient examples of the
high-dimensional ground truth hidden parameters. Due to its long computational time, we run three
seeds for BNN on HIV, shown in Figure 4b, and find it was unable to adapt within one test episode.

Comparing directly to reported results in DPT (Yao et al., 2018), SEPT solves 2D Navigation at least
33% (>10 steps) faster, and the cumulative reward of SEPT (mean and standard error) are above
DPT’s mean cumulative reward in Acrobot (Table 2). Together, these results show that methods
that explicitly distinguish different dynamics (e.g., SEPT and BNN) can significantly outperform
methods that implicitly interpolate in policy parameter space (e.g., Avg and EPOpt-adv) in settings
where z has large discontinuous effect on dynamics, such as 2D navigation. When dynamics are
continuous in latent variables (e.g., Acrobot and HIV), interpolation-based methods fare better than
BNN, which faces the difficulty of learning a model of the entire family of dynamics. SEPT worked
the best in the first case and is robust to the second case because it explicitly distinguishes dynamics
and does not require learning a full transition model. Moreover, SEPT does not require rewards at
test time allowing it be useful on a broader class of problems than optimization-based meta-learning
approaches like MAML. Appendix D contains training curves.

Ablation results. Comparing to SEPT-NP, Figures 2f, 2g and 2j show that the probe phase is
necessary to solve 2D navigation quickly, while giving similar performance in Acrobot and significant
improvement in HIV. SEPT significantly outperformed TotalVar in 2D navigation and HIV, while
TotalVar gives slight improvement in Acrobot, showing that directly using VAE performance as the
reward for probing in certain environments can be more effective than a reward that deliberately
encourages perturbation of state dimensions. The clear advantage of SEPT over MaxEnt in 2D
navigation and HIV supports our hypothesis in Section 3.3 that the variational lowerbound, rather
than its negation in the maximum entropy viewpoint, should be used as the probe reward, while
performance was not significantly differentiated in Acrobot. SEPT outperforms DynaSEPT on all
problems where dynamics are stationary during each instance. On the other hand, DynaSEPT is the
better choice in a non-stationary variant of 2D navigation where the dynamics “switch” abruptly at
t = 10 (Figure 4c).

Robustness. Figure 3 shows that SEPT is robust to varying the probe length Tp and dim(z). Even
with certain suboptimal probe length and dim(z), it can outperform all baselines on 2D navigation in
both steps-to-solve and final reward; it is within error bars of all baselines on Acrobot based on final

8

Published as a conference paper at ICLR 2020

cumulative reward; and final cumulative reward exceeds that of baselines in HIV. Increasing Tp means
foregoing valuable steps of the control policy and increasing difficulty of trajectory reconstruction for
the VAE in high dimensional state spaces; Tp is a hyper-parameter that should be validated for each
application. Appendix D.5 shows the effect of β on latent variable encodings.

7 CONCLUSION AND FUTURE DIRECTIONS

We propose a general algorithm for single episode transfer among MDPs with different stationary
dynamics, which is a challenging goal with real-world significance that deserves increased effort
from the transfer learning and RL community. Our method, Single Episode Policy Transfer (SEPT),
trains a probe policy and an inference model to discover a latent representation of dynamics using
very few initial steps in a single test episode, such that a universal policy can execute optimal control
without access to rewards at test time. Strong performance versus baselines in domains involving
both continuous and discontinuous dependence of dynamics on latent variables show the promise of
SEPT for problems where different dynamics can be distinguished via a short probing phase.

The dedicated probing phase may be improved by other objectives, in addition to performance of the
inference model, to mitigate the risk and opportunity cost of probing. An open challenge is single
episode transfer in domains where differences in dynamics of different instances are not detectable
early during an episode, or where latent variables are fixed but dynamics are nonstationary. Further
research on dynamic probing and control, as sketched in DynaSEPT, is one path toward addressing
this challenge. Our work is one step along a broader avenue of research on general transfer learning
in RL equipped with the realistic constraint of a single episode for adaptation and evaluation.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National
Security, LLC. LLNL-JRNL-791194.

REFERENCES

Adams, B. M., Banks, H. T., Kwon, H.-D., and Tran, H. T. (2004). Dynamic multidrug therapies
for hiv: Optimal and sti control approaches. Mathematical biosciences and engineering, 1(2),
223–241.

Arnekvist, I., Kragic, D., and Stork, J. A. (2019). Vpe: Variational policy embedding for transfer
reinforcement learning. In 2019 International Conference on Robotics and Automation (ICRA),
pages 36–42. IEEE.

Bordbar, A., McCloskey, D., Zielinski, D. C., Sonnenschein, N., Jamshidi, N., and Palsson, B. O.
(2015). Personalized whole-cell kinetic models of metabolism for discovery in genomics and
pharmacodynamics. Cell systems, 1(4), 283–292.

Caruana, R. (1997). Multitask learning. Machine learning, 28(1), 41–75.

Co-Reyes, J. D., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., and Levine, S. (2018). Self-consistent
trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings. In
Proceedings of the 35th International Conference on Machine Learning, pages 1009–1018.

Cockrell, R. C. and An, G. (2018). Examining the controllability of sepsis using genetic algorithms
on an agent-based model of systemic inflammation. PLOS Computational Biology, 14(2), 1–17.

Da Silva, B. C., Konidaris, G., and Barto, A. G. (2012). Learning parameterized skills. In Proceedings
of the 29th International Coference on International Conference on Machine Learning, pages
1443–1450. Omnipress.

Doshi-Velez, F. and Konidaris, G. (2016). Hidden parameter markov decision processes: A semipara-
metric regression approach for discovering latent task parametrizations. In IJCAI: proceedings of
the conference, volume 2016, page 1432. NIH Public Access.

9

Published as a conference paper at ICLR 2020

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1126–1135.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner,
A. (2017). beta-vae: Learning basic visual concepts with a constrained variational framework. In
International Conference on Learning Representations, volume 3.

Hodson, R. (2016). Precision medicine. Nature, 537(7619), S49.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2), 99–134.

Kalmár, Z., Szepesvári, C., and Lőrincz, A. (1998). Module-based reinforcement learning: Experi-
ments with a real robot. Autonomous Robots, 5(3-4), 273–295.

Kastrin, A., Ferk, P., and Leskošek, B. (2018). Predicting potential drug-drug interactions on
topological and semantic similarity features using statistical learning. PloS one, 13(5), e0196865.

Killian, T. W., Daulton, S., Konidaris, G., and Doshi-Velez, F. (2017). Robust and efficient transfer
learning with hidden parameter markov decision processes. In Advances in Neural Information
Processing Systems, pages 6250–6261.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In International Conference
on Learning Representations.

Konidaris, G. and Doshi-Velez, F. (2014). Hidden parameter markov decision processes: an emerging
paradigm for modeling families of related tasks. In the AAAI Fall Symposium on Knowledge, Skill,
and Behavior Transfer in Autonomous Robots.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540), 529.

Paul, S., Osborne, M. A., and Whiteson, S. (2019). Fingerprint policy optimisation for robust
reinforcement learning. In International Conference on Machine Learning, pages 5082–5091.

Perez, C. F., Such, F. P., and Karaletsos, T. (2018). Efficient transfer learning and online adaptation
with latent variable models for continuous control. arXiv preprint arXiv:1812.03399.

Petersen, B. K., Yang, J., Grathwohl, W. S., Cockrell, C., Santiago, C., An, G., and Faissol, D. M.
(2019). Deep reinforcement learning and simulation as a path toward precision medicine. Journal
of Computational Biology.

Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine, S. (2017). Epopt: Learning robust neural
network policies using model ensembles. In International Conference on Learning Representations.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D. (2019). Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In International Conference on Machine
Learning, pages 5331–5340.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., and Hadsell, R.
(2019). Meta-learning with latent embedding optimization. In International Conference Learning
Representations (ICLR).

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function approximators. In
International Conference on Machine Learning, pages 1312–1320.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience replay. In
International Conference Learning Representations (ICLR), volume 2016.

Sutton, R. S., Barto, A. G., et al. (1998). Reinforcement learning: An introduction. MIT press.

Szita, I., Takács, B., and Lörincz, A. (2002). ε-mdps: Learning in varying environments. Journal of
Machine Learning Research, 3(Aug), 145–174.

10

Published as a conference paper at ICLR 2020

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul), 1633–1685.

Tirinzoni, A., Sanchez, R. R., and Restelli, M. (2018). Transfer of value functions via variational
methods. In Advances in Neural Information Processing Systems, pages 6179–6189.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning with double q-learning.
In Thirtieth AAAI Conference on Artificial Intelligence.

West, J., You, L., Brown, J., Newton, P. K., and Anderson, A. R. A. (2018). Towards multi-drug
adaptive therapy. bioRxiv.

Whirl-Carrillo, M., McDonagh, E. M., Hebert, J., Gong, L., Sangkuhl, K., Thorn, C., Altman, R. B.,
and Klein, T. E. (2012). Pharmacogenomics knowledge for personalized medicine. Clinical
Pharmacology & Therapeutics, 92(4), 414–417.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4), 229–256.

Xu, T., Liu, Q., Zhao, L., Xu, W., and Peng, J. (2018). Learning to explore with meta-policy gradient.
In Proceedings of the 35th International Conference on Machine Learning, pages 5463–5472.

Yao, J., Killian, T., Konidaris, G., and Doshi-Velez, F. (2018). Direct policy transfer via hidden
parameter markov decision processes. In LLARLA Workshop, FAIM, volume 2018.

Yu, W., Tan, J., Liu, C. K., and Turk, G. (2017). Preparing for the unknown: Learning a universal
policy with online system identification. In Proceedings of Robotics: Science and Systems,
Cambridge, Massachusetts.

Zhang, A., Satija, H., and Pineau, J. (2018). Decoupling dynamics and reward for transfer learning.
arXiv preprint arXiv:1804.10689.

Zhang, J., Cunningham, J. J., Brown, J. S., and Gatenby, R. A. (2017). Integrating evolutionary
dynamics into treatment of metastatic castrate-resistant prostate cancer. Nature communications,
8(1), 1816.

Zhu, X., Singla, A., Zilles, S., and Rafferty, A. N. (2018). An overview of machine teaching. arXiv
preprint arXiv:1801.05927.

Zintgraf, L. M., Shiarlis, K., Kurin, V., Hofmann, K., and Whiteson, S. (2019). Fast context adaptation
via meta-learning. In International Conference on Machine Learning (ICML), volume 2019.

11

Published as a conference paper at ICLR 2020

A DERIVATIONS

Proposition 1. Let pϕ(τ) denote the distribution of trajectories induced by πϕ. Then the gradient of
the entropy H(pϕ(τ)) is given by

∇ϕH(pϕ(τ)) = Epϕ(τ)
[
∇ϕ

Tp−1∑
i=0

log(πϕ(ai|si))(− log pϕ(τ))
]

(3)

Proof. Assuming regularity, the gradient of the entropy is

∇ϕH(pϕ(τ)) = −∇ϕ
∫
pϕ(τ) log pϕ(τ)dτ

= −
∫
∇ϕpϕ(τ)dτ −

∫ (
∇ϕpϕ(τ)

)
log pϕ(τ)dτ

= −∇ϕ
∫
pϕ(τ)dτ −

∫
pϕ(τ)

(
∇ϕ log pϕ(τ)

)
log pϕ(τ)dτ

= Epϕ(τ)
[(
∇ϕ log pϕ(τ)

)(
− log pϕ(τ)

)]
For trajectory τ := (s0, a0, s1, . . . , st) generated by the probe policy πϕ:

pϕ(τ) = p(s0)

t−1∏
i=0

p(si+1|si, ai)πϕ(ai|si)

Then

∇ϕ log pϕ(τ) = ∇ϕ
(

log p(s0) +

t−1∑
i=0

log p(si+1|si, ai) +

t−1∑
i=0

log πϕ(ai|si)
)

Since p(s0) and p(si+1|si, ai) do not depend on ϕ, we get

∇ϕ log pϕ(τ) = ∇ϕ
t−1∑
i=0

log πϕ(ai|si)

Substituting this into the gradient of the entropy gives equation 3.

B TESTING PHASE OF SEPT

Algorithm 2 Single Episode Policy Transfer: testing phase

1: procedure SEPT-TEST
2: Restore trained decoder ψ, encoder φ, probe policy ϕ, and control policy θ
3: Run probe policy πϕ for Tp time steps and record trajectory τp
4: Use τp with decoder qφ(z|τ) to estimate ẑ
5: Use ẑ with control policy πθ(a|s, z) for the remaining duration of the test episode
6: end procedure

C DYNASEPT

In our problem formulation, it is not necessary to compute ẑ at every step of the test episode, as each
instance is a stationary MDP and change of instances is known. However, removing the common
assumption of stationarity leads to time-dependent transition functions Tz(s′|s, a), which introduces
problematic cases. For example, a length Tp probing phase would fail if z leads to a switch in
dynamics at time t > Tp, such as when poorly understood drug-drug interactions lead to abrupt
changes in dynamics during co-medication therapies (Kastrin et al., 2018). Here we describe an
alternative general algorithm for non-stationary dynamics, which we call DynaSEPT. We train a

12

Published as a conference paper at ICLR 2020

single policy πθ(a|s, z, η) that dynamically decides whether to probe for better inference or act to
maximize the MDP reward Renv, based on a scalar-valued function η : R→ [0, 1] representing the
degree of uncertainty in posterior inference, which is updated at every time step. The total reward
is Rtot(τ) := ηRp(τ) + (1 − η)Renv(τf), where τ is a short sliding-window trajectory of length
Tp, and τf is the final state of τ . The history-dependent term Rp(τ) is equivalent to a delayed
reward given for executing a sequence of probe actions. Following the same reasoning for SEPT, one
choice for Rp(τ) is L(φ, ψ; τ). Assuming the encoder outputs variance σ2

i of each latent dimension,
one choice for η is a normalized standard deviation over all dimensions of the latent variable, i.e.
η := 1

D

∑D
i=1 σi(qφ)/σi,max(qφ) , where σi,max is a running max of σi.

Despite its novelty, we consider DynaSEPT only for rare nonstationary dynamics and merely as a
baseline in the predominant case of stationary dynamics, where SEPT is our primary contribution.
DynaSEPT does not have any clear advantage over SEPT when each instance Tz is a stationary MDP.
DynaSEPT requires η to start at 1.0, representing complete lack of knowledge about latent variables,
and it still requires the choice of hyperparameter Tp. Only after Tp steps can it use the uncertainty
of qφ(z|τ) to adapt η and continue to generate the sliding window trajectory to improve ẑ. By this
time, SEPT has already generated an optimized sequence using πϕ for the encoder to estimate ẑ. If a
trajectory of length Tp is sufficient for computing a good estimate of latent variables, then SEPT is
expected to outperform DynaSEPT.

SEPT SEPT-NP DynaSEPT TotalVar MaxEnt60
80

100
120
140
160
180
200

St
ep

s t
o

so
lv

e

(a) Acrobot

0 25 50 75 100 125 150 175 200
Step

0
1
2
3
4
5
6
7
8

Cu
m

ul
at

iv
e

re
wa

rd

1e5

SEPT
BNN
EPOpt-adv
MAML
Average
Oracle

(b) HIV

0 10 20 30 40 50
Step

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

re
wa

rd

1e3

SEPT
DynaSEPT

(c) 2D switch

Figure 4: (a) Ablations on Acrobot, including DynaSEPT with 3 seeds; (b) BNN and MAML attained
orders of magnitude lower rewards than other baselines (3 seeds); (c) DynaSEPT performs well on
nonstationary dynamics in 2D navigation.

D SUPPLEMENTARY EXPERIMENTAL RESULTS

D.1 2D AND ACROBOT

2D navigation and Acrobot have a definition of “solved”. Table 1 reports the number of steps in a test
episode required to solve the MDP. Average and standard deviation were computed across all test
instances and across all independently trained models. If an episode was not solved, the maximum
allowed number of steps was used (50 for 2D navigation and 200 for Acrobot). Table 2 shows the
mean and standard error of the cumulative reward over test episodes on Acrobot. The reported mean
cumulative value for DPT in Acrobot is -27.7 (Yao et al., 2018) .

Table 1: Steps to solve 2D navigation and Acrobot

2D navigation Acrobot

Average 49±0.5 114±4.2
Oracle 12±0.3 88±3.6
BNN 34±0.8 169±4.0
EPOpt-adv 49±0.3 91±3.8
MAML 49±0.4 99±4.6
SEPT 20±0.9 100±4.4

Table 2: Error bars on Acrobot

Acrobot

Average -22.2±2.3
Oracle -17.1±2.2
BNN -50.6±4.7
EPOpt-adv -17.5±2.2
MAML -20.1±2.6
SEPT -23.1±3.1

13

Published as a conference paper at ICLR 2020

D.2 TIMING COMPARISON

Table 3: Total training times in seconds on all experiment domains

2D navigation Acrobot HIV

Average 1.3e3±277 1.0e3±85 1.4e3±47
Oracle 0.6e3±163 1.1e3±129 1.5e3±47
BNN 2.9e3±244 9.0e4±3.0e3 4.3e4±313
EPOpt-adv 1.1e3±44 1.1e3±1.0 1.9e3±33
MAML 0.9e3±116 1.1e3±96 1.3e3±6.0
SEPT 1.9e3±70 2.3e3±1e3 2.8e3±11

Table 4: Test episode time in seconds on all experiment domains

2D navigation Acrobot HIV

Average 0.04±0.04 0.09±0.04 0.42±0.01
Oracle 0.02±0.04 0.09±0.04 0.45±0.02
BNN 2.6e3±957 2.8e3±968 1.4e3±8.8
EPOpt-adv 0.04±0.04 0.10±0.06 0.45±0.03
MAML 0.05±0.05 0.10±0.07 0.48±0.01
SEPT 0.04±0.07 0.12±0.10 0.60±0.02

D.3 PERCENT OF SOLVED EPISODES

0 10 20 30 40 50
Step

0

20

40

60

80

100

Pe
rc

en
t s

ol
ve

d

SEPT
BNN
EPOpt
MAML
Avg
Oracle

(a) 2D navigation

0 25 50 75 100 125 150 175 200
Step

0

20

40

60

80

100

Pe
rc

en
t s

ol
ve

d

SEPT
BNN
EPOpt-adv
MAML
Average
Oracle

(b) Acrobot

Figure 5: Percent of solved test instances as a function of time steps during the test episode. Percentage
is computed among 200 test instances for (a) 2D navigation and (b) 100 test instances for Acrobot.

2D navigation and Acrobot are considered solved upon reaching a terminal reward of 1000 and 10,
respectively. Figure Figure 5 shows the percentage of all test episodes that are solved as a function
of time steps in the test episode. Percentage is measured from a total of 200 test episodes for 2D
navigation and 100 test episodes for Acrobot.

14

Published as a conference paper at ICLR 2020

D.4 TRAINING CURVES

0.0 0.2 0.4 0.6 0.8 1.0
Episode 1e4

400
200

0
200
400
600
800

1000
1200

Av
er

ag
e

re
tu

rn

SEPT
EPOpt-adv
MAML
Average
Oracle

(a) 2D navigation

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Episode 1e3

250

200

150

100

50

Av
er

ag
e

re
tu

rn

SEPT
EPOpt-adv
MAML
Average
Oracle

(b) Acrobot

0.0 0.5 1.0 1.5 2.0 2.5
Episode 1e3

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Av
er

ag
e

re
tu

rn

1e5

SEPT
EPOpt-adv
MAML
Average
Oracle

(c) HIV

Figure 6: Average episodic return over training episodes. Only SEPT and Oracle converged in 2D
navigation. All methods converged in Acrobot. All methods except MAML converged in HIV. BNN
is not shown as the implementation (Killian et al., 2017) does not record training progress.

Figure 6 shows training curves on all domains by all methods. None of the baselines, except for
Oracle, converge in 2D navigation, because it is meaningless for Avg and EPOpt-adv to interpolate
between optimal policies for each instance, and MAML cannot adapt due to lack of informative
rewards for almost the entire test episode. Hence these baselines cannot work for a new unknown test
episode, even in principle. We allowed the same number of training episodes for HIV as in Killian
et al. (2017), and all baselines except MAML show learning progress.

D.5 LATENT REPRESENTATION OF DYNAMICS

1.0 1.5

2.2

2.4

2.6

2.8

3.0
=1

0.0 2.5

1.0

0.5

0.0

0.5

=5

0.0 2.5

2

1

0

1

2

=10

2.5 0.0 2.5

2

1

0

1

2

=15

2.5 0.0 2.5

2
1
0
1
2
3

=20

0.0 2.5

2

1

0

1

2

=50

2.5 0.0 2.5

2

1

0

1

2

=100

2.5 0.0 2.5

2

1

0

1

2

=500

Figure 7: Two-dimensional encodings generated for four instances of Acrobot (represented by four
ground-truth colors), for different values of β. We chose β = 1 for Acrobot.

There is a tradeoff between reconstruction and disentanglement as β increases (Higgins et al., 2017).
Increasing β encourages greater similarity between the posterior and an isotropic Gaussian. Figure 7
gives evidence that this comes at a cost of lower quality of separation in latent space.

15

Published as a conference paper at ICLR 2020

D.6 PROBE REWARD

0 2000 4000 6000 8000 10000
Episode

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ob

e
re

wa
rd

1e1

Figure 8: Probe policy reward curve in one training run in 2D navigation

E EXPERIMENTAL DETAILS

For 2D navigation, Acrobot, and HIV, total number of training episodes allowed for all methods are
10k, 4k, and 2.5k, respectively. We switch instances once every 10, 8 and 5 episodes, respectively.
There are 2, 8 and 5 unique training instances, and 2, 5, and 5 validation instances, respectively. For
each independent training run, we tested on 10, 5, and 5 test instances, respectively.

E.1 ALGORITHM IMPLEMENTATION DETAILS

The simple baselines Average and Oracle can be immediately deployed in a single test episode after
training. However, the other methods for transfer learning require modification to work in the setting
of single episode test, as they were not designed specifically for this highly constrained setting. We
detail the necessary modifications below. We also describe the ablation SEPT-NP in more detail.

BNN. In Killian et al. (2017), a pre-trained BNN model was fine-tuned using the first test episode
and then used to generate fictional episodes for training a policy from scratch. More episodes on
the same test instance were allowed to help improve model accuracy of the BNN. In the single test
episode setting, all fine-tuning and policy training must be conducted within the first test episode. We
fine-tune the pre-trained BNN every 10 steps and allow the same total number of fictional episodes as
reported in (Killian et al., 2017) for policy training. We measured the cumulative reward attained by
the policy—while it is undergoing training—during the single real test episode.

EPOpt. EPOpt trains on the lowest ε-percentile rollouts from instances sampled from a source distri-
bution, then adapts the source distribution using observations from the target instance (Rajeswaran
et al., 2017). Since we do not allow observation from the test instance, we only implemented the
adversarial part of EPOpt. To run EPOpt with off-policy DDQN, we generated 100 rollouts per
iteration and stored the lowest 10-percentile into the replay buffer, then executed the same number of
minibatch training steps as the number that a regular DDQN would have done during rollouts.

MAML. While MAML uses many complete rollouts per gradient step (Finn et al., 2017), the single
episode test constraint mandates that it can only use a partial episode for adaptation during test, and
hence the same must be done during meta-training. For both training and test, we allow MAML to
take one gradient step for adaptation using a trajectory of the same length as the probe trajectory of
SEPT, starting from the initial state of the episode. We implemented a first-order approximation that
computes the meta-gradient at the post-update parameters but omits second derivatives. This was
reported to have nearly equal performance as the full version, due to the use of ReLU activations.

SEPT-NP. πθ(a|s, z) begins with a zero-vector for z at the start of training. When it has produced
a trajectory τp of length Tp, we store τp into D for training the VAE, and use τp with the VAE to
estimate z for the episode. Later training episodes begin with the rolling mean of all z estimated so
far. For test, we give the final rolling mean of z at the end of training as initial input to πθ(a|s, z).

E.2 ARCHITECTURE

Encoder. For all experiments, the encoder qφ(z|τ) is a bidirectional LSTM with 300 hidden units
and tanh activation. Outputs are mean-pooled over time, then fully-connected to two linear output
layers of width dim(z), interpreted as the mean and log-variance of a Gaussian over z.

16

Published as a conference paper at ICLR 2020

Decoder. For all experiments, the decoder pψ(τ |z) is an LSTM with 256 hidden units and tanh
activation. Given input [st, at, ẑ] at LSTM time step t, the output is fully-connected to two linear
output layers of width |S|+ |A|, and interpreted as the mean and log-variance of a Gaussian decoder
for the next state-action pair (st+1, at+1).

Q network. For all experiments, the Q function is a fully-connected neural network with two hidden
layers of width 256 and 512, ReLU activation, and a linear output layer of size |A|. For SEPT and
Oracle, the input is the concatenation [st, z], where z is estimated in the case of SEPT and z is the
ground truth in for the Oracle. For all other methods, the input is only the state s.

Probe policy network. For all experiments, πϕ(a|s) is a fully-connected neural network with 3
hidden layers, ReLU activation, 32 nodes in all layers, and a softmax in the output layer.

E.3 HYPERPARAMETERS

VAE learning rate was 1e-4 for all experiments. Size of the datasetD of probe trajectories was limited
to 1000, with earliest trajectories discarded. 10 minibatches from D were used for each VAE training
step. We used β = 1 for the VAE. Probe policy learning rate was 1e-3 for all experiments. DDQN
minibatch size was 32, one training step was done for every 10 environment steps, εend = 0.15,
learning rate was 1e-3, gradient clip was 2.5, γ = 0.99, and target network update rate was 5e-3.
Exploration decayed according εn+1 = cεn every episode, where c satisfies εend = cN εstart and N is
the total number of episodes. Prioritized replay used the same parameters in (Killian et al., 2017).

Table 5: Hyperparameters used by each method, where applicable

2D navigation Acrobot HIV

Tp 2 5 8
Instances 1000 500 500
Episodes per instance 10 8 5
VAE batch size 10 64 64
dim(ẑ) 2 2 6
α 1.0 0.005 1.0
Probe minibatches 1 10 1
DDQN εstart 1.0 1.0 0.3

17

	Introduction
	Single episode transfer in RL: problem setup
	Single episode policy transfer
	Policy transfer through latent space
	Transfer of a universal policy
	Optimized probing for accelerated latent variable inference

	Related work
	Experimental setup
	Results and discussion
	Conclusion and future directions
	Derivations
	Testing phase of SEPT
	DynaSEPT
	Supplementary experimental results
	2D and Acrobot
	Timing comparison
	Percent of solved episodes
	Training curves
	Latent representation of dynamics
	Probe reward

	Experimental details
	Algorithm implementation details
	Architecture
	Hyperparameters

