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ABSTRACT

Understanding causes and effects in mechanical systems is an essential component
of reasoning in the physical world. This work poses a new problem of counter-
factual learning of object mechanics from visual input. We develop the CoPhy
benchmark to assess the capacity of the state-of-the-art models for causal physical
reasoning in a synthetic 3D environment and propose a model for learning the
physical dynamics in a counterfactual setting. Having observed a mechanical
experiment that involves, for example, a falling tower of blocks, a set of bouncing
balls or colliding objects, we learn to predict how its outcome is affected by an
arbitrary intervention on its initial conditions, such as displacing one of the ob-
jects in the scene. The alternative future is predicted given the altered past and
a latent representation of the confounders learned by the model in an end-to-end
fashion with no supervision of confounders. We compare against feedforward
video prediction baselines and show how observing alternative experiences allows
the network to capture latent physical properties of the environment, which results
in significantly more accurate predictions at the level of super human performance.

1 INTRODUCTION

Reasoning is an essential ability of intelligent agents that enables them to understand complex rela-
tionships between observations, detect affordances, interpret knowledge and beliefs, and to leverage
this understanding to anticipate future events and act accordingly. The capacity for observational
discovery of causal effects in physical reality and making sense of fundamental physical concepts,
such as mass, velocity, friction, etc., may be one of differentiating properties of human intelligence
that ensures our ability to robustly generalize to new scenarios (Martin-Ordas et al., 2008).

One way to express causality is based on the concept of counterfactual reasoning, that deals with
a problem containing an if statement, which is untrue or unrealized. Predicting the effect of the
interventions based on the given observations without explicitly observing the effect of the intervention
on data is a hard task and requires modeling of the causal relationships between the variable on which
the intervention is performed and the variable whose alternative future should be predicted (Balke &
Pearl, 1994). Using counterfactuals has been shown to be a way to perform reasoning over causal
relationships between the variables of low dimensional spaces and has been an unexplored direction
for high dimensional signals such as videos.

In this work, we develop the Counterfactual Physics benchmark (CoPhy) and propose a framework
for causal learning of dynamics in mechanical systems with multiple degrees of freedom, as illustrated
in Fig. 1. For a number of scenarios, such as tower of blocks falling, balls bouncing against walls
or objects colliding, we are given the starting frame A = X0 and a sequence of following frames
B = X1:τ , where τ covers the range of 6 sec. The observed sequences B, conditioned on the initial
state A, are direct effects of the physical principles (such as inertia, gravity or friction) applied to the
closed system, that cause the objects change their positions and 3D poses over time.
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Figure 1: We train a model for performing counterfactual learning of physical dynamics. Given an
observed frame A = X0 and a sequence of future frames B = X1:τ , we ask how the outcome B
would have changed if we changed X0 to X̄0 by performing a do-intervention (e.g. changing the
initial positions of objects in the scene).

The task is formulated as follows: having observed the tuple (A,B), we wish to predict positions and
poses of all objects in the scene at time t=τ , if we had changed the initial frame X0 by performing
an intervention. The intervention is formalized by the do-operator introduced by Pearl et al. (Pearl,
2009; Pearl & McKenzie, 2018) for dealing with causal inference (Spirtes, 2010). In our case, it
implies modification of the variable A to C, defined as C = do(X0=X̄0). Accordingly, for each
experiment in the CoPhy benchmark, we provide pairs of original sequences X0:τ and their modified
counterparts X̄0:τ sharing the same values of all confounders.

We note the fundamental difference between this problem of counterfactual future forecasting and
the conventional setup of feedforward future forecasting, like video prediction (Mathieu et al., 2016).
The latter involves learning spatio-temporal regularities and thereby predicting future frames X1...τ

from one or several past frame(s) X0 (the causal chain of this problem is shown in Fig. 2a). On
the other hand, counterfactual forecasting benefits from additional observations in the form of the
original outcome X1:τ before the do-operator. This adds a confounder variable U into the causal
chain (Fig. 2b), which provides information not observable in frame X0. For instance, in the case of
the CoPhy benchmark, observing the pair (A,B) might give us information on the masses, velocities
or friction coefficients of the objects in the scene, which otherwise cannot be inferred from frame X̄0

alone. Therefore, predicting the alternative outcome after performing counterfactual intervention
then involves using the estimate of the confounder U together with the modified past do(X0=X̄0).

Overall, we employ the idea of counterfactual intervention in predictive models and argue that
counterfactual reasoning is an important step towards human-like reasoning and general intelligence.
More specifically, key contributions of this work include:

• a new task of counterfactual prediction of physical dynamics from high-dimensional visual
input, as a way to access capacity of intelligent agents for causal discovery;

• a large-scale CoPhy benchmark with three physical scenarios and 300k synthetic experiments
including rendered sequences of frames, metadata (object positions, angles, sizes) and values of
confounders (masses, frictions, gravity). This benchmark was specifically designed in bias-free
fashion to make the counter-factual reasoning task challenging by optimizing the impact of the
confounders on the outcome of the experiment. The dataset is publicly available1.

• a counterfactual neural model predicting an alternative outcome of a physical experiment given
an intervention, by estimating the latent representation of the confounders. The model outperforms
state-of-the-art solutions implementing feedforward video prediction, successfully generalizes to
unseen initial states and does not require supervision on the confounders. We provide extensive
ablations on the effects of key design choices and compare results with human performance, that
show that the task is hard for humans to solve. The code will be made publicly available.

2 RELATED WORK

This work is inspired by a significant number of prior studies from several subfields, including visual
reasoning, learning intuitive physics and perceived causality.

1Project page: http://projet.liris.cnrs.fr/cophy
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Figure 2: The difference between conventional video prediction (a) and counterfactual video predic-
tion (b). The causal graph of the latter includes a confounder variable, which passes information from
the original outcome to the outcome after do-intervention. The initially observed sequence (A,B)
(on the left) and the counterfactual sequence after the do-intervention (on the right).

Visual reasoning. The most recent works on visual reasoning approach the problem in the setting of
visual question answering (Hu et al., 2017; Hudson & Manning, 2018; Johnson et al., 2017; Mao et al.,
2019; Perez et al., 2018; Santoro et al., 2017), embodied AI (Wijmans et al., 2019), as well as learning
intuitive physics (Lerer et al., 2016; Riochet et al., 2018). (Santoro et al., 2017) introduced Relation
Networks (RN), a fully-differentiable trainable layer for reasoning in deep networks. Following the
same trend, (Baradel et al., 2018) estimate object relations from semantically well defined entities
using instance segmentation predictions for video understanding. (Santoro et al., 2018) build a
challenging dataset for solving the problem of abstract reasoning on the visual domain with some
tasks such as interpolation or extrapolation. External memory (Graves et al., 2016; Jaeger, 2016)
extends known recurrent neural mechanisms by decoupling the size of a representation from the
controller capacity and introduces the separation between long-term and short-term reasoning. (Reed
et al., 2015) propose to learn analogies in a fully supervised way. Our work builds upon this literature
and extends the idea of visual reasoning to the counterfactual setting.

Intuitive physics. Fundamental studies on cognitive psychology have shown that humans perform
poorly when asked to reason about expected outcomes of a physics based event, demonstrating striking
deviations from Newtonian physics in their intuitions (McCloskey & Kohl, 1983; McClooskey et al.,
1980; 1983; Kubricht et al., 2017). The questions of approximating these mechanisms, learning from
noisy observed and non-observed physical quantities (such as sizes or velocities vs masses or gravity),
as well as justifying importance of explicit physical concepts vs cognitive constructs in intelligent
agents have been raised and explored in recent works on deep learning (Wu et al., 2015). (Lerer
et al., 2016; Groth et al., 2018) follow this direction by training networks to predict stability of block
towers. (Ye et al., 2018) build an interpretable intuitive physical model from visual signals using full
supervision on the physical properties of each object. On similar tasks, (Wu et al., 2017) propose to
learn physics by interpreting and reconstructing the visual information stream leading to inverting
physics or a graphical engine. (Zheng et al., 2018) propose to solve this task by first extracting a
visual perception of the world state and then predict the future. (Battaglia et al., 2016) introduce a
fully-differentiable network physics engine called Interaction Network (IN), which learns to predict
physical systems such as gravitational ones, rigid body dynamics, and mass-spring systems. Similarly,
(van Steenkiste et al., 2018) discover objects and their interactions in a unsupervised manner from a
virtual environment. In (Veličković et al., 2018), attention and relational modules are combined on a
graph structure. Recent approaches (Chang et al., 2017; Janner et al., 2019; Battaglia et al., 2018)
based on Graph Convolution Networks (Kipf & Welling, 2017) have shown promising results on
learning physics but are restricted to setups where physical properties need to be fully observable,
which is not the case of our approach. The most similar to ours is work by (Ehrhardt et al., 2019) on
unsupervised learning of intuitive physics from unpaired past experiences.

Other physics benchmarks and simulators. The main objective for the creation of our benchmark
is (a) to focus specifically on evaluating capabilities of state of the art models for performing coun-
terfactual reasoning, (b) to be unbiased in terms of distributions of parameters to be estimated and
balanced with respect to possible outcomes, and (c) to have sufficient variety in terms of scenarios
and latent physical characteristics of the scene that are not visually observed and therefore can act
as confounders. To the best of our knowledge, none of existing intuitive physics benchmarks have
these properties. IntPhys (Riochet et al., 2018) focuses on a high level task of estimating physical
plausibility in a black box fashion and modeling out of distribution events at test time. CATER
(Girdhar & Ramanan, 2019) introduces a video dataset requiring spatiotemporal understanding in
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order to solve the tasks such as action recognition, compositional action recognition, and adversarial
target tracking. Phyre (Bakhtin et al., 2019) is an environment for solving physics based puzzles,
where achieving sample efficiency may implicitly require counterfactual reasoning, but this com-
ponent is not explicitly evaluated, construction of parallel data with several alternative outcomes is
not straightforward, and the trivial baseline performance levels are not easy to estimate. Adapting
these benchmarks to counterfactual reasoning would require significant refactoring and changing the
logic of the data sampling. CLEVRER (Yi et al., 2019) is a diagnostic video dataset for systematic
evaluation of models on a wide range of reasoning tasks including counterfactual questions. They
cast the task as a classification problem where the model has to choose between a set of possible
answers, whereas our benchmark requires the predicting the dynamics of each object.

Perceptual causality. In the ML community, causal reasoning gained mainstream attention relatively
recently (Lopez-Paz et al., 2017; Lopez-Paz & Oquab, 2017; Kocaoglu et al., 2018; Rojas-Carulla
et al., 2018; Mooij et al., 2016; Schölkopf et al., 2012), due to limitations of statistical learning
becoming increasingly apparent (Pearl, 2018; Lake et al., 2017). The concept of perceived causality
has been however explored in cognitive psychology (Michotte, 1963), where human subjects have be
shown to consistently report causal impressions not aligned with underlying physical principles of
the events (Gerstenberg et al., 2015; Kubricht et al., 2017). Exploiting the colliding objects scenario
as a standard testbed for these studies led to discovery of a number of cognitive biases, e.g. Motor
Object Bias (i.e. false perceived association of object’s velocity with its mass).

In this work, we bring the domains of visual reasoning, intuitive physics and perceived causality
together in a single framework to tackle the new problem of counterfactual learning of physical
dynamics. Following prior literature (Battaglia et al., 2013), we also compare counterfactual learning
with human performance and expect that, similarly to learning intuitive vs Newtonian physics,
modeling perceived vs true causality will get more attention from the ML community in the future.

3 COPHY: COUNTERFACTUAL PHYSICS BENCHMARK SUITE

In this paper we investigate visual reasoning problems involving a set of K physical objects and
their interactions, while considering a specific setting of learning counterfactual prediction with
the objective of estimating objects’ alternative 3D positions from images after do-intervention. We
introduce the Counterfactual Physics benchmark suite (CoPhy) for counterfactual reasoning of
physical dynamics from raw visual input. It is composed of three tasks based on three physical
scenarios: BlocktowerCF, BallsCF and CollisionCF, defined similarly to existing state-of-
the-art environments for learning intuitive physics: Shape Stack (Groth et al., 2018), Bouncing balls
environment (Chang et al., 2017) and Collision (Ye et al., 2018) respectively. This was done to ensure
natural continuity between the prior art in the field and the proposed counterfactual formulation.

Each scenario includes training and test samples, that we call experiments. Each experiment is
represented by two sequences of τ synthetic RGB images (covering the time span of 6 sec at 5 fps):

• an observed sequence X={X0, . . . , Xτ} demonstrates evolution of the dynamic system under the
influence of laws of physics (gravity, friction, etc.), from its initial state X0 to its final state Xτ . For
simplicity, we denote A the initial state X0 and B the observed outcome X0, . . . , X;

• a counterfactual sequence X̄={X̄0, . . . , X̄τ}, where X̄0 (C) corresponds to the initial state X0

after the do-intervention, and X̄1, . . . , X̄τ (D) correspond to the counterfactual outcome.

A do-intervention is a visually observable change introduced to the initial physical setup x0 (such
as, for instance, object displacement or removal).

Finally, the physical world in each experiment is parameterized by a set of visually unobservable
quantities, or confounders (such as object masses, friction coefficients, direction and magnitude of
gravitational forces), that cannot be uniquely estimated from a single time step. Our dataset provides
ground truth values of all confounders for evaluation purposes. However, we do not assume access to
this information during training or inference, and do not encourage it.

Each of the three scenarios in the CoPhy benchmark is defined as follows (see Fig. 1 for illustrations).

BlocktowerCF — Each experiment involves K=3 or K=4 stacked cubes, which are initially at
resting (but potentially unstable) positions. We define three different confounder variables:
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Figure 3: Stability distribution for each confounder variable for heights K=3 and K=4 of the
BlockTowerCF task. Masses, friction cooefficients: 2 configurations per block, 2K total; gravity:
3 configurations for each axis ∈{x, y}, 9 total.

masses, m∈{1, 10} and friction coefficients, µ∈{0.5, 1}, for each block, as well as gravity
components in X and Y direction, gx,y∈{−1, 0, 1}. The do-interventions include block
displacement or removal. This set contains 146k sample experiments corresponding to 73k
different geometric block configurations.

BallsCF — Experiments show K bouncing balls (K=2...6). Each ball has an initial random
velocity. The confounder variables are the masses, m∈{1, 10}, and the friction coefficients,
µ∈{0.5, 1}, of each ball. There are two do-operators: block displacement or removal. There
are in total 100k experiments corresponding to 50k different initial geometric configurations.

CollisionCF — This set is about moving objects colliding with static objects (balls or cylin-
ders). The confounder variables are the masses, m∈{1, 10}, and the friction coefficients,
µ∈{0.5, 1}, of each object. The do-interventions are limited to object displacement. This
scenario includes 40k experiments with 20k unique geometric object configurations.

Given this data, the problem can be formalized as follows. During training, we are given the
quadruplets of visual observations A,B,C,D (through sequences X and X̄ , including GT object
positions for supervision), but do not not have access to the values of the confounders. During
testing, the objective is to reason on new visual data unobserved at training time and to predict the
counterfactual outcome D, having observed the first sequence (A,B) and the modified initial state
C after the do-intervention, which is known.

The CoPhy benchmark is by construction balanced and bias free w.r.t. (1) global statistics of all
confounder values within each scenario, (2) distribution of possible outcomes of each experiment
over the whole set of possible confounder values (for a given do-intervention). We make sure that the
data does not degenerate to simple regularities which are solvable by conventional methods predicting
the future from the past. In particular, for each experimental setup, we enforce existence of at least
two different confounder configurations resulting in significantly different object trajectories. This
guarantees that estimating the confounder variable is necessary for visual reasoning on this dataset.

More specifically, we ensure that for each experiment the set of possible counterfactual outcomes is
balanced w.r.t. (1) tower stability for BlocktowerCF and (2) distribution of object trajectories for
BallsCF and CollisionCF. As a result, the BlocktowerCF set, for example, has 50± 5% of
stable and unstable counterfactual configurations. The exact distribution of stable/unstable examples
for each confounder in this scenario is shown in Fig. 3.

All images for this benchmark have been rendered into the visual space (RGB, depth and instance
segmentation) at a resolution of 448× 448 px with PyBullet (only RGB images are used in this work).
We ensure diversity in visual appearance between experiments by rendering the pairs of sequences
over a set of randomized backgrounds. The ground truth physical properties of each object (3D pose,
4D quaternion angles, velocities) are sampled at a higher frame rate (20 fps) and also stored. The
training / validation / test split is defined as 0.7 : 0.2 : 0.1 for each of the three scenarios.
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Figure 4: Our model learns counterfactual reasoning in a weakly supervised way: while we
supervise the do-operator, we do not supervise the confounder variables (masses, frictions, gravity).
Input images of the original past (A) and the original outcome (B) are de-rendered into latent
representations which are converted into fully-connected attributed graphs. A Graph Network updates
node features to augment them with contextual information, which is integrated temporally with a set
of RNNs, one for each object, running over time. The last hidden RNN state is taken as an estimate
of the confounder U . A second set of GCN+RNN predicts residual object positions (D) using the
modified past (C) and the confounder representation U . For clarity we draw arrows for the red object
only. Not shown: stability prediction and gating.

4 COUNTERFACTUAL LEARNING OF PHYSICS

The task as described in Section 3 requires reasoning from visual inputs.We propose a single neural
model which can be trained end-to-end, as shown in Fig. 4. We address this problem by adding
strong inductive biases to a deep neural network, structuring it in a way to favor counterfactual
reasoning. More precisely, we add structure for (i) estimation of physical properties from images, (ii)
modelling interactions between objects through graph convolutions (GCN), (iii) estimating latent
representations of the confounder variables, and (iv) exploiting these representations for predictions
of the output object positions. At this point we would like to stress again, that the representation of
the confounders U is latent and discovered from data without supervision.

4.1 UNSUPERVISED ESTIMATION OF THE CONFOUNDERS

While our method is capable of handling raw RGB frames as input, its internal reasoning is done on
estimated representations in object-centric viewpoints. We train a convolutional neural network to
detect the K objects and their 3D position in the scene, denoted as O={ok}, k=0...K−1 where ok
corresponds to the 3D position of object k. The de-rendering module is explained in the appendix.

Predicting the future of a given block k requires modelling its interactions (through friction and
collisions) with the other blocks in the scene, which we do with Graph Convolution Networks (GCN)
(Kipf & Welling, 2017; Battaglia et al., 2018). The set of K objects in the scene is represented as
a graph G=(V, E) where the nodes V are associated to objects {ok}, and the object interactions to
edges (ok, oj) ∈ E in the fully-connected graph. Object embeddings {ok} are updated classically
and as follows, resulting in new embeddings {õk}:

ek =
1

|Ωk|
∑
oj∈Ωk

f(ok, oj), e =
1

K

∑
k

ek, õk = g(ok, ek, e), (1)

where Ωk is the set of neighboring objects of ok. f(.) and g(.) are non-linear mappings (MLPs), and
their inputs are by default concatenated. For simplicity, in what follows we will denote the update of
an object ok with GCN given a graph with set of nodes and embeddings O by õk = GCN(ok, O).
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As mentioned above, we want to infer a latent representation U of the confounding quantities for each
object k given the input sequences X1:τ (the original past A and the original outcome B), without
any supervision. This latent representation U is trained end-to-end by optimizing the counterfactual
prediction loss. To this end, we pass the updated object states õk through a recurrent network to
model the temporal evolution of this representation. In particular, we run a dedicated RNN for each
object, each object maintaining its own hidden state hk:

hkt = φ(õkt , h
k
t−1) (2)

where we index objects and states with subscript t indicating time, and φ is a gated recurrent unit
(GRU) (gate equations have been omitted for simplicity). The recurrent network parameters are
shared over objects k, which results in a model which is invariant to the number of objects present in
the set. This allows to use do-operators which change the number of objects in the scene (removal).
We set the latent representation of the confounders to be the set U={uk}, where uk , hkτ is the
temporally last hidden state of the recurrent network.

4.2 TRAJECTORY PREDICTION GATED BY STABILITY

We predict the counterfactual outcome D, i.e. the 3D positions of all objects of the sequence X̄1:τ ,
with a recurrent network, which takes into account the confounders U . We cast this problem as a
sequential prediction task, at each time step t predicting the residual position ∆k

t w.r.t. to position t−1,
i.e. the velocity vector. As in the rest of the model, this prediction is obtained object-wise, albeit with
explicit modelling of the inter-object relationships through a graph network. More precisely,

˜̄okt = GCN(ōkt , {[ōkt : uk]}), rkt = ψ(˜̄okt , r
k
t−1), ∆k

t = W rkt , (3)

where rkt is the hidden state of the GRU network denoted by ψ, and W is the weight matrix of a
linear output layer. GCN is a graph convolutional network as described in eq. (1) and thereafter.

At each moment of time, each object can either remain stationary or move under the influence of
external physical forces or by inertia. The first task for the model is therefore to detect which objects
are moving (i.e. affected by the environment) and then estimate parameters of the motion if it occurs.
This is aligned well with the concepts of whether-causation and how-causation defined in the field
of perceived causality (Gerstenberg et al., 2015). In our work, the whether-cause is estimated in the
form of a binary stability indicator skt described below (for each object, updated at each time step)
that is then leveraged to gate the object position predictor (how-cause estimator):

ōkt+1 = ōkt + σ

(
1− skt
λ

)
∆k
t , (4)

where σ(.) is the sigmoid function and λ is a sparsifying temperature term.

Counterfactual estimation of stability — estimation of object stability skt is a counterfactual
problem, as stability depends on the physical properties, and therefore on the latent confounder
representation uk. We combine the confounders U={uk} with the past after do-intervention (C),
encoded in object states denoted as Ōt={ōkt } at time step t=t. In particular, for each node we
concatenate its object features with its confounder representation and we update the resulting object
state with a graph network to take into account inter-object relationships:

s′kt = GCN([ōkt : uk], {[ōkt : uk]}), skt = V s′kt , (5)

where skt corresponds to the logits of stability of object k at time t and V is the weight matrix of a
linear layer (for simplifying notations we omit bias here and in the rest of the paper).

Training — The full counterfactual prediction model is trained end-to-end in graph space only (i.e.
not including the de-rendering engine) with the following losses:

Le2e =

K∑
k=1

Lce(skt, sk∗t ) +

τ∑
t=0

[
K∑
k=1

Lmse(ōkt, ōk∗t )

]
where Lce is the binary cross entropy loss between the stability prediction of object k at time t and
its ground truth value (calculated by thresholding applied to ground truth speed vectors), and Lmse
is mean squared error between the predicted positions ōkt and GT positions ōk∗t in the 3D space. A
detailed description of the overall architecture is given in the Appendix.
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Scenario Top Middle Bottom Mean σ

Human Non-CF 108.89 53. 15 13.67 58.57 33.61
CF 99.98 49.65 13.99 54.54 34.15

Copying C→D 65.41 25.51 7.36 32.76 N/A
B→D 92.60 35.85 18.54 49.00 N/A

CoPhyNet Non-CF 77.97 33.10 2.39 37.81 N/A
CF 57.10 23.26 4.40 28.25 N/A

Table 1: Comparison with human per-
formance in the BlockTowerCF scenario
obtained with AMT studies. We report 2D
pixel error for each block, as well as global
mean and variance σ (reference resolution
448× 448) on the test set with K=3 blocks.

Train→Test Copy C Copy B IN NPE CoPhyNet IN sup.

3→ 3 0.470 0.601 0.318 0.331 0.294 0.296
3→ 3 † 0.365 0.592 0.298 0.319 0.289 0.282
3→ 4 0.754 0.846 0.524 0.523 0.482 0.467

4→ 4 0.735 0.852 0.521 0.528 0.453 0.481
4→ 4 † 0.597 0.861 0.480 0.476 0.423 0.464
4→ 3 0.480 0.618 0.342 0.350 0.301 0.297

Table 2: BlocktowerCF: MSE on 3D pose av-
erage over time. IN sup. methods in the last col-
umn exploit the ground truth confounder quantities
as input and thus represent a soft upper bound (are
not comparable). †Test confounder configurations
not seen during training (50/50 split).
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Figure 6. [Probably subsamplie for a single column figure]Examples for human performance on the task predicting the future (non
counterfactual), as performed by mechanical turkers. Each turker has been confronted with the past only (a single image of block positions,
shown). Dots correspond to human estimates of the objects’ resting positions. Larger circles indicate ground truth final positions of each of
the block.

Non-CF: C ! D A B CF: C ! D

Figure 7. Examples for human performance on the task of coun-
terfactual prediction, as performed by mechanical turkers. Each
turker has been confronted with the data (A,B,C) — past, outcome,
past after do-intervention. Dots correspond to human estimates of
the objects’ resting positions (outcome after do-intervention).

as with 4 blocks. And the set of possible masses is fixed to
M = {1, 10}. Each sequence is of length 5 seconds. We ren-
der the physical world into the visual space (RGB, depth and
segmentation) every 0.5 second at a resolution of 448⇥ 448.
RGB, deth and segmentation images are encoded as png files.
The full dataset is composed of 2 millions of frames. We
record the physical properties of each object (3D pose, 4D
quaternion angles, velocities) at frame rate of 20 fps. We
split the dataset such that the training set if composed of
200K samples. The validation set and test set are of size
50K each. Table 6 gives an overview of the dataset. The
full set of data, including synthetic images, is 326GB. This
data will be made available publicly after acceptance of this
paper. We use Pybullet as physical engine.

We sample 200K frames (20K unstable sequences) for
training the de-rendering and rendering part. We split into a
train, val and test sets (120K, 40K, 40K) There are roughly
the same number of towers with 3 and 4 blocks.

Training details All models were implemented in PyTorch
and trained on a cluster of Titan-X GPUs. We used the XXX
optimizer and a learning rate of XXX. Training a full model
until convergence takes XXXh.

Qualitative evaluation Figure ?? illustrates several prob-
lem instances and predictions by our model.

Human performance We measured human performance
on this challenging dataset by ...
Natalia: NOTES. 100 workers, 20 assignments each, both
in counterfactual and non-counterfactual settings. Same
experiment in the counterfactual setting, but limiting the time
when the first sequence A ! B is observed to 5 seconds.
Conclusion: CF setup is slightly better in terms of mean
error, but it looks like it generally boils down to simple
indictive biases, such as ”observed (un)stability”!”predict
(un)stability” [prove empirically by clustering trajectories /
calculating correlations]. This is shown in Figure ?: variance
after having observed a stable sequence is decreased (first
row), after having observed a falling case - increased (second
row). Overall, variance in predictions is slightly higher.
Humans are doing much worse than copying baselines.

Performance and comparisons we evaluate the counter-
factual prediction performance against various baselines:

• assuming stability (absence of motion) and copying the
past after do-intervention, denoted as C ! D;

• assuming no do-intervention and copying the (ob-
served) original outcome, denoted as B ! D;

• Network Physics Engine (NPE) [4], a non counterfac-
tual baseline, which predicts the future from the past
after do-intervention without taking into account con-
founders.

The performances are given in table ?? for various splits
between training and validatio scenarios.

Data dependence Table XXX provides evaluations as
Fabien: Compute the LIPSP metric - ”The Unreason-

able Effectiveness of Deep Features as a Perceptual Met-
ric”, Zang et al, CVPR 2018

7. Conclusion

7

Figure 5: Visual examples of human performance on the ill-posed task of feedforward, i.e. non-
counterfactual, dynamic prediction from a single image (in the BlockTower scenario). The
image shows the initial state C. Small dots correspond to human estimates of the objects’ final
positions. Larger circles indicate ground truth final positions of each block. We note that this task is
ill-posed by construction, as the dynamics of each experiment is defined by physical properties of
each block (e.g. masses) which cannot be observed from a single image.

5 EXPERIMENTS

Training details. All models were implemented in PyTorch. We used the Adam optimizer (Kingma
& Ba, 2015) and a learning rate of 0.001. For training the de-rendering pipeline 200k frames were
sampled for each of the three scenarios (see the appendix for more details).

Human performance. We empirically measured human performance in the BlockTowerCF sce-
nario with crowdsourcing (Amazon Mechanical Turk/AMT). For this study, we have collected predic-
tions from 100 participants, where each subject was given 20 assignments in both non-counterfactual
(Fig. 5) and counterfactual (Fig. 6) settings. The human subjects were given 10 sec to click on the
final positions of each block in the image C after the tower has fallen (or remained stable). The
obtained quantitative results for both settings are reported in Table 1. We compare against copying
baselines (i.e. predicting block positions in the frame D by either copying them from C or from B).

In conclusion, we observe that humans perform slightly better in the counterfactual setup after
having observed the first dynamic sequence (A,B) together with C compared to the classical
prediction where only C is shown. This behavior has also been previously observed in experiments
on intuitive physics in cognitive psychology (Kubricht et al., 2017) that revealed poor human abilities
to extrapolate physical dynamics from a single image. Similar human studies have also been
conducted in (Battaglia et al., 2013) in a more simplistic setup of predicting the direction of falling,
where the authors also reported that the task appeared to be challenging for human subjects.

The empirical results indicate that the participants decisions may have been however driven by simple
inductive biases, e.g. “observed (in)stability in (A,B)”→”predict (in)stability in (C,D)”. The
evidence for this approach is demonstrated qualitatively in Fig. 6: the variance in predictions after
having observed a stable sequence is decreased (first row), after having observed a falling case –
increased (second row). In all cases, human performance remains inferior w.r.t. the copying baselines.

The last part of Table 1 shows results of our model (denoted by CoPhyNet in the rest of the discussion)
after projecting the estimated 3D positions of all objects back into the 2D image space. CoPhyNet
significantly outperforms both human subjects and copying baselines.

Performance and comparisons. We evaluate the counterfactual prediction performance of the
proposed CoPhyNet model against various baselines (shown in Tables 2-4 separately for each of the
three scenarios of the CoPhy benchmark). The evaluated Network Physics Engine (NPE) (Chang et al.,
2017) and Interaction Network (IN) (Battaglia et al., 2016), are both non-counterfactual baselines,
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Figure 6: Visual examples of human performance on the task of counterfactual dynamic
prediction (in the BlockTowerCF scenario). Each participant has been shown both (A,B)
and C. Small dots correspond to human estimates of the objects’ resting positions (outcome after
do-intervention). Larger circles indicate the ground truth final positions. The images show state C.
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Figure 7: Visual examples of the counterfactual predictions produced by CoPhyNet (in the
BlocktowerCF scenario). Circles denote GT position and crosses correspond to predictions.

that predict future block coordinates from past coordinates after do-intervention without taking the
confounders into account. More details for IN and NPE are given in the appendix A.3. Our method
consistently outperforms NPE and IN by a large margin in all scenarios. The CoPhyNet model also
usually (but not always) outperforms the augmented variants of these methods that include the GT
confounder quantities as input (a not comparable setting).

Fig. 7 illustrates several randomly sampled experimental setups and corresponding counterfactual
predictions by the CoPhyNet model in the BlocktowerCF scenario.

Generalization. We evaluate the ability of the CoPhyNet model to generalize to new physical setups
which were not observed in the training data. In Table 2 we show model performance on unseen
confounder combinations and on unseen number of blocks in the BlocktowerCF scenario (lines
marked with †). Our proposed solution generalizes well under unseen settings compared to other
methods. In Table 3 we also demonstrate that our method outperforms the baselines by a large margin
on unseen numbers of balls in the BallsCF setup. Finally, in the CollisionCF scenario (Table 4)
we train on one type of moving objects and test on another type (spheres vs cylinders). In this case
we also show that our method is able to generalize to the new object types even when it has not seen
such a combination of <moving-object, static-object> before. Our method is able to estimate the
object properties when an object is moving or initially stable.

Impact of the confounder estimate. Our model does not rely on any supervision of the confounders;
we do, however, explore what effect supervision could have on performance, as shown in Table 6
(Middle). Adding the supervision increases the performance of the model for K=3 but the difference
seems marginal (0.004 for K=3 and 0.020 for K=4). Directly feeding the confounder quantities as
input leads to better performance, which is expected (but not comparable).

Model architecture. All design choices of CoPhyNet are ablated in Table 6 (Left) to fully illustrate
the impact of each submodule. Estimating the stability once for the whole sequence D decreases the
performance by 0.020 for K=3 and 0.018 for K=4 compared to predicting the stability per object at
each time step. Replacing the GCN by a MLP (i.e. concatenating the object representation) hurts the
performance of the overall system by increasing the MSE by 0.286 when tested in the K=4 setting.
Finally we compare our approach against a single-step counterfactual prediction. Non-surprisingly,
predicting the future autoregressively in a step-by-step fashion turns out to be more effective than
predicting the whole sequence at once.

Confounder estimation. After training for predicting the target CF sequences, we evaluate the
quality of the learned latent representation. In this experiment, we predict the confounder quantities
of each object (mass, friction coefficient) from their latent representation by training a simple linear
classifier, freezing the weights of the whole network. The obtained results are shown in Table 5. A
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Train→Test Copy C Copy B IN NPE CoPhyNet IN sup.

4→ 2 7.271 3.267 5.060 4.989 2.307 2.109
4→ 3 6.820 2.865 4.895 4.901 1.990 1.886
4→ 4 6.538 2.688 4.785 4.821 1.978 2.069
4→ 5 6.221 2.568 4.732 4.817 1.958 2.346
4→ 6 6.045 2.488 4.661 4.668 1.899 2.564

Table 3: BallsCF: MSE on 2D pose average
over time. IN sup. methods in the last column
exploit the ground truth confounder quantities as
input and thus is not directly comparable.

Train→Test Copy C Copy B IN NPE CoPhyNet IN sup.

all→all 4.370 0.665 0.701 0.697 0.173 0.332
sphere→cylinder 4.245 0.481 0.715 0.710 0.220 0.435
cylinder→sphere 4.571 0.932 0.720 0.699 0.152 0.586

Table 4: CollisionCF: MSE on 3D pose av-
erage over time. IN sup. methods in the last col-
umn exploit the ground truth confounder quanti-
ties as input and thus is not directly comparable
(still showing inferior performance).

Table 5: Ablations on BlockTowerCF: confounder prediction
(masses, friction coefficients) from the joint latent representation U .
Metric: 4-way classification accuracy: Random=random classification.

Method 3→ 3 4→ 4

Random 25.0 25.0
CoPhyNet 65.7 68.9

Method 3→ 3 3→ 4

Static gating 0.305 0.496
GCN replaced by MLP 0.289 0.764
Single-step prediction 0.295 0.492

CoPhyNet 0.285 0.478

Subset
Feedforward Counterfactual

confounders: confounders:
input – supervision –

K=4 0.248 0.349 0.281 0.285
K=3 0.410 0.552 0.458 0.478

Method 3→ 3 3→ 4

Copy C 71.0 69.8
Copy B 69.9 68.5
GCN(C) 71.8 70.1

CoPhyNet 76.8 73.8

Table 6: Ablation study on BlockTowerCF: (Left) Impact of each component of our model (MSE
on 3D pose average over time). (Middle) Impact of the confounder estimate (MSE on 3D pose average
over time, validation set). Feedforward methods do not estimate the confounder, counterfactual
methods do. We compare against soft upper bounds, which use the ground truth confounder as input
or supervise its estimation. (Right) Stability prediction (accuracy per block). With the ground truth
confounder values as input, graph convolutional networks (GCN(C)) reach a performance of 85.4
and 77.3 in the 3→ 3 and 3→ 4 settings respectively (a soft upper bound, not comparable).

prediction is correct if both the mass and the friction coefficients are correctly predicted. Our model
outperforms the random baseline by a large margin suggesting that the confounder quantities are
correctly encoded into the latent representation of each object during training.

Stability prediction. We studied the performance of the stability estimation module in the
BlockTowerCF scenario and compared it to several baselines, as shown in Table 6 (Right). Our
method predicts stability of each block from the confounder estimate U and the frame C. It outper-
forms the baselines estimating stability from a single input C or from the sequence (A,B) by a large
margin, further indicating the efficiency of the confounder estimation and the complimentarity of this
non-visual information w.r.t. the visual observation C.

6 CONCLUSION

We formulated a new task of counterfactual reasoning for learning intuitive physics from images,
developed a large-scale benchmark suite and proposed a practical approach for this problem. The
task requires to predict alternative outcomes of a physical problem given the original past and
outcome and an alternative past after do-intervention. Our challenging benchmarks cannot be solved
by classical methods predicting by extrapolation, as the alternative future depends on confounder
variables, which are unobservable from a single image of the alternative past. We train a neural
model by supervising the do-operator, but not the confounders. Our experiments show that the CF
setting outperforms conventional forecasting, and that the latent representation is related to the GT
confounder quantities. We report human performance on this task, show its challenging nature and
importance of CF reasoning.

We believe that counterfactual reasoning in high-dimensional spaces is a key component of AI and
hope that our task will spawn new research in this area and thus contribute to bridging the gap between
causal reasoning and deep learning. We also expect the benchmark to become a testbed in model
based RL, which employs predictive models of an environment for learning agent behavior. Forward
models are classically used in this context, but we conjecture that CF reasoning will contribute to
disentangling representations and inferring causal relationships between different factors of variation.

Acknowledgements. This work was funded by grant Deepvision (ANR-15-CE23-0029, STPGP-
479356-15), a joint French/Canadian call by ANR & NSERC.
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G.E. Dahl, A. Vaswani, K. Allen, C. Nash, V/ Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,
M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning, and
graph networks. arXiv preprint arXiv:1807.09244, 2018.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. In ICLR, 2017.

S. Ehrhardt, A. Monszpart, N. Mitra, and A. Vedaldi. Unsupervised intuitive physics from past
experiences. arXiv preprint, arXiv:1905.10793, 2019.

Tobias Gerstenberg, Noah D. Goodman, David A. Lagnado, and Joshua A. Tenenbaum. How, whether,
why: Causal judgments as counterfactual contrasts. In Annual Conference of the Cognitive Science
Society, 2015.

Rohit Girdhar and Deva Ramanan. Cater: A diagnostic dataset for compositional actions and temporal
reasoning. In ICLR, 2019.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
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A APPENDIX

A.1 NEURAL DE-RENDERING

We train a convolutional neural network (CNN) to detect the K blocks and estimate their positions in
3D, denoted as O={ok}, k=0...K−1 where ok corresponds to the position of object k. The network
is inspired by classical region-based methods for object detection (He et al., 2017) and takes as an
input an RGB image of resolution 224×224.

We define a double convolution module as a stack of a convolutional layer, batch normalization and
ReLu activation, repeated two times. The resulting CNN includes three such modules with 64, 128
and 256 channels respectively, separated by 2× 2 max pooling, which produces output feature maps
of size 256×56×56.

We design K different heads by splitting the final feature maps channel-wise into K feature maps
and perform a double convolution module with 1 output channel. Each head outputs a feature map of
size 1×56×56 which is transformed into a vector to regress the object positions.

We first pre-train the de-rendering module alone without the model parts responsible for reasoning in
the graph space. In particular, we de-render images X̂ randomly sampled from A, B, C and D into
its object representations O={ok} and train with the following supervised loss:

Lderender =

K∑
k=1

Lmse(ok, ok∗) (6)

where ôk∗ are the ground truth 3D positions and Lmse corresponds to the mean square error. The rest
of the model is trained end-to-end as described in section 4.2, paragraph “Training”.
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A.2 OTHER ARCHITECTURES

Below are the descriptions of other networks used in our pipeline:

f, g are implemented as MLPs with 4 and 2 layers respectively, with hidden layers of size 32 and
ReLu activations.

φ,ψ are implemented as GRU modules with 2 layers and a hidden state of dimension 32.
Confounders (mass and friction coefficients) are predicted with a single fully connected layer on

top of the “confounder” representation of each object denoted uk.

A.3 FEEDFORWARD BASELINES

We compare our approach against two recent feedforward approaches, namely IN (Battaglia et al.,
2016) and NPE (Chang et al., 2017). Both methods assume that GT object positions are available
as input at training and test time, so they directly work on GT positions. They both predict the
next position of each object using a Graph Convolution Network. IN is modeling object pairwise
interaction between all objects in the scene, while NPE is taking into account only neighbouring
objects for estimating the object interactions.

A.4 TRAINING FROM ESTIMATED POSITIONS

In Table 7 we report the impact of the de-rendering module on performance. In particular, we compare
performance of our model (CoPhyNet w/o GT, as described in the main part of the paper) with a
version where we use ground-truth positions (CoPhyNet GT) for training. During training time, GT
positions are fed to the main model. For testing, we do, however, use positions estimated by the
de-rendering module in both versions.

We can see that training using the GT positions gives slighly better performance than training from
estimated positions, which is expected.

Train→Test Copy C Copy B CoPhyNet GT CoPhyNet w/o GT (=ours)

3→ 3 0.470 0.601 0.294 0.309
3→ 3 † 0.365 0.592 0.289 0.298
3→ 4 0.754 0.846 0.482 0.504

Table 7: BlocktowerCF: MSE on 3D pose averaged over time. We evaluate different types of
training: from the ground-truth positions (GT) or from the estimated positions (w/o GT). †Test
confounder configurations not seen during training (50/50 split).
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