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ABSTRACT

Likelihood-based generative models are a promising resource to detect out-of-
distribution (OOD) inputs which could compromise the robustness or reliability
of a machine learning system. However, likelihoods derived from such models
have been shown to be problematic for detecting certain types of inputs that sig-
nificantly differ from training data. In this paper, we pose that this problem is
due to the excessive influence that input complexity has in generative models’
likelihoods. We report a set of experiments supporting this hypothesis, and use
an estimate of input complexity to derive an efficient and parameter-free OOD
score, which can be seen as a likelihood-ratio, akin to Bayesian model compari-
son. We find such score to perform comparably to, or even better than, existing
OOD detection approaches under a wide range of data sets, models, model sizes,
and complexity estimates.

1 INTRODUCTION

Assessing whether input data is novel or significantly different than the one used in training is critical
for real-world machine learning applications. Such data are known as out-of-distribution (OOD)
inputs, and detecting them should facilitate safe and reliable model operation. This is particularly
necessary for deep neural network classifiers, which can be easily fooled by OOD data (Nguyen
et al., 2015). Several approaches have been proposed for OOD detection on top of or within a neural
network classifier (Hendrycks & Gimpel, 2017; Lakshminarayanan et al., 2017; Liang et al., 2018;
Lee et al., 2018). Nonetheless, OOD detection is not limited to classification tasks nor to labeled
data sets. Two examples of that are novelty detection from an unlabeled data set and next-frame
prediction from video sequences.

A rather obvious strategy to perform OOD detection in the absence of labels (and even in the pres-
ence of them) is to learn a density model M that approximates the true distribution p* (X’) of training
inputs x € X (Bishop, 1994). Then, if such approximation is good enough, that is, p(x| M) ~ p*(x),
OOD inputs should yield a low likelihood under model M. With complex data like audio or images,
this strategy was long thought to be unattainable due to the difficulty of learning a sufficiently good
model. However, with current approaches, we start having generative models that are able to learn
good approximations of the density conveyed by those complex data. Autoregressive and invertible
models such as PixelCNN++ (Salimans et al., 2017) and Glow (Kingma & Dhariwal, 2018) perform
well in this regard and, in addition, can approximate p(x| M) with arbitrary accuracy.

Recent works, however, have shown that likelihoods derived from generative models fail to distin-
guish between training data and some OOD input types (Choi et al., 2018; Nalisnick et al., 2019a;
Hendrycks et al., 2019). This occurs for different likelihood-based generative models, and even
when inputs are unrelated to training data or have totally different semantics. For instance, when



Published as a conference paper at ICLR 2020

P

@)

e A

= e CIFARI1O0 (Train)

E / CIFARIO (Test)

2 TrafficSign (Test)

£ = SVHN (Test)

o]

8

: S

20.0 0.1 0.2 0.3 0.4 0.5 0.6
pxIM)

Figure 1: Likelihoods from a Glow model trained on CIFAR10. Qualitatively similar results are
obtained for other generative models and data sets (see also results in Choi et al., 2018; Nalisnick
et al., 2019a).

trained on CIFAR10, generative models report higher likelihoods for SVHN than for CIFAR10 itself
(Fig. 1; data descriptions are available in Appendix A). Intriguingly, this behavior is not consistent
across data sets, as other ones correctly tend to produce likelihoods lower than the ones of the train-
ing data (see the example of TrafficSign in Fig. 1). A number of explanations have been suggested
for the root cause of this behavior (Choi et al., 2018; Nalisnick et al., 2019a; Ren et al., 2019) but,
to date, a full understanding of the phenomenon remains elusive.

In this paper, we shed light to the above phenomenon, showing that likelihoods computed from
generative models exhibit a strong bias towards the complexity of the corresponding inputs. We find
that qualitatively complex images tend to produce the lowest likelihoods, and that simple images
always yield the highest ones. In fact, we show a clear negative correlation between quantitative
estimates of complexity and the likelihood of generative models. In the second part of the paper, we
propose to leverage such estimates of complexity to detect OOD inputs. To do so, we introduce a
widely-applicable OOD score for individual inputs that corresponds, conceptually, to a likelihood-
ratio test statistic. We show that such score turns likelihood-based generative models into practical
and effective OOD detectors, with performances comparable to, or even better than the state-of-the-
art. We base our experiments on an extensive collection of alternatives, including a pool of 12 data
sets, two conceptually-different generative models, increasing model sizes, and three variants of
complexity estimates.

2 COMPLEXITY BIAS IN LIKELIHOOD-BASED GENERATIVE MODELS

From now on, we shall consider the log-likelihood of an input x given a model M: fp(x) =
log, p(x| M). Following common practice in evaluating generative models, negative log-likelihoods
—{ g will be expressed in bits per dimension (Theis et al., 2016), where dimension corresponds to
the total size of x (we resize all images to 3x32x32 pixels). Note that the qualitative behavior
of log-likelihoods is the same as likelihoods: ideally, OOD inputs should have a low ¢, while
in-distribution data should have a larger £ 4.

Most literature compares likelihoods of a given model for a few data sets. However, if we consider
several different data sets at once and study their likelihoods, we can get some insight. In Fig. 2,
we show the log-likelihood distributions for the considered data sets (Appendix A), computed with
a Glow model trained on CIFAR10. We observe that the data set with a higher log-likelihood is
Constant, a data set of constant-color images, followed by Omniglot, MNIST, and FashionMNIST;
all of those featuring gray-scale images with a large presence of empty black background. On the
other side of the spectrum, we observe that the data set with a lower log-likelihood is Noise, a data
set of uniform random images, followed by TrafficSign and TinyImageNet; both featuring colorful
images with non-trivial background. Such ordering is perhaps more clear by looking at the average
log-likelihood of each data set (Appendix D). If we think about the visual complexity of the images
in those data sets, it would seem that log-likelihoods tend to grow when images become simpler and
with less information or content.
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Figure 2: Log-likelihoods from a Glow model trained on CIFAR10. Qualitatively similar results are
obtained for a PixelCNN++ model and when training with FashionMNIST.
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Figure 3: Pooled-image log-likelihoods obtained from a Glow model trained on CIFAR10. Qualita-
tively similar results are obtained for a PixelCNN++ model.

To further confirm the previous observation, we design a controlled experiment where we can set
different decreasing levels of image complexity. We train a generative model with some data set, as
before, but now compute likelihoods of progressively simpler inputs. Such inputs are obtained by
average-pooling the uniform random Noise images by factors of 1, 2, 4, 8, 16, and 32, and re-scaling
back the images to the original size by nearest-neighbor up-sampling. Intuitively, a noise image with
a pooling size of 1 (no pooling) has the highest complexity, while a noise image with a pooling of
32 (constant-color image) has the lowest complexity. Pooling factors from 2 to 16 then account for
intermediate, decreasing levels of complexity. The result of the experiment is a progressive growing
of the log-likelihood ¢ (Fig. 3). Given that the only difference between data is the pooling factor,
we can infer that image complexity plays a major role in generative models’ likelihoods.

Until now, we have consciously avoided a quantitative definition of complexity. However, to further
study the observed phenomenon, and despite the difficulty in quantifying the multiple aspects that
affect the complexity of an input (cf. Lloyd, 2001), we have to adopt one. A sensible choice would be
to exploit the notion of Kolmogorov complexity (Kolmogorov, 1963) which, unfortunately, is non-
computable. In such cases, we have to deal with it by calculating an upper bound using a lossless
compression algorithm (Cover & Thomas, 2006). Given a set of inputs x coded with the same
bit depth, the normalized size of their compressed versions, L(x) (in bits per dimension), can be
considered a reasonable estimate of their complexity. That is, given the same coding depth, a highly
complex input will require more bits per dimension, while a less complex one will be compressed
with fewer bits per dimension. For images, we can use PNG, JPEG2000, or FLIF compressors
(Appendix C). For other data types such as audio or text, other lossless compressors should be
available to produce a similar estimate.
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Figure 4: Normalized compressed lengths using a PNG compressor with respect to likelihoods of
a PixelCNN++ model trained on CIFAR10 (for visualization purposes we here employ a sample of
200 images per data set). Similar results are obtained for a Glow model and other compressors.

If we study the relation between generative models’ likelihoods and our complexity estimates, we
observe that there is a clear negative correlation (Fig. 4). Considering all data sets, we find Pearson’s
correlation coefficients below —0.75 for models trained on FashionMNIST, and below —0.9 for
models trained on CIFAR10, independently of the compressor used (Appendix D). Such significant
correlations, all of them with infinitesimal p-values, indicate that likelihood-based measures are
highly influenced by the complexity of the input image, and that this concept accounts for most of
their variance. In fact, such strong correlations suggest that one may replace the computed likelihood
values for the negative of the complexity estimate and obtain almost the same result (Appendix D).
This implies that, in terms of detecting OOD inputs, a complexity estimate would perform as well
(or bad) as the likelihoods computed from our generative models.

3 TESTING OUT-OF-DISTRIBUTION INPUTS

3.1 DEFINITION

As complexity seems to account for most of the variability in generative models’ likelihoods, we
propose to compensate for it when testing for possible OOD inputs. Given that both negative log-
likelihoods —¢4(x) and the complexity estimate L(x) are expressed in bits per dimension (Sec. 2),
we can express our OOD score as a subtraction between the two:

S() = —Laa(x) — L(x). (1)

Notice that, since we use negative log-likelihoods, the higher the S, the more OOD the input x will
be (see below).

3.2 INTERPRETATION: OCCAM’S RAZOR AND THE OUT-OF-DISTRIBUTION PROBLEM

Interestingly, S can be interpreted as a likelihood-ratio test statistic. For that, we take the point
of view of Bayesian model comparison or minimum description length principle (MacKay, 2003).
We can think of a compressor My as a universal model, adjusted for all possible inputs and gen-
eral enough so that it is not biased towards a particular type of data semantics. Considering the
probabilistic model associated with the size of the output produced by the lossless compressor, we
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have
p(x|Mg) = 275
and, correspondingly,
L(x) = — log, p(x|Mo). (2)

In Bayesian model comparison, we are interested in comparing the posterior probabilities of differ-
ent models in light of data X. In our setting, the trained generative model M is a ‘simpler’ version
of the universal model M, targeted to a specific semantics or data type. With it, one aims to ap-
proximate the marginal likelihood (or model evidence) for x € X', which integrates out all model
parameters:

p(XIM) = /p(x\e,M)p(ew)de.

This integral is intractable, but current generative models can approximate p(x|M) with arbitrary
accuracy (Kingma & Dhariwal, 2018). Choosing between one or another model is then reduced to a
simple likelihood ratio:
p(Molx) p(x|Mo)p(Mop)
logy T0% = Jog, PORTOMIT0)
p(M|x) p(x|M)p(M)
For uniform priors p(Mj) = p(M) = 1/2, this ratio is reduced to
S(x) = —logy p(x| M) + log, p(x[Mo)

which, using Eq. 2 for the last term, becomes Eq. 1.

3)

The ratio S accommodates the Occam’s razor principle. Consider simple inputs that can be easily
compressed by My using a few bits, and that are not present in the training of M. These cases
have a high probability under My, effectively correcting the abnormal high likelihood given by
the learned model M. The same effect will occur with complex inputs that are not present in the
training data. In these cases, both likelihoods will be low, but the universal lossless compressor M
will predict those better than the learned model M. The two situations will lead to large values of
S. In contrast, inputs that belong to the data used to train the generative model M will always be
better predicted by M than by M, resulting in lower values of S.

3.3 USING S IN PRACTICE

Given a training set X’ of in-distribution samples and the corresponding scores S(x) for eachx € X,
we foresee a number of strategies to perform OOD detection in practice for new instances z. The
first and more straightforward one is to use S(z) as it is, just as a score, to perform OOD ranking.
This can be useful to monitor the top-k, potentially more problematic instances z in a new set of
unlabeled data Z. The second strategy is to interpret S(z) as the corresponding Bayes factor in
Eq. 3, and directly assign z to be OOD for S(z) > 0, or in-distribution otherwise (cf. MacKay,
2003). The decision is then taken with stronger evidence for higher absolute values of S(z). A
third strategy is to consider the empirical or null distribution of .S for the full training set, S(X’). We
could then choose an appropriate quantile as threshold, adopting the notion of frequentist hypothesis
testing (see for instance Nalisnick et al., 2019b). Finally, if ground truth OOD data ) is available, a
fourth strategy is to optimize a threshold value for S(z). Using X’ and Y, we can choose a threshold
that targets a desired percentage of false positives or negatives.

The choice of a specific strategy will depend on the characteristics of the particular application under
consideration. In this work, we prefer to keep our evaluation generic and to not adopt any specific
thresholding strategy (that is, we use S directly, as a score). This also allows us to compare with the
majority of reported values from the existing literature, which use the AUROC measure (see below).

4 RELATED WORKS

Ren et al. (2019) have recently proposed the use of likelihood-ratio tests for OOD detection. They
posit that “background statistics” (for instance, the number of zeros in the background of MNIST-
like images) are the source of abnormal likelihoods, and propose to exploit them by learning a
background model which is trained on random surrogates of input data. Such surrogates are gener-
ated according to a Bernoulli distribution, and an L2 regularization term is added to the background
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model, which implies that the approach has two hyper-parameters. Moreover, both the background
model and the model trained using in-distribution data need to capture the background information
equally well. In contrast to their method, our method does not require additional training nor extra
conditions on a specific background model for every type of training data.

Choi et al. (2018) and Nalisnick et al. (2019b) suggest that typicality is the culprit for likelihood-
based generative models not being able to detect OOD inputs. While Choi et al. (2018) do not
explicitly address typicality, their estimate of the Watanabe-Akaike information criterion using en-
sembles of generative models performs well in practice. Nalisnick et al. (2019b) propose an explicit
test for typicality employing a Monte Carlo estimate of the empirical entropy, which limits their
approach to batches of inputs of the same type.

The works of Hgst-Madsen et al. (2019) and Sabeti & Hgst-Madsen (2019) combine the concepts
of typicality and minimum description length to perform novelty detection. Although concepts are
similar to the ones employed here, their focus is mainly on bit sequences. They consider atypical se-
quences those that can be described (coded) with fewer bits in itself rather than using the (optimum)
code for typical sequences. We find their implementation to rely on strong parametric assumptions,
which makes it difficult to generalize to generative or other machine learning models.

A number of methods have been proposed to perform OOD detection under a classification-based
framework (Hendrycks & Gimpel, 2017; Lakshminarayanan et al., 2017; Liang et al., 2018; Alemi
et al., 2018; Lee et al., 2018; Hendrycks et al., 2019). Although achieving promising results, these
methods do not generally apply to the more general case of non-labeled or self-supervised data.
The method of Hendrycks et al. (2019) extends to such cases by leveraging generative models, but
nonetheless makes use of auxiliary, outlier data to learn to distinguish OOD inputs.

5 RESULTS

We now study how S performs on the OOD detection task. For that, we train a generative model M
on the train partition of a given data set and compute scores for such partition and the test partition
of a different data set. With both sets of scores, we then calculate the area under the receiver oper-
ating characteristic curve (AUROC), which is a common evaluation measure for the OOD detection
task (Hendrycks et al., 2019) and for classification tasks in general. Note that AUROC represents a
good performance summary across different score thresholds (Fawcett, 2005).

First of all, we want to assess the improvement of .S over log-likelihoods alone (—¢ ). When con-
sidering likelihoods from generative models trained on CIFAR10, the problematic results reported
by previous works become clearly apparent (Table 1). The unintuitive higher likelihoods for SVHN
observed in Sec. 1 now translate into a poor AUROC below 0.1. This not only happens for SVHN,
but also for Constant, Omniglot, MNIST, and FashionMNIST data sets, for which we observed
consistently higher likelihoods than CIFAR10 in Sec. 2. Likelihoods for the other data sets yield
AUROCs above the random baseline of 0.5, but none above 0.67. The only exception is the Noise
data set, which is perfectly distinguishable from CIFAR10 using likelihood alone. For completeness,
we include the AUROC values when trying to perform OOD with the test partition of CIFAR10. We
see those are close to the ideal value of 0.5, showing that, as expected, the reported measures do not
generally consider those samples to be OOD.

We now look at the AUROCSs obtained with S' (Table 1). We see that, not only results are reversed
for less complex datasets like MNIST or SVHN, but also that all AUROC:S for the rest of the data
sets improve as well. The only exception to the last assertion among all studied combinations is
the combination of TinyImageNet with PixelCNN++ and FLIF (see Appendix D for other combina-
tions). In general, we obtain AUROCs above 0.7, with many of them approaching 0.9 or 1. Thus,
we can conclude that S clearly improves over likelihoods alone in the OOD detection task, and that
S is able to revert the situation with intuitively less complex data sets that were previously yielding
alow AUROC.

We also study how the training set, the choice of compressor/generative model, or the size of the
model affects the performance of .S (Appendix D). In terms of models and compressors, we do not
observe a large difference between the considered combinations, except for a few isolated cases
whose investigation we defer for future work. In terms of model size, we do observe a tendency to
provide better discrimination with increasing size. In terms of data sets, we find the OOD detection
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Table 1: AUROC values using negative log-likelihood —¢ 4 and the proposed score S for Glow and
Pixel CNN++ models trained on CIFAR10 using the FLIF compressor. Results for models trained
on FashionMNIST and other compressors are available in Appendix D.

Data set Glow Pixel CNN++
—laq S —lpq S

Constant 0.024 1.000 0.006 1.000
Omniglot 0.001 1.000 0.001 1.000
MNIST 0.001 1.000 0.002 1.000
FashionMNIST 0.010 1.000 0.013 1.000
SVHN 0.083 0.950 0.083 0.929
CIFAR100 0.582 0.736 0.526 0.535
CelebA 0.621 0.863 0.624 0.776
FaceScrub 0.646 0.859 0.643 0.760
TinyImageNet 0.663 0.716 0.642 0.589
TrafficSign 0.609 0.931 0.599 0.870
Noise 1.000 1.000 1.000 1.000
CIFARIO (test) 0.564 0.618 0.506 0.514

task to be easier with FashionMNIST than with CIFAR10. We assume that this is due to the ease of
the generative model to learn and approximate the density conveyed by the data. A similar but less
marked trend is also observed for compressors, with better compressors yielding slightly improved
AUROC:s than other, in principle, less powerful ones. A takeaway from all these observations would
be that using larger generative models and better compressors will yield a more reliable S and a
better AUROC. The conducted experiments support that, but a more in-depth analysis should be
carried out to further confirm this hypothesis.

Finally, we want to assess how S compares to previous approaches in the literature. For that, we
compile a number of reported AUROCSs for both classifier- and generative-based approaches and
compare them with S. Note that classifier-based approaches, as mentioned in Sec. 1, are less appli-
cable than generative-based ones. In addition, as they exploit label information, they might have an
advantage over generative-based approaches in terms of performance (some also exploit external or
outlier data; Sec. 4).

We observe that S is competitive with both classifier- and existing generative-based approaches
(Table 2). When training with FashionMNIST, S achieves the best scores among all considered
approaches. The results with further test sets are also encouraging, with almost all AUROCSs ap-
proaching 1 (Appendix D). When training with CIFAR10, S achieves similar or better performance
than existing approaches. Noticeably, within generative-based approaches, S is only outperformed
in two occasions by the same approach, WAIC, which uses ensembles of generative models (Sec. 4).

On the one hand, it would be interesting to see how S could perform when using ensembles of
models and compressors to produce better estimates of —¢ 4 and L, respectively. On the other hand,
however, the use of a single generative model together with a single fast compression library makes
S an efficient alternative compared to WAIC and some other existing approaches. It is also worth
noting that many existing approaches have a number of hyper-parameters that need to be tuned,
sometimes with the help of outlier or additional data. In contrast, S is a parameter-free measure,
which makes it easy to use and deploy.

6 CONCLUSION

We illustrate a fundamental insight with regard to the use of generative models’ likelihoods for the
task of detecting OOD data. We show that input complexity has a strong effect in those likelihoods,
and pose that it is the main culprit for the puzzling results of using generative models’ likelihoods
for OOD detection. In addition, we show that an estimate of input complexity can be used to com-
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Table 2: Comparison of AUROC values for the OOD detection task. Results as reported by the
original references except (a) by Ren et al. (2019), (b) by Lee et al. (2018), and (c) by Choi et al.
(2018). Results for Typicality test correspond to using batches of 2 samples of the same type.

Trained on: FashionMNIST CIFARI10
00D data: MNIST Omniglot SVHN CelebA CIFAR100
Classifier-based approaches

ODIN (Liang et al., 2018)* 0.697 - 0.966 - -

VIB (Alemi et al., 2018)¢ 0.941 0.943 0.528 0.735 -

Mahalanobis (Lee et al., 2018) 0.986 - 0.991 - -

Outlier exposure (Hendrycks et al., 2019) - - 0.984 - 0.933
Generative-based approaches

WAIC (Choi et al., 2018) 0.766 0.796 1.000 0.997 -

Outlier exposure (Hendrycks et al., 2019) - - 0.758 - 0.685

Typicality test (Nalisnick et al., 2019b) 0.140 - 0.420 - -

Likelihood-ratio (Ren et al., 2019) 0.997 - 0.912 - -

S using Glow and FLIF (ours) 0.998 1.000 0.950 0.863 0.736

S using PixelCNN++ and FLIF (ours) 0.967 1.000 0929 0.776 0.535

pensate standard negative log-likelihoods in order to produce an efficient and reliable OOD score.
We also offer an interpretation of our score as a likelihood-ratio akin to Bayesian model compar-
ison. Such score performs comparably to, or even better than several state-of-the-art approaches,
with results that are consistent across a range of data sets, models, model sizes, and compression al-
gorithms. The proposed score has no hyper-parameters besides the definition of a generative model
and a compression algorithm, which makes it easy to employ in a variety of practical problems and
situations.
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APPENDIX

A  DATA SETS

In our experiments, we employ well-known, publicly-available data sets. In addition to those, and to
facilitate a better understanding of the problem, we develop another two self-created sets of synthetic
images: Noise and Constant images. The Noise data set is created by uniformly randomly sampling
a tensor of 3x32x32 and quantizing the result to 8 bits. The Constant data set is created similarly,
but using a tensor of 3x 1 x 1 and repeating the values along the last two dimensions to obtain a size of
3x32x32. The complete list of data sets is available in Table 3. In the case of data sets with different
variations, such as CelebA or FaceScrub, which have both plain and aligned versions of the faces,
we select the aligned versions. Note that, for models trained on CIFAR10, it is important to notice
the overlap of certain classes between that and other sets, namely TinyImageNet and CIFAR100
(they overlap, for instance, in classes of certain animals or vehicles). Therefore, strictly speaking,
such data sets are not entirely OOD, at least semantically.

Table 3: Summary of the considered data sets.

Data set Original size Num. classes Num. images
Constant (Synthetic) 3x32x32 1 40,000
Omniglot (Lake et al., 2015) 1x105%x105 1,623 32,460
MNIST (LeCun et al., 2010) 1x28x%28 10 70,000
FashionMNIST (Xiao et al., 2017) 1x28x28 10 70,000
SVHN (Netzer et al., 2011) 3x 32x32 10 99,289
CIFAR10 (Krizhevsky, 2009) 3x32x32 10 60,000
CIFAR100 (Krizhevsky, 2009) 3x32x32 100 60,000
CelebA (Liu et al., 2015) 3x178%x218 10,177 182,732
FaceScrub (Ng & Winkler, 2014) 3%300x300 530 91,712
TinyImageNet (Deng et al., 2009) 3x64x64 200 100,000
TrafficSign (Stallkamp et al., 2011) 3x32x32 43 51,839
Noise (Synthetic) 3x32x32 1 40,000

In order to split the data between train, validation, and test, we follow two simple rules: (1) if the
data set contains some predefined train and test splits, we respect them and create a validation split
using a random 10% of the training data; (2) if no predefined splits are available, we create them by
randomly assigning 80% of the data to the train split and 10% to both validation and test splits. In
order to create consistent input sizes for the generative models, we work with 3-channel images of
size 32x32. For those data sets which do not match this configuration, we follow a classic bi-linear
resizing strategy and, to simulate the three color components from a gray-scale image, we triplicate
the channel dimension.

B MODELS AND TRAINING

The results of this paper are obtained using two generative models of different nature: one autore-
gressive model and one invertible model. As autoregressive model we choose Pixel CNN++ (Sali-
mans et al., 2017), which has been shown to obtain very good results in terms of likelihood for image
data. As invertible model we choose Glow (Kingma & Dhariwal, 2018), which is also capable of
inferring exact log-likelihoods using large stacks of bijective transformations. We implement the
Glow model using the default configuration of the original implementation', except that we zero-
pad and do not use ActNorm inside the coupling network. The model has 3 blocks of 32 flows, using
an affine coupling with an squeezing factor of 2. As for PixelCNN++, we set 5 residual blocks per

"https://github.com/openai/glow
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stage, with 80 filters and 10 logistic components in the mixture. The non-linearity of the residual
layers corresponds to an exponential linear unit”.

We train both Glow and PixelCNN++ using the Adam optimizer with an initial learning rate of 10~
We reduce this initial value by a factor of 1/5 every time that the validation loss does not decrease
during 5 consecutive epochs. The training finishes when the learning rate is reduced by factor of
1/100. The batch size of both models is set to 50. The final model weights are the ones yielding the
best validation loss. The likelihoods obtained in validation with both Glow and PixelCNN++ match
the ones reported in the literature for CIFAR10 (Kingma & Dhariwal, 2018; Salimans et al., 2017).
We also make sure that the generated images are of comparable quality to the ones shown in those
references.

We use PyTorch version 1.2.0 (Paszke et al., 2017). All models have been trained with a single
NVIDIA GeForce GTX 1080Ti GPU. Training takes some hours under that setting.

C COMPRESSORS AND COMPLEXITY ESTIMATE

We explore three different options to compress input images. As a mandatory condition, they need
to provide lossless compression. The first format that we consider is PNG, and old-classic format
which is globally used and well-known. We use OpenCV? to compress from raw Numpy matri-
ces, with compression set to the maximum possible level. The second format that we consider is
JPEG2000. Although not as globally known as the previous one, it is a more modern format with
several new generation features such as progressive decoding. Again, we use the default OpenCV
implementation to obtain the size of an image using this compression algorithm. The third for-
mat that we consider is FLIF, the most modern algorithm of the list. According to its website?, it
promises to generate up to 53% smaller files than JPEG2000. We use the publicly-available com-
pressor implementation in their website. We do not include header sizes in the measurement of the
resulting bits per dimension.

To compute our complexity estimate L(x), we compress the input x with one of the compressors C
above. With that, we obtain a string of bits C'(x). The length of it, |C'(x)|, is normalized by the size
or dimensionality of x, which we denote by d, to obtain the complexity estimate:

[C()|

L(x) = —

We also experimented with an improved version of L,
L' (x) = min (L1 (x), La(x), ... ),

where L; corresponds to different compression schemes. This forces .S to work always with the best
compressor for every x. In our case, as FLIF was almost always the best compressor, we did not
observe a clear difference between using L or L’. However, in cases where it is not clear which
compressor to use or cases in which we do not have a clear best/winner, L’ could be of use.

D ADDITIONAL RESULTS

The additional results mentioned in the main paper are the following:

e In Table 4, we report the average log-likelihood £ for every data set. We sort data sets
from highest to lowest log-likelihood.

e In Table 5, we report the global Pearson’s correlation coefficient for different models, train
sets, and compressors. Due to the large sample size, Scipy version 1.2.1 reports a p-value
of 0 in all cases.

e In Table 6, we report the AUROC values obtained from log-likelihoods ¢4, complexity
estimates L, a simple two-tail test T taking into account lower and higher log-likelihoods,
T = |{p — L, and the proposed score S.

2https ://github.com/pclucasld/pixel-cnn—pp
*https://opencv.org
*nttps://flif.info
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e In Table 7, we report the AUROC values obtained from S across different Glow model
sizes, using a PNG compressor.

e In Table 8, we report the AUROC values obtained from S across different data sets, models,
and compressors.

Table 4: Average log-likelihoods from a PixelCNN++ model trained on CIFAR10.

Data set Upq

Constant (Test) —0.25
Omniglot (Test) —0.43
MNIST (Test) —0.55
FashionMNIST (Test) —0.83
SVHN (Test) —1.19
CIFARI10 (Train) —-2.20
CIFARI10 (Test) —2.21
CIFAR100 (Test) —2.27
CelebA (Test) —2.42
FaceScrub (Test) —2.43
TinyImageNet (Test) —2.51
TrafficSign (Test) —2.51
Noise (Test) —8.22

Table 5: Pearson’s correlation coefficient between normalized compressed length, using different
compressors, and model likelihood. All correlations are statistically significant (see text).

Model Trained with Compressor

PNG JPEG2000 FLIF
Glow FashionMNIST —-0.77 —0.75 —-0.77
Pixel CNN++ FashionMNIST -0.77 -0.77 —0.78
Glow CIFARI10 —0.94 —-0.90 —0.90
Pixel CNN++ CIFAR10 —0.96 —0.94 —0.94
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Table 6: AUROC values using negative log-likelihood —¢ 4, the complexity measure L, a simple
two-tail test T' (see text), and our score S for Glow and Pixel CNN++ models trained on CIFAR10
and using a PNG compressor. Qualitatively similar results were obtained for FashionMNIST and
other compressors.

Data set Glow Pixel CNN++
—laq L T S —laq L T S

Constant 0.024 0.000 0.963 1.000 0.006 0.000 0.987 1.000
Omniglot 0.001 0.000 0.999 1.000 0.001 0.000 0.995 1.000
MNIST 0.001 0.000 0.998 1.000 0.002 0.000 0.992 1.000
FashionMNIST 0.010 0.003 0.987 1.000 0.013 0.003 0.966 1.000
SVHN 0.083 0.077 0.845 0.950 0.083 0.077 0.832 0.929
CIFAR100 0.582 0483 0.576 0.736 0.526 0483 0.540 0.535
CelebA 0.621 0414 0.458 0.863 0.624 0414 0414 0.776
FaceScrub 0.646 0452 0472 0.859 0.643 0452 0425 0.760
TinyImageNet 0.663 0.548 0.585 0.716 0.642 0548 0.544 0.589
TrafficSign 0.609 0356 0.689 0.931 0.599 0357 0.657 0.870
Noise 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7: AUROC values for S using a Glow model trained on CIFAR10 and a PNG compressor.
Results for different, increasing sizes of the model (blocks x flow steps). Qualitatively similar
results are obtained for other compressors.

Data set 2x16 3x16 3x32
Constant 1.000 1.000 1.000
Omniglot 1.000 1.000 1.000
MNIST 1.000 1.000 1.000
FashionMNIST 0.997 0.998 1.000
SVHN 0.765 0.783 0.950
CIFAR100 0.641 0.685 0.736
CelebA 0.741 0.794 0.863
FaceScrub 0.697 0.755 0.859
TinyImageNet 0.664 0.715 0.716
TrafficSign 0.946 0.957 0.931
Noise 1.000 1.000 1.000
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Table 8: Comparison of AUROC values for the proposed OOD score S using different compressors:
Glow and Pixel CNN++ models trained on FashionMNIST (top) and CIFAR10 (bottom).

Data set Glow Pixel CNN++

PNG JPEG2000  FLIF PNG JPEG2000 FLIF
Constant 1.000 1.000 1.000 1.000 1.000 1.000
Omniglot 1.000 1.000 1.000 1.000 1.000 1.000
MNIST 0.841 0.493 0.997 0.821 0.687 0.967
SVHN 1.000 1.000 1.000 1.000 1.000 1.000
CIFARI10 1.000 1.000 1.000 0.998 1.000 1.000
CIFAR100 1.000 1.000 1.000 0.997 1.000 1.000
CelebA 1.000 1.000 1.000 1.000 1.000 1.000
FaceScrub 1.000 1.000 1.000 1.000 1.000 1.000
TinyImageNet 1.000 1.000 1.000 1.000 1.000 1.000
TrafficSign 1.000 1.000 1.000 1.000 1.000 1.000
Noise 1.000 1.000 1.000 1.000 1.000 1.000
Constant 1.000 1.000 1.000 1.000 1.000 1.000
Omniglot 1.000 0.994 1.000 1.000 0.997 1.000
MNIST 1.000 0.996 1.000 1.000 0.995 1.000
FashionMNIST 0.998 0.998 1.000 0.998 0.995 1.000
SVHN 0.787 0.974 0.950 0.787 0.965 0.929
CIFAR100 0.683 0.757 0.736 0.583 0.514 0.535
CelebA 0.794 0.701 0.863 0.756 0.640 0.776
FaceScrub 0.750 0.797 0.859 0.710 0.704 0.760
TinylmageNet 0.710 0.875 0.716 0.657 0.735 0.589
TrafficSign 0.953 0.955 0.931 0.916 0.840 0.870
Noise 1.000 1.000 1.000 1.000 1.000 1.000
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