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ABSTRACT

Identifying salient points in images is a crucial component for visual odometry,
Structure-from-Motion or SLAM algorithms. Recently, several learned keypoint
methods have demonstrated compelling performance on challenging benchmarks.
However, generating consistent and accurate training data for interest-point de-
tection in natural images still remains challenging, especially for human anno-
tators. We introduce IO-Net (i.e. InlierOutlierNet), a novel proxy task for the
self-supervision of keypoint detection, description and matching. By making the
sampling of inlier-outlier sets from point-pair correspondences fully differentiable
within the keypoint learning framework, we show that are able to simultane-
ously self-supervise keypoint description and improve keypoint matching. Sec-
ond, we introduce KeyPointNet, a keypoint-network architecture that is especially
amenable to robust keypoint detection and description. We design the network to
allow local keypoint aggregation to avoid artifacts due to spatial discretizations
commonly used for this task, and we improve fine-grained keypoint descriptor
performance by taking advantage of efficient sub-pixel convolutions to upsam-
ple the descriptor feature-maps to a higher operating resolution. Through exten-
sive experiments and ablative analysis, we show that the proposed self-supervised
keypoint learning method greatly improves the quality of feature matching and
homography estimation on challenging benchmarks over the state-of-the-art.†

1 INTRODUCTION

Detecting interest points in RGB images and matching them across views is a fundamental capa-
bility of many robotic systems. Tasks such Simultaneous Localization and Mapping (SLAM) (Ca-
dena et al., 2016), Structure-from-Motion (SfM) (Agarwal et al., 2010) and object detection as-
sume that salient keypoints can be detected and re-identified in a wide range of scenarios, which
requires invariance properties to lighting effects, viewpoint changes, scale, time of day, etc. How-
ever, these tasks still mostly rely on handcrafted image features such as SIFT (Lowe et al., 1999) or
ORB (Rublee et al., 2011), which have been shown to be limited in performance when compared to
learned alternatives (Balntas et al., 2017).

Deep learning methods have revolutionized many computer vision applications including 2D/3D
object detection (Lang et al., 2019; Tian et al., 2019), semantic segmentation (Li et al., 2018; Kirillov
et al., 2019), human pose estimation (Sun et al., 2019), etc. However, most learning algorithms
need supervision and rely on labels which are often expensive to acquire. Moreover, supervising
interest point detection is unnatural, as a human annotator cannot readily identify salient regions
in images as well as key signatures or descriptors, which would allow their re-identification. Self-
supervised learning methods have gained in popularity recently, being used for tasks such as depth
regression (Guizilini et al., 2019), tracking (Vondrick et al., 2018) and representation learning (Wang
et al., 2019; Kolesnikov et al., 2019). Following DeTone et al. (2018b) and Christiansen et al. (2019),
we propose a self-supervised methodology for jointly training a keypoint detector as well as its
associated descriptor.

†Code: https://github.com/TRI-ML/KP2D
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Our main contributions are: (i) We introduce IO-Net (i.e. InlierOutlierNet), a novel proxy task for
the self-supervision of keypoint detection, description and matching. By using a neurally-guided
outlier-rejection scheme (Brachmann & Rother, 2019) as an auxiliary task, we show that we are
able to simultaneously self-supervise keypoint description and generate optimal inlier sets from
possible corresponding point-pairs. While the keypoint network is fully self-supervised, the net-
work is able to effectively learn distinguishable features for two-view matching, via the flow of
gradients from consistently matched point-pairs. (ii) We introduce KeyPointNet, and propose two
modifications to the keypoint-network architecture described in Christiansen et al. (2019). First, we
allow the keypoint location head to regress keypoint locations outside their corresponding cells, en-
abling keypoint matching near and across cell-boundaries. Second, by taking advantage of sub-pixel
convolutions to interpolate the descriptor feature-maps to a higher resolution, we show that we are
able to improve the fine-grained keypoint descriptor fidelity and performance especially as they re-
tain more fine-grained detail for pixel-level metric learning in the self-supervised regime. Through
extensive experiments and ablation studies, we show that the proposed architecture allows us to es-
tablish state-of-the-art performance for the task of self-supervised keypoint detection, description
and matching.

2 RELATED WORK

The recent success of deep learning-based methods in many computer vision applications, espe-
cially feature descriptors, has motivated general research in the direction of image feature detection
beyond handcrafted methods. Such state-of-the-art learned keypoint detectors and descriptors have
recently demonstrated improved performance on challenging benchmarks (DeTone et al., 2018b;
Christiansen et al., 2019; Sarlin et al., 2019). In TILDE (Verdie et al., 2015), the authors introduced
multiple piece-wise linear regression models to detect features under severe changes in weather and
lighting conditions. To train the regressors, they generate pseudo ground truth interest points by
using a Difference-of-Gaussian (DoG) detector (Lowe, 2004) from an image sequence captured at
different times of day and seasons. LIFT (Yi et al., 2016) is able to estimate features which are
robust to significant viewpoint and illumination differences using an end-to-end learning pipeline
consisting of three modules: interest point detection, orientation estimation and descriptor compu-
tation. In LF-Net (Ono et al., 2018), the authors introduced an end-to-end differentiable network
which estimates position, scale and orientation of features by jointly optimizing the detector and
descriptor in a single module.

Quad-networks (Savinov et al., 2017) introduced an unsupervised learning scheme for training a
shallow 2-layer network to predict feature points. SuperPoint (DeTone et al., 2018b) is a self-
supervised framework that is trained on whole images and is able to predict both interest points and
descriptors. Its architecture shares most of the computation in the detection and description modules,
making it fast enough for real-time operation, but it requires multiple stages of training which is not
desirable in practice. Most recently, UnsuperPoint (Christiansen et al., 2019) presented a fast deep-
learning based keypoint detector and descriptor which requires only one round of training in a self-
supervised manner. Inspired by SuperPoint, it also shares most of the computation in the detection
and description modules, and uses a siamese network to learn descriptors. They employ simple
homography adaptation along with non-spatial image augmentations to create the 2D synthetic views
required to train their self-supervised keypoint estimation model, which is advantageous because it
trivially solves data association between these views. In their work, Christiansen et al. (2019) predict
keypoints that are evenly distributed within the cells and enforce that the predicted keypoint locations
do not cross cell boundaries (i.e. each cell predicts a keypoint inside it). We show that this leads
to sub-optimal performance especially when stable keypoints appear near cell borders. Instead,
our method explicitly handles the detection and association of keypoints across cell-boundaries,
thereby improving the overall matching performance. In Self-Improving Visual Odometry (DeTone
et al., 2018a), the authors first estimate 2D keypoints and descriptors for each image in a monocular
sequence using a convolutional network, and then use a bundle adjustment method to classify the
stability of those keypoints based on re-projection error, which serves as supervisory signal to re-
train the model. Their method, however, is not fully differentiable, so it cannot be trained in an
end-to-end manner. Instead, we incorporate an end-to-end differentiable and neurally-guided outlier-
rejection mechanism (IO-Net) that explicitly generates an additional proxy supervisory signal for the
matching input keypoint-pairs identified by our KeyPointNet architecture. This allows the keypoint
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Figure 1: Our proposed framework for self-supervised keypoint detector and descriptor learning us-
ing KeyPointNet and IO-Net. The KeyPointNet is optimized in an end-to-end differentiable manner
by imposing an explicit loss on each of the 3 target outputs (score, location and descriptor). Addi-
tionally, the IO-Net produces an indirect supervisory signal to KeyPointNet targets by propagating
gradients from the classification of matching input point-pairs.

descriptions to be further refined as a result of the outlier-rejection network predictions occurring
during the two-view matching stage.

3 SELF-SUPERVISED KEYPOINT LEARNING

In this work, we aim to regress a function which takes as input an image and outputs keypoints,
descriptors, and scores. Specifically, we define K : I → {p, f , s}, with input image I ∈ R3×H×W ,
and output keypoints p = {[u, v]} ∈ R2×N , descriptors f ∈ R256×N and keypoint scores s ∈ RN ;
N represents the total number of keypoints extracted and it varies according to an input image
resolution, as defined in the following sections. We note that throughout this paper we use p to refer
to the set of keypoints extracted from an image, while p is used to refer to a single keypoint.

Following the work of Christiansen et al. (2019), we train the proposed learning framework in a
self-supervised fashion by receiving as input a source image Is such that K(Is) = {ps, fs, ss} and
a target image It such that K(It) = {pt, ft, st}. Images Is and It are related through a known
homography transformation H which warps a pixel from the source image and maps it into the
target image. We define p∗t = {[u∗i , v∗i ]} = H(ps), with i ∈ I - e.g. the corresponding locations of
source keypoints ps after being warped into the target frame.

Inspired by recent advances in Neural Guided Sample Consensus methods (Brachmann & Rother,
2019), we define a second function C which takes as input point-pairs along with associated weights
according to a distance metric, and outputs the likelihood that each point-pair belongs to an inlier
set of matches. Formally, we define C : {ps,p

∗
t , d(fs, f

∗
t )} ∈ R5×N → RN as a mapping which

computes the probability that a point-pair belongs to an inlier set. We note that C is only used at
training time to choose an optimal set of consistent inliers from possible corresponding point pairs
and to encourage the gradient flow through consistent point-pairs.

An overview of our method is presented in Figure 1. We define the model K parametrized by θK as
an encoder-decoder style network. The encoder consists of 4 VGG-style blocks stacked to reduce the
resolution of the image H ×W to Hc×Wc = H/8×W/8. This allows an efficient prediction for
keypoint location and descriptors. In this low resolution embedding space, each pixel corresponds
to an 8 × 8 cell in the original image. The decoder consists of 3 separate heads for the keypoints,
descriptors and scores respectively. Thus for an image of input size H ×W , the total number of
keypoints regressed is (H ×W ) /64, each with a corresponding score and descriptor. For every
convolutional layer except the final one, batch normalization is applied with leakyReLU activation.
A detailed description of our network architecture can be seen in Figure 2. The IO-Net is a 1D CNN
parametrized by θIO, for which we follow closely the structure from Brachmann & Rother (2019)
with 4 default setting residual blocks and the original activation function for final layer is removed.
A more detailed description of these networks can be found in the Appendix (Tables 6 and 7).
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Figure 2: The proposed KeyPointNet architecture leverages a shared-encoder backbone with three
output heads for the regression of keypoint locations (p), scores (s) and descriptions (f ). To further
improve keypoint description performance, KeyPointNet produces higher-resolution feature-maps
for the keypoint descriptors via efficient sub-pixel convolutions at the keypoint descriptor head.

3.1 KEYPOINTNET: NEURAL KEYPOINT DETECTOR AND DESCRIPTOR LEARNING

Detector Learning. Following Christiansen et al. (2019), the keypoint head outputs a location
relative to the 8 × 8 grid in which it operates for each pixel in the encoder embedding: [u′i, v

′
i].

The corresponding input image resolution coordinates [ui, vi] are computed taking into account
the grid’s position in the encoder embedding. We compute the corresponding keypoint location
[u∗i , v

∗
i ] in the target frame after warping via the known homography H. For each warped keypoint,

the closest corresponding keypoint in the target frame is associated based on Euclidean distance.
We discard keypoint pairs for which the distance is larger than a threshold εuv . The associated
keypoints in the target frame are denoted by p̂t = {[ût, v̂t]}. We optimize keypoint locations using
the following self-supervised loss formulation, which enforces keypoint location consistency across
different views of the same scene:

Lloc =
∑
i

||p∗t − p̂t||2 . (1)

As described earlier, the method of Christiansen et al. (2019) does not allow the predicted keypoint
locations for each cell to cross cell-boundaries. Instead, we propose a novel formulation which
allows us to effectively aggregate keypoints across cell boundaries. Specifically, we map the relative
cell coordinates [u′s, v

′
s] to input image coordinates via the following function:

[vi, ui] = [rowcenteri , colcenteri ] + [v′i, u
′
i]
σ1(σ2 − 1)

2
v′i, u

′
i ∈ (−1, 1)

, (2)

with σ2 = 8, i.e. the cell size, and σ1 is a ratio relative to the cell size. rowcenteri , colcenteri are
the center coordinates of each cell. By setting σ1 larger than 1, we allow the network to predict
keypoint locations across cell borders. Our formulation predicts keypoint locations with respect to
the cell center, and allows the predicted keypoints to drift across cell boundaries. We illustrate this
in Figure 3, where we allow the network to predict keypoints outside the cell-boundary, thereby
allowing the keypoints especially at the cell-boundaries to be matched effectively. In the ablation
study (Section 4.3), we quantify the effect of this contribution and show that it significantly improves
the performance of our keypoint detector.

Descriptor Learning. As recently shown by Pillai et al. (2019) and Guizilini et al. (2019), subpixel
convolutions via pixel-shuffle operations (Shi et al., 2016) can greatly improve the quality of dense
predictions, especially in the self-supervised regime. In this work, we include a fast upsampling step
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(a) (b)

Figure 3: Cross-border detection illustration. We illustrate how a warped point (in red) can be
associated to multiple predicted points (in blue) based on a distance threshold (dashed circle). (a)
The keypoint location head in Christiansen et al. (2019) forces keypoint predictions in the same
cell, causing convergence issues since these points can only be pulled up to the cell-boundary. (b)
Instead, in our method, we design the network to predict the localization from the cell-center and
allow keypoints to be outside the border for better matching and aggregation.

before regressing the descriptor, which promotes the capture of finer details in a higher resolution
grid. The architectural diagram of the descriptor head is show in Figure 2. In the ablative analysis
(Section 4.3), we show that the addition of this step greatly improves the quality of our descriptors.

We employ metric learning for training the descriptors. While the contrastive loss (Hadsell et al.,
2006) is commonly used in the literature for this task, we propose to use a per-pixel triplet
loss (Schroff et al., 2015) with nested hardest sample mining as described in Tang et al. (2018)
to train the descriptor. Recall that each keypoint pi ∈ ps in the source image has associated de-
scriptor fi, an anchor descriptor, which we obtain by sampling the appropriate location in the dense
descriptor map fs as described in DeTone et al. (2018b). The associated descriptor f∗i,+ in the target
frame, a positive descriptor, is obtained by sampling the appropriate location in the target descriptor
map ft based on the warped keypoint position p∗i . The nested triplet loss is therefore defined as:

Ldesc =
∑
i

max(0, ‖f i, f∗i,+‖2 − ‖f i, f
∗
i,−‖2 +m) , (3)

which minimizes the distance between the anchor and positive descriptors, and maximizes the dis-
tance between the anchor and a negative f∗i,− sample. We pick the negative sample which is the
closest in the descriptor space that is not a positive sample. Any sample other than the true match
can be used as the negative pair for the anchor, but the hardest negative sample will contribute the
most to the loss function, and thereby accelerating the metric learning. Here m denotes the distance
margin enforcing how far dissimilar descriptors should be pushed away in the descriptor space.

Score Learning. The third head of the decoder is responsible for outputting the score associated
with each descriptor. At test time, this value will indicate the most reliable keypoints from which a
subset will be selected. Thus the objective of Lscore is two-fold: (i) we want to ensure that feature-
pairs have consistent scores, and (ii) the network should learn that good keypoints are the ones with
low feature point distance. Following Christiansen et al. (2019) we achieve this objective by mini-
mizing the squared distance between scores for each keypoint-pair, and minimizing or maximizing
the average score of a keypoint-pair if the distance between the paired keypoints is greater or less
than the average distance respectively:

Lscore =
∑
i

[
(si + ŝi)

2
· (d(pi, p̂i)− d̄) + (si − ŝi)2

]
(4)

Here, si and ŝi are the scores of the source and target frames respectively, and d̄ is the average
reprojection error of associated points in the current frame, d̄ =

∑L
i
d(pi,p̂i)

L , with d being the
feature distance in 2D Euclidean space and L being the total number of feature pairs.
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3.2 IO-NET: NEURAL OUTLIER REJECTION AS AN AUXILIARY TASK

Keypoint and descriptor learning is a task which is tightly coupled with outlier rejection. In this
work, we propose to use the latter as a proxy task to supervise the former. Specifically, we associate
keypoints from the source and target images based on descriptor distance: {ps,p

∗
t , x(fs, f

∗
t )}. In

addition, only keypoints with the lowest K predicted scores are used for training. Similar to the
hardest sample mining, this approach accelerates the converging rate and encourages the generation
of a richer supervisory signal from the outlier rejection loss. To disambiguate the earlier association
of keypoint pairs based on reprojected distance defined in Section 3.1, we denote the distance metric
by x and specify that we refer to Euclidean distance in descriptor space. The resulting keypoint
pairs along with the computed distance are passed through our proposed IO-Net which outputs the
probability that each pair is an inlier or outlier. Formally, we define the loss at this step as:

LIO =
∑
i

1

2
(ri − sign(||p∗i − p̂i||2 − εuv))2 , (5)

where r is the output of the IO-Net, while εuv is the same Euclidean distance threshold used in
Section 3. Different from a normal classifier, we also back propagate the gradients back to the input
sample, i.e., {ps,p

∗
t , x(fs, f

∗
t )}, thus allowing us to optimize both the location and descriptor for

these associated point-pairs in an end-to-end differentiable manner.

The outlier rejection task is related to the neural network based RANSAC (Brachmann & Rother,
2019) in terms of the final goal. In our case, since the ground truth homography transform H is
known, the random sampling and consensus steps are not required. Intuitively, this can be seen as a
special case where only one hypothesis is sampled, i.e. the ground truth. Therefore, the task is sim-
plified to directly classifying the outliers from the input point-pairs. Moreover, a second difference
with respect to existing neural RANSAC methods arises from the way the outlier network is used.
Specifically, we use the outlier network to explicitly generate an additional proxy supervisory signal
for the input point-pairs, as opposed to rejecting outliers.

The final training objective we optimize is defined as:

L = αLloc + βLdesc + λLscore + LIO , (6)

where [α, β, λ] are weights balancing different losses.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We train our method using the COCO dataset (Lin et al., 2014), specifically the 2017 version which
contains 118k training images. Note that we solely use the images, without any training labels,
as our method is completely self-supervised. Training on COCO allows us to compare against
SuperPoint (DeTone et al., 2018b) and UnsuperPoint (Christiansen et al., 2019), which use the same
data for training. We evaluate our method on image sequences from the HPatches dataset (Balntas
et al., 2017), which contains 57 illumination and 59 viewpoint sequences. Each sequence consists of
a reference image and 5 target images with varying photometric and geometric changes for a total of
580 image pairs. In Table 2 and Table 3 we report results averaged over the whole dataset. And for
fair comparison, we evaluate results generated without applying Non-Maxima Suppression (NMS).

To evaluate our method and compare with the state-of-the-art, we follow the same procedure as
described in (DeTone et al., 2018b; Christiansen et al., 2019) and report the following metrics:
Repeatability, Localization Error, Matching Score (M.Score) and Homography Accuracy. For the
Homography accuracy we use thresholds of 1, 3 and 5 pixels respectively (denoted as Cor-1, Cor-3
and Cor-5 in Table 3). The details of the definition of these metrics can be found in the appendix.

4.2 IMPLEMENTATION DETAILS

We implement our networks in PyTorch (Paszke et al., 2017) and we use the ADAM (Kingma &
Ba, 2014) optimizer. We set the learning rate to 10−3 and train for 50 epochs with a batch size
of 8, halving the learning rate once after 40 epochs of training. The weights of both networks are
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Method Repeat. ↑ Loc. ↓ Cor-1 ↑ Cor-3 ↑ Cor-5 ↑ M.Score ↑
V0 - Baseline 0.633 1.044 0.503 0.796 0.868 0.491
V1 - Cross 0.689 0.935 0.491 0.805 0.874 0.537
V2 - CrossUpsampling 0.686 0.918 0.579 0.866 0.916 0.544
V3 - IO-Net 0.685 0.885 0.602 0.836 0.886 0.520
V4 - Proposed 0.686 0.890 0.591 0.867 0.912 0.544

Table 1: Ablative comparison for 5 different configurations where V0: Baseline, V1: V0 + Cross-
border detection, V2: V1 + Descriptor up-sampling, V3: V2 + LIO, and finally the proposed method
V4: V3 + Ldesc. In general, the results indicate that for most metrics, the proposed method is within
reasonable margin of the best-performing model variant, while achieving strong generalization per-
formance across all performance metrics including repeatability, localization error, homography
accuracy and matching score.

randomly initialized. We set the weights for the total training loss as defined Equation (6) to α = 1,
β = 2, and λ = 1. These weights are selected to balance the scales of different terms. We set σ1 = 2
in order to avoid border effects while maintaining distributed keypoints over image, as described in
Section 3.1. The triplet loss margin m is set to 0.2. The relaxation criteria c for negative sample
mining is set to 8. When training the outlier rejection network described in Section 3.2, we set
K = 300, i.e. we choose the lowest 300 scoring pairs to train on.

We perform the same types of homography adaptation operations as DeTone et al. (2018b): crop,
translation, scale, rotation, and symmetric perspective transform. After cropping the image with
0.7 (relative to the original image resolution), the amplitudes for other transforms are sampled uni-
formly from a pre-defined range: scale [0.8, 1.2], rotation [0, π4 ] and perspective [0, 0.2]. Follow-
ing Christiansen et al. (2019), we then apply non-spatial augmentation separately on the source and
target frames to allow the network to learn illumination invariance. We add random per-pixel Gaus-
sian noise with magnitude 0.02 (for image intensity normalized to [0, 1]) and Gaussian blur with
kernel sizes[1, 3, 5] together with color augmentation in brightness [0.5, 1.5], contrast [0.5, 1.5], satu-
ration [0.8, 1.2] and hue [−0.2, 0.2]. In addition, we randomly shuffle the color channels and convert
color image to gray with probability 0.5.

4.3 ABLATIVE STUDY

In this section, we evaluate five different variants of our method. All experiments described in this
section are performed on images of resolution 240x320. We first define V0-V2 as (i) V0: baseline
version with cross border detection and descriptor upsampling disabled; (ii) V1: V0 with cross
border detection enabled; (iii) V2: V1 with descriptor upsampling enabled. These three variants are
trained without neural outlier rejection, while the other two variants are (iv) V3: V2 with descriptor
trained using only LIO and without Ldesc and finally (v) V4 - proposed: V3 together with Ldesc
loss. The evaluation of these methods is shown in Table 1. We notice that by avoiding the border
effect described in Section 3.1, V1 achieves an obvious improvement in Repeatablity as well as
the Matching Score. Adding the descriptor upsampling step improves the matching performance
greatly without degrading the Repeatability, as can be seen by the numbers reported under V2.
Importantly, even though V3 is trained without the descriptor loss Ldesc defined in Section 3.1,
we note further improvements in matching performance. This validates our hypothesis that the
proxy task of inlier-outlier prediction can generate supervision for the original task of keypoint
and descriptor learning. Finally, by adding the triplet loss, our model reported under V4 - Proposed
achieves good performance which is within error-margin of the best-performing model variant, while
achieving strong generalization performance across all performance metrics including repeatability,
localization error, homography accuracy and matching score.

To quantify our runtime performance, we evaluated our model on a desktop with an Nvidia Titan
Xp GPU on images of 240x320 resolution. We recorded 174.5 FPS and 194.9 FPS when running
our model with and without the descriptor upsampling step.

4.4 PERFORMANCE EVALUATION

In this section, we compare the performance of our method with the state-of-the-art, as well as with
traditional methods on images of resolutions 240× 320 and 480× 640 respectively. For the results
obtained using traditional features as well as for LF-Net (Ono et al., 2018) and SuperPoint (DeTone
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Method Repeat. ↑ Loc. Error ↓
240x320 480x640 240x320 480x640

ORB 0.532 0.525 1.429 1.430
SURF 0.491 0.468 1.150 1.244
BRISK 0.566 0.505 1.077 1.207
SIFT 0.451 0.421 0.855 1.011
LF-Net(indoor) (Ono et al., 2018) 0.486 0.467 1.341 1.385
LF-Net(outdoor) (Ono et al., 2018) 0.538 0.523 1.084 1.183
SuperPoint (DeTone et al., 2018b) 0.631 0.593 1.109 1.212
UnsuperPoint (Christiansen et al., 2019) 0.645 0.612 0.832 0.991

Proposed 0.686 0.684 0.890 0.970

Table 2: Our proposed method outperforms all the listed traditional and learned feature detectors in
repeatability (higher is better). For localization error (lower is better), UnsuperPoint performs better
in lower resolution images while our method performs better for higher resolutions.

Method 240x320, 300 points 480 x 640, 1000 points
Cor-1 Cor-3 Cor-5 M.Score Cor-1 Cor-3 Cor-5 M.Score

ORB 0.131 0.422 0.540 0.218 0.286 0.607 0.71 0.204
SURF 0.397 0.702 0.762 0.255 0.421 0.745 0.812 0.230
BRISK 0.414 0.767 0.826 0.258 0.300 0.653 0.746 0.211
SIFT 0.622 0.845 0.878 0.304 0.602 0.833 0.876 0.265
LF-Net(indoor) 0.183 0.628 0.779 0.326 0.231 0.679 0.803 0.287
LF-Net(outdoor) 0.347 0.728 0.831 0.296 0.400 0.745 0.834 0.241
SuperPoint 0.491 0.833 0.893 0.318 0.509 0.834 0.900 0.281
UnsuperPoint 0.579 0.855 0.903 0.424 0.493 0.843 0.905 0.383
Proposed 0.591 0.867 0.912 0.544 0.564 0.851 0.907 0.510

Table 3: Homography estimation accuracy with 3 different pixel distance thresholds (i.e. Cor-1,3
and 5) and matching performance comparison. As shown, our proposed method outperforms all the
listed traditional and learning based methods except the one case where SIFT performs the best.

et al., 2018b) we report the same numbers as computed by (Christiansen et al., 2019). During testing,
keypoints are extracted in each view keeping the top 300 points for the lower resolution and 1000
points for the higher resolution from the score map. The evaluation of keypoint detection is shown
in Table 2. For Repeatibility, our method notably outperforms other methods and is not significantly
affected when evaluated with different image resolutions. For the Localization Error, UnsuperPoint
performs better in lower resolution image while our method performs better for higher resolution.

The homography estimation and matching performance results are shown in Table 3. In general,
self-supervised learning methods provide keypoints with higher matching score and better homog-
raphy estimation for the Cor-3 and Cor-5 metrics, as compared to traditional handcrafted features
(e.g. SIFT). For the more stringent threshold Cor-1, SIFT performs the best, however, our method
outperforms all other learning based methods. As shown in Table 1, our best performing model for
this metric is trained using only supervision from the outlier rejection network, without the triplet
loss. This indicates that, even though fully self-supervised, this auxiliary task can generate high
quality supervisory signals for descriptor training. We show additional qualitative and qualitative
results of our method in the appendix.

5 CONCLUSION

In this paper, we proposed a new learning scheme for training a keypoint detector and associated
descriptor in a self-supervised fashion. Different with existing methods, we used a proxy network
to generate an extra supervisory signal from a task tightly connected to keypoint extraction: out-
lier rejection. We show that even without an explicit keypoint descriptor loss in the IO-Net, the
supervisory signal from the auxiliary task can be effectively propagated back to the keypoint net-
work to generate distinguishable descriptors. Using the combination of the proposed method as well
as the improved network structure, we achieve competitive results in the homography estimation
benchmark.
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A HOMOGRAPHY ESTIMATION EVALUATION METRIC

We evaluated our results using the same metrics as DeTone et al. (2018b). The Repeatability, Local-
ization Error and Matching Score are generated with a correctness distance threshold of 3. All the
metrics are evaluated from both view points for each image pair.

Repeatability. The repeatability is the ratio of correctly associated points after warping into the
target frame. The association is performed by selecting the closest in-view point and comparing the
distance with the correctness distance threshold.

Localization Error. The localization error is calculated by averaging the distance between warped
points and their associated points.

Matching Score (M.Score). The matching score is the success rate of retrieving correctly associated
points through nearest neighbour matching using descriptors.

Homography Accuracy. The homography accuracy is the success rate of correctly estimating the
homographies. The mean distance between four corners of the image planes and the warped im-
age planes using the estimated and the groundtruth homography matrices are compared with dis-
tances 1, 3, 5. To estimate the homography, we perform reciprocal descriptor matching, and we
use openCV’s findHomography method with RANSAC, maximum number of 5000 iterations,
confidence threshold of 0.9995 and error threshold 3.

B DETAILED QUALITATIVE AND QUANTITATIVE ANALYSIS ON HPATCHES

To capture the variance induced by the RANSAC component during evaluation we perform addi-
tional experiments summarized in Table 4 where each entry reports the mean and standard deviation
across 10 runs with varying RANSAC seeds. We notice better homography performance on the
illumination subset than on the viewpoint subset. This is to be expected as the viewpoint subset
contains image pairs with extreme rotation which are problematic for our method which is fully
convolutional.

HPatches subset Repeat. ↑ Loc. ↓ Cor-1 ↑ Cor-3 ↑ Cor-5 ↑ M.Score ↑
All 0.686 0.890 0.595±0.012 0.871±0.005 0.912±0.005 0.544
Illumination 0.678 0.826 0.753±0.014 0.972±0.004 0.984±0.004 0.614
Viewpoint 0.693 0.953 0.494±0.015 0.801±0.008 0.857±0.008 0.479

Table 4: Detailed analysis of the performance of our method: we evaluate on different splits of the
HPatches dataset (Illumination, Viewpoint and complete dataset) on images of resolution 320x240.
To capture the variance in the evaluation of the homography (Cor-1,3 and 5) due to RANSAC, we
perform 10 evaluation runs with different random seeds and report the mean and standard deviation.

We also evaluate our method as well as SIFT and ORB on the graffiti, bark and boat sequences of
the HPatches dataset and summarize our results in Table 5, again reporting averaged results over
10 runs. We note that our method consistently outperforms ORB. Our method performs worse than
SIFT (which is more robust to extreme rotations) on the bark and boat sequences, but we obtain
better results on the graffiti sequence.

Figure 4 denotes examples of successful matching under strong illumination, rotation and perspec-
tive transformation. Additionally, we also show our matches on pairs of images from the challenging
graffiti, bark and boat sequences of HPatches in Figures 5, 6, and 7. Specifically, the top row in each
figure shows our results, while the bottom row shows SIFT. The left sub-figure on each row shows
images (1,2) of each sequence, while the right sub-figure shows images (1,6). We note that on im-
ages (1,2) our results are comparable to SIFT, while on images (1,6) we get fewer matches. Despite
the extreme perspective change, we report that our method is able to successfully match features on
images (1,6) of the boat sequence.
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HPatches subset Repeat. ↑ Loc. ↓ Cor-1 ↑ Cor-3 ↑ Cor-5 ↑ M.Score ↑
O

ur
s Bark 0.419 1.734 0.200±0.000 0.200±0.000 0.200±0.000 0.088

Boat 0.588 1.357 0.260±0.092 0.380±0.060 0.400±0.000 0.223
Graffiti 0.670 1.039 0.340±0.092 0.720±0.098 0.780±0.060 0.336

O
R

B Bark 0.620 1.259 0.000±0.000 0.060±0.092 0.180±0.060 0.110
Boat 0.812 1.127 0.000±0.000 0.420±0.108 0.560±0.120 0.226
Graffiti 0.722 1.164 0.080±0.098 0.340±0.092 0.400±0.000 0.210

SI
FT

Bark 0.470 1.252 0.600±0.000 0.960±0.080 0.960±0.080 0.292
Boat 0.527 0.928 0.560±0.080 0.980±0.060 1.000±0.000 0.351
Graffiti 0.515 1.277 0.340±0.092 0.560±0.120 0.660±0.092 0.237

Table 5: Detailed analysis of the performance of our method on the Bark, Boat and Graffitti se-
quences of the HPatches dataset. To capture the variance in the evaluation of the homography
(Cor-1,3 and 5) due to RANSAC, we perform 10 evaluation runs with different random seeds and
report the mean and standard deviation.

(a) Qualitative results of our method for illumination cases.

(b) Qualitative results of our method for rotation cases.

(c) Qualitative results of our method for perspective cases.

Figure 4: Qualitative results of our method on images pairs of the HPatches dataset.
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(a) Ours

(b) SIFT

Figure 5: Qualitative results of our method vs SIFT on the ”graffiti” subset of images of the HPatches
dataset.

(a) Ours

(b) SIFT

Figure 6: Qualitative results of our method vs SIFT on the ”bark” subset of images of the HPatches
dataset.

(a) Ours

(b) SIFT

Figure 7: Qualitative results of our method vs SIFT on the ”boat” subset of images of the HPatches
dataset.
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C ARCHITECTURE DIAGRAM

Layer Description K Output Tensor Dim.
#0 Input RGB image 3×H×W

Encoder
#1 Conv2d + BatchNorm + LReLU 3 32×H×W
#2 Conv2d + BatchNorm + LReLU + Dropout 3 32×H×W
#3 Max. Pooling (× 1/2) 3 32×H/2×W/2
#4 Conv2d + BatchNorm + LReLU 3 64×H/2×W/2
#5 Conv2d + BatchNorm + LReLU + Dropout 3 64×H/2×W/2
#6 Max. Pooling (× 1/2) 3 64×H/4×W/4
#7 Conv2d + BatchNorm + LReLU 3 128×H/4×W/4
#8 Conv2d + BatchNorm + LReLU + Dropout 3 128×H/4×W/4
#9 Max. Pooling (× 1/2) 3 128×H/8×W/8
#10 Conv2d + BatchNorm + LReLU 3 256×H/8×W/8
#11 Conv2d + BatchNorm + LReLU + Dropout 3 256×H/8×W/8

Score Head

#12 Conv2d + BatchNorm + Dropout (#11) 3 256×H/8×W/8
#13 Conv2d + Sigmoid 3 1×H/8×W/8

Location Head

#14 Conv2d + BatchNorm + Dropout (#11) 3 256×H/8×W/8
#15 Conv2d + Tan. Hyperbolic 3 2×H/8×W/8

Descriptor Head

#16 Conv2d + BatchNorm + Dropout (#11) 3 256×H/8×W/8
#17 Conv2d + BatchNorm 3 512×H/8×W/8
#18 Pixel Shuffle (× 2) 3 128×H/8×W/8
#19 Conv2d + BatchNorm (#8 ⊗ #18) 3 256×H/4×W/4
#20 Conv2d 3 256×H/4×W/4

Table 6: KeyPointNet diagram, composed of an encoder followed by three decoder heads. The
network receives as input an RGB image and returns scores, locations and descriptors. Numbers in
parenthesis indicate input layers, ⊗ denotes feature concatenation, and we used 0.2 dropout values.

Layer Description K Output Tensor Dim.

#0 Input KeyPoints 5×N

#1 Conv1d + ReLU 1 128×N
#2 ResidualBlock - 128×N
#3 ResidualBlock (#2⊕ #1) - 128×N
#4 ResidualBlock (#3⊕ #2) - 128×N
#5 ResidualBlock (#4⊕ #3) - 128×N
#6 Conv1d 1 1×N

ResidualBlock
Conv1d + InstNorm + BatchNorm + ReLU 1 128×N
Conv1d + InstNorm + BatchNorm + ReLU 1 128×N

Table 7: IO-Net diagram, composed of 4 residual blocks. The network receives as input a series of
5-dimensional vector consists of keypoint pair and descriptor distance, outputs a binary inlier-outlier
classification. Numbers in parenthesis indicate input layers, and ⊕ denotes feature addition.
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