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ABSTRACT

The early phase of training of deep neural networks is critical for their final per-
formance. In this work, we study how the hyperparameters of stochastic gradient
descent (SGD) used in the early phase of training affect the rest of the optimiza-
tion trajectory. We argue for the existence of the “break-even" point on this trajec-
tory, beyond which the curvature of the loss surface and noise in the gradient are
implicitly regularized by SGD. In particular, we demonstrate on multiple classifi-
cation tasks that using a large learning rate in the initial phase of training reduces
the variance of the gradient, and improves the conditioning of the covariance of
gradients. These effects are beneficial from the optimization perspective and be-
come visible after the break-even point. Complementing prior work, we also show
that using a low learning rate results in bad conditioning of the loss surface even
for a neural network with batch normalization layers. In short, our work shows
that key properties of the loss surface are strongly influenced by SGD in the early
phase of training. We argue that studying the impact of the identified effects on
generalization is a promising future direction.

1 INTRODUCTION

The connection between optimization and generalization of deep neural networks (DNNs) is not
fully understood. For instance, using a large initial learning rate often improves generalization,
which can come at the expense of the initial training loss reduction (Goodfellow et al.| 2016} [Li
et al.l 2019} Jiang et al., [2020). In contrast, using batch normalization layers typically improves
both generalization and convergence speed of deep neural networks (Luo et al., [2019; Bjorck et al.|
2018)). These simple examples illustrate limitations of our understanding of DNNs.

Understanding the early phase of training has recently emerged as a promising avenue for study-
ing the link between optimization and generalization of DNNs. It has been observed that applying
regularization in the early phase of training is necessary to arrive at a well generalizing final solu-
tion (Keskar et al., 2017; [Sagun et al.l 2017} Achille et al., 2017). Another observed phenomenon
is that the local shape of the loss surface changes rapidly in the beginning of training (LeCun et al.,
2012; |[Keskar et al., 2017 [Achille et al.|[2017; Jastrzebski et al.| [2018; [Fort & Gangulil 2019)). The-
oretical approaches to understanding deep networks also increasingly focus on the early part of the
optimization trajectory (Li et al.,[2019; |Arora et al.,|2019).

In this work, we study the dependence of the entire optimization trajectory on the early phase of
training. We investigate noise in the mini-batch gradients using the covariance of gradientsP_-] and
the local curvature of the loss surface using the Hessian. These two matrices capture important and

*Equal contribution.
'We define it as K = % Zﬁil(gi — )T (gi — g), where g; = g(xi,y:; 0) is the gradient of the training
loss £ with respect to 6 on x;, N is the number of training examples, and g is the full-batch gradient.
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complementary aspects of optimization (Roux et al.,[2008};|Ghorbani et al.|2019) and generalization
performance of DNNs (Jiang et all,[2020; [Keskar et al., [2017; [Bjorck et al.l 2018}, [Fort et al.| 2019).
We include a more detailed discussion in Sec.
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Figure 1: Visualization of the early part of the training trajectories on CIFAR-10 (before reaching
65% training accuracy) of a simple CNN model optimized using SGD with learning rates = 0.01
(red) and n = 0.001 (blue). Each model on the training trajectory, shown as a point, is represented
by its test predictions embedded into a two-dimensional space using UMAP. The background color
indicates the spectral norm of the covariance of gradients K (A}, left) and the training accuracy
(right). For lower 7, after reaching what we call the break-even point, the trajectory is steered
towards a region characterized by larger A} (left) for the same training accuracy (right). See Sec.
for details. We also include an analogous figure for other quantities that we study in App.[A]

Our first contribution is a simplified model of the early part of the training trajectory of DNNs. Based
on prior empirical work (Sagun et al.,[2017), we assume that the local curvature of the loss surface
(the spectral norm of the Hessian) increases or decreases monotonically along the optimization tra-
jectory. Under this model, gradient descent reaches a point in the early phase of training at which it
oscillates along the most curved direction of the loss surface. We call this point the break-even point
and show empirical evidence of its existence in the training of actual DNNs.

Our main contribution is to state and present empirical evidence for two conjectures about the depen-
dence of the entire optimization trajectory on the early phase of training. Specifically, we conjecture
that the hyperparameters of stochastic gradient descent (SGD) used before reaching the break-even
point control: (1) the spectral norms of K and H, and (2) the conditioning of K and H. In partic-
ular, using a larger learning rate prior to reaching the break-even point reduces the spectral norm of
K along the optimization trajectory (see Fig. [I] for an illustration of this phenomenon). Reducing
the spectral norm of K decreases the variance of the mini-batch gradient, which has been linked to
improved convergence speed (Johnson & Zhang),[2013).

Finally, we apply our analysis to a network with batch normalization (BN) layers and find that our
predictions are valid in this case as well. Delving deeper in this line of investigation, we show that
using a large learning rate is necessary to reach better-conditioned (relatively to a network without
BN layers) regions of the loss surface, which was previously attributed to BN alone (Bjorck et al.]

2018 [Ghorbani et all, 2019} [Page, [2019).

2 RELATED WORK

Implicit regularization induced by the optimization method. The choice of the optimization
method implicitly affects generalization performance of deep neural networks (Neyshabur, 2017).
In particular, using a large initial learning rate is known to improve generalization (Goodfellow et al.}
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2016; [Li et al.| 2019). A classical approach to study these questions is to bound the generalization
error using measures such as the norm of the parameters at the final minimum (Bartlett et al., 2017;
Jiang et al.| 2020).

An emerging approach is to study the properties of the whole optimization trajectory. |Arora et al.
(2019) suggest it is necessary to study the optimization trajectory to understand optimization and
generalization of deep networks. In a related work, [Erhan et al.[(2010); |Achille et al.| (2017) show
the existence of a critical period of learning. [Erhan et al|(2010) argue that training, unless pre-
training is used, is sensitive to shuffling of examples in the first epochs of training. |Achille et al.
(2017); |Golatkar et al.| (2019); Sagun et al.| (2017); |[Keskar et al.| (2017) demonstrate that adding
regularization in the beginning of training affects the final generalization disproportionately more
compared to doing so later. We continue research in this direction and study how the choice of
hyperparameters in SGD in the early phase of training affects the optimization trajectory in terms of
the covariance of gradients, and the Hessian.

The covariance of gradients and the Hessian. The Hessian quantifies the local curvature of the
loss surface. Recent work has shown that the largest eigenvalues of H can grow quickly in the
early phase of training (Keskar et al.} [2017; [Sagun et al.l [2017; |[Fort & Scherlis| [2019; Jastrzebski
et al., 2018)). Keskar et al.| (2017); Jastrzebski et al.| (2017) studied the dependence of the Hessian
(at the final minimum) on the optimization hyperparameters. The Hessian can be decomposed into
two terms, where the dominant term (at least at the end of training) is the uncentered covariance of
gradients G (Sagun et al.| 2017}, [Papyanl [2019).

The covariance of gradients, which we denote by K, encapsulates the geometry and the magnitude of
variation in gradients across different samples. The matrix K was related to the generalization error
in |Roux et al.| (2008); Jiang et al.| (2020). Closely related quantities, such as the cosine alignment
between gradients computed on different examples, were recently shown to explain some aspects
of deep networks generalization (Fort et al., 2019} [Liu et al., 2020; He & Sul [2020). Zhang et al.
(2019) argues that in DNNs the Hessian and the covariance of gradients are close in terms of the
largest eigenvalues.

Learning dynamics of deep neural networks. Our theoretical model is motivated by recent work
on learning dynamics of neural networks (Goodfellow et al., 2014} Masters & Luschil, 2018 |Wu
et al.l 2018} [Yao et al.| 2018; [Xing et al., [2018}; Jastrzebski et al., [2018; [Lan et al [2019). We
are directly inspired by Xing et al.|(2018)) who show that for popular classification benchmarks, the
cosine of the angle between consecutive optimization steps in SGD is negative. Similar observations
can be found in|Lan et al.[|(2019). Our theoretical analysis is inspired by [Wu et al.| (2018) who study
how SGD selects the final minimum from a stability perspective. We apply their methodology to the
early phase of training, and make predictions about the entire training trajectory.

3 THE BREAK-EVEN POINT AND THE TWO CONJECTURES ABOUT SGD
TRAJECTORY

Our overall motivation is to better understand the connection between optimization and generaliza-
tion of DNNs. In this section we study how the covariance of gradients (K) and the Hessian (H)
depend on the early phase of training. We are inspired by recent empirical observations showing
their importance for optimization and generalization of DNNs (see Sec. [2|for a detailed discussion).

Recent work has shown that in the early phase of training the gradient norm (Goodfellow et al., 2016;
Fort & Ganguli, 2019; |[Liu et al.,[2020) and the local curvature of the loss surface (Jastrzebski et al.,
2018 |[Fort & Gangulil, 2019) can rapidly increase. Informally speaking, one scenario we study here
is when this initial growth is rapid enough to destabilize training. Inspired by Wu et al.[(2018)), we
formalize this intuition using concepts from dynamical stability. Based on the developed analysis,
we state two conjectures about the dependence of K and H on hyperparameters of SGD, which we
investigate empirically in Sec.

Definitions. We begin by introducing the notation. Let us denote the loss on an example (x,y)
by L(x,y;8), where 0 is a D-dimensional parameter vector. The two key objects we study are the

Hessian of the training loss (H), and the covariance of gradients K = 4 vazl (9i — )" (9 — 9)s
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where g; = g(xi,y;;0) is the gradient of £ with respect to 6 calculated on i-th example, N is
the number of training examples, and g is the full-batch gradient. We denote the ¢-th normalized
eigenvector and eigenvalue of a matrix A by €4 and \’;. Both H and K are computed at a given 0,
but we omit this dependence in the notation. Let ¢ index steps of optimization, and let 6(¢) denote
the parameter vector at optimization step .

Inspired by |Wu et al.| (2018)) we introduce the following condition to quantify stability at a given
6(t). Let us denote the projection of parameters ¢ onto e}; by 1) = (0, el;). With a slight abuse of
notation let g(¢)) = (g(0), ek;). We say SGD is unstable along el; at 6(t) if the norm of elements of
sequence (7 + 1) = (1) — ng(yp(7)) diverges when 7 — oo, where 1(0) = 0(t). The sequence
1(7) represents optimization trajectory in which every step ¢ > t is projected onto el;.

Assumptions. Based on recent empirical studies, we make the following assumptions.

1. The loss surface projected onto e}; is a quadratic one-dimensional function of the form

fl) = Zfil(w — ¢*)2H;. The same assumption was made in [Wu et al. (2018), but
for all directions in the weight space. |Alain et al.| (2019) show empirically that the loss
averaged over all training examples is well approximated by a quadratic function along e};.

2. The eigenvectors e}; and ek are co-linear, i.e. el; = +ek, and A}, = a)l; for some
a € R. This is inspired by the fact that the top eigenvalues of H can be well approximated
using G (non-centered K) (Papyan, [2019; [Sagun et al.,[2017). [Zhang et al.| (2019) shows
empirical evidence for co-linearity of the largest eigenvalues of K and H.

3. If optimization is not stable along e}, at a given 6(¢), A}, decreases in the next step, and the
distance to the minimum along e}, increases in the next step. This is inspired by recent work
showing training can escape a region with too large curvature compared to the learning
rate (Zhu et al.| 2018 Wu et al., 2018} Jastrzebski et al., 2018)).

4. The spectral norm of H, \l;, increases during training and the distance to the minimum
along e}, decreases, unless increasing A}, would lead to entering a region where training
is not stable along e};. This is inspired by (Keskar et al., 2017; Goodfellow et al., 2016;
Sagun et al., 2017} Jastrzebski et al., 2018} |[Fort & Scherlis, 2019} [Fort & Ganguli, [2019)
who show that in many settings Aj; or gradient norm increases in the beginning of training,
while at the same time the overall training loss decreases.

Finally, we also assume that S > N, i.e. that the batch size is small compared to the number
of training examples. These assumptions are only used to build a theoretical model for the early
phase of training. Its main purpose is to make predictions about the training procedure that we test
empirically in Sec. 4]

Reaching the break-even point earlier for a larger learning rate or a smaller batch size. Let
us restrict ourselves to the case when training is initialized at 6(0) at which SGD is stable along
e}q(O)E] We aim to show that the learning rate (1) and the batch size (.5) determine H and K in our
model, and conjecture that the same holds empirically for realistic neural networks.

Consider two optimization trajectories for 7, and 73, where 7; > 2, that are initialized at the same
6o, where optimization is stable along e}, (¢) and A}, () > 0. Under Assumption 1 the loss surface
along ek (¢) can be expressed as f (1)) = vazl(z/z —9*)2H,(t), where H;(t) € R. It can be shown
that at any iteration ¢ the necessary and sufficient condition for SGD to be stable along ek, () is:

2
2 (N = S5)

———= <1, 1

SIN=1) = M
where N is the training set size and s(¢)? = Var[H;(t)] over the training examples. A proof can be
found in (Wu et al| 2018). We call this point on the trajectory on which the LHS of Eq. [I|becomes
equal to 1 for the first time the break-even point. By definition, there exists only a single break-even
point on the training trajectory.

(1 =g (1) + s(t)

Under Assumption 3, AL (¢) and AL (¢) increase over time. If S = N, the break-even point is
reached at A}, (¢) = % More generally, it can be shown that for 7;, the break-even point is reached

>We include a similar argument for the opposite case in App.
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for a lower magnitude of AL, (¢) than for n2. The same reasoning can be repeated for S (in which
case we assume N > S). We state this formally and prove in App.

Under Assumption 4, after passing the break-even point on the training trajectory, SGD does not
enter regions where either A}, or Al is larger than at the break-even point, as otherwise it would
lead to increasing one of the terms in LHS of Eq. |1} and hence losing stability along e};.

Two conjectures about real DNNs. Assuming that real DNNs reach the break-even point, we
make the following two conjectures about their optimization trajectory.

The most direct implication of reaching the break-even point is that AL and A}, at the break-even
point depend on 7 and .S, which we formalize as:

Conjecture 1 (Variance reduction effect of SGD). Along the SGD trajectory, the maximum attained
values of \; and N\ are smaller for a larger learning rate or a smaller batch size.

We refer to Conjecture as variance reduction effect of SGD because reducing A} can be shown to
reduce the Lo distance between the full-batch gradient, and the mini-batch gradient. We expect that
similar effects exist for other optimization or regularization methods. We leave investigating them
for future work.

Next, we make another, stronger, conjecture. It is plausible to assume that reaching the break-even
point affects to a lesser degree A}, and A’ for ¢ # 1 because increasing their values does not impact
stability along el;. Based on this we conjecture that:

Conjecture 2 (Pre-conditioning effect of SGD). Along the SGD trajectory, the maximum attained
values of i—{‘ and ;\—IH are larger for a larger learning rate or a smaller batch size, where A\g™ and
K H

Au” are the smallest non-zero eigenvalues of K and H, respectively. Furthermore, the maximum
attained values of Tr(K) and Tr(H) are smaller for a larger learning rate or a smaller batch size.

We consider non-zero eigenvalues in the conjecture, because K has at most N — 1 non-zero eigen-
values, where N is the number of training points, which can be much smaller than D in over-
parametrized DNNs. Both conjectures are valid only for learning rates and batch sizes that guarantee
that training converges.

From the optimization perspective, the effects discussed above are desirable. Many papers in the
optimization literature underline the importance of reducing the variance of the mini-batch gradi-
ent (Johnson & Zhang,|2013) and the conditioning of the covariance of gradients (Roux et al.,[2008).
There also exists a connection between these effects and generalization (Jiang et al., [2020), which
we discuss towards the end of the paper.

4 EXPERIMENTS

In this section we first analyse learning dynamics in the early phase of training. Next, we empirically
investigate the two conjectures. In the final part we extend our analysis to a neural network with
batch normalization layers.

We run experiments on the following datasets: CIFAR-10 (Krizhevsky} 2009), IMDB dataset (Maas
et al., [2011), ImageNet (Deng et al., |2009), and MNLI (Williams et al.l 2018). We apply to
these datasets the following architectures: a vanilla CNN (SimpleCNN) following Keras exam-
ple (Chollet et al., 2015), ResNet-32 (He et al., 2015)), LSTM (Hochreiter & Schmidhuber;, [1997),
DenseNet (Huang et al.| 2016), and BERT (Devlin et al., 2018). We also include experiments using
a multi-layer perceptron trained on the FashionMNIST dataset (Xiao et al.,[2017) in the Appendix.
All experimental details are described in App.

Following |Dauphin et al.| (2014)); |Alain et al.[(2019), we estimate the top eigenvalues and eigenvec-
tors of H on a small subset of the training set (e.g. 5% in the case of CIFAR-10) using the Lanczos
algorithm (Lanczos} [1950). As computing the full eigenspace of K is infeasible for real DNNs, we
compute the covariance using mini-batch gradients. In App.[C|we show empirically that (after nor-
malization) this approximates well the largest eigenvalue, and we include other details on computing
the eigenspaces.



Published as a conference paper at ICLR 2020

103

¢ n=0.001 .
0.01y . p=o0.010 .
=T 102 < x X
~ *‘x)‘x,(xxx "x’o‘x&,l‘
g 0.00 :;:.un-- o0 00000 mecrese.
¢ Py
10!
107! 10° 10! 1071t 10° 10t
Ak Ak

Figure 2: The spectral norm of H (A}, left) and AL (difference in the training loss computed be-
tween two consecutive steps, right) versus AL at different training iterations. Experiment was per-
formed with SimpleCNN on the CIFAR-10 dataset with two different learning rates (color). Consis-
tently with our theoretical model, AL is correlated initially with A};, and training is generally stable
(AL > 0) prior to achieving the maximum value of A}
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Figure 3: The spectrum of K (left) and H (right) at the training iteration corresponding to the largest
value of A}, and \};, respectively. Experiment was performed with SimpleCNN on the CIFAR-10
dataset with two different learning rates (color). Consistently with Conjecture 2] training with lower
learning rate results in finding a region of the loss surface characterized by worse conditioning of K
and H (visible in terms of the large number of “spikes” in the spectrum, see also Fig. ).

4.1 A CLOSER LOOK AT THE EARLY PHASE OF TRAINING

First, we examine the learning dynamics in the early phase of training. Our goal is to verify some of
the assumptions made in Sec. 3] We analyse the evolution of A}, and A} when using = 0.01 and
1n = 0.001 to train SimpleCNN on the CIFAR-10 dataset. We repeat this experiment 5 times using
different random initializations of network parameters.

Visualizing the break-even point. We visualize the early part of the optimization trajectory in
Fig. m Following |[Erhan et al.| (2010), we embed the test set predictions at each step of training of
SimpleCNN using UMAP (Mclnnes et al., 2018). The background color indicates A} (left) and the
training accuracy (right) at the iteration with the closest embedding in Euclidean distance.

We observe that the trajectory corresponding to the lower learning rate reaches regions of the loss
surface characterized by larger AL, compared to regions reached at the same training accuracy in
the second trajectory. Additionally, in Fig. [3] we plot the spectrum of K (left) and H (right) at the
iterations when A i and A g respectively reach the highest values. We observe more outliers for the
lower learning rate in the distributions of both Ax and Apy.

Are \L- and \}; correlated in the beginning of training? The key assumption behind our theo-
retical model is that A}, and A}, are correlated, at least prior to reaching the break-even point. We
confirm this in Fig. [2| The highest achieved AL and \}; are larger for the smaller . Additionally,
we observe that after achieving the highest value of \l;, further growth of AL does not translate to
an increase of AL;. This is expected as A}, decays to 0 when the mean loss decays to 0 for cross
entropy loss (Martens|, 2016)).

Does training become increasingly unstable in the early phase of training? According to As-
sumption 3, an increase of )\}( and )\}{ translates into a decrease in stability, which we formalized as
stability along el;. Computing stability along e}, directly is computationally expensive. Instead, we
measure a more tractable proxy. At each iteration we measure the loss on the training set before and
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(c) LSTM trained on the IMDB dataset.

Figure 4: The variance reduction and the pre-conditioning effect of SGD in various settings. The
optimization trajectories corresponding to higher learning rates (1) or lower batch sizes (S) are
characterized by lower maximum A} (the spectral norm of the covariance of gradients) and larger
maximum \}; /AJ- (the condition number of the covariance of gradients). Vertical lines mark epochs
at which the training accuracy is larger (for the first time) than a manually picked threshold, which
illustrates that the effects are not explained by differences in training speeds.

after taking the step, which we denote as AL (a positive value indicates a reduction of the training
loss). In Fig. 2] we observe that training becomes increasingly unstable (AL starts to take negative
values) as A}, reaches the maximum value.

Summary. We have shown that the early phase of training is consistent with the assumptions made
in our theoretical model. That is, A} and \}; increase approximately proportionally to each other,
which is also generally correlated with a decrease of a proxy of stability. Finally, we have shown
qualitatively reaching the break-even point.

4.2 THE VARIANCE REDUCTION AND THE PRE-CONDITIONING EFFECT OF SGD

In this section we test empirically Conjecture[T|and Conjecture 2} For each model we manually pick
a suitable range of learning rates and batch sizes to ensure that the properties of K and H that we
study have converged under a reasonable computational budget. We mainly focus on studying the
covariance of gradients (K), and leave a closer investigation of the Hessian for future work. We use
the batch size of 128 to compute K when we vary the batch size for training. When we vary the
learning rate instead, we use the same batch size as the one used to train the model. App.[C]describes
the remaining details on how we approximate the eigenspaces of K and H.

We summarize the results for SimpleCNN, ResNet-32, LSTM, BERT, and DenseNet in Fig. E[, Fig. |§[,
and Fig.[6] Curves are smoothed using moving average for clarity. Training curves and additional
experiments are reported in App. [E]

Testing Conjecture 1. To test Conjecture 1, we examine the highest value of A} observed along
the optimization trajectory. As visible in Fig. 4] using a higher 7 results in A} achieving a lower
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Figure 5: The variance reduction effect of SGD, for ResNet-32 and SimpleCNN. Trajectories cor-
responding to higher learning rates (7, left) or smaller batch sizes (.5, right) are characterized by
a lower maximum A}, (the spectral norm of the Hessian) along the trajectory. Vertical lines mark
epochs at which the training accuracy is larger (for the first time) than a manually picked threshold.

maximum during training. Similarly, we observe that using a higher .S in SGD leads to reaching
a higher maximum value of \}.. For instance, for SimpleCNN (top row of Fig. |4) we observe
max(\k) = 0.68 and max(\k ) = 3.30 for n = 0.1 and n = 0.01, respectively.

Testing Conjecture 2. To test Conjecture 2, we compute the maximum value of A% /Ak along
the optimization trajectory. It is visible in Fig. [4| that using a higher 7 results in reaching a
larger maximum value of A% /Al along the trajectory. For instance, in the case of SimpleCNN
max(X\i /A% ) = 0.37 and max(\j /AL ) = 0.24 for n = 0.1 and 5y = 0.01, respectively.

A counter-intuitive effect of decreasing the batch size. Consistently with Conjecture 2] we ob-
serve that the maximum value of Tr(K) is smaller for the smaller batch size. In the case of Sim-
pleCNN max(Tr(K)) = 5.56 and max(Tr(K)) = 10.86 for S = 10 and S = 100, respectively.
Due to space constraints we report the effect of 77 and .S on Tr(K) in other settings in App.

This effect is counter-intuitive because Tr(K) is proportional to the variance of the mini-batch gra-
dient (see also App.[C). Naturally, using a lower batch size generally increases the variance of the
mini-batch gradient, and Tr(K). This apparent contradiction is explained by the fact that we mea-
sure Tr(K) using a different batch size (128) than the one used to train the model. Hence, decreasing
the batch size both increases (due to approximating the gradient using fewer samples) and decreases
(as predicted in Conjecture[2)) the variance of the mini-batch gradient along the optimization trajec-
tory.

How early in training is the break-even point reached? We find that A}, and A}, reach their
highest values early in training, close to reaching 60% training accuracy on CIFAR-10, and 75%
training accuracy on IMDB. The training and validation accuracies are reported for all the experi-
ments in App. [E] This suggests that the break-even point is reached early in training.

The Hessian. In the above, we have focused on the covariance of gradients. In Fig. [5] we report
how AL, depends on 7 and S for ResNet-32 and SimpleCNN. Consistently with prior work (Keskar
et al.| [2017; Jastrzebski et al.|[2018)), we observe that using a smaller 7 or using a larger S coincides
with a larger maximum value of A};. For instance, for SimpleCNN we observe max(\}) = 26.27
and max(A\},) = 211.17 for n = 0.1 and = 0.01, respectively. We leave testing predictions made
in Conjecture [2]about the Hessian for future work.

Larger scale studies. Finally, we test the two conjectures in two larger scale settings: BERT
fine-tuned on the MNLI dataset, and DenseNet trained on the ImageNet dataset. Due to memory
constraints, we only vary the learning rate. We report results in Fig. [ We observe that both
conjectures hold in these two settings. It is worth noting that DenseNet uses batch normalization
layers. In the next section we investigate closer batch-normalized networks.

Summary. In this section we have shown evidence supporting the variance reduction (Conjec-
ture[I)) and the pre-conditioning effect (Conjecture[2)) of SGD in a range of classification tasks. We
also found that the above conclusions hold for MLP trained on the Fashion MNIST dataset, SGD
with momentum, and SGD with learning rate decay. We include these results in App.
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Figure 6: The variance reduction and the pre-conditioning effect of SGD, demonstrated on two
larger scale settings: BERT on the MNLI dataset (left), and DenseNet on the ImageNet dataset
(right). For each setting we report )\}< (lefty and A3,/ )\}( (right). Vertical lines mark epochs at which
the training accuracy is larger (for the first time) than a manually picked threshold.

4.3 IMPORTANCE OF LEARNING RATE FOR CONDITIONING IN NETWORKS WITH BATCH
NORMALIZATION LAYERS
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Figure 7: The effect of changing the learning rate on various metrics (see text for details) for Sim-
pleCNN with and without batch normalization layers (SimpleCNN-BN and SimpleCNN).

The loss surface of deep neural networks has been widely reported to be ill-conditioned (LeCun
et al., 2012; Martens, |2016). Recently, (Ghorbani et al.| (2019); [Page| (2019) argued that the key
reason behind the efficacy of batch normalization (Ioffe & Szegedy,2015)) is improving conditioning
of the loss surface. In Conjecture[2]we suggest that using a high 7 (or a small .S) results in improving
the conditioning of K and H. A natural question that we investigate in this section is how the two
phenomena are related. We study here the effect of learning rate, and report in App. [H]an analogous
study for batch size.

Are the two conjectures valid in networks with batch normalization layers? First, to inves-
tigate whether our conjectures hold in networks with batch normalization layers, we run similar
experiments as in Sec. [£.2 with a SimpleCNN model with batch normalization layers inserted after
each layer (SimpleCNN-BN), on the CIFAR-10 dataset. We test 7 € {0.001,0.01,0.1,1.0} (using
n = 1.0 leads to divergence of SimpleCNN without BN). We summarize the results in Fig.[7] We
observe that the evolution of A /A% and Ak is consistent with both Conjecture[I]and Conjecture 2]

A closer look at the early phase of training. To further corroborate that our analysis applies to
networks with batch normalization layers, we study the early phase of training of SimpleCNN-BN,
complementing the results in Sec. [4.1]
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We observe in Fig. [7| (bottom) that training of SimpleCNN-BN starts in a region characterized by a
relatively high A}, This is consistent with prior work showing that networks with batch normaliza-
tion layers can exhibit gradient explosion in the first iteration (Yang et al., 2019). The value of AL
then decays for all but the lowest 7. This behavior is consistent with our theoretical model. We also
track the norm of the scaling factor in the batch normalization layers, |||, in the last layer of the
network in Fig. [7|(bottom). It is visible that = 1.0 and = 0.1 initially decrease the value of |||,
which we hypothesize to be one of the mechanisms due to which high 7 steers optimization towards
better conditioned regions of the loss surface in batch-normalized networks. Interestingly, this seems
consistent with |Luo et al.[(2019) who argue that using mini-batch statistics in batch normalization
acts as an implicit regularizer by reducing ||-y/|.

Using batch normalization requires using a high learning rate. As our conjectures hold for
SimpleCNN-BN, a natural question is if the loss surface can be ill-conditioned with a low learning
rate even when batch normalization is used. |Ghorbani et al.|(2019) show that without batch normal-
ization, mini-batch gradients are largely contained in the subspace spanned by the top eigenvectors
of noncentered K. To answer this question we track ||g||/||gs||, where g denotes the mini-batch
gradient, and g5 denotes the mini-batch gradient projected onto the top 5 eigenvectors of K. A value
of ||lgll/|lgs|| close to 1 implies that the mini-batch gradient is mostly contained in the subspace
spanned by the top 5 eigenvectors of K.

We compare two settings: SimpleCNN-BN optimized with = 0.001, and SimpleCNN optimized
with n = 0.01. We make three observations. First, the maximum and minimum values of ||g||/|| g |
are 1.90 (1.37) and 2.02 (1.09), respectively. Second, the maximum and minimum values of A}{
are 12.05 and 3.30, respectively. Finally, A% /AL reaches 0.343 in the first setting, and 0.24 in the
second setting. Comparing these differences to differences that are induced by using the highest
1 = 1.0 in SimpleCNN-BN, we can conclude that using a large learning rate is necessary to observe
the effect of loss smoothing which was previously attributed to batch normalization alone (Ghorbani
et al., 2019; [Pagel 2019} |Bjorck et al., [2018). This might be directly related to the result that using
a high learning rate is necessary to achieve good generalization when using batch normalization
layers (Bjorck et al., 2018).

Summary. We have shown that the effects of the learning rate predicted in Conjecture (1| and
Conjecture 2 hold for a network with batch normalization layers, and that using a high learning rate
is necessary in a network with batch normalization layers to improve conditioning of the loss surface,
compared to conditioning of the loss surface in the same network without batch normalization layers.

5 CONCLUSION

Based on our theoretical model, we argued for the existence of the break-even point on the opti-
mization trajectory induced by SGD. We presented evidence that hyperparameters used in the early
phase of training control the spectral norm and the conditioning of K (a matrix describing noise in
the mini-batch gradients) and H (a matrix describing local curvature of the loss surface) after reach-
ing the break-even point. In particular, using a large initial learning rate steers training to better
conditioned regions of the loss surface, which is beneficial from the optimization point of view.

A natural direction for the future is connecting our observations to recent studies on the relation of
measures, such as gradient variance, to the generalization of deep networks (Li et al., 2019} Jiang
et al., 2020; Fort et al.l [2019). Our work shows that the hyperparameters of SGD control these
measures after the break-even point. Another interesting direction is to understand the connection
between the existence of the break-even point and the existence of the critical learning period in
training of DNNs (Achille et al.| [2017).
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A ADDITIONAL VISUALIZATION OF THE BREAK-EVEN POINT

We include here an analogous Figure to Fig.[I] but visualizing the conditioning of the covariance of
gradients (A} /AL, left), the trace of the covariance of gradients (Tr(K), middle), and the spectral
norm of the Hessian (A, right).

0 200 400 600 800 1000
A} (spectral norm of H)

10 50

20 30 40
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Figure 8: Analogous to Fig.[T} The background color indicates the conditioning of the covariance
of gradients K (A} /AL, left), the trace of the covariance of gradients (Tr(K), middle), and the
spectral norm of the Hessian (\1;, right).

B PROOFS

In this section we formally state and prove the theorem used in Sec. [3] With the definitions intro-
duced in Sec. E]in mind, we state the following:

Theorem 1. Assuming that training is stable along ek, (t) att = 0, then A}, (t) and A% (t) at which
SGD becomes unstable along el (t) are smaller for a larger 1 or a smaller S.

Proof. This theorem is a straightforward application of Theorem 1 from (2018) to the
early phase of training. First, let us consider two optimization trajectories corresponding to using

two different learning rates 7; and 72 (1 > 7). For both trajectories, Theorem 1 of (2018)
states that SGD is stable at an iteration ¢ if the following inequality is satisfied:

2
=5 )

(1= (0)° + (0 =y <1

where s(t) = Var[H;(t)]. Using Assumption 1 we get Var[g;(¢))] = Var[yH;] = ¥?s(t)%. Using
this we can rewrite inequality (Z) as:

Aic(t) n*(n — )
Y()? S(n—1) —

To calculate the spectral norm of the Hessian at iteration ¢* at which training becomes unstable we
. . . 1 * . .
equate the two sides of inequality (3 and solve for Aj; (¢*), which gives

(1= Ak (8)* +

3)

n
* ) (n—-1) S
Ay (1) = — )

where « denotes the proportionality constant from Assumption 2. Note that if 7 = .S the right hand
side degenerates to %, which completes the proof for n = S.

To prove the general case, let denote by AL (¢7) and A}, (¢5) the value of A}, at which training
becomes unstable along e}, for 7, and 7, respectively. Similarly, let us denote by ¢ (¢}) and v (t3)
the corresponding values of .

14
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Let us assume by contradiction that A}, (t7) > A}, (¢5). A necessary condition for this inequality to
hold is that ¢ (¢]) > (t5). However, Assumption 4 implies that prior to reaching the break-even
point ¢ (t) decreases monotonically with increasing AL, (¢1), which corresponds to reducing distance
to the minimum along el;, which contradicts A} (¢7) > AL (¢3). Repeating the same argument for
two trajectories optimized using two different batch sizes completes the proof.

O

It is also straightforward to extend the argument to the case when training is initialized at an unstable
region along e}, (0), which we formalize as follows.

Theorem 2. [f training is unstable along ek (t) at t = 0, then AL, (t) and AL (t) at which SGD
becomes for the first time stable along e}, (t) are smaller for a larger 1) or a smaller S.

Proof. We will use a similar argument as in the proof of Th.[I} Let us consider two optimization
trajectories corresponding to using two different learning rates n; and 19 (91 > 12).

Let AL (#) and A}, (t5) denote the spectral norm of H at the iteration at which training is for the
first time stable along el; for 7; and 7, respectively. Following the steps in the proof of Th. 1| we
get that

a (n=5)

n
Nig () = —H5 = 5)

Using the same notation as in the proof of Th. |1} let us assume by contradiction that A}_l,(t’{) >
AL (t5). Assumption 3 implies that 1(¢) increases with decreasing A}, (t). Hence, if A (t5) is
smaller, it means ¢ (¢3) increased to a larger value, i.e. ©(t5) > ¢ (t7). However, if ((Z:“f)) ~1la
necessary condition for AL (¢7) > AL (¢3) inequality to hold is that 1(¢}) > v (t3), which leads to a
contradiction. Repeating the same argument for batch size completes the proof.

O

C APPROXIMATING THE EIGENSPACE OF K AND H

Using a small subset of the training set suffices to approximate well the largest eigenvalues of the
Hessian on the CIFAR-10 dataset (Alain et al.} 2019) Following |Alain et al.| (2019) we use ap-
proximately the same 5% fraction of the dataset in CIFAR-10 experiments, and the SCIPY Python
package. We use the same setting on the other datasets as well.

Analysing the eigenspace of K is less common in deep learning. For the purposes of this paper, we

are primarily interested in estimating A ™ and \x. We also estimate Tr(K). It is worth noting that

Tr(K) is related to the variance in gradients as S Tr(K) = 54 5"~ [|g — g;]|?, where g is the

full-batch gradient, D is the number of parameters and [V is the number of datapoints.

The naive computation of the eigenspace of K is infeasible for realistically large deep networks due
to the quadratic cost in the number of parameters. Instead, we compute K using mini-batches. To
avoid storing a D x D matrix in memory, we first sample L mini-batch gradient of size M and
compute the corresponding Gram matrix K that has entries Kf‘f = %(gl —9,9; — 9g), Where g is
the full-batch gradient, which we estimate based on the L mini-batches. To compute the eigenspace
of KM we use SVD routine from the NumPy package. We take the (L — 1) smallest eigenvalue as
the smallest non-zero eigenvalue of K™ (covariance matrix computed using L observations has by
definition L — 1 non-zero eigenvalues).

Papyan| (2019)); [Fort & Ganguli|(2019) show that the top eigenvalues of H emerge due to clustering
of gradients of the logits. See also [Fort & Ganguli| (2019). Based on the proximity of the largest
eigenvalues of H and K, this observation suggests that the top eigenvalue of K might be similar to
that of K. To investigate this, we run the following experiment on the CIFAR-10 dataset using

3This might be due to the hierarchical structure of the Hessian (Papyanl [2019; [Fort & Ganguli, 2019). In
particular, they show that the largest eigenvalues of the Hessian are connected to the class structure in the data.
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SimpleCNN. We estimate A} using M = 1 and M = 128, in both cases using the whole training
set. We subsample the dataset to 10% to speed up the computation. Fig. E] shows a strong correlation
between AL computed with M = 1 and with M = 128, for three different learning rates.

n=0.1 n=0.01 60 n=0.001
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Figure 9: Pearson correlation between A% calculated using either M = 128 or M = 1 for three
different values of n = 0.1, 0.01 and 0.001.

In all experiments we use L = 25, and for the IMDB dataset we increase the number of mini-batch
gradients to L = 200 to reduce noise (same conclusion hold for L = 25). For instance, on the
CIFAR-10 dataset this amounts to using approximately 5% of the training set. In experiments that
vary the batch size we use M = 128. Otherwise, we use the value M as the batch size used to train
the model.

D EXPERIMENTAL DETAILS FOR SEC.[4.2]
In this section we describe all the details for experiments in Sec.

ResNet-32 on CIFAR-10. ResNet-32 (He et al.,|2015)) is trained for 200 epochs with a batch size
equal to 128 on the CIFAR-10 dataset. Standard data augmentation and preprocessing is applied.
Following |He et al.| (2015), we regularize the model using weight decay 0.0001. We apply weight
decay to all convolutional kernels. When varying the batch size, we use learning rate of 0.05. When
varying the learning rate, we use batch size of 128.

SimpleCNN on CIFAR-10. SimpleCNN is a simple convolutional network with four convolu-
tional layers based on Keras examples repository (Chollet et al., 2015). The architecture is as fol-
lows. The first two convolutional layers have 32 filters, and the last two convolutional layers have 64
filters. After each pair of convolutional layers, we include a max pooling layer with a window size
of 2. After each layer we include a ReLU nonlinearity. The output of the final convolutional layer
is processed by a densely connected layer with 128 units and ReLU nonlinearity. When varying the
batch size, we use a learning rate of 0.05. When varying the learning rate, we use a batch size of
128.

BERT on MNLI. The model used in this experiment is the BERT-base from Devlin et al.| (2018)),
pretrained on multilingual datzﬂ The model is trained on the MultiNLI dataset (Williams et al.}
2018)) with the maximum sentence length equal to 40. The network is trained for 20 epochs using a
batch size of 32. Experiments are repeated with three different seeds that control initialization and
data shuffling.

MLP on FashionMNIST. This experiment is using a multi-layer perceptron with two hidden lay-
ers of size 300 and 100, both with ReLU activations. The data is normalized to the [0, 1] range. The
network is trained with a batch size of 64 for 200 epochs.

LSTM on IMDB. The network used in this experiment consists of an embedding layer followed
by an LSTM with 100 hidden units. We use vocabulary size of 20000 words and the maximum

“The model weights used can be found at https://tfhub.dev/google/bert_multi_cased_
L-12_H-768_A-12/1l
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length of the sequence equal to 80. The model is trained for 100 epochs. When varying the learning
rate, we use batch size of 128. When varying the batch size, we use learning rate of 1.0. Experiments
are repeated with two different seeds that control initialization and data shuffling.

DenseNet on ImageNet. The network used is the DenseNet-121 from [Huang et al.| (2016). The
dataset used is the ILSVRC 2012 (Russakovsky et al.,[2015)). The images are centered and normal-
ized. No data augmentation is used. Due to large computational cost, the network is trained only for
10 epochs using a batch size of 32.

E ADDITIONAL EXPERIMENTS FOR SEC. [4.2].

In this section we include additional data for experiments in Sec.[d.2] as well as include experiments
using MLP trained on the Fashion MNIST dataset.

SimpleCNN on CIFAR-10. In Fig.[12]and Fig.[T3| we report accuracy on the training set and the
validation set, )\}I, and Tr(K) for all experiments with SimpleCNN model on the CIFAR-10 dataset
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Figure 10: Additional metrics for the experiments using SimpleCNN on the CIFAR-10 dataset with
different learning rates. From left to right: training accuracy, validation accuracy, Tr(K).
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Figure 11: Additional metrics for the experiments using SimpleCNN on the CIFAR-10 dataset with
different batch sizes. From left to right: training accuracy, validation accuracy, and Tr(K).

ResNet-32 on CIFAR-10. In Fig. [I2] and Fig. [T3] we report accuracy on the training set and the
validation set, )\}1, and Tr(K) for all experiments with ResNet-32 on the CIFAR-10 dataset.
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Figure 12: Additional figures for the experiments using ResNet-32 on the CIFAR-10 dataset with
different learning rates. From left to right: the evolution of accuracy, validation accuracy, Tr(K).
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Figure 13: Additional figures for the experiments using ResNet-32 on the CIFAR-10 dataset with
different batch sizes. From left to right: training accuracy, validation accuracy, Tr(K).

LSTM on IMDB. In Fig.[T4]and Fig.[I5]we report accuracy on the training set and the validation
set, )\}{, and Tr(K) for all experiments with LSTM on the IMDB dataset.
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Figure 14: Additional figures for the experiments using LSTM on the IMDB dataset with different
learning rates. From left to right: the evolution of accuracy, validation accuracy, and Tr(K).
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Figure 15: Additional metrics for the experiments using LSTM on the IMDB dataset with different
batch sizes. From left to right: training accuracy, validation accuracy, AL, and Tr(K).

BERT on MNLI. In Fig. [T6] we report accuracy on the training set and the validation set and
Tr(K) for BERT model on the MNLI dataset.
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Figure 16: Additional metrics for the experiments using BERT on the MNLI dataset with different
learning rates. From left to right: training accuracy, validation accuracy, and Tr(K).

DenseNet on ImageNet. In Fig. 17| we report accuracy on the training set and the validation set
and Tr(K) for DenseNet on the ImageNet dataset.
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Figure 17: Additional metrics for the experiments using DenseNet on the ImageNet dataset with
different learning rates. From left to right: training accuracy, validation accuracy, and Tr(K).

MLP on FashionMNIST. In Fig.[I8|and Fig. 9 we report results for MLP model on the Fash-
ionMNIST dataset. We observe that all conclusions carry over to this setting.
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Figure 18: Results of experiment using the MLP model on the FashionMNIST dataset for different
learning rates. From left to right: AL, A% /AL, A}, and Tr(K).
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Figure 19: Training accuracy and validation accuracy for experiment in Fig. [T8]

F ADDITIONAL EXPERIMENTS FOR SGD WITH MOMENTUM

Here, we run the same experiment as in Sec.[4.2]using SimpleCNN on the CIFAR-10 dataset. Instead
of varying the learning rate, we test different values of the momentum S parameter in the range of
0.1, 0.5 and 0.9. We can observe that Conjecture [I] and Conjecture [2] generalize to momentum in
the sense that using a higher momentum has an analogous effect to using a higher learning rate, or
using a smaller batch size in SGD. We report the results in Fig. 20]and Fig.[21]
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Figure 20: The variance reduction and the pre-conditioning effect for SimpleCNN trained using
SGD with momentum. From left to right: A\, A%, /AL and Tr(K).

19



Published as a conference paper at ICLR 2020

o

9

o
o
©

o
o

Train accuracy
o
w
o

Val. accuracy

I
~

0 50 100 150 0 50 160 150
Epoch Epoch

—e— B=0.100 -« B=0.500 —¥— B=0.900
Figure 21: Training accuracy and validation accuracy for the experiment in Fig. 20]

Next, to study whether our Conjectures are also valid for SGD with momentum, but held constant,
we run the same experiment as in Sec.[d.2]using SimpleCNN on the CIFAR-10 dataset. For all runs,
we set momentum to 0.9. Learning rate 0.1 diverged training, so we include only 0.01 and 0.001.
We can observe that both Conjectures generalize to this setting. We report the results in Fig. 22| and

Fig.[23]
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Figure 22: The variance reduction and the pre-conditioning effect for SimpleCNN trained using
SGD with momentum. From left to right: A\, A%, /A} and Tr(K).
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Figure 23: Training accuracy and validation accuracy for the experiment in Fig.[22]

G ADDITIONAL EXPERIMENTS FOR SGD WITH LEARNING RATE DECAY

To understand the effect of learning rate decay, we run the same experiment as in Sec. f.2] using
SimpleCNN on the CIFAR-10 dataset. Additionally, we divide the learning rate by the factor of 10
after 100th epoch. We can observe that Conjecture [T] and Conjecture [2] generalize to scenario with
learning rate schedule in the sense that changing learning rate doesn’t change the relative ordering
of the maximum A% and X% /). We report the results in Fig. and Fig.
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Figure 24: The variance reduction and the pre-conditioning effect for SimpleCNN trained using
SGD with learning rate schedule. From left to right: AL, A%, /AL and Tr(K).
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Figure 25: Training accuracy and validation accuracy for the experiment in Fig. [24]

H ADDITIONAL EXPERIMENTS FOR SIMPLECNN-BN

To further explore the connection between our conjectures and the effects of batch-normalization
layers on the conditioning of the loss surface, we repeat here experiments from Sec.[4.3] but varying
the batch size. Fig. 26| summarizes the results.

On the whole, conclusions from Sec. [d.3] carry over to this setting in the sense that decreasing the
batch size has a similar effect on the studied metrics as increasing the learning rate. One exception

is the experiment using the smallest batch size of 10. In this case, the maximum values of % and

*- /AL are smaller than in the experiments using larger batch sizes.
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(a) Left to right: gl AL for SimpleCNN-BN, and \} for SimpleCNN-BN.
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(b) Left to right: ||7y|| of the last BN layer early in training, A} early in training,
i / Mk for SimpleCNN-BN.

Figure 26: Evolution of various metrics that quantify conditioning of the loss surface for SimpleCNN
with with batch normalization layers (SimpleCNN-BN), for different batch sizes.
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