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ABSTRACT

Parallel developments in neuroscience and deep learning have led to mutually
productive exchanges, pushing our understanding of real and artificial neural net-
works in sensory and cognitive systems. However, this interaction between fields
is less developed in the study of motor control. In this work, we develop a virtual
rodent as a platform for the grounded study of motor activity in artificial models
of embodied control. We then use this platform to study motor activity across
contexts by training a model to solve four complex tasks. Using methods famil-
iar to neuroscientists, we describe the behavioral representations and algorithms
employed by different layers of the network using a neuroethological approach to
characterize motor activity relative to the rodent’s behavior and goals. We find
that the model uses two classes of representations which respectively encode the
task-specific behavioral strategies and task-invariant behavioral kinematics. These
representations are reflected in the sequential activity and population dynamics of
neural subpopulations. Overall, the virtual rodent facilitates grounded collabora-
tions between deep reinforcement learning and motor neuroscience.

1 INTRODUCTION

Animals have nervous systems that allow them to coordinate their movement and perform a diverse
set of complex behaviors. Mammals, in particular, are generalists in that they use the same general
neural network to solve a wide variety of tasks. This flexibility in adapting behaviors towards many
different goals far surpasses that of robots or artificial motor control systems. Hence, studies of the
neural underpinnings of flexible behavior in mammals could yield important insights into the classes
of algorithms capable of complex control across contexts and inspire algorithms for flexible control
in artificial systems (Merel et al., 2019b).

Recent efforts at the interface of neuroscience and machine learning have sparked renewed interest in
constructive approaches in which artificial models that solve tasks similar to those solved by animals
serve as normative models of biological intelligence. Researchers have attempted to leverage these
models to gain insights into the functional transformations implemented by neurobiological circuits,
prominently in vision (Khaligh-Razavi & Kriegeskorte, 2014;|Yamins et al.||2014; Kar et al.l|2019),
but also increasingly in other areas, including audition (Kell et al., [2018)) and navigation (Banino
et al., 2018}, |Cueva & Weil [2018). Efforts to construct models of biological locomotion systems have
informed our understanding of the mechanisms and evolutionary history of bodies and behavior
(Grillner et al., 2007 [jspeert et al., |2007; Ramdya et al., |2017; [Nyakatura et al., [2019). Neural
control approaches have also been applied to the study of reaching movements, though often in
constrained behavioral paradigms (Lillicrap & Scott, 2013)), where supervised training is possible
(Sussillo et al., [2015; Michaels et al., 2019).

While these approaches model parts of the interactions between animals and their environments
(Chiel & Beer, [1997), none attempt to capture the full complexity of embodied control, involving
how an animal uses its senses, body and behaviors to solve challenges in a physical environment.
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The development of models of embodied control is valuable to the field of motor neuroscience,
which typically focuses on restricted behaviors in controlled experimental settings. It is also valuable
for Al research, where flexible models of embodied control could be applicable to robotics.

Here, we introduce a virtual model of a rodent to facilitate grounded investigation of embodied motor
systems. The virtual rodent affords a new opportunity to directly compare principles of artificial
control to biological data from real-world rodents, which are more experimentally accessible than
humans. We draw inspiration from emerging deep reinforcement learning algorithms which now
allow artificial agents to perform complex and adaptive movement in physical environments with
sensory information that is increasingly similar to that available to animals (Peng et al., 2016} 2017
[Heess et al] 2017} [Merel et all 20194ic). Similarly, our virtual rodent exists in a physical world,
equipped with a set of actuators that must be coordinated for it to behave effectively. It also possesses
a sensory system that allows it to use visual input from an egocentric camera located on its head and
proprioceptive input to sense the configuration of its body in space.

There are several questions one could answer using the virtual rodent platform. Here we focus
on the problem of embodied control across multiple tasks. While some efforts have been made to
analyze neural activity in reduced systems trained to solve multiple tasks (Song et all 2017} [Yang
2019), those studies lacked the important element of motor control in a physical environment.
Our rodent platform presents the opportunity to study how representations of movements as well as
sequences of movements change as a function of goals and task contexts.

To address these questions, we trained our virtual rodent to solve four complex tasks within a physi-
cal environment, all requiring the coordinated control of its body. We then ask “Can a neuroscientist
understand a virtual rodent?” — a more grounded take on the originally satirical “Can a biologist fix a
radio?” or the more recent “Could a neuroscientist understand a microprocessor?”
(Tonas & Kording,[2017). We take a more sanguine view of the tremendous advances that have been
made in computational neuroscience in the past decade, and posit that the supposed ‘failure’ of these
approaches in synthetic systems is partly a misdirection. Analysis approaches in neuroscience were
developed with the explicit purpose of understanding sensation and action in real brains, and often
implicitly rooted in the types of architectures and processing that are thought relevant in biological
control systems. With this philosophy, we use analysis approaches common in neuroscience to ex-
plore the types of representations and dynamics that the virtual rodent’s neural network employs to
coordinate multiple complex movements in the service of solving motor and cognitive tasks.

2 APPROACH

2.1 VIRTUAL RODENT BODY

Figure 1: (A) Anatomical skeleton of a rodent (as reference; not part of physical simulation). (B) A
body designed around the skeleton to match the anatomy and model collisions with the environment.
(C) Purely cosmetic skin to cover the body. (D) Semi-transparent visualization of (A)-(C) overlain.

We implemented a virtual rodent body (Figure [T)) in MuJoCo (Todorov et al., 2012), based on mea-
surements of laboratory rats (see Appendix & The rodent body has 38 controllable degrees of
freedom. The tail, spine, and neck consist of multiple segments with joints, but are controlled by
tendons that co-activate multiple joints (spatial tendons in MuJoCo). The rodent will be released as
part of dm_control/locomotion.

The virtual rodent has access to proprioceptive information as well as “raw” egocentric RGB-camera
(64x64 pixels) input from a head-mounted camera. The proprioceptive inputs include internal


https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
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joint angles and angular velocities, the positions and velocities of the tendons that provide actua-
tion, egocentric vectors from the root (pelvis) of the body to the positions of the head and paws, a
vestibular-like upright orientation vector, touch or contact sensors in the paws, as well as egocentric
acceleration, velocity, and 3D angular velocity of the root.

2.2  VIRTUAL RODENT TASKS

Figure 2: Visualizations of four tasks the virtual rodent was trained to solve: (A) jumping over gaps
(“gaps run”), (B) foraging in a maze (“maze forage”), (C) escaping from a hilly region (“bowl es-
cape”), and (D) touching a ball twice with a forepaw with a precise timing interval between touches
(“two-tap”).

We implemented four tasks adapted from previous work in deep reinforcement learning and motor
neuroscience (Merel et al.| [2019a; [Tassa et al., 2018} [Kawai et al.,2015)) to encourage diverse motor
behaviors in the rodent. The tasks are as follows: (1) Run along a corridor, over “gaps”, with a
reward for traveling along the corridor at a target velocity (Figure 2JA). (2) Collect all the blue orbs
in a maze, with a sparse reward for each orb collected (Figure 2B). (3) Escape a bowl-shaped region
by traversing hilly terrain, with a reward proportional to distance from the center of the bowl (Figure
). (4) Approach orbs in an open field, activate them by touching them with a forepaw, and touch
them a second time after a precise interval of 800ms with a tolerance of +100ms; there is a time-out
period if the touch is not within the tolerated window and rewards are provided sparsely on the first
and second touch (Figure 2D). We did not provide the agent with a cue or context indicating its task.
Rather, the agent had to infer the task from the visual input and behave appropriately.

2.3 TRAINING A MULTI-TASK POLICY
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Figure 3: The virtual rodent agent architecture. Egocentric visual image inputs are encoded into
features via a small residual network and proprioceptive state observations are
encoded via a small multi-layer perceptron. The features are passed into a recurrent LSTM module
(Hochreiter & Schmidhuber, [1997). The core module is trained by backpropogation during training
of the value function. The outputs of the core are also passed as features to the policy module (with
the dashed arrow indicating no backpropogation along this path during training) along with shortcut
paths from the proprioceptive observations as well as encoded features. The policy module consists
of one or more stacked LSTMs (with or without skip connections) which then produce the actions
via a stochastic policy.

Emboldened by recent results in which end-to-end RL produces a single terrain-adaptive policy

(Peng et al,[2016} [2017; [Heess et al.,[2017), we trained a single architecture on the multiple motor-

control-reliant tasks (see Figure [3). To train a single policy to perform all four tasks, we used
an IMPALA-style setup for actor-critic DeepRL (Espeholt et al., 2018); parallel workers collected




Published as a conference paper at ICLR 2020

rollouts, logged them to a replay, from which a central learner sampled data to perform updates. The
value-function critic was trained using off-policy correction via V-trace. To update the actor, we
used a variant of MPO (Abdolmaleki et al., 2018) where the E-step is performed using advantages
determined from the empirical returns and the value-function, instead of the Q-function (Song et al.]
[2019). Empirically, we found that the “escape” task was more challenging to learn during interleaved
training relative to the other tasks. Consequently, we present results arising from training a single-
task expert on the escape task and training the multi-task policies using kickstarting for that task
(Schmitt et al ., 2018)), with a weak coefficient (.001 or .005). Kickstarting on this task made the seeds
more reliably solve all four tasks, facilitating comparison of the multi-task policies with different
architectures (i.e. the policy having 1, 2, or 3 layers, with or without skip connections across those
layers). The procedure yields a single neural network that uses visual inputs to determine how to
behave and coordinates its body to move in ways required to solve the tasks. See video examples of
a single policy solving episodes of each task: gaps| forage, escape, and two-tap,

3 ANALYSIS
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Figure 4: Ethology of the virtual rodent. (A) Example jumping sequence in gaps run task with a rep-
resentative subset of recorded behavioral features. Dashed lines denote the time of the corresponding
frames (top). (B) tSNE embedding of 60 behavioral features describing the pose and kinematics of
the virtual rodent allows identification of rodent behaviors. Points are colored by hand-labeling of
behavioral clusters identified by watershed clustering. (C) The first two principal components of
different behavioral features reveals that behaviors are more shared across tasks at short, 5-25 Hz
timescales (fast kinematics), but no longer 0.3-5 Hz timescales (slow kinematics).

We analyzed the virtual rodent’s neural network activity in conjunction with its behavior to char-
acterize how it solves multiple tasks (Figure [4JA). We used analyses and perturbation techniques
adapted from neuroscience, where a range of techniques have been developed to highlight the prop-
erties of real neural networks. Biological neural networks have been hypothesized to control, select,
and modulate movement through a variety of debated mechanisms, ranging from explicit neural
representations of muscle forces and behavioral primitives, to more abstract production of neural
dynamics that could underly movement (Graziano), [2006}, [Kalaska), [2009} [Churchland et all, [2012).
A challenge with nearly all of these models however is that they have largely been inspired by find-
ings from individual behavioral tasks, making it unclear how to generalize them to a broader range
of naturalistic behaviors. To provide insight into mechanisms underlying movement in the virtual
rodent, and to potentially give insight by proxy into the mechanisms underlying behavior in real
rats, we thus systematically tested how the different network layers encoded and generated different
aspects of movement.

For all analyses we logged the virtual rodent’s kinematics, joint angles, computed forces, sensory
inputs, and the cell unit activity of the LSTMs in core and policy layers during 25 trials per task
from each network architecture.


https://youtu.be/rFelC_YbeLE
https://youtu.be/vBIV1qJpJK8
https://youtu.be/6d0SX56Cn6Q
https://youtu.be/lBKwHzO-z_0

Published as a conference paper at ICLR 2020

3.1 VIRTUAL RODENTS EXHIBIT BEHAVIORAL FLEXIBILITY.

We began our analysis by quantitatively describing the behavioral repertoire of the virtual rodent. A
challenge in understanding the neural mechanisms underlying behavior is that it can be described at
many timescales. On short timescales, one could describe rodent locomotion using a set of actuators
that produce joint-specific patterns of forces and kinematics. However on longer timescales, these
force patterns are organized into coordinated, re-used movements, such as running, jumping, and
turning. These movements can be further combined to form behavioral strategies or goal-directed
behaviors. Relating neural representations to motor behaviors therefore requires analysis methods
that span multiple timescales of behavioral description. To systematically examine the classes of
behaviors these networks learn to generate and how they are differentially deployed across tasks,
we developed sets of behavioral features that describe the kinematics of the animal on fast (5-25
Hz), intermediate (1-25 Hz) or slow (0.3-5 Hz) timescales (Appendix [A.2] [A3]). As validation that
these features reflected meaningful differences across behaviors, embedding these features using
tSNE (Maaten & Hinton| |2008)) produced a behavioral map in which virtual rodent behaviors, were
segregated to different regions of the map (Figure fB)(see [video). This behavioral repertoire of the
virtual rodent consisted of many behaviors observed in rodents, such as rearing, jumping, running,
climbing and spinning. While the exact kinematics of the virtual rodent’s behaviors did not exactly
match those observed in real rats, they did reproduce unexpected features. For instance the stride
frequency of the virtual rodent during galloping matches that observed in rats (Appendix [A.3).

We next investigated how these behaviors were used by the virtual rodent across tasks. On short
timescales, low-level motor features like joint speed and actuator forces occupied similar regions
in principal component space (Figure @[C). In contrast, behavioral kinematics, especially on long,
0.3-5 Hz timescales, were more differentiated across tasks. Similar results held when examining
overlap in other dimensions using multidimensional scaling. Overall this suggests that the network
learned to adapt similar movements in a selective manner for different tasks, suggesting that the
agent exhibited a form of behavioral flexibility.

3.2 NETWORKS PRIMARILY REFLECT BEHAVIORS, NOT FORCES
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Figure 5: Representational structure of the rodent’s neural network. (A) Example similarity matrices
of neural networks and behavioral descriptors. We grouped behavioral descriptors into 50 clusters
that and we computed the average neural population vector during each cluster (AppendixA.4).
Similarity was assessed by computing the dot product of either the neural population vector or the
behavioral feature vector within each cluster. (B) Centered Kernel Alignment (CKA) index of neural
and behavioral feature similarity matrices for 3 and 1 policy layer architectures. (C) CKA index of
feature similarity matrices across all pairs of network layers. (D) Average CKA index between core
and policy layers and behavioral features, compared across architectures. Points show values from
individual network seeds. Policy values are averaged across layers.

We next examined the neural activity patterns underlying the virtual rodent’s behavior to test if net-
works produced behaviors through explicit representations of forces, kinematics or behaviors. As


https://youtu.be/u6o42dsRjF4
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expected, core and policy units operate on distinct timescales (See Appendix [A.3] Figure[9). Units
in the core typically fluctuated over timescales of 1-10 seconds, likely representing variables asso-
ciated with context and reward. In contrast, units in policy layers were more active over subsecond
timescales, potentially encoding motor and behavioral features.

To quantify which aspects of behavior were encoded in the core and policy layers, and how these pat-
terns varied across layers, we used representational similarity analysis (RSA) (Kriegeskorte et al.,
2008 |[Kriegeskorte & Diedrichsen, [2019). RSA provides a global measure of how well different
features are encoded in layers of a neural network by analyzing the geometries of network activity
upon exposure to several stimuli, such as objects. To apply RSA, first a representational similarity
(or equivalently, dissimilarity) matrix is computed that quantifies the similarity of neural population
responses to a set of stimuli. To test if different neural populations show similar stimulus encodings,
these similarity matricies can then be directly compared across different network layers. Multiple
metrics, such as the matrix correlation or dot product can be used to compare these neural represen-
tational similarity matricies. Here we used the linear centered kernel alignment (CKA) index, which
shows invariance to orthonormal rotations of population activity (Kornblith et al.,2019).

RSA can also be used to directly test how well a particular stimulus feature is encoded in a popula-
tion. If each stimuli can be quantitively described by one or more feature vectors, a similarity matrix
can also be computed across the set of stimuli themselves. The strength of encoding of a particular
set of features can by measured by comparing the correlation of the stimulus feature similarity ma-
trix and the neuronal similarity matrix. The correlation strength directly reflects the ability of a linear
decoder trained on the neuronal population vector to distinguish different stimuli (Kriegeskorte &
Diedrichsen, 2019). Unlike previous applications of RSA in the analysis of discrete stimuli such as
objects, (Khaligh-Razavi & Kriegeskorte, 2014; Yamins et al.,2014) behavior evolves continuously.
To adapt RSA to behavioral analysis, we partitioned time by discretizing each behavioral feature
into 50 clusters (Appendix [A.4).

As expected, RSA revealed that core and policy layers encoded somewhat distinct behavioral fea-
tures. Policy layers contained greater information about fast timescale kinematics in a manner that
was largely conserved across layers, while core layers showed more moderate encoding of kinemat-
ics that was stronger for slow behavioral features (Figure [5B,C). This difference in encoding was
largely consistent across all architectures tested (Figure [5D).

The feature encoding of policy networks was somewhat consistent with the emergence of a hier-
archy of behavioral abstraction. In networks trained with three policy layers, representations were
distributed in timescales across layers, with the last layer (policy 2) showing stronger encoding of
fast behavioral features, and the first layer (policy 0) instead showing stronger encoding of slow
behavioral features. However, policy layer activity, even close to the motor periphery, did not show
strong explicit encoding of behavioral kinematics or forces.

3.3 BEHAVIORAL REPRESENTATIONS ARE SHARED ACROSS TASKS

We then investigated the degree to which the rodent’s neural networks used the same neural represen-
tations to produce behaviors, such as running or spinning, that were shared across tasks. Embedding
population activity into two-dimensions using multidimensional scaling revealed that core neuron
representations were highly distinct across all tasks, while policy layers contained more overlap
(Figure [6]A), suggesting that some behavioral representations were re-used. Comparison of rep-
resentational similarity matricies for behaviors that were shared across tasks revealed that policy
layers tended to possess a relatively similar encoding of behavioral features, especially fast behav-
ioral features, over tasks (Figure [6IC; Appendix [A.4). This was validated by inspection of neural
activity during individual behaviors shared across tasks (Appendix [A.5] Figure[I0). Core layer rep-
resentations across almost all behavioral categories were more variable across tasks, consistent with
encoding behavioral sequences or task variables.

Interestingly, when comparing this cross-task encoding similarity across architectures, we found that
one layer networks showed a marked increase in the similarity of behavioral encoding across tasks
(Figure [BD). This suggests that in networks with lower computational capacity, animals must rely
on a smaller, shared behavioral representation across tasks.
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Figure 6: Policy representations are shared across tasks. (A) Two-dimensional multidimensional
scaling embeddings of core and policy activity shows that while policy representations overlap
across some tasks, core representations are largely distinct. (B) CKA index of the policy 2 and
core network representations of behavioral features during behaviors shared across different tasks
(Appendix [A). Policy 2, but not core networks show similar encoding patterns across the across
the maze forage and two-tap tasks, as well as the gaps run and maze forage tasks, consistent with the
shared behaviors used across these tasks. (C) The similarity of behavioral feature encoding (CKA
index) across different architectures demonstrates that networks with fewer layers show greater sim-
ilarity across tasks. Points show values from individual seeds.

3.4 NEURAL POPULATION DYNAMICS ARE SYNCHRONIZED WITH BEHAVIOR
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Figure 7: Neurons in core and policy networks show sequential activity during stereotyped behavior.
(A) Example video stills showing the virtual rodent engaged in the two-tap task (B) Average absolute
z-scored activity traces of all 128 neurons in each layer during performance of the two-tap sequence.
Traces are sorted by the time of peak average firing rate. Dashed lines indicate the times of first and
second taps. Sequential neural activity is present during the two-tap sequence.

While RSA described which behavioral features were represented in core and policy activity, we
were also interested in describing how neural activity changes over time to produce different behav-
iors. We began by analyzing neural activity during the production of stereotyped behaviors. Activity
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patterns in the two-tap task showed peak activity in core and policy units that was sequentially orga-
nized (Figure [7), uniformly tiling time between both taps of the two-tap sequence. This sequential
activation was observed across tasks and behaviors in the policy network, including during running
(see video) where, consistent with policy networks encoding short-timescale kinematic features in a
task-invariant manner, neural activity sequences were largely conserved across tasks (See Appendix
[A’3] Figure[I0). These sequences were reliably repeated across instances of the respective behaviors,
and in the case of the two-tap sequence, showed reduced neural variability relative to surrounding
timepoints (See Appendix [A.6] Figure[TT).
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Figure 8: Latent network dynamics within tasks reflect rodent behavior on different timescales. (A)
Vector field representation of the first two principal components of neural activity in the core and
final policy layers during the two-tap task. PC spaces show signatures of rotational dynamics. (B)
Vector field representation of first two jPC planes for the core and final policy layers during the two-
tap task. Apparent rotations within the different planes are associated with behaviors and behavioral
features of different timescales, labeled above. Columns denote layer (as in (A)), while rows denote
jPC plane. (C) Characteristic frequency of rotations within each jPC plane. Groups of three points
respectively indicate the first, second, and third jPC planes for a given layer. Rotations in the core
are slower than those in the policy. (D) Variance explained by each jPC plane.

The finding of sequential activity hints at a putative mechanism for the rodent’s behavioral pro-
duction. We next hoped to systematically quantify the types of sequential and dynamical activity
present in core and policy networks without presupposing the behaviors of interest. To describe
population dynamics in relation to behavior, we first applied principal components analysis (PCA)
to the activity during the performance of single tasks, and visualized the gradient of the population
vector as a vector field. Figure[8JA shows such a vector field representation of the first two principal
components of the core and final policy layer during the two-tap task. We generated vector fields
by discretizing the PC space into a two-dimensional grid and calculating the average neural activity
gradient with respect to time for each bin.

The vector fields showed strong signatures of rotational dynamics across all layers, likely a signature
of previously described sequential activity. To extract rotational patterns, we used jPCA, a dimen-
sionality reduction method that extracts latent rotational dynamics in neural activity
2012). The resulting jPCs form an orthonormal basis that spans the same space as the first
six traditional PCs, while maximally emphasizing rotational dynamics. Figure[§B shows the vector
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fields of the first two jPC planes for the core and final policy layers along with their characteristic
frequency. Consistent with our previous findings, jPC planes in the core have lower characteristic
frequencies than those in policy layers across tasks (Figure [8IC). The jPC planes also individually
explained a large percentage of total neural variability (Figure [8D).

These rotational dynamics in the policy and core jPC planes were respectively associated with the
production of behaviors and the reward structure of the task. For example, in the two-tap task,
rotations in the fastest jPC plane in the core were concurrent with the approach to reward, while
rotations in the second fastest jPC were concurrent with long timescale transitions between running
to the orb and performing the two-tap sequence. Similarly, the fastest jPC in policy layers was corre-
lated with the phase of running, while the second fastest was correlated with the phase of the two-tap
sequence (video). This trend of core and policy neural dynamics respectively reflecting behavioral
and task-related features was also present in other tasks. For example, in the maze forage task, the
first two jPC planes in the core respectively correlated with reaching the target orb and discovering
the location of new orbs, while those in the policy were correlated with low-level locomotor features
such as running phase (video). Along with RSA, these findings support a model in which the core
layer transforms sensory information into a contextual signal in a task-specific manner. This signal
then modulates activity in the policy toward different trajectories that generate appropriate behav-
iors in a more task-independent fashion. For a more complete set of behaviors with neural dynamics
visualizations overlaid, see Appendix

3.5 NEURAL PERTURBATIONS CORROBORATE DISTINCT ROLES ACROSS LAYERS

To causally demonstrate the differing roles of core and policy units in respectively encoding task-
relevant features and movement, we performed silencing and activation of different neuronal subsets
in the two-tap task. We identified two stereotyped behaviors (rears and spinning jumps) that were
reliably used in two different seeds of the agent to reach the orb in the task. We ranked neurons
according to the degree of modulation of their z-scored activity during the performance of these
behaviors. We then inactivated subsets of neurons by clamping activity to the mean values between
the first and second taps and observed the effects of inactivation on trial success and behavior.

In both seeds analyzed, inactivation of policy units had a stronger effect on motor behavior than the
inactivation of core units. For instance, in the two-tap task, ablation of 64 neurons in the final policy
layer disrupts the performance of the spinning jump (Appendix [A.8|Figure [[2]B [video). In contrast,
ablation of behavior-modulated core units did not prevent the production of the behavior, but mildly
affected the way in which the behavior is directed toward objects in the environment. For example,
ablation of a subset of core units during the performance of a spinning jump had a limited effect, but
sometimes resulted in jumps that missed the target orbs (video; See Appendix Figure[12[C).

We also performed a complementary perturbation aimed to elicit behaviors by overwriting the cell
state of neurons in each layer with the average time-varying trajectory of neural activity measured
during natural performance of a target behavior. The efficacy of stimulation was found to depend
on the gross body posture and behavioral state of an animal, but was nevertheless successful in
some cases. For example, during the two-tap sequence, we were able to elicit spinning movements
common to searching behaviors in the forage task (video; See Appendix Figure [I2]D, E). The
efficacy of this activation was more reliable in layers closer to the motor output (Figure [[2D). In
fact, activation of core units rarely elicited spins, but rather elicited sporadic dashes reminiscent of
the searching strategy of many models during the forage task (video).

4 DISCUSSION

For many computational neuroscientists and artificial intelligence researchers, an aim is to reverse-
engineer the nervous system at an appropriate level of abstraction. In the motor system, such an
effort requires that we build embodied models of animals equipped with artificial nervous systems
capable of controlling their synthetic bodies across a range of behavior. Here we introduced a virtual
rodent capable of performing a variety of complex locomotor behaviors to solve multiple tasks using
a single policy. We then used this virtual nervous system to study principles of the neural control
of movement across contexts and described several commonalities between the neural activity of
artificial control and previous descriptions of biological control.


https://youtu.be/w51o3XGnHnc
https://youtu.be/XV3tz1bpjdg
https://youtu.be/BITPVZB7k28
https://youtu.be/dprddh-Olr8 
https://youtu.be/IvwKp6tZuf4
https://youtu.be/9uWd6WLCllw
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A key advantage of this approach relative to experimental approaches in neuroscience is that we can
fully observe sensory inputs, neural activity, and behavior, facilitating more comprehensive testing
of theories related to how behavior can be generated. Furthermore, we have complete knowledge
of the connectivity, sources of variance, and training objectives of each component of the model,
providing a rare ground truth to test the validity of our neural analyses. With these advantages
in mind, we evaluated our analyses based on their capacity to both describe the algorithms and
representations employed by the virtual rodent and recapitulate the known functional objectives
underlying its creation without prior knowledge.

To this end, our description of core and policy as respectively representing value and motor pro-
duction is consistent with the model’s actor-critic training objectives. But beyond validation, our
analyses provide several insights into how these objectives are reached. RSA revealed that the cell
activity of core and policy layers had greater similarity with behavioral and postural features than
with short-timescale actuators. This suggests that the representation of behavior is useful in the
moment-to-moment production of motor actions in artificial control, a model that has been pre-
viously proposed in biological action selection and motor control (Mink, 1996 (Graziano, 2006).
These behavioral representations were more consistent across tasks in the policy than in the core,
suggesting that task context and value activity in the core engaged task-specific behavioral strategies
through the reuse of shared motor activity in the policy.

Our analysis of neural dynamics suggests that reused motor activity patterns are often organized as
sequences. Specifically, the activity of policy units uniformly tiles time in the production of several
stereotyped behaviors like running, jumping, spinning, and the two-tap sequence. This finding is
consistent with reports linking sequential neural activity to the production of stereotyped motor and
task-oriented behavior in rodents (Berke et al.,[2009; |Rueda-Orozco & Robbe, 2015; Dhawale et al.,
2019), including during task delay periods (Akhlaghpour et al.| [2016), as well as in singing birds
(Albert & Margoliash, |1996; Hahnloser et al.l |2002)). Similarly, by relating rotational dynamics
to the virtual rodent’s behavior, we found that different behaviors were seemingly associated with
distinct rotations in neural activity space that evolved at different timescales. These findings are
consistent with a hierarchical control scheme in which policy layer dynamics that generate reused
behaviors are activated and modulated by sensorimotor signals from the core.

This work represents an early step toward the constructive modeling of embodied control for the
purpose of understanding the neural mechanisms behind the generation of behavior. Incrementally
and judiciously increasing the realism of the model’s embodiment, behavioral repertoire, and neural
architecture is a natural path for future research. Our virtual rodent possesses far fewer actuators
and touch sensors than a real rodent, uses a vastly different sense of vision, and lacks integration
with olfactory, auditory, and whisker-based sensation (see Zhuang et al.l [2017). While the virtual
rodent is capable of locomotor behaviors, an increased diversity of tasks involving decision making,
memory-based navigation, and working memory could give insight into “cognitive” behaviors of
which rodents are capable. Furthermore, biologically-inspired design of neural architectures and
training procedures should facilitate comparisons to real neural recordings and manipulations. We
expect that this comparison will help isolate residual elements of animal behavior generation that
are poorly captured by current models of motor control, and encourage the development of artificial
neural architectures that can produce increasingly realistic behavior.
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A APPENDIX

A.1 RAT MEASUREMENTS

To construct the virtual rodent model, we obtained the mass and lengths of the largest body segments
that influence the physical properties of the virtual rodent. First, we dissected cadavers of two
female Long-Evans rats, and measured the mass of relevant limb segments and organs. Next, we
measured the lengths of body segments over the skin of animals anesthetized with 2% v/v isoflurane
anesthesia in oxygen. We confirmed that these skin based measurements approximated bone lengths
by measuring bone lengths in a third cadaver. The care and experimental manipulation of all animals
were reviewed and approved by the appropriate Institutional Animal Care and Use Committee.

Animal (#)
63 64
Body part Mass (g)  Average mass (g)

Hindlimb L 21 26 23.5
Hindlimb R 21 26 23.5
Tail 8 10 9
Forelimb R 11 14 12.5
Forelimb L 12 13 12.5
Full torso 176 187 181.5
Head 26 26 26
Upper torso 78 71 74.5
Lower torso 98 114 106
Torso without organs 54 58 56
Intestines and stomach 22 32 27
Liver 26 17 21.5
Pelvis and kidneys 74 80 77
Jaw 243 470 3.57
Skull 23 21 22
Tail (base to mid) 5.92 7.20 6.56
Tail (mid to tip) 1.78 2.30 2.04
Scapula L 3.19 4.0 3.94
Humerus L 6.25 4.70 5.48
Radius/ulna L 2.61 28 2.70
Forepaw L 0.53 0.5 0.52
Scapula R 223 39 3.07
Humerus R 6.08 6.7 6.39
Radius/ulna R 217 33 2.74
Forepaw R 0.53 05 0.52
Hindpaw L 1.66 1.7 1.68
Tibia L 9 9 9
Femur L 13 16 14.5
Hindpaw R 1.81 1.6 1.71
Tibia R 5 6 5.5
Femur R 13 18 15.5
Total 281 301 291

Table 1: Before weighing, limb segments were divided at their respective joints. Mass of all seg-
ments includes all bones, skin, muscle, fascia and adipose layers. L and R refer to the left and right
sides of the animal. Precision of measurements listed without decimal places is £0.5g
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Animal (#)

48 62 55 56 64 63 62*  Average + std
Age (days) 382 82 330 330 83 83 83
Mass (g) 325 273 389 348 283 269 273 309 4+ 47
Body part Length (mm)
Ankle to claw L 40.2 395 39.7 37.8 39.9 41.5 39.8 398 £ 1.1
Ankle to toe L 384 38.12 37.7 35.6 36.6 39.3 38 3774+12
Ankle to pad L 234 222 23 22.12 22.5 23.3 6.4 204 £ 6.2
Ankle to claw R 38.2 40.4 38.3 39.3 39.6 38.3 39.0+0.9
Ankle to toe R 37 38.7 36.3 37.7 38.6 36.2 374+ 1.1
Ankle to pad R 22.4 23.3 21.9 21.8 23.1 24.1 22.84+0.9
Tibia L 50 36.3 38.5 49.2 35.8 38.7 34.1 404 + 6.5
Femur L 445 31.6 32.1 37.9 334 3535 324 3534+4.6
Tibia R 36.7 39.1 37.9 35.1 38.4 36.18 372+1.5
Femur R 329 32.1 38.7 31.9 32.1 32.6 334426
Pelvis 25.8 32 31.7 30.2 26.7 27.2 289427
Wrist to claw L 15 18.8 17.6 18.6 16 19.02 19.2 177+ 1.6
Wrist to finger L 16 15.8 17.4 15.5 17.07 17.6 16.6 = 0.9
Wrist to pad L 6 6.4 8.34 4.9 6.1 6.4 6.4+ 1.1
Wrist to olecranon L. 29.1 34 32.5 31.7 33.9 32.1 29.9 31.9+1.9
Humerus L 319 29.52 31 28.2 27 31.2 254 292424
Scapula L 227 24 26.4 29.3 25.9 29.1 26.2 262 +24
Wrist to claw R 16.8 17 17.8 15.9 16.3 18.1 17.0 £ 0.8
Wrist to finger R 14.1 13 15.6 15.6 15.3 16.9 151+14
Wrist to pad R 5.6 5.8 6.55 5.2 5 5.8 5.7+0.5
Wrist to olecranon R 30.6 33.5 31.2 30.4 31.8 29.9 31.2+1.3
Humerus R 28.2 33.5 28.8 25 28.2 25.2 28.1 3.1
Scapula R 23.8 29.5 25.9 26.2 28.8 24.4 264 +23
Headcap width 39 39
Headcap length 30 30
Skull width 38.8 2335 23 21.8 22.8 23.9 222 25.1+6.1
Skull length 57 51.1 61 56.48 53.16 58.13 48 55.0+45
Skull height 21.59 21.5 21 2144+03
Head to thoracic 48.6 71.4 68.68 65 60.4 71.2 64.2 + 8.7
Thoracic to sacral 73.1 73.6 62.9 65.04 64.7 68.8 68.0 £ 4.6
Head to sacral 145 126 1455 127.05 127.2 12377 1409 133.6 £9.7
Head width 53.4 53.4
Ear 18 17.55 19.3 17.9 19.2 18.8 18.5 4+ 0.7
Eye 7.2 8.25 8.6 8.8 8.2 8.3 8.24+06

Table 2: Length measurements of limb segments used to construct the virtual rodent model from 7
female Long-Evans rats. Measurements were performed using calipers either over the skin or over
dissected bones (*). Thoracic and sacral refer to vertebral segments. L and R refer to the left and

right sides of the animal’s body.
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A.2 BEHAVIORAL ANALYSIS

We generated features describing the whole-body pose and kinematics of the virtual rodent on fast,
intermediate, and slow temporal scales. To describe the whole-body pose, we took the top 15 prin-
cipal components of the virtual rodent’s joint angles and joint positions to yield two 15 dimensional
sets of eigenpostures (Stephens et al.,|2008)). We combined these into a 30 dimensional set of postu-
ral features. To describe the animal’s whole-body kinematics, we computed the continuous wavelet
transform of each eigenposture using a Morlet wavelet spanning 25 scales. For each set of eigen-
postures this yielded a 375 dimensional time-frequency representation of the underlying kinematics.
We then computed the top 15 principal components of each 375 dimensional time-frequency repre-
sentation and combined them to yield a 30 dimensional representational description of the animal’s
behavioral kinematics. To facilitate comparison of kinematics to neural representations on differ-
ent timescales, we used three sets of wavelet frequencies on 1 to 25 Hz (intermediate), 0.3 to 5 Hz
(slow) or 5-25 Hz (fast) timescales. In separate work, we have found that combining postural and
kinematic information improves separation of animal behaviors in behavioral embeddings. There-
fore, we combined postural and dynamical features, the later on intermediate timescales, to yield a
60 dimensional set of ‘behavioral features’ that we used to map the animal’s behavior using tSNE
(Figure B[C) (Berman et al., [2014). tSNEs were made using the Barnes-Hut approximation with a
perplexity of 30.

A.3 POWER SPECTRAL DENSITY OF BEHAVIOR AND NETWORK ACTIVITY

A Joint speed Kinematics (fast) B Core ——Policy 1
Forces == Kinematics (slow) ——Policy 0 =——Policy 2
i 0, Locomotion o Locomotion
Z >
%) h=4
5§72 F 2-2
a 9]
E =
© b=
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Figure 9: (A) Power spectral density estimates of four different features describing animal behavior,
computed by averaging the spectral density of the top ten principal components of each feature,
weighted by the variance they explain. (B) Power spectral density estimates of four different net-
work layers, computed by averaging the spectral density of the top ten principal components of each
matrix of activations, weighted by the variance they explain. Notice that policy layers have more
power in high frequency bands than core layers. Arrows mark peaks in the power spectra corre-
sponding to locomotion. Notably, the 4-5 Hz frequency of galloping in the virtual rat matches that
measured in laboratory rats (Heglund & Taylor, |1988)). Power spectral density was computed using
Welch’s method using a 10 s window size and 5 s overlap.
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A.4 REPRESENTATIONAL SIMILARITY ANALYSIS

We used representational similarity analysis to compare population representations across different
network layers and to compute the encoding strength of different features describing animal behavior
in the population. Representational similarity analysis has in the past been used to compare neural
population responses in tasks where behavioral stimuli are discrete, for instance corpuses of objects
or faces (Kriegeskorte et al.| | 2008} [Kriegeskorte & Diedrichsen) 2019). A challenge in scaling such
approaches to neural analysis in the context of behavior is that behavior unfolds continuously in
time. It is thus a priori unclear how to discretize behavior into discrete chunks in which to compare
representations.

Formally, we defined eight sets of features B;—1 g describing the behavior of the animal on different
timescales. These included features such as joint angles, the angular speed of the joint angles,
eigenposture coefficients, and actuator forces that vary on short timescales, as well as behavioral
kinematics, which vary on longer timescales and ‘behavioral features’, which consisted of both
kinematics and eigenpostures. Each feature set is a matrix B; € RM®9% where M is the number of
timepoints in the experiment and g; is the number of features in the set. We discretized each set B;
using k-means clustering with k£ = 50 to yield a partition of the timepoints in the experiment P;.

Using the discretization defined in P;, we can perform representational similarity analysis to com-
pare the structure of population responses across neural network layers L,, and L,, or between a
given network layer and features of the behavior B;. Following notation in (Kornblith et al., [2019)
we let X € R**P be a matrix of population responses across p neurons and the k behavioral cat-
egories in P;. We let Y € R¥?4 be either the matrix of population responses from ¢ neurons in a
distinct network layer, or a set of ¢ features describing the behavior of the animal in the feature set
B;.

After computing the response matricies in a given behavioral partition, we compared the representa-
tional structure of the matricies X X7 and YY”. To do so, we compute the similarity between these
matricies using the linear Centered Kernel Alignment index, which is invariant under orthonormal
rotations of the population activity. Following (Kornblith et al.,[2019)), the CKA coeffient is:

CKAXXT,yYT) = HTXYT”FT (1)
[XXTeIYY T r
Where || - || is the Frobenius norm. For centered X and Y, the numerator is equivalent to the

dot-product between the vectorized responses || XY 1|z = (vec(X XT), vec(YYT)).

For a given network layer L,,,, and a behavioral partition P;, we can denote X X7 = DIL% = Dj".
Similarly, for a given feature set B;, let D%’ = D!. Thus we are interested in characterizing both
CKA (D", D) 2)
and ‘
CKA (DZ-", D;) . 3)
The former equation describes the similarity across two layers of the network, and the later describes
the similarity of the network activity to a set of behavioral descriptors.

An additional challenge comes when restricting this analysis to comparing the neural representations
of behavioral across different tasks T,, T3, where not all behaviors are necessarily used in each task.
To make such a comparison, we denote B;(T,) to be the set of behavioral clusters observed in task
T,, and BiT Ty — B;i(T,) N B;(Ty) to be the set of behaviors used in each of the two tasks. We

can then define a restricted partition of timepoints for each task PiT o To o PiT’)"T“ that includes only
these behaviors, and compute the representational similarity between the same layer across tasks:

CKA( ZLTG7DZ7T17) . 4)

We have presented a means of performing representational similarity analysis across continuous
time domains, where the natural units of discretization are unclear and likely manifold. While we
focused on analyzing responses on the population level, it is likely that different subspaces of the
population may encode information about distinct behavioral features at different timescales, which
is still an emerging domain in representational similarity analysis techniques.
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A.5 NEURAL POPULATION ACTIVITY ACROSS TASKS DURING RUNNING

Running activity

Bowl escape Gaps run Maze forage Two-tap

Bowl escape

Gaps run

Sorted by:

o
ol
Absolute average
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Maze forage

Two-tap

Time (s)

Figure 10: Average activity in the final policy layer (policy 2) during running cycles across different
tasks. In each heatmap, rows correspond to the absolute averaged z-scored activity for individ-
ual neurons, while columns denote time relative to the mid stance of the running phase. Across
heatmaps, neurons are sorted by the time of peak activity in the tasks denoted on the left, such
that each column of heatmaps contains the same average activity information with rearranged rows.
Aligned running bouts were acquired by manually segmenting the the principal component space of
policy 2 activity to find instances of mid-stance running and analyzing the surrounding 200 ms.
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A.6 STEREOTYPED BEHAVIOR INITIATION AND NEURAL VARIABILITY

During the execution of stereotyped behaviors, neural variability was reduced (Figure [TT). Recall
that in our setting, neurons have no intrinsic noise, but inherit motor noise through observations of
the state (i.e. via sensory reafference). This effect loosely resembles, and perhaps informs one line
of interpretation of the widely reported phenomenon of neural variability reducing with stimulus or
task onset (Churchland et all, 2010). Our reproduction of this effect, which simply emerges from
training, suggests that variance modulation may partly arise from moments in a task that benefit
from increased behavioral precision (Renart & Machens| [2014).
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Figure 11: Quantification of neural variability in inter-tap interval of two-tap task relative to the
second tap. (A) Example normalized activity traces of ten randomly selected neurons in the final
policy layer. Lines indicate mean normalized activity whiles shaded regions range from the 20th
percentile to the 80th percentile. Dashed lines indicate the times of first and second taps. (B)
Standard deviation of normalized activity across all neurons in the final policy layer as a function
of time relative to the second tap. Lines indicate the mean standard deviation while shaded regions
range from the 20th percentile to the 80th percentile. Observe that variability is reduced during the
two-tap interval.

A.7 NEURAL DYNAMICS VISUALIZED DURING TASK BEHAVIOR

For completeness, we provide links to videos of a few variants of neural dynamics for each task.

Network Visualization Task (link)

1-layer policy PCA gaps
PCA forage
PCA escape
PCA two-tap

3-layer policy PCA gaps
PCA forage
PCA escape
PCA two-tap

3-layer policy jPCA gaps
jPCA forage
jPCA escape
jPCA two-tap

Table 3: Links to representative visualizations of neural dynamics and behavior
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https://youtu.be/YviE8ZdOs-o
https://youtu.be/Pmp63jCZ9R8
https://youtu.be/VuQKHV25Dd8
https://youtu.be/tC6bMF8ZWaM
https://youtu.be/zYJEWG13SAw
https://youtu.be/1FvNZ8f1BFU
https://youtu.be/63REKsR8Mbo
https://youtu.be/xfYb8hnNrUs
https://youtu.be/O_7BUT3FVXk
https://youtu.be/XV3tz1bpjdg
https://youtu.be/ac-2km9jfL8
https://youtu.be/w51o3XGnHnc
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A.8 PERTURBATION RESULTS

A = Fi Inter ta policy2  |Bad spin jum
1 — Core First tap P inactivation p J P
TD; s P0licy0 < L ' *
En8 . Pn\icyl
E — Policy2
E 206
3
& coq
Soz|
<
D () —
TR
W 1 First tap
=
=08}
o U
£ g. % 06
= o
£ Scos
=R =4
v 202
e
a
0
16 64 128 \ -
Number of Neurons . TARN
= HFirst tap Inter tap Policy

activation

Proportion elicited spins

16 64 128
Number of Neurons

Figure 12: Causal manipulations reveal distinct roles for core and policy layers in the production
of behavior. (A) Two-tap accuracy during the inactivation of units modulated by idiosyncratic be-
haviors within the two-tap sequence. Core inactivation has a weaker negative effect on trial success
than policy inactivation for several levels of inactivation. (B) Representative example of a failed
trial during inactivation of the final policy layer in a model that performs a spinning jump during the
two-tap sequence. The model is incapable of producing the spinning jump behavior while inacti-
vated. (C) Representative example of a failed trial during core inactivation in a model that performs
a spinning jump during the two-tap sequence. The model is still able to perform the spinning jump
behavior, but misses the orb. (D) Proportion of attempts at stimulation that successfully elicited spin
behavior during the two-tap task. The efficacy of this activation was more reliable in layers closer
to the motor output. (E) Representative example of a single trial in which an extra spin occurs after
policy 2 activation.
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