
Published as a conference paper at ICLR 2020

COMBINING Q-LEARNING AND SEARCH WITH
AMORTIZED VALUE ESTIMATES

Jessica B. Hamrick
DeepMind
jhamrick@google.com

Victor Bapst
DeepMind
vbapst@google.com

Alvaro Sanchez-Gonzalez
DeepMind
alvarosg@google.com

Tobias Pfaff
DeepMind
tpfaff@google.com

Théophane Weber
DeepMind
theophane@google.com

Lars Buesing
DeepMind
lbuesing@google.com

Peter W. Battaglia
DeepMind
peterbattaglia@google.com

ABSTRACT

We introduce “Search with Amortized Value Estimates” (SAVE), an approach
for combining model-free Q-learning with model-based Monte-Carlo Tree Search
(MCTS). In SAVE, a learned prior over state-action values is used to guide MCTS,
which estimates an improved set of state-action values. The new Q-estimates are
then used in combination with real experience to update the prior. This effectively
amortizes the value computation performed by MCTS, resulting in a coopera-
tive relationship between model-free learning and model-based search. SAVE can
be implemented on top of any Q-learning agent with access to a model, which
we demonstrate by incorporating it into agents that perform challenging physical
reasoning tasks and Atari. SAVE consistently achieves higher rewards with fewer
training steps, and—in contrast to typical model-based search approaches—yields
strong performance with very small search budgets. By combining real experience
with information computed during search, SAVE demonstrates that it is possible
to improve on both the performance of model-free learning and the computational
cost of planning.

1 INTRODUCTION

Model-based methods have been at the heart of reinforcement learning (RL) since its inception
(Bellman, 1957), and have recently seen a resurgence in the era of deep learning, with powerful
function approximators inspiring a variety of effective new approaches (Silver et al., 2018; Chua
et al., 2018; Hamrick, 2019; Wang et al., 2019). Despite the success of model-free RL in reaching
state-of-the-art performance in challenging domains (e.g. Kapturowski et al., 2018; Haarnoja et al.,
2018), model-based methods hold the promise of allowing agents to more flexibly adapt to new
situations and efficiently reason about what will happen to avoid potentially bad outcomes. The two
key components of any such system are the model, which captures the dynamics of the world, and
the planning algorithm, which chooses what computations to perform with the model in order to
produce a decision or action (Sutton & Barto, 2018).

Much recent work on model-based RL places an emphasis on model learning rather than plan-
ning, typically using generic off-the-shelf planners like Monte-Carlo rollouts or search (see Ham-
rick (2019); Wang et al. (2019) for recent surveys). Yet, with most generic planners, even a perfect
model of the world may require large amounts of computation to be effective in high-dimensional,
sparse reward settings. For example, recent methods which use Monte-Carlo Tree Search (MCTS)
require 100s or 1000s of model evaluations per action during training, and even upwards of a million
simulations per time step at test time (Anthony et al., 2017; Silver et al., 2018). These large search
budgets are required, in part, because much of the computation performed during planning—such

1

Published as a conference paper at ICLR 2020

as the estimation of action values—is coarsely summarized in behavioral traces such as visit counts
(Anthony et al., 2017; Silver et al., 2018), or discarded entirely after an action is selected (Bapst
et al., 2019; Azizzadenesheli et al., 2018). However, large search budgets are a luxury that is not
always available: many real-world simulators are expensive and may only be feasible to query a
handful of times. In this paper, we explore preserving the value estimates that were computed by
search by amortizing them via a neural network and then using this network to guide future search,
resulting in an approach which works well even with very small search budgets.

We propose a new method called “Search with Amortized Value Estimates” (SAVE) which uses a
combination of real experience as well as the results of past searches to improve overall performance
and reduce planning cost. During training, SAVE uses MCTS to estimate the Q-values at encoun-
tered states. These Q-values are used along with real experience to fit a Q-function, thus amortizing
the computation required to estimate values during search. The Q-function is then used as a prior for
subsequent searches, resulting in a symbiotic relationship between model-free learning and MCTS.
At test time, SAVE uses MCTS guided by the learned prior to produce effective behavior, even
with very small search budgets and in environments with tens of thousands of possible actions per
state—settings which are very challenging for traditional planners.

2 BACKGROUND AND MOTIVATION

Unifying the complementary approaches of learning and search has been of interest to the RL and
planning communities for many years (e.g. Gelly & Silver, 2007; Guo et al., 2014; Gu et al., 2016;
Silver et al., 2016). SAVE is motivated in particular by two threads in this body of work: one
which uses planning in-the-loop to produce experience for Q-learning, and one which learns a policy
prior for guiding search. As we will describe next, both of these previous approaches can suffer
from issues with training stability which are alleviated by SAVE by simultaneously using MCTS to
strengthen an action-value function, and Q-learning to strengthen MCTS.

2.1 LEARNING FROM PLANNED ACTIONS

A number of methods have explored learning from planned actions. Guo et al. (2014) trained a
model-free policy to imitate the actions produced by an MCTS agent. Other methods use planning
in-the-loop to recommend actions, which are then executed in the environment to gather experience
for model-free learning (Silver et al., 2008; Gu et al., 2016; Azizzadenesheli et al., 2018; Shen et al.,
2018; Lowrey et al., 2018; Bapst et al., 2019; Kartal et al., 2019). However, problems can arise
when learning with actions that were produced via planning, even with off-policy algorithms like
Q-learning. As noted by both Gu et al. (2016) and Azizzadenesheli et al. (2018), planning avoids
suboptimal actions, resulting in a highly biased action distribution consisting of mostly good actions;
information about suboptimal actions therefore does not get propagated back to the Q-function. As
an example, consider the case where a Q-function recommends taking action a. During planning,
this action is explored and is found to yield lower reward than expected. The planner will end up
recommending some other action a′, which is executed in the environment and later used to update
the Q-function. However, this means that the original action a is never actually experienced and thus
is never downweighed in the Q-function, resulting in poorly approximated Q-values.

One way to deal with this problem is to use a mixture of both on-policy and planned actions (Gu
et al., 2016). However, this throws away information about poor actions which is acquired during the
planning process. In SAVE, we instead make use of this information by using the values estimated
during search to help fit the Q-function. If the search finds that a particular action is worse than
previously thought, this information will be reflected by the estimated values and will thus ultimately
get propagated back to the Q-function. We explicitly test and confirm this hypothesis in Section 4.2.

2.2 USING PRIOR KNOWLEDGE IN SEARCH

Much research has leveraged prior knowledge in the context of MCTS (Gelly & Silver, 2007; 2011;
Silver et al., 2016; Segler et al., 2018; Silver et al., 2017b; 2018; Anthony et al., 2017; 2019). Some
of the most successful methods (Anthony et al., 2017; Silver et al., 2018) use a prior policy to guide
search, the results of which are used to further improve the policy. However, such methods use
information about past behavior to learn a policy prior—namely, the visit counts of actions during

2

Published as a conference paper at ICLR 2020

search—and discard other search information such as inferred Q-values. We might anticipate one
potential failure mode of such “count-based policy learning” approaches. Consider an environment
with sparse rewards, where most actions are highly suboptimal. In the limit of infinite search,
actions which have highest value will be visited most frequently, resulting in a policy that guides
search towards regions of high value. However, in the regime of small search budgets, the search
may very well end up exploring mostly suboptimal actions. These actions have higher visit counts,
and so are reinforced, leading to the agent being more likely to explore poor actions.

Rather than implicitly biasing search towards value through the use of visit counts, SAVE relies on
a prior that explicitly encodes knowledge about value. If SAVE ends up searching poor actions, it
will learn that they have low values and this knowledge will be reflected in future searches. Thus,
in contrast to count-based approaches, a SAVE agent will be less likely to visit poor actions in
the future despite having frequently visited them in the past. We explicitly test and confirm this
hypothesis in Section 4.1.

2.3 OTHER RELATED WORK

Finding effective ways of combining model-based and model-free experience has been of interest
to the RL community for decades. Most famously, the Dyna algorithm (Sutton, 1990) proposes
using real experience to learn a model and then using the model to train a model-free policy. A
number of more recent works have explored how to incorporate this idea into deep architectures
(Kalweit & Boedecker, 2017; Feinberg et al., 2018; Buckman et al., 2018; Serban et al., 2018;
Kurutach et al., 2018; Kaiser et al., 2019), with an emphasis on dealing with the errors that are
introduced by approximate models. In these approaches, the policy or value function is typically
trained using on-policy rollouts from the model without using additional planning. Another way to
combine model-free and model-based approaches is “implicit planning”, in which the computation
of a planner is built into the architecture of a neural network itself (Weber et al., 2017; Buesing et al.,
2018; Pascanu et al., 2017; Silver et al., 2017b; Oh et al., 2017; Guez et al., 2018; Farquhar et al.,
2018; Hamrick et al., 2017; Srinivas et al., 2018; Yu et al., 2019; Tamar et al., 2016; Karkus et al.,
2017). While SAVE is not an implicit planning method, it shares similarities with such methods in
that it also tightly integrates planning and learning.

3 METHOD

…

a
<latexit sha1_base64="QpdaHAtULVhjrSKI0wwDhZf7M2g=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUpINS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmhD8FZfXiftasW7rlSbN+V6LY+jAOdwAVfgwS3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8AwamM3w==</latexit>

s
<latexit sha1_base64="8UDZ6x7JNg5bxqZAo/Ha5+Zxpqk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU1INS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmhD8FZfXiftasW7rlSbN+V6LY+jAOdwAVfgwS3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3PGM8Q==</latexit>

s
<latexit sha1_base64="8UDZ6x7JNg5bxqZAo/Ha5+Zxpqk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU1INS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmhD8FZfXiftasW7rlSbN+V6LY+jAOdwAVfgwS3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3PGM8Q==</latexit>

Q0
<latexit sha1_base64="h6yZdp7Kvx53iYZ6/8/fndVJN+Y=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOL9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHstHM03Qj+hI8pAzaqz00By4g1LZrbgLkHXi5aQMORqD0ld/GLM0QmmYoFr3PDcxfkaV4UzgrNhPNSaUTegIe5ZKGqH2s8WpM3JplSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2naEPwVl9eJ+1qxbuuVJs35Xotj6MA53ABV+DBLdThHhrQAgYjeIZXeHOE8+K8Ox/L1g0nnzmDP3A+fwDM/41y</latexit>

QK
<latexit sha1_base64="8PpRy18IBAIwtPBXs5bsAYIkfDc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGwRwDXgQvCZoHJEuYnXSSIbOzy8ysEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13VxALro3rfju5jc2t7Z38bmFv/+DwqHh80tJRohg2WSQi1QmoRsElNg03AjuxQhoGAtvB5Hbut59QaR7JRzON0Q/pSPIhZ9RY6aHRv+8XS27ZXYCsEy8jJchQ7xe/eoOIJSFKwwTVuuu5sfFTqgxnAmeFXqIxpmxCR9i1VNIQtZ8uTp2RC6sMyDBStqQhC/X3REpDradhYDtDasZ61ZuL/3ndxAyrfsplnBiUbLlomAhiIjL/mwy4QmbE1BLKFLe3EjamijJj0ynYELzVl9dJq1L2rsqVxnWpVs3iyMMZnMMleHADNbiDOjSBwQie4RXeHOG8OO/Ox7I152Qzp/AHzucP9euNjQ==</latexit>

MCTS

Q✓
<latexit sha1_base64="e6AQYzf9+DrFs4GcWKFz5LaKpsw=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmd3O/88S1EbF6wGnC/YiOlAgFo2ilbnPQxzFHOiiV3Yq7AFknXk7KkKMxKH31hzFLI66QSWpMz3MT9DOqUTDJZ8V+anhC2YSOeM9SRSNu/Gxx74xcWmVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw5qfCZWkyBVbLgpTSTAm8+fJUGjOUE4toUwLeythY6opQxtR0Ybgrb68TtrVinddqTZvyvVaHkcBzuECrsCDW6jDPTSgBQwkPMMrvDmPzovz7nwsWzecfOYM/sD5/AH7YY/m</latexit>

W
<latexit sha1_base64="bknBClUAf6oPLw2qgdqSvJ1XPM4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU7AxKZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJt3pTrtTyOApzDBVyBB7dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBsoGM1Q==</latexit>

QMCTS
<latexit sha1_base64="Uszo5cwfNa30+yW/XxMgoCu8eXA=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyyCqzJTBbssdONGaLEvaIchk2ba0CQzJBmhDv0SNy4UceunuPNvzLSz0NYDgcM593JPThAzqrTjfFuFre2d3b3ifung8Oi4bJ+c9lSUSEy6OGKRHARIEUYF6WqqGRnEkiAeMNIPZs3M7z8SqWgkOnoeE4+jiaAhxUgbybfLbX/EkZ5Knt43Ow8L3644VWcJuEncnFRAjpZvf43GEU44ERozpNTQdWLtpUhqihlZlEaJIjHCMzQhQ0MF4kR56TL4Al4aZQzDSJonNFyqvzdSxJWa88BMZiHVupeJ/3nDRId1L6UiTjQReHUoTBjUEcxagGMqCdZsbgjCkpqsEE+RRFibrkqmBHf9y5ukV6u619Va+6bSqOd1FME5uABXwAW3oAHuQAt0AQYJeAav4M16sl6sd+tjNVqw8p0z8AfW5w+RppL/</latexit>

r, s0
<latexit sha1_base64="hJufqpwzw1yq+qrP9FgIWbJg5jw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbRg5SkCvZY8OKxgrGFNpTNdtIu3WzC7kYopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObmd+6wmV5ol8MOMUg5gOJI84o8ZKvrok+rxXrrhVdw6ySrycVCBHs1f+6vYTlsUoDRNU647npiaYUGU4EzgtdTONKWUjOsCOpZLGqIPJ/NgpObNKn0SJsiUNmau/JyY01noch7Yzpmaol72Z+J/XyUxUDyZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/JhuAtv7xKHmtV76pau7+uNOp5HEU4gVO4AA9uoAF30AQfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/zr6N/g==</latexit>

s
<latexit sha1_base64="8UDZ6x7JNg5bxqZAo/Ha5+Zxpqk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU1INS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmhD8FZfXiftasW7rlSbN+V6LY+jAOdwAVfgwS3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3PGM8Q==</latexit>

{s, s0, a, r}
<latexit sha1_base64="r7tf9Mt3a95iPPfLkefWJ+C+N84=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbRQylJK9hjwYvHCvYDmlA22027dLMJu5tCCf0nXjwo4tV/4s1/47bNQVsfDDzem2FmXpBwprTjfFuFre2d3b3ifung8Oj4xD4966g4lYS2Scxj2QuwopwJ2tZMc9pLJMVRwGk3mNwv/O6USsVi8aRnCfUjPBIsZARrIw1s28tUBanrCsIVJJE3H9hlp+osgTaJm5My5GgN7C9vGJM0okITjpXqu06i/QxLzQin85KXKppgMsEj2jdU4IgqP1tePkdXRhmiMJamhEZL9fdEhiOlZlFgOiOsx2rdW4j/ef1Uhw0/YyJJNRVktShMOdIxWsSAhkxSovnMEEwkM7ciMsYSE23CKpkQ3PWXN0mnVnXr1drjbbnZyOMowgVcwg24cAdNeIAWtIHAFJ7hFd6szHqx3q2PVWvBymfO4Q+szx/klJHZ</latexit>

real experience
<latexit sha1_base64="pIecrhJdAMZLrRyujPa2QJd4c1A=">AAAB/3icbVC7SgNBFJ31GeNrVbCxGQyCVdiNgpYBG8sI5gHJEmYnd5Mhsw9m7krCmsJfsbFQxNbfsPNvnCRbaOKBgcM59zD3Hj+RQqPjfFsrq2vrG5uFreL2zu7evn1w2NBxqjjUeSxj1fKZBikiqKNACa1EAQt9CU1/eDP1mw+gtIijexwn4IWsH4lAcIZG6trHHYQRZiYiKYwSUAIiDpOuXXLKzgx0mbg5KZEcta791enFPA0hQi6Z1m3XSdDLmELBJUyKnVRDwviQ9aFtaMRC0F42239Cz4zSo0GszIuQztTfiYyFWo9D30yGDAd60ZuK/3ntFINrLxNRkqI5a/5RkEqKMZ2WQXtCAUc5NoRxJcyulA+YYhxNZUVTgrt48jJpVMruRblyd1mqVvI6CuSEnJJz4pIrUiW3pEbqhJNH8kxeyZv1ZL1Y79bHfHTFyjNH5A+szx+4/5aA</latexit>

{s, QMCTS}
<latexit sha1_base64="MH0+Ywz7xsivS8N8PyHtTGVxcwE=">AAACAHicbVC7SgNBFJ2NrxhfqxYWNoNBsJCwGwVTBtLYCAnmBdllmZ1MkiGzD2buimHZxl+xsVDE1s+w82+cPApNPHDhcM693HuPHwuuwLK+jdza+sbmVn67sLO7t39gHh61VZRIylo0EpHs+kQxwUPWAg6CdWPJSOAL1vHHtanfeWBS8ShswiRmbkCGIR9wSkBLnnnipOoSNzwH2CPIIL2rNe8z7GSeWbRK1gx4ldgLUkQL1D3zy+lHNAlYCFQQpXq2FYObEgmcCpYVnESxmNAxGbKepiEJmHLT2QMZPtdKHw8iqSsEPFN/T6QkUGoS+LozIDBSy95U/M/rJTCouCkP4wRYSOeLBonAEOFpGrjPJaMgJpoQKrm+FdMRkYSCzqygQ7CXX14l7XLJviqVG9fFamURRx6dojN0gWx0g6roFtVRC1GUoWf0it6MJ+PFeDc+5q05YzFzjP7A+PwB+HqV+Q==</latexit>

search experience
<latexit sha1_base64="7clDKKqaHSykR/uCG6TAXnJqEUk=">AAACAXicbVC7SgNBFJ31GeNr1UawGQyCVdiNgpYBG8sI5gHJEmYnd5Mhsw9m7krCEht/xcZCEVv/ws6/cZJsoYkHBg7n3Mudc/xECo2O822trK6tb2wWtorbO7t7+/bBYUPHqeJQ57GMVctnGqSIoI4CJbQSBSz0JTT94c3Ubz6A0iKO7nGcgBeyfiQCwRkaqWsfdxBGmGlgig8ojBJQAiIOk65dcsrODHSZuDkpkRy1rv3V6cU8DSFCLpnWbddJ0MuYQsElTIqdVEPC+JD1oW1oxELQXjZLMKFnRunRIFbmRUhn6u+NjIVaj0PfTIYMB3rRm4r/ee0Ug2svE1GSook1PxSkkmJMp3XQnlDAUY4NYVwJ81fKB0wxjqa0oinBXYy8TBqVsntRrtxdlqqVvI4COSGn5Jy45IpUyS2pkTrh5JE8k1fyZj1ZL9a79TEfXbHynSPyB9bnD1SNl2Y=</latexit>

LA
<latexit sha1_base64="NCi/iXFwsWoX9yFnevaXvF7HJQ4=">AAACSHicfZDLSsNAFIYn9R5vVZdugkUQkZKIYJcVXbhQrGBVaEI5mZ7WoZNJnJmIJeQ53Orr+Aa+hTtx56St4A0PDHz855+Zc/4w4Uxp132xShOTU9Mzs3P2/MLi0nJ5ZfVSxamk2KQxj+V1CAo5E9jUTHO8TiRCFHK8CvuHRf/qDqVisbjQgwSDCHqCdRkFbaTAj0DfUODZSd4+aJcrbtUdlvMbvDFUyLga7RVr0+/ENI1QaMpBqZbnJjrIQGpGOea2nypMgPahhy2DAiJUQTacOnc2jdJxurE0R2hnqH69kUGk1CAKjbOYUv3sFeJfvVaqu7UgYyJJNQo6+qibckfHThGB02ESqeYDA0AlM7M69AYkUG2Csm3/CM0yEk/Nw2cJStCx3M58kL0I7nOzXM/fKeg/IxOfRkO2Cdb7GeNvuNytem7VO9+r1GvjiGfJOtkgW8Qj+6ROjkmDNAklt+SBPJIn69l6td6s95G1ZI3vrJFvVSp9AKR1seA=</latexit><latexit sha1_base64="NCi/iXFwsWoX9yFnevaXvF7HJQ4=">AAACSHicfZDLSsNAFIYn9R5vVZdugkUQkZKIYJcVXbhQrGBVaEI5mZ7WoZNJnJmIJeQ53Orr+Aa+hTtx56St4A0PDHz855+Zc/4w4Uxp132xShOTU9Mzs3P2/MLi0nJ5ZfVSxamk2KQxj+V1CAo5E9jUTHO8TiRCFHK8CvuHRf/qDqVisbjQgwSDCHqCdRkFbaTAj0DfUODZSd4+aJcrbtUdlvMbvDFUyLga7RVr0+/ENI1QaMpBqZbnJjrIQGpGOea2nypMgPahhy2DAiJUQTacOnc2jdJxurE0R2hnqH69kUGk1CAKjbOYUv3sFeJfvVaqu7UgYyJJNQo6+qibckfHThGB02ESqeYDA0AlM7M69AYkUG2Csm3/CM0yEk/Nw2cJStCx3M58kL0I7nOzXM/fKeg/IxOfRkO2Cdb7GeNvuNytem7VO9+r1GvjiGfJOtkgW8Qj+6ROjkmDNAklt+SBPJIn69l6td6s95G1ZI3vrJFvVSp9AKR1seA=</latexit><latexit sha1_base64="NCi/iXFwsWoX9yFnevaXvF7HJQ4=">AAACSHicfZDLSsNAFIYn9R5vVZdugkUQkZKIYJcVXbhQrGBVaEI5mZ7WoZNJnJmIJeQ53Orr+Aa+hTtx56St4A0PDHz855+Zc/4w4Uxp132xShOTU9Mzs3P2/MLi0nJ5ZfVSxamk2KQxj+V1CAo5E9jUTHO8TiRCFHK8CvuHRf/qDqVisbjQgwSDCHqCdRkFbaTAj0DfUODZSd4+aJcrbtUdlvMbvDFUyLga7RVr0+/ENI1QaMpBqZbnJjrIQGpGOea2nypMgPahhy2DAiJUQTacOnc2jdJxurE0R2hnqH69kUGk1CAKjbOYUv3sFeJfvVaqu7UgYyJJNQo6+qibckfHThGB02ESqeYDA0AlM7M69AYkUG2Csm3/CM0yEk/Nw2cJStCx3M58kL0I7nOzXM/fKeg/IxOfRkO2Cdb7GeNvuNytem7VO9+r1GvjiGfJOtkgW8Qj+6ROjkmDNAklt+SBPJIn69l6td6s95G1ZI3vrJFvVSp9AKR1seA=</latexit><latexit sha1_base64="NCi/iXFwsWoX9yFnevaXvF7HJQ4=">AAACSHicfZDLSsNAFIYn9R5vVZdugkUQkZKIYJcVXbhQrGBVaEI5mZ7WoZNJnJmIJeQ53Orr+Aa+hTtx56St4A0PDHz855+Zc/4w4Uxp132xShOTU9Mzs3P2/MLi0nJ5ZfVSxamk2KQxj+V1CAo5E9jUTHO8TiRCFHK8CvuHRf/qDqVisbjQgwSDCHqCdRkFbaTAj0DfUODZSd4+aJcrbtUdlvMbvDFUyLga7RVr0+/ENI1QaMpBqZbnJjrIQGpGOea2nypMgPahhy2DAiJUQTacOnc2jdJxurE0R2hnqH69kUGk1CAKjbOYUv3sFeJfvVaqu7UgYyJJNQo6+qibckfHThGB02ESqeYDA0AlM7M69AYkUG2Csm3/CM0yEk/Nw2cJStCx3M58kL0I7nOzXM/fKeg/IxOfRkO2Cdb7GeNvuNytem7VO9+r1GvjiGfJOtkgW8Qj+6ROjkmDNAklt+SBPJIn69l6td6s95G1ZI3vrJFvVSp9AKR1seA=</latexit>

LQ
<latexit sha1_base64="vqde/PagJXeFr0/VFnHnU6i1mCs=">AAACSHicfZDLSsNAFIYn9VbjrdWlm2ARRKQkIthlQRcuFFuwKjShnExP6+BkEmcmYgl5Drf6Or6Bb+FO3DmpFbzhgYGP//wzc84fJpwp7brPVmlqemZ2rjxvLywuLa9UqqvnKk4lxQ6NeSwvQ1DImcCOZprjZSIRopDjRXh9UPQvblEqFoszPUowiGAo2IBR0EYK/Aj0FQWeHee9dq9Sc+vuuJzf4E2gRibV6lWtTb8f0zRCoSkHpbqem+ggA6kZ5ZjbfqowAXoNQ+waFBChCrLx1LmzaZS+M4ilOUI7Y/XrjQwipUZRaJzFlOpnrxD/6nVTPWgEGRNJqlHQj48GKXd07BQROH0mkWo+MgBUMjOrQ69AAtUmKNv2D9EsI/HEPHyaoAQdy+3MBzmM4C43yw39nYL+MzLxaTRkm2C9nzH+hvPduufWvfZerdmYRFwm62SDbBGP7JMmOSIt0iGU3JB78kAerSfrxXq13j6sJWtyZ418q1LpHcH1sfA=</latexit><latexit sha1_base64="vqde/PagJXeFr0/VFnHnU6i1mCs=">AAACSHicfZDLSsNAFIYn9VbjrdWlm2ARRKQkIthlQRcuFFuwKjShnExP6+BkEmcmYgl5Drf6Or6Bb+FO3DmpFbzhgYGP//wzc84fJpwp7brPVmlqemZ2rjxvLywuLa9UqqvnKk4lxQ6NeSwvQ1DImcCOZprjZSIRopDjRXh9UPQvblEqFoszPUowiGAo2IBR0EYK/Aj0FQWeHee9dq9Sc+vuuJzf4E2gRibV6lWtTb8f0zRCoSkHpbqem+ggA6kZ5ZjbfqowAXoNQ+waFBChCrLx1LmzaZS+M4ilOUI7Y/XrjQwipUZRaJzFlOpnrxD/6nVTPWgEGRNJqlHQj48GKXd07BQROH0mkWo+MgBUMjOrQ69AAtUmKNv2D9EsI/HEPHyaoAQdy+3MBzmM4C43yw39nYL+MzLxaTRkm2C9nzH+hvPduufWvfZerdmYRFwm62SDbBGP7JMmOSIt0iGU3JB78kAerSfrxXq13j6sJWtyZ418q1LpHcH1sfA=</latexit><latexit sha1_base64="vqde/PagJXeFr0/VFnHnU6i1mCs=">AAACSHicfZDLSsNAFIYn9VbjrdWlm2ARRKQkIthlQRcuFFuwKjShnExP6+BkEmcmYgl5Drf6Or6Bb+FO3DmpFbzhgYGP//wzc84fJpwp7brPVmlqemZ2rjxvLywuLa9UqqvnKk4lxQ6NeSwvQ1DImcCOZprjZSIRopDjRXh9UPQvblEqFoszPUowiGAo2IBR0EYK/Aj0FQWeHee9dq9Sc+vuuJzf4E2gRibV6lWtTb8f0zRCoSkHpbqem+ggA6kZ5ZjbfqowAXoNQ+waFBChCrLx1LmzaZS+M4ilOUI7Y/XrjQwipUZRaJzFlOpnrxD/6nVTPWgEGRNJqlHQj48GKXd07BQROH0mkWo+MgBUMjOrQ69AAtUmKNv2D9EsI/HEPHyaoAQdy+3MBzmM4C43yw39nYL+MzLxaTRkm2C9nzH+hvPduufWvfZerdmYRFwm62SDbBGP7JMmOSIt0iGU3JB78kAerSfrxXq13j6sJWtyZ418q1LpHcH1sfA=</latexit><latexit sha1_base64="vqde/PagJXeFr0/VFnHnU6i1mCs=">AAACSHicfZDLSsNAFIYn9VbjrdWlm2ARRKQkIthlQRcuFFuwKjShnExP6+BkEmcmYgl5Drf6Or6Bb+FO3DmpFbzhgYGP//wzc84fJpwp7brPVmlqemZ2rjxvLywuLa9UqqvnKk4lxQ6NeSwvQ1DImcCOZprjZSIRopDjRXh9UPQvblEqFoszPUowiGAo2IBR0EYK/Aj0FQWeHee9dq9Sc+vuuJzf4E2gRibV6lWtTb8f0zRCoSkHpbqem+ggA6kZ5ZjbfqowAXoNQ+waFBChCrLx1LmzaZS+M4ilOUI7Y/XrjQwipUZRaJzFlOpnrxD/6nVTPWgEGRNJqlHQj48GKXd07BQROH0mkWo+MgBUMjOrQ69AAtUmKNv2D9EsI/HEPHyaoAQdy+3MBzmM4C43yw39nYL+MzLxaTRkm2C9nzH+hvPduufWvfZerdmYRFwm62SDbBGP7JMmOSIt0iGU3JB78kAerSfrxXq13j6sJWtyZ418q1LpHcH1sfA=</latexit>

Q✓
<latexit sha1_base64="e6AQYzf9+DrFs4GcWKFz5LaKpsw=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmd3O/88S1EbF6wGnC/YiOlAgFo2ilbnPQxzFHOiiV3Yq7AFknXk7KkKMxKH31hzFLI66QSWpMz3MT9DOqUTDJZ8V+anhC2YSOeM9SRSNu/Gxx74xcWmVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw5qfCZWkyBVbLgpTSTAm8+fJUGjOUE4toUwLeythY6opQxtR0Ybgrb68TtrVinddqTZvyvVaHkcBzuECrsCDW6jDPTSgBQwkPMMrvDmPzovz7nwsWzecfOYM/sD5/AH7YY/m</latexit>

Q✓0
<latexit sha1_base64="Y4QnODpew4e/9q5TP2bYQW6LhbU=">AAAB8nicbVBNS8NAEJ34WetX1aOXYBE9laQK9ljw4rEF+wFtKJvtpl262Q27E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTAQ36Hnfzsbm1vbObmGvuH9weHRcOjltG5VqylpUCaW7ITFMcMlayFGwbqIZiUPBOuHkfu53npg2XMlHnCYsiMlI8ohTglbqNQdZH8cMydVsUCp7FW8Bd534OSlDjsag9NUfKprGTCIVxJie7yUYZEQjp4LNiv3UsITQCRmxnqWSxMwE2eLkmXtplaEbKW1LortQf09kJDZmGoe2MyY4NqveXPzP66UY1YKMyyRFJulyUZQKF5U7/98dcs0oiqklhGpub3XpmGhC0aZUtCH4qy+vk3a14t9Uqs3bcr2Wx1GAc7iAa/DhDurwAA1oAQUFz/AKbw46L86787Fs3XDymTP4A+fzByhZkSM=</latexit>

Acting Learning

Figure 1: Illustration of SAVE. When acting,
the agent uses a Q-function,Qθ, as a prior for
the Q-values estimated during MCTS. Over
K steps of search, Q0 ≡ Qθ is built up
to QK , which is returned as QMCTS (Equa-
tions 1 and 4). From QMCTS, an action a is
selected via epsilon-greedy and the resulting
experience (s, a, r, s′, QMCTS) is added to a
replay buffer. When learning, the agent uses
real experience to update Qθ via Q-learning
(LQ) as well as an amortization loss (LA)
which regresses Qθ towards the Q-values es-
timated during search (Equation 6).

SAVE features two main components (Figure 1).
First, we use a search policy that incorporates the
Q-function Qθ(s, a) as a prior over Q-values that
are estimated during search. Second, to train the Q-
function we rely on an objective function that com-
bines both the TD-error from Q-learning with an
amortization loss that amortizes the value computa-
tion performed by the search. The amortization loss,
combined with the prior over Q-values, thus enables
future searches to build on previous ones, resulting
in stronger search performance overall.

3.1 STANDARD MCTS

Before explaining how SAVE leverages search, we
briefly describe the standard MCTS algorithm (Koc-
sis & Szepesvári, 2006; Coulom, 2006). While we
focus here on the single-player setting, we note that
the formulation of MCTS (and by extension, SAVE)
is similar for two-player settings. MCTS uses a sim-
ulator or model of the environment to explore possi-
ble future states and actions, with the aim of finding
a good action to execute from the current state, s0. In MCTS, we assume access to a budget of K
iterations (or simulations). The kth iteration of MCTS consists of three phases: selection, expan-

3

Published as a conference paper at ICLR 2020

sion, and backup. In the selection phase, we expand a search tree beginning with the current state
and taking actions according to a search policy:

πk(s) = argmax
a

(
Qk(s, a) + Uk(s, a)

)
, (1)

whereQk is the currently estimated value of taking action awhile in state s, which will be explained
further below. Uk(s, a) is the UCT exploration term:

Uk(s, a) = cUCT

√
log
(∑

aNk(s, a)
)

Nk(s, a)
, (2)

where Nk(s, a) is the number of times we have explored taking action a from state s and cUCT is a
constant that encourages exploration. This selection procedure is repeated for T − 1 times, until a
new action aT−1 that had not previously been explored is chosen from state sT−1. This begins the
expansion phase, during which aT−1 is executed in the simulator, resulting in a reward rT−1 and
new state sT . The new state sT is added to the search tree, and its value V (sT) is estimated either
via a state-value function or (more traditionally) via a Monte-Carlo rollout. At this point the backup
phase begins, during which the value of sT is used to update (or “back up”) the values of its parent
states earlier in the tree. Specifically, for state st, the ith backed up return is estimated as:

Ri(st, at) = γT−tV (sT) +

T−1∑
j=t

γj−trj , (3)

where γ is the discount factor and rj was the reward obtained after executing aj in sj when traversing
the search tree. These backups are then used to estimate the Q-function in Equation 1 as Qk(s, a) =∑Nk(s,a)
i=1 Ri(s, a)/Nk(s, a).

3.2 INCORPORATING A PRIOR DURING SEARCH

SAVE makes several changes to the standard MCTS procedure. First, it assumes it has visited every
state and action pair once by initializing N(s, a) = 1 for all states and actions.1 Second, for each of
these state-action pairs, it assumes a prior estimate of its value, Qθ(s, a), and uses this as an initial
estimate for Qk, similar to Gelly & Silver (2007; 2011):

Qk(s, a) =
Qθ(s, a) +

∑Nk(s,a)−1
i=1 Ri(s, a)

Nk(s, a)
. (4)

whereQ0(s, a) := Qθ(s, a). Third, rather than using a separate state-value function or Monte-Carlo
rollouts to estimate the value of new states, SAVE uses the same state-action value function, i.e.
V (s) := maxaQθ(s, a). These three changes provide a mechanism for incorporating Q-based prior
knowledge into MCTS: specifically, SAVE acts as if it has visited every state-action pair once, with
the estimated values being given byQθ. Roughly speaking, this can be interpreted as using MCTS to
perform Bayesian inference over Q-values, with the prior specified by Qθ with a weight equivalent
to a pseudocount of one. This set of changes contrasts with UCT, which does not incorporate prior
knowledge, as well as PUCT (Rosin, 2011; Silver et al., 2017a; 2018), which incorporates prior
knowledge via a policy in the exploration term Uk(s, a).

After K iterations, we return QMCTS(s, a) := QK(s, a) and select an action to execute in the envi-
ronment via epsilon-greedy over QMCTS(s0, a). After the action is executed, we store the resulting
experience along with a copy of QMCTS(s0, ·) ≡ {QMCTS(s0, ai)}i in the replay buffer. This
process is illustrated in Figure 1 (left).

3.3 Q-LEARNING WITH AN AMORTIZATION LOSS

During learning, the results of the search are amortized into an updated prior Qθ′ (Figure 1, right).
We impose an amortization loss LA which encourages the distribution of Q-values output by the
neural network to be similar to those estimated by MCTS. The amortization loss is defined to be

1We could also consider initializing N(s, a) based on an estimate of previous visit counts, which we leave
as an interesting direction for future work.

4

Published as a conference paper at ICLR 2020

85 90 95 99
0.0

0.5

1.0

Sp
ar

se

(a) Budget = 5

85 90 95 99
0.0

0.5

1.0
(b) Budget = 10

85 90 95 99
0.0

0.5

1.0
(c) Budget = 20

85 90 95 99
% Terminal

0.0

0.5

1.0

D
en

se

85 90 95 99
% Terminal

0.0

0.5

1.0

85 90 95 99
% Terminal

0.0

0.5

1.0

SAVE PUCT UCT Q-Learning
0.00 0.25 0.50 0.75 1.00

Episodes 1e6

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

(d) Function Approximation
SAVE
Q-Learning

PUCT

Figure 2: Results on Tightrope. (a-c) Tabular results comparing SAVE, PUCT, UCT, and Q-learning
(with MCTS at test time) for varying percentages of terminal actions on the x-axes and for different
search budgets. The y-axes show reward for either the sparse or dense reward setting of Tightrope.
Lines show medians across 20 seeds, with error bars showing 95% confidence intervals. (d) Results
on Tightrope when using function approximation, comparing SAVE with PUCT and Q-learning.
Lines show medians across 10 seeds, with shaded regions indicating min and max seeds.

the cross-entropy between the softmax of the Q-values before (Qθ) and after (QMCTS) MCTS. This
cross-entropy loss achieves better performance than alternatives like L2, as described in Section 4.2.
Setting pMCTS = softmaxτ (QMCTS(s, ·)) and pθ = softmaxτ (Qθ(s, ·)), where τ = 1 is the
softmax temperature, the loss is defined as:

LA(θ,D) = −
1

N

∑
D

(pMCTS)
> logpθ, (5)

where D is a batch of N experience tuples (st, at, rt, st+1, QMCTS(st, ·)) sampled from the replay
buffer. This amortization loss is linearly combined with a Q-learning loss,

L(θ,D) = βQLQ(θ,D) + βALA(θ,D), (6)

where βQ and βA are coefficients to scale the loss terms. LQ may be any value-based loss function,
such as that based on 1-step TD targets, n-step TD targets, or λ-returns (Sutton, 1988). The amorti-
zation loss does make SAVE more sensitive to off-policy experience, as the values of QMCTS stored
in the replay buffer will become less useful and potentially misleading as Qθ improves; however,
we did not find this to be an issue in practice.

4 EXPERIMENTS

We evaluated SAVE in four distinct settings that vary in their branching factor, sparsity of rewards,
and episode length. First, we demonstrate through a new Tightrope environment that SAVE per-
forms well in settings where count-based policy approaches struggle, as discussed in Section 2.2.
Next, we show that SAVE scales to the challenging Construction domain (Bapst et al., 2019) and
that it alleviates the problem with off-policy actions discussed in Section 2.1. We also perform sev-
eral ablations to tease apart the details of SAVE. Finally, we demonstrate that SAVE dramatically
improves over Q-learning in a new and even more difficult construction task called Marble Run, as
well as in more standard environments like Atari (Bellemare et al., 2013). In all our experiments
we use SAVE with a perfect model of the environment, though we expect our approach would work
with learned models as well.

4.1 TIGHTROPE

In Section 2.2, we hypothesized that approaches which use count-based policy learning rather than
value-based learning (e.g. Anthony et al., 2017; Silver et al., 2018) may suffer in environments with
large branching factors, many suboptimal actions, and small search budgets. To test this hypothesis,
we developed a toy environment called Tightrope with these characteristics. Tightrope is a deter-
ministic MDP consisting of 11 labeled states linked together in a chain. At each state, there are 100
actions to take, M% of which are terminal (meaning that when taken they cause the episode to end).

5

Published as a conference paper at ICLR 2020

The other non-terminal actions will cause the state to transition to the next state in the chain. We
considered two settings of the reward function: dense rewards, in which case the agent receives a
reward of 0.1 when making it to the next state in the chain and 0 otherwise; and sparse rewards, in
which case the agent receives a reward of 1 only when making it to the final state. In the sparse re-
ward setting, we randomly selected one state in the chain to be the “final” state to form a curriculum
over the length of the chain. With the exception of the final state in the sparse reward setting, the
transition function of the MDP is exactly the same across episodes, with the same actions always
having the same behavior.

Tabular Results We first examined the behavior of SAVE on Tightrope in a tabular setting to
eliminate potential concerns about function approximation (see Section B.2). We compared SAVE
to three other agents. UCT is a pure-search agent which runs MCTS using a UCT search policy with
no prior. It uses Monte-Carlo rollouts following a random policy to estimate V (s). PUCT is based
on AlphaZero (Silver et al., 2018) and uses a policy prior (which is learned from visit counts during
MCTS) and state-value function (which is learned from Monte-Carlo returns). During search, the
policy is used in the PUCT exploration term and the value function is used for bootstrapping. More
details on PUCT in general are provided in Section A.3. Q-Learning performs one-step tabular
Q-learning during training, and MCTS at test time using the same search procedure as SAVE.

Figure 2a-c illustrates the results in the tabular setting after 500 episodes. UCT, which does not use
any learning, illustrates the difficulty of using brute-force search. Q-learning, which does not use
any search during training, is slow to converge to a solution within the 500 episodes, particularly
in the sparse reward setting; additionally, adding search at test time does not substantially improve
things. Although the incorporation of learning with PUCT does improve the results, we can see that
with small search budgets and high proportions of terminal actions, PUCT struggles to remember
which actions are safe (nonterminal), especially in the sparse reward setting. In contrast, SAVE
solves the Tightrope environment in all of the dense reward settings and most of the sparse reward
settings. As the search budget increases, we see that both PUCT and SAVE reliably converge to a
solution; thus, if a large search budget is available both methods may fare equally well. However, if
only a small search budget is available, SAVE results in much more reliable performance.

Function Approximation Results We also looked at the ability of SAVE and PUCT to solve
the Tightrope environment when using function approximation, along with a model-free Q-learning
baseline (see Section B.3). We evaluated all agents on the sparse reward version of Tightrope with
95% terminal actions, and used a search budget of 10 (except for Q-learning, which used a test
budget of zero). The results, shown in Figure 2d, follow the same pattern as in the tabular setting.

4.2 CONSTRUCTION

We next evaluated SAVE in three of the Construction tasks explored by Bapst et al. (2019), in which
the goal is to stack blocks to achieve a functional objective while avoiding collisions with obstacles.
In Connecting, the goal is to connect a target point in the sky to the floor. In Covering, the goal is to
cover obstacles from above without touching them. Covering Hard is the same as Covering, except
that only a limited number of blocks may be used. The Construction tasks are challenging for model-
free approaches because there is a combinatorial space of possible scenes and the physical dynamics
are challenging to predict. However, they are also difficult for traditional search methods, as they
have huge branching factors with up to tens of thousands of possible actions per state. Additionally,
the simulator in the Construction tasks is expensive to query, making it infeasible to use with search
budgets of more than 10-20.

To implement SAVE, we used the same agent architecture as Bapst et al. (2019). We compared
SAVE to a baseline version of SAVE without amortization loss (i.e., L(θ,D) = βQLQ(θ,D)),
similar to the MCTS agent described in Bapst et al. (2019). We also compared to a Q-learning
baseline which performs pure model-free learning during training (but which may also utilize MCTS
at test time using the same search procedure as SAVE), as well as a UCT baseline which did not
use any learning (but which did use a pretrained value function for bootstrapping). For SAVE-based
agents, we used a training budget of 10 simulations and varied the budget at test time; for UCT, we
used a constant budget of 1000 simulations at test time (see Appendix C).

6

Published as a conference paper at ICLR 2020

0 5 10 20 50

Test Budget

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
ew

ar
d

(a) Connecting

0 5 10 20 50

Test Budget

0

2

4

6

(b) Covering

0 5 10 20 50

Test Budget

1

2

3

4

5
(c) Covering Hard

UCT
Q-Learning
SAVE w/o AL
SAVE 0

1

2

3

4

5

6

7

R
e
w

a
rd

(d) Ablations

SAVE

SAVE w/o AL

Q-Learning

SAVE w/ L2

SAVE w/o QL

SAVE w/ PUCT

Figure 3: Results on Construction. (a-c) Each subplot shows results for SAVE, SAVE without
amortization loss, Q-learning with MCTS at test time, and pure search (UCT). The x-axis shows
the effect of increasing the number of MCTS simulations at test time. During training, SAVE with
and without amortization loss used a search budget of 10 simulations. UCT used a search budget
of 1000 simulations. Points show medians across 10 seeds, and error bars indicate min and max
seeds. (d) Ablation experiments on the Covering task. We compare SAVE to variants that do not
have an amortization loss, which use an L2 amortization loss, which do not use the Q-Learning loss,
and which use PUCT rather than UCT. Results are shown at the hardest level of difficulty for the
Covering task with a test budget of 10. The colored bars show median reward across 10 seeds, and
error bars show min and max seed.

Results Figure 3a-c shows the results on the three construction tasks. The poor performance of
UCT (dotted lines) highlights the need for prior knowledge to manage the huge branching factor in
these domains. While model-free Q-learning improves performance, simply performing search on
top of the learned Q-values only results in small gains in performance, if any. The performance of
SAVE without amortization loss highlights exactly the issue discussed in Section 2.1. Without the
amortization loss, the Q-learning component of SAVE only learns about actions which have been
selected via search, and thus rarely sees highly suboptimal actions, resulting in a poorly approxi-
mated Q-function. Indeed, as we can see in the case where the search budget is zero, the agent’s
performance falls off dramatically, suggesting that the underlying Q-values are poor. Using search
at test time can make up for this problem to some degree, but only when used with a budget very
close to that with which it was trained: large search budgets can actually result in worse search
performance (e.g. in Covering and Covering Hard) because the poor Q-values are also being used
for bootstrapping during the search. It is only by leveraging search during training time and incor-
porating an amortization loss do we see a synergistic result: using SAVE results in higher rewards
across all tasks, strongly outperforming the other agents.

Ablation Experiments In the past two sections, we compared SAVE to alternatives which do
not include an amortization loss, or which use count-based policy learning rather than value-based
learning. However, a number of additional questions remain regarding the architectural choices in
SAVE. To address these, we ran a number of ablation experiments on the Covering task, with the
results shown in Figure 3d. Specifically, we compared SAVE with versions that use an L2 loss (rather
than cross entropy), that do not use the Q-learning loss, and that use the Q-values to guide search
via PUCT rather than initializing Q0. Overall, we find that the choices made in SAVE result in the
highest levels of performance. Of particular note is the ablation that uses the L2 loss, indicating
that the softmax cross entropy loss plays an important role in SAVE’s performance. We speculate
this is true for two reasons. First, because we use small search budgets, the estimated QMCTS is
likely to be noisy, and thus it may be more robust to preserve just the relative magnitudes of action
values rather than exact quantities. Second, the cross entropy loss means that Qθ need not represent
the values of poor actions exactly, thus freeing up capacity in the neural network to more precisely
represent the values of good actions. Details and further discussion is provided in Section C.3. We
also compared to a policy-based PUCT agent like that described in Section 4.1, but found this did
not achieve positive reward on the harder tasks like Covering. This result again highlights the same
problem with count-based policy training and small search budgets, as discussed in Section 2.2.

7

Published as a conference paper at ICLR 2020

0 1 2 3 4 5 6
Difficulty

0.0

0.2

0.4

0.6

0.8

1.0

R
e
w

a
rd

(a) Sticky block cost = 0

0 1 2 3 4 5 6
Difficulty

(b) Sticky block cost = 0.04

SAVE

Q-Learning

(c) Sticky block cost = 0 (d) Sticky block cost = 0.04

Figure 4: (a-b) Results on the Marble Run environment for model-free Q-Learning as well as SAVE
as a function of curriculum difficulty level, for two different settings of the cost of “sticky” blocks.
Points indicate medians across 10 seeds, and error bars show min and max seeds. (c-d) Structures
built by SAVE which solve the same scene for two different costs of sticky blocks (difficulty 6). Ad-
ditional videos showing agent behavior are available at https://tinyurl.com/yxm4ma47.

4.3 MARBLE RUN

SAVE is able to achieve near-ceiling levels of performance on the original Construction tasks. Thus,
we developed a new task in the style of the previous Construction tasks called Marble Run which
is even more challenging in that it involves sparser rewards and a more complex reward function.
Specifically, the goal in Marble Run is to stack blocks to enable a marble to get from its original
starting position to a goal location, while avoiding obstacles. At each step, the agent may choose
from a number of differently shaped rectangular blocks as well as ramp shapes, and may choose to
make these blocks “sticky” (for a price) so that they stick to other objects in the scene. The episode
ends once the agent has created a structure that would get the marble to the goal. The agent receives
a reward of one if it solves the scene, and zero otherwise.

We used the same agent architecture and training setup as with the Construction tasks, except for
the curriculum. Specifically, we found it was important to train agents on this task using an adaptive
curriculum over difficulty levels rather than a fixed linear curriculum. Under the adaptive curriculum,
we only allowed an agent to progress to the next level of difficulty after it was able to solve at least
50% of the scenes at the current level of difficulty. Further details of the Marble Run task and the
curriculum are given in Appendix D.

Results Figure 4 shows the results for SAVE and Q-learning for the two different costs of sticky
blocks, as as well as some example constructions. SAVE progresses more quickly through the
curriculum and reaches higher levels of difficulty (see Figure D.1) and overall achieves much higher
levels of reward at every difficulty level. Additionally, we found that the Q-learning agent reliably
becomes unstable and collapses at around difficulty 4-5 (see Figure D.2), while SAVE does not have
this problem. Qualitatively (Figure 4c-d), SAVE is able to build structures which allow the marble
to reach targets that are raised above the floor while also spanning multiple obstacles.

These results on Marble Run also allow us to address the trade-off between model-free experience
versus planned experience. Specifically, with a search budget of 10, SAVE effectively sees 10 times
as many transitions as a model-free agent trained on the same number of environment interactions.
Would a model-free agent trained for 10 times as long achieve equivalent performance? As can be
seen in Figure D.2, this is not the case: the model-free agent sees more episodes but results in worse
performance. We find the same result in other Construction tasks as well (see Section C.4). This
highlights the positive interaction that occurs when learning both from experience generated from
planned actions and from the values estimated during search.

4.4 ATARI

To demonstrate that SAVE is applicable to more standard environments, we also evaluated it on a
subset of Atari games (Bellemare et al., 2013). We implemented SAVE on top of R2D2, a distributed
Q-learning agent that achieves state-of-the-art results on Atari (Kapturowski et al., 2018). To allow

8

https://tinyurl.com/yxm4ma47

Published as a conference paper at ICLR 2020

for a fair comparison2 between purely model-free R2D2 and a version with SAVE, we controlled
R2D2 to have the same replay ratio as SAVE and then tuned its hyperparameters to have approxi-
mately the same level of performance as the baseline version of R2D2 (see Appendix E). We find
that SAVE outperforms or equals this controlled version of R2D2 in all games, with particularly
high performance on Frostbite, Alien, and Zaxxon (shown in Figure 5). SAVE also outperforms the
baseline version of R2D2 (see Table E.1 and Figure E.1).

5 DISCUSSION

0 2 4 6 8 10 12

1000%

1600%
% change relative to R2D2

Fr
o
st

b
it

e

A
lie

n

Z
a
x
x
o
n

B
e
a
m

 R
id

e
r

M
s.

 P
a
cm

a
n

S
p
a
ce

 I
n
v
a
d
e
rs

N
a
m

e
 T

h
is

 G
a
m

e

C
e
n
ti

p
e
d
e

R
iv

e
r

R
a
id

C
ra

zy
 C

lim
b
e
r

A
st

e
ro

id
s

U
p
 '
n
'
D

o
w

n

G
ra

v
it

a
r

H
e
ro

0%

100%

200%

Figure 5: Results on Atari.

We introduced SAVE, a method for combining model-free
Q-learning with MCTS. During training, SAVE leverages
MCTS to infer a set of Q-values, and then uses a combina-
tion of real experience plus the estimated Q-values to fit a Q-
function, thus amortizing the value computation of previous
searches via a neural network. The Q-function is used as a
prior to guide future searches, enabling even stronger search
performance, which in turn is further amortized via the Q-
function. At test time, SAVE can be used to achieve high
levels of reward with only very small search budgets, which
we demonstrate across four distinct domains: Tightrope,
Construction (Bapst et al., 2019), Marble Run, and Atari
(Bellemare et al., 2013; Kapturowski et al., 2018). These
results suggest that SAVEing the experience generated by
search in an explicit Q-function, and initializing future searches with that information, offers impor-
tant advantages for model-based RL.

When combining Q-values estimated both from prior searches and real experience, it may also
be useful to account for the quality or confidence of the estimated Q-values. Count-based policy
methods (Anthony et al., 2017; Silver et al., 2018) do this by leveraging an estimate of confidence
based on visit counts: actions with high visit counts should both have high value (or else they would
not have been visited so much) and high confidence (because they have been explored extensively).
However, as we have shown, relying solely on visit counts can result in poor performance when using
small search budgets (Section 4.1). A key future direction will be to amortize both the computation
of value and of reliability, achieving the best of both SAVE and count-based methods. Encoding
confidence estimates into the Q-values may also be helpful for applying SAVE to settings with
learned models, which may have non-trivial approximation errors. In particular, it may be helpful to
attenuate the contribution of search-estimated Q-values to the Q-prior both when an action has not
been sufficiently explored and when model error is high.

Our work demonstrates the value of amortizing the Q-estimates that are generated during MCTS.
Indeed, we have shown that by doing so, SAVE reaches higher levels of performance than model-
free approaches while using less computation than is required by other model-based methods. More
broadly, we suggest that SAVE can be interpreted as a framework for ensuring that the valuable
computation performed during search is preserved, rather than being used only for the immediate
action or summarized indirectly via frequency statistics of the search policy. By following this
philosophy and tightly integrating planning and learning, we expect that even more powerful hybrid
approaches can be achieved.

6 ACKNOWLEDGEMENTS

We would like to thank GB Parascandolo, George Papamakarios, Nicolas Heess, Ioannis
Antonoglou, Thomas Hubert, Julian Schrittweiser, and David Silver for helpful comments and feed-
back on this project.

2R2D2 is very sensitive to the speed of the learners and actors. If the actors are slower (which they will be
when performing search), the replay ratio will increase which thus affects performance.

9

Published as a conference paper at ICLR 2020

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pp. 265–283, 2016.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and
tree search. In Advances in Neural Information Processing Systems, pp. 5360–5370, 2017.

Thomas Anthony, Robert Nishihara, Philipp Moritz, Tim Salimans, and John Schulman. Pol-
icy gradient search: Online planning and expert iteration without search trees. arXiv preprint
arXiv:1904.03646, 2019.

Kamyar Azizzadenesheli, Brandon Yang, Weitang Liu, Emma Brunskilland Zachary C Lipton, and
Animashree Anandkumar. Surprising negative results for generative adversarial tree search. arXiv
preprint arXiv:1806.05780, pp. 1–25, 2018.

Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly L Stachenfeld, Pushmeet Kohli,
Peter W Battaglia, and Jessica B Hamrick. Structured agents for physical construction. In Pro-
ceedings of the International Conference on Machine Learning (ICML), 2019.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
pp. 1–38, 2018.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Richard Bellman. Dynamic programming. Princeton University Press, 1957.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems, pp. 8224–8234, 2018.

Lars Buesing, Théophane Weber, Sébastien Racanière, S. M. Ali Eslami, Danilo Rezende, David P.
Reichert, Fabio Viola, Frédéric Besse, Karol Gregor, Demis Hassabis, and Daan Wierstra.
Learning and querying fast generative models for reinforcement learning. arXiv preprint
arXiv:1802.03006, pp. 1–15, 2018.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Proceedings of the 32nd
Conference on Neural Information Processing Systems (NeurIPS 2018), 2018.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In Interna-
tional conference on computers and games, pp. 72–83. Springer, 2006.

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. TreeQN and ATreeC:
Differentiable tree planning for deep reinforcement learning. In Proceedings of the 6th Interna-
tional Conference on Learning Representations (ICLR 2018), 2018.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez, and Sergey
Levine. Model-based value expansion for efficient model-free reinforcement learning. In Pro-
ceedings of the 35th International Conference on Machine Learning (ICML 2018), 2018.

Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In Proceedings
of the 24th international conference on Machine learning, pp. 273–280. ACM, 2007.

Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action value estimation in com-
puter go. Artificial Intelligence, 175(11):1856–1875, 2011.

10

Published as a conference paper at ICLR 2020

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep Q-learning
with model-based acceleration. In Proceedings of the 33rd International Conference on Machine
Learning (ICML 2016), 2016.

Arthur Guez, Théophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan Wier-
stra, Rémi Munos, and David Silver. Learning to search with MCTSnets. In Proceedings of the
35th International Conference on Machine Learning (ICML 2018), 2018.

Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane Weber,
David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, et al. An investigation of model-free
planning. arXiv preprint arXiv:1901.03559, 2019.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning
for real-time Atari game play using offline Monte-Carlo tree search planning. In Advances in
neural information processing systems, pp. 3338–3346, 2014.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Jessica B Hamrick. Analogues of mental simulation and imagination in deep learning. Current
Opinion in Behavioral Sciences, 29:8–16, 2019.

Jessica B. Hamrick, Andrew J. Ballard, Razvan Pascanu, Oriol Vinyals, Nicolas Heess, and Peter W.
Battaglia. Metacontrol for adaptive imagination-based optimization. In Proceedings of the 5th
International Conference on Learning Representations (ICLR 2017), 2017.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for Atari. arXiv preprint arXiv:1903.00374, 2019.

Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous deep re-
inforcement learning. In Proceedings of the 1st Conference on Robot Learning (CoRL 2017),
2017.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent expe-
rience replay in distributed reinforcement learning. In Proceedings of the International Confer-
ence on Learning Representations, 2018.

Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-Net: Deep learning for planning under partial
observability. In Proceedings of the 31st Conference on Neural Information Processing Systems
(NeurIPS 2017), 2017.

Bilal Kartal, Pablo Hernandez-Leal, and Matthew E Taylor. Action guidance with mcts for deep
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 15, pp. 153–159, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In Proceedings of the 6th International Conference on Learning
Representations (ICLR 2018), 2018.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

11

Published as a conference paper at ICLR 2020

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Proceedings of the
31st Conference on Neural Information Processing Systems (NeurIPS 2017), 2017.

Razvan Pascanu, Yujia Li, Oriol Vinyals, Nicolas Heess, Lars Buesing, Sebastien Racanière, David
Reichert, Théophane Weber, Daan Wierstra, and Peter Battaglia. Learning model-based planning
from scratch. arXiv preprint arXiv:1707.06170, pp. 1–13, 2017.

Malcolm Reynolds, Gabriel Barth-Maron, Frederic Besse, Diego de Las Casas, Andreas Fidjeland,
Tim Green, Adrià Puigdomènech, Sébastien Racanière, Jack Rae, and Fabio Viola. Open sourcing
Sonnet - a new library for constructing neural networks. https://deepmind.com/blog/
open-sourcing-sonnet/, 2017.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artifi-
cial Intelligence, 61(3):203–230, 2011.

Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep neural
networks and symbolic AI. Nature, 555(7698):604, 2018.

Iulian Vlad Serban, Chinnadhurai Sankar, Michael Pieper, Joelle Pineau, and Yoshua Bengio. The
bottleneck simulator: a model-based deep reinforcement learning approach. arXiv preprint
arXiv:1807.04723, 2018.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. M-Walk: Learning to
walk over graphs using monte carlo tree search. In Advances in Neural Information Processing
Systems, pp. 6786–6797, 2018.

David Silver, Richard S Sutton, and Martin Müller. Sample-based learning and search with perma-
nent and transient memories. In Proceedings of the 25th international conference on Machine
learning, pp. 968–975. ACM, 2008.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529:484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of Go without human knowledge. Nature, 550:354–359, 2017a.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, and Thomas Degris. The predic-
tron: End-to-end learning and planning. In Proceedings of the 34th International Conference on
Machine Learning (ICML 2017), 2017b.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters Chess, Shogi, and Go through self-play. Science, 362(6419):
1140–1144, 2018.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning
networks. In Proceedings of the 35th International Conference on Machine Learning (ICML
2018), 2018.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Proceedings of the 7th International Conference on Machine
Learning (ICML 1990), 1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press, 2nd edition, 2018.

12

https://deepmind.com/blog/open-sourcing-sonnet/
https://deepmind.com/blog/open-sourcing-sonnet/

Published as a conference paper at ICLR 2020

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. In
Proceedings of the 30th Conference on Neural Information Processing Systems (NeurIPS 2016),
2016.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv:1907.02057, 2019.

Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez, Danilo
Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, Razvan Pascanu,
Peter Battaglia, Demis Hassabis David Silver, and Daan Wierstra. Imagination-augmented agents
for deep reinforcement learning. In Proceedings of the 31st Conference on Neural Information
Processing Systems (NeurIPS 2017), 2017.

Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, and Chelsea Finn. Unsupervised visuomotor control
through distributional planning networks. arXiv preprint arXiv:1902.05542, 2019.

13

Published as a conference paper at ICLR 2020

A FURTHER AGENT DETAILS

In all experiments except Tabular Tightrope (see Section B.2) and Atari (see Appendix E), we use
a distributed training setup with 1 GPU learner and 64 CPU actors. Our setup was implemented
using TensorFlow (Abadi et al., 2016) and Sonnet (Reynolds et al., 2017), and gradient descent was
performed using the Adam optimizer (Kingma & Ba, 2014) with the TensorFlow default parameter
settings (except learning rate).

A.1 Q-LEARNING

Except for in Atari (see Appendix E), we used a 1-step implementation of Q-learning, with the
standard setup with experience replay and a target network (Mnih et al., 2015). We controlled the
rate of experience processed by the learner such that the average number of times each transition was
replayed (the “replay ratio”) was kept constant. For all experiments, we used a batch size of 16, a
learning rate of 0.0002, a replay size of 4000 transitions (with a minimum history of 100 transitions),
a replay ratio of 4, and updated the target network every 100 learning steps.

We used a variant of epsilon-greedy exploration described by Bapst et al. (2019) in which epsilon
is changed adaptively over the course of an episode such that it is lower earlier in the episode and
higher later in the episode, with an average value of ε over the whole episode. We annealed the
average value of ε from 1 to 0.01 over 1e4 episodes.

A.2 SAVE

Algorithm A.1 Pseudocode for the SAVE algorithm.
1: procedure SAVE(θ)
2: while true do
3: Begin episode at s
4: while acting do
5: Estimate QMCTS(s, ·)← MCTS(s,Qθ)
6: Select a using epsilon-greedy from QMCTS(s, ·)
7: Execute a in environment and receive s′, r
8: Add (s, a, r, s′, QMCTS(s, ·)) to replay buffer
9: s← s′

10: while learning do
11: Sample minibatch of experience from the replay buffer
12: Update θ to minimize Equation 6
13:
14: procedure MCTS(s0, Qθ)
15: Q0(s, a)← Qθ(s, a) for all s, a
16: N0(s, a)← 1 for all s, a
17: k ← 0
18: while search budget remains (k < K) do
19: Traverse the search tree with πk (Equation 1)
20: Expand new state sT and add it to the search tree
21: Evaluate maxaQθ(sT , a) and backup returns (Equation 3)
22: Set Nk+1(s, a)← Nk(s, a) and then increment counts of visited states and actions
23: Compute estimates for Qk+1(s, a) (Equation 4)
24: k ← k + 1
25: Return {QK(s0, ai)}i

The SAVE agent is implemented as described in Section 3 and Algorithm A.1 provides additional
pseudocode explaining the algorithm. In Algorithm A.1, we provide an example of using SAVE in
an episode setting where learning happens after every episode; however, SAVE can be used in any
Q-learning setup including in distributed setups where separate processes are concurrently acting
and learning. In particular, in our experiments we use the distributed setup described in Section A.1.
Note that when performing epsilon-greedy exploration (Line 6 of Algorithm A.1), we either choose

14

Published as a conference paper at ICLR 2020

an action uniformly at random with probability ε, and otherwise choose the action with the highest
value of QMCTS out of the actions which were explored during search (i.e., we do not consider
actions that were not explored, even if they have a higher QMCTS). In all experiments (except
tabular Tightrope), we use a UTC exploration constant of c = 2, though we have found SAVE’s
performance to be relatively robust to this parameter setting.

A.3 PUCT

The PUCT search policy is based on that described by Silver et al. (2017a) and Silver et al. (2018).
Specifically, we choose actions during search according to Equation 1, with:

Qk =

∑Nk(s,a)
i=1 Ri(s, a)

Nk(s, a)
(7)

Uk(s, a) = c · π(s, a)
√∑

aNk(s, a)

Nk(s, a) + 1

where c is an exploration constant, π(s, a) is the prior policy, and Nk(s, a) is the total number of
times action a had been taken from state s at iteration k of the search. Like Silver et al. (2017a;
2018), we add Dirichlet noise to the prior policy:

π(s, a) = (1− ε) · πθ(s, a) + εη,

where η ∼ Dir(1/nactions). In our experiments we set ε = 0.25 and c = 2. During training,
after search is complete, we sample an action to execute in the environment from πMCTS(s0, a) =
NK(s0, a)/

∑
aNK(s0, a). At test time, we select the action which has the maximum visit count

(with random tie-breaking).

To train the PUCT agent, we used separate policy πθ(s, a) and value Vθ(s) heads which were trained
using a combined loss (Equation 6), with:

LQ =
1

N

∑
D

∥∥Vθ(s)−R∥∥2
LA = − 1

N

∑
D
πMCTS(s, ·)> log πθ(s, ·)

where R is the Monte-Carlo return observed from state s. We used fixed values of βQ = 0.5 and
βA = 0.5 in all our experiments with PUCT. We used the same replay and training setup as used
in the Q-learning and SAVE agents, with two exceptions. First, we additionally include episodic
Monte-Carlo returns R and policies πMCTS in the replay buffer so they can be used during learning.
Second, we did not use ε-greedy exploration (because the Dirichlet noise in the PUCT term already
enables sufficient exploration).

We tried several different hyperparameter settings and variants of the PUCT agent to attempt to
improve the results. For example, we tried using a 1-step TD error for learning the values, which
should have lower variance and thus result in more stable learning of values. We also tried reducing
the replay ratio to 1 and the replay size to 400 in order to make the experience for training more
on-policy. However, we did not find that these changes improved the results. We also tried different
settings of ε for the Dirichlet noise, but found that lower values resulted in too little exploration,
while higher values resulted in too much exploration.

B DETAILS ON TIGHTROPE

B.1 ENVIRONMENT

The Tightrope environment has 11 states which are connected together in a chain. Each state has 100
actions, M% of which will cause the episode to terminate when executed and the rest of which will
cause the environment to transition to the next state. Each state is represented using a vector of 50
random values drawn from a standard normal distribution, which are the same across episodes. The
indices of terminal actions are selected randomly and are different for each state but are consistent
across episodes. Agents always begin in the first state of the chain.

15

Published as a conference paper at ICLR 2020

In the sparse reward setting, we randomly select one of the states in the chain to be the “final” state
(excluding the first state), to enable the agent to sometimes train on easy problems and sometimes
train on hard problems. If the agent reaches this final state, it receives a reward of 1 and the episode
terminates. If it takes a non-terminal action, it transitions to the next state in the chain and receives
a reward of 0. Otherwise, if it takes a terminal action, the episode terminates and the agent receives
a reward of 0.

In the dense reward setting, the “final” state is always chosen to be the last state in the chain. If the
agent reaches the final state in the chain, it receives a reward of 0.1 and the episode terminates. If it
takes a non-terminal action, it transitions to the next state in the chain and receives a reward of 0.1.
Otherwise, if it takes a terminal action, the episode terminates with a reward of 0.

B.2 TABULAR EXPERIMENTS

During training, we execute each tabular agent in the environment until the episode terminates.
Then, we perform a learning step using the experience generated from the previous episode. This
process repeats for some number of episodes (in our experiments, 500). After training, we execute
each agent in the environment 100 times and compute the average reward achieved across these 100
episodes. For all cases in which search is used, we use a UCT exploration constant of c = 0.1.

Q-Learning Tabular Q-learning begins with a table of state-action values initialized to zero. We
perform epsilon-greedy exploration with ε = 0.1, and add the resulting experience to a replay buffer
with maximum size of 1000 transitions. We perform episodic learning, where during each episode
the Q-values are fixed and after the episode is complete we update the Q-values by performing a
single pass through the experience in the replay buffer in a random order. We use a learning rate of
βQ = 0.01. At test time, the Q-learning agent uses MCTS in the same manner as SAVE.

SAVE Tabular SAVE begins with a table of state-action values initialized to zero. During search,
values are looked up in this table and used to initialize Q0. The values are also for bootstrapping.
During learning, we perform both Q-learning (as described in the Q-learning agent) as well as an
update based on the gradient of the cross-entropy amortization loss (Equation 6). We use βQ = 0.01
and βA = 1.

PUCT Tabular PUCT begins with two tables; one with state values (initialized to zero) and one
with action probabilities (initialized to the uniform distribution). During search, action probabilities
are looked and used in the PUCT term, while state values are looked up and used for bootstrapping.
Search proceeds as described in Section A.3. During learning, πMCTS is copied back into the action
probability table (this is equivalent to an L2 update with a learning rate of 1); we also experimented
with doing an update based on the cross entropy loss but found this resulted in worse performance.
The value at episode t is given by:

Vt(s) = (1− α)Vt−1(s) + αRt−1(s), (8)
where Rt−1(s) is the return obtained after visiting state s during episode t− 1. In our experiments
we used α = 0.5. We also experimented with using Q-learning rather than Monte-Carlo returns, but
found that these resulted in similar levels of performance.

UCT The UCT agent is as described in Section 3.1, with V (s) at unexplored nodes estimated via
a Monte-Carlo rollout under a uniform random policy. The only difference from regular UCT is
that we did not require all actions to be visited before descending down the search tree; unvisited
actions were initialized to a value of zero. For Tightrope, this is the optimal setting of the default
Q-values because all possible rewards are greater than or equal to zero. Once an action is found
with non-zero reward the best option is to stick with it, so it would not make sense to set the values
optimistically. Actions that cause the episode to terminate have a reward of zero, so it would also not
make sense to set the values pessimistically as this would lead to over-exploring terminal actions.
Setting the values to the average of the parent would either have the effect of setting to zero or setting
optimistically (if the parent had positive reward).

To select the final action to execute in the environment, the UCT agent selects a visited action with
the maximum estimated value. We could consider alternate approaches here, such as selecting uni-
formly at random from unexplored actions if none of the visited actions have high enough expected

16

Published as a conference paper at ICLR 2020

1
0
1
2
3
4
5
6

R
e
w

a
rd

(a) SAVE (b) SAVE w/o AL (c) Q-Learning

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e6

1
0
1
2
3
4
5
6

R
e
w

a
rd

(d) SAVE w/ L2

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e6

(e) SAVE w/o QL

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e6

(f) SAVE w/ PUCT

Figure C.1: Learning curves on the Covering task. Each plot shows median performance across 10
seeds, with shaded regions showing the min and max seed.

values. We experimented with this approach, using a threshold value of zero (which is the expected
value for bad actions in Tightrope), and find that this indeed improves performance (p = 0.02),
though the effect size is quite small: on the dense setting with M = 95% we achieve a median
reward of 0.08 (using this thresholding action selection policy) versus 0.07 (selecting the max of
visited actions).

B.3 FUNCTION APPROXIMATION EXPERIMENTS

We used the same learning setup for the Q-learning, SAVE, and PUCT agents as described in Ap-
pendix A. For the network architecture of our agents, we used a shared multilayer perceptron (MLP)
torso with two layers of size 64 and ReLU activations. To predict Q-values, we used an MLP head
with two layers of size 64 and ReLU activations, with a final layer of size 100 (the number of ac-
tions) with a linear activation. To predict a policy in the PUCT agent, we used the same network
architecture as the Q-value head. To predict state values in the PUCT agent, we used a separate
MLP head with two layers of size 64 and ReLU activations, and a final layer of size 1 with a linear
activation. All network weights were initialized using the default weight initialization scheme in
Sonnet (Reynolds et al., 2017). For both the SAVE and PUCT agents we used loss coefficients of
βQ = 0.5 and βA = 0.5.

We trained each agent 10 times and report results after 1e6 episodes in a version of Tightrope that has
95% terminal actions Figure 2, right). During training, the SAVE and PUCT agents had access to a
search budget of 10 simulations; the Q-learning agent did not use search. We also explored training
agents with different numbers of terminal actions and different budgets. Qualitatively, we found the
same results as in the tabular setting: the PUCT agent can perform well for larger budgets (50+), but
struggles with small budgets, underperforming the model-free Q-learning agent. In contrast, SAVE
performed well in all our experiments, even for small budgets like 5 or 10.

C DETAILS ON CONSTRUCTION

C.1 AGENT DETAILS

SAVE For SAVE, we annealed βQ from 1 to 0.1 and βPI from 0 to 4.5 over the course of 5e4
episodes. We found this allowed the agent to rely more on Q-learning early on in training to build
a good Q-value prior, and then more on MCTS later in training once a good prior had already been
established.

17

Published as a conference paper at ICLR 2020

0
1
2
3
4
5
6
7

R
e
w

a
rd

(a) SAVE (b) SAVE w/o AL (c) Q-Learning

0 5 10 20 50
Test Budget

0
1
2
3
4
5
6
7

R
e
w

a
rd

(d) SAVE w/ L2

0 5 10 20 50
Test Budget

(e) SAVE w/o QL

0 5 10 20 50
Test Budget

(f) SAVE w/ PUCT

Figure C.2: Detailed final results on the Covering task. Each plot shows median performance across
10 seeds, with error bars showing the min and max seed.

Q-Learning The Q-Learning agent is as described in Section A.1. In particular, we follow the
same setup as the GN-DQN agent described in Bapst et al. (2019). During training, we use pure
Q-learning with no search. At test time, we may allow the Q-learning agent to additionally perform
MCTS, using the same search procedure as that used by SAVE (i.e., initializing the Q-values using
the trained Q-function and initializing the visit counts to one).

SAVE without Amortization Loss The SAVE without an amortization loss is the same as the
basic SAVE agent, except that it includes no amortization loss (i.e., L(θ,D) = βQLQ(θ,D)). This
is equivalent to the GN-DQN-MCTS agent described by Bapst et al. (2019).

UCT UCT is as described in Section 3.1, with V (s) at unexplored nodes estimated via using a
pretrained action-value function (trained using the same setup as the Q-learning agent). Additionally,
unlike standard UCT we did not require all actions to be visited before descending down the search
tree.

SAVE with L2 SAVE with an L2 loss is identical to SAVE except that it uses a different amorti-
zaton loss:

LA(θ,D) =
1

N

∑
D

∥∥QMCTS(s, ·)−Qθ(s, ·)
∥∥
2

Similar to the SAVE agent, we anneal βQ from 1 to 0.1 and βA from 0 to 0.045 over the course of
5e4 episodes.

SAVE without Q-Learning SAVE without the Q-learning loss is identical to SAVE except that
we do not use Q-learning and we use the L2 amortization loss described in the previous paragraph:

L(θ,D) = βALA(θ,D)
where we set βA = 0.025. The reason we use the L2 loss rather than the cross-entropy loss is
that otherwise the Q-values will not actually be real Q-values, in that they will not have grounding
in the actual scale of rewards. We did experiment with using only the cross-entropy loss with no
Q-learning, and found slightly worse performance than when using the L2 loss and no Q-learning.

SAVE with PUCT SAVE with PUCT uses the same learning procedure as SAVE but a different
search policy. Specifically, we use the PUCT search policy described in Section A.3 and Equation 7.
To do this, we set π(s, a) = σ(Qθ(s, a)), where σ is the softmax over actions with a temperature of
1. We use the same settings for Dirchlet noise to encourage exploration during search. After search
is complete, we select an action using the same epsilon-greedy action procedure used by the SAVE

18

Published as a conference paper at ICLR 2020

agent rather than selecting based on visit counts. We experimented with selecting based on visit
counts instead, but found this resulted in the same level of performance.

C.2 EXPERIMENTAL SETUP

Observations are given as graphs representing the scene, with objects in the scene corresponding
to nodes in the graph and edges between every pair of objects. All agents use the same network
architecture (Battaglia et al., 2018) described in Bapst et al. (2019) to process these graphs. Briefly,
we use a graph network architecture which takes a graph as input and returns a graph with Q-values
on the edges of the graph. Each edge corresponds to a relative object-based action like “pick up
block B and put it on block D”. Each edge additionally has multiple actions associated with it which
correspond to particular offset locations where the block should be placed, such as “on the top left”.

Bapst et al. (2019) describe four Construction tasks: Silhouette, Connecting, Covering, and Covering
Hard. We reported results on three of these tasks in the main text (Connecting, Covering, and
Covering Hard). The agents in Bapst et al. (2019) already reached ceiling performance on Silhouette
and thus we do not report results for that task here, except to report that SAVE also reaches ceiling
performance.

The agents used 10 MCTS simulations during training and were evaluated on 0 to 50 simulations
at test time, with the exception of the UCT agent, which always used 1000 simulations at test time,
and the Q-learning agent, which did not peform search during learning. We trained 10 seeds per
agent and report results after 1e6 episodes. Figure C.1 show details of learning progress for each of
the agents compared in the ablation experiments on the Covering task (Section 4.2), and Figure C.2
shows detailed final performances evaluated at different test budgets. We evaluated all agents on
the hardest level of difficulty of the particular task they were trained on for either 10000 episodes
(Figure 3a-c) or 1000 episodes (Figure 3d and Figure C.2). In general, while we find that search
at test time can provide small boosts in performance, the main gains are achieved by incorporating
search during training.

C.3 DISCUSSION OF ABLATION RESULTS

Here we expand on the results presented in the main text and in Figure 3d and Figure C.2.

Cross-entropy vs. L2 loss While the L2 loss (Figure C.2, orange) can result in equivalent perfor-
mance as the cross-entropy loss (Figure C.2, green), this is at the cost of higher variance across seeds
and lower performance on average. This is likely because the L2 loss encourages the Q-function to
exactly match the Q-values estimated by search. However, with a search budget of 10, those Q-
values will be very noisy. In contrast, the cross-entropy loss only encourages the Q-function to
match the overall distribution shape of the Q-values estimated by search. This is a less strong con-
straint that allows the information acquired during search to be exploited while not relying on it too
strongly. Indeed, we can observe that the agent with L2 amortization loss actually performs worse
than the agent that has no amortization loss at all (Figure C.2, purple) when using a search budget of
10, suggesting that trying to match the Q-values during search too closely can harm performance.

Additionally, we can consider an interesting interaction between Q-learning and the amortization
loss. Due to the search locally avoiding poor actions, Q-learning will rarely actually operate on
low-valued actions, meaning most of its computation is spent refining the estimates for high-valued
actions. The softmax cross entropy loss ensures that low-valued actions have lower values than
high-valued actions, but does not force these values to be exact. Thus, in this regime we should
have good estimates of value for high-valued actions and worse estimates of value for low-valued
actions. In contrast, an L2 loss would require the values to be exact for both low and high valued
actions. By using cross entropy instead, we can allow the neural network to spend more of its
capacity representing the high-valued actions and less capacity representing the low-valued actions,
which we care less about in the first place anyway.

With vs. without Q-learning Without Q-learning (Figure C.2, teal), the SAVE agent’s perfor-
mance suffers dramatically. As discussed in the previous section, the Q-values estimated during
search are very noisy, meaning it is not necessarily a good idea to try to match them exactly. Ad-
ditionally, QMCTS is on-policy experience and can become stale if Qθ changes too much between

19

Published as a conference paper at ICLR 2020

0.00 0.25 0.50 0.75 1.00
Episodes 1e6

0

1

2

3

4

5

6

R
ew

ar
d Epsilon-Greedy

UCB
Categorical (Visits)
Categorical (Q-Values)

Figure C.3: Performance of different exploration strategies on the Covering task.

0 2 4 6 8
Transitions 1e7

0

1

2

3

4

5
R

ew
ar

d

SAVE
Q-Learning

Figure C.4: Performance of SAVE and Q-learning on Covering, controlling for the same number of
environment interactions (including those seen during search).

when QMCTS was computed and when it is used for learning. Thus, removing the Q-learning loss
makes the learning algorithm much more on-policy and therefore susceptible to the issues that come
with on-policy training. Indeed, without the Q-learning loss, we can only rely on the Q-values
estimated during search, resulting in much worse performance than when Q-learning is used.

UCT vs. PUCT Finally, we compared to a variant which utilizes prior knowledge by transforming
the Q-values into a policy via a softmax and then using this policy as a prior with PUCT, rather than
using it to initialize the Q-values (Figure C.2, brown). With large amounts of search, the initial
setting of the Q-values should not matter much, but in the case of small search budgets (as seen
here), the estimated Q-values do not change much from their initial values. Thus, if the initial values
are zero, then the final values will also be close to zero, which later results in the Q-function being
regressed towards a nearly uniform distribution of value. By initializing the Q-values with the Q-
function, the values that are regressed towards may be similar to the original Q-function but will not
be uniform. Thus, we can more effectively reuse knowledge across multiple searches by initializing
the Q-values with UCT rather than incorporating prior knowledge via PUCT.

C.4 ADDITIONAL RESULTS

We performed several other experiments to tease apart the questions regarding exploration strategy
and data efficiency.

Exploration strategy When selecting the final action to perform in the environment, SAVE uses
an epsilon-greedy exploration strategy. However, many other exploration strategies might be con-
sidered, such as UCB, categorical sampling from the softmax of estimated Q-values, or categorical
sampling from the normalized visit counts. We evaluated how well each of these exploration strate-
gies work, with the results shown in Figure C.3. We find that using epsilon-greedy works the best
out of these exploration strategies by a substantial margin. We speculate that this may be because
it is important for the Q-function to be well approximated across all actions, so that it is useful
during MCTS backups. However, UCB and categorical methods will not uniformly sample the ac-

20

Published as a conference paper at ICLR 2020

tion space, meaning that some actions are very unlikely to be ever learned from. The amortization
loss will not help either, as these actions will not be explored during search either. The error in the
Q-values for unexplored actions will grow over time (due to catastrophic forgetting), leading to a
poorly approximated Q-function that is unreliable. In contrast, epsilon-greedy consistently spends
a little bit of time exploring these actions, preventing their values from becoming too inaccurate.
We expect this would be less of a problem if we were to use a separate state-value function for
bootstrapping (as is done by AlphaZero).

Data efficiency With a search budget of 10, SAVE effectively sees 10 times as many transitions
as a model-free agent trained on the same number of environment interactions. To more carefully
compare the data efficiency of SAVE, we compared its performance to that of the Q-learning agent
on the Covering task, controlling for the same number of environment interactions (including those
seen during search). The results are shown in Figure C.4, illustrating that SAVE converges to higher
rewards given the same amount of data. We find similar results in the Marble Run environment,
shown in Figure D.2.

D DETAILS ON MARBLE RUN

D.1 SCENE GENERATION

Scenes contain the following types of objects (similar to Bapst et al. (2019)):

• Floor (in black) that supports the blocks placed by the agent.
• Available blocks (row of blue blocks at the bottom) that the agent picks and place in the

scene (with replacement).
• Blocks (blue blocks above the floor) that the agent has already placed. They may take a

lighter blue color to indicate that they are sticky. A sticky block gets glued to anything it
touches.
• Goal (blue dot) that the agent has to reach with the marble.
• Marble (green circle) that the agent has to route to the goal.
• Obstacles (red blocks, including two vertical walls), that the agent has to avoid, by not

touching them neither with the blocks or the marble.

All the initial positions for obstacles in the scene are sampled from a tessellation (similar to the
Silhouette task in Bapst et al. (2019)) made of rows with random sequences of blocks with sizes of 1
discretization unit in height and 1 or 2 discretization units in width (a discretization unit corresponds
to the side of the first available block). The sampling process goes as follows:

1. Set the vertical position of the goal to the specified discrete height (according to level)
corresponding to the center of one of the tessellation rows, and the vertical position of the
marble 2 rows above that.

2. Uniformly sample a horizontal distance between the marble and the goal from a predefined
range, and uniformly sample the absolute horizontal positions respecting that absolute dis-
tance.

3. Sample a number of obstacles (according to level) from the tessellation spanning up to the
vertical position of the marble.

Obstacles are sampled from the tessellation sequentially. Before each obstacle is sampled, all objects
in the tessellation that are too close (± 2 layers vertically and with less than 2 discretization units
of clearance sideways) to the goal, the target, or previously placed obstacles, are removed from
the tessellation in order to prevent unsolvable scenes. Then probabilities are assigned to all of the
remaining objects in the tessellation according to one of the following criteria (the criteria itself is
also picked randomly with different weights) designed to avoid generating trivial scenes:

• (Weight=4) Pick uniformly a tessellation object lying exactly on the floor and between the
marble and the goal horizontally, since those objects prevent the marble from rolling freely
on the floor (only applicable if the tessellation still has objects of this kind available).

21

Published as a conference paper at ICLR 2020

• (Weight=1) Pick a tessellation object that is close (horizontally) to the marble. Probabilities
proportional to 1

(d/τ)2+0.1 (where d is the horizontal distance between each object and the
marble scaled by the width of the scene and τ is a temperature set to 0.1) are assigned to
all objects left in the tessellation, and one of them is picked.

• (Weight=1) Pick a tessellation object that is close (horizontally) to the goal. Identical to the
previous one, but using the distance to the goal.

• (Weight=1) Pick a tessellation object that is close (horizontally) to the middle point between
the ball and the goal. Identical to the previous one, but using the distance to the middle
point, and a temperature of 0.2.

• (Weight=1) Pick any object remaining in the tessellation with uniform probability (to in-
crease diversity).

D.2 CURRICULUM DIFFICULTY

We used a curriculum to sample scenes of increasing difficulty (Fig. D.1) according to:

Level Goal height Marble/Goal distance # obstacles Max # steps
(discretization units) (scene width fraction)

0 0 [0.03,0.3] 1 20
1 0 [0.36,0.49] 1 20
2 0 [0.50,0.63] 2 20
3 0 [0.69,0.82] 2 20
4 0 [0.83,1] 3 20
5 1 [0.83,1] 3 25
6 2 [0.83,1] 4 30

During both training and testing, episodes at a certain curriculum level are sampled not only from
that difficulty, but also from all of the previous difficulty levels, using a truncated geometric distri-
bution with a decay of 0.5. This means that at each level, about half of the episodes correspond to
that level, half of the remaining episodes correspond to the previous level, half of the remaining to
the level before that, and so on. By truncated we mean that, because it is not possible to sample
episodes for negative levels, so we truncate the probabilities there and re-normalize.

D.3 ADAPTIVE CURRICULUM

Given the complexity and the sparsity of rewards in this task, we trained agents using an adaptive
curriculum to avoid presenting unnecessarily hard levels to the agent until the agent is able to solve
the simpler levels. Specifically at each level of the curriculum we keep track and bin past episode
results according to all possible combinations of scene properties consisting of:

• Height of the target (discretized to tessellation rows).

• Horizontal distance d between marble and goal (discretized to d < 1/3, 1/3 < d < 2/3,
or d > 2/3, where d is normalized by the width of the scene).

• Number of obstacles.

• Height of the highest obstacle (discretized to tessellation rows).

• Height of the lowest obstacle (discretized to tessellation rows).

and require the agents to have solved at least 50% of scenes of the last 50 episodes in each bin
individually, but simultaneously in all bins3. before we allow the agent to progress to the next level
of difficulty. This is a very strict criteria, which effectively means the agent has to find solutions for
all representative variations of the task at that level before is allowed to progress to the next level.

3Ignoring underrepresented bins for which episodes are generated at less than 0.25 the expected generation
rate according to a uniform prior across bins (which we only start estimating after the first 300 episodes, to
discover a sufficient number of distinct bins). This is to avoid delayed curriculum progress just due to lack of
recent statistics for those bins.

22

Published as a conference paper at ICLR 2020

Le
v
e
l
0

Sample 0 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Le
v
e
l
1

Le
v
e
l
2

Le
v
e
l
3

Le
v
e
l
4

Le
v
e
l
5

Le
v
e
l
6

Figure D.1: Scenes samples at each curriculum level for the marble run task. During training, the
n-th level of the curriculum consists of scenes sampled from the rows up to the n-th row with a
truncated geometric distribution with a decay of 0.5.

D.4 AGENT STEP, ACTION AND REWARD EVALUATION

Each agent step consists of four phases:

1. Block placement phase: The agent picks one object from the available objects and places it
into the scene. If the block placed by the agent was sticky the agent will receive a negative
reward according to the cost (which may be either 0 or 0.04).

2. Block settlement phase: The physics simulation (keeping the marble frozen) is run until
the placed blocks settle (up to a maximum of 20 s). During this phase the new block may
affect the position of previously placed blocks.

3. Marble dynamics phase: The physics simulation including the marble is run until the mar-
ble collides with 8 objects, with a timeout of 10 s at each collision, that is a maximum
of 80s. This phase may terminate early if the marble reaches the goal (task is solved and
episode terminated with a reward of 1.), but also if the marble or any of the blocks touch
an obstacle.

4. Restore state phase: After the marble dynamics phase, the marble and all of the blocks are
moved back to the position where they were at the end of the block settlement phase. This
is to prevent the agent from using the marble to indirectly move the blocks with a persistent
effect across steps.

The block placement phase and block settlement phase, as well as the action space is identical to
those in Bapst et al. (2019).

D.5 OBSERVATION

The observation is identical to the Construction tasks in Bapst et al. (2019), with an additional
one-hot encoding of the object shape (e.g. rectangle vs triangle vs circle) and includes all blocks
positions and the initial marble position at the end of the block settlement phase. Note that the agent

23

Published as a conference paper at ICLR 2020

0.0

0.2

0.4

0.6

0.8

1.0

S
A

V
E

Sticky block cost = 0 Sticky block cost = 0.04

104 105 106 107 108

Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Q
-L

e
a
rn

in
g

104 105 106 107 108

Episodes

Difficulty
0

1

2

3

4

5

Final

Figure D.2: Learning curves for the Marble Run environment. Each line shows the median reward
across 10 seeds, and the shaded regions show min and max seed performance. Each color corre-
sponds to a different level of curriculum difficulty. Difficulties less than the final difficulty are only
evaluated while the agent is training at that curriculum level; the final level of difficulty is always
evaluated.

never actually gets to observe the marble’s dynamics, and therefore does not get direct feedback
about why the marble does or does not make it to the goal (such that it is getting stuck in a hole).
An interesting direction for future work would be to incorporate this information into the agent’s
learning as well.

D.6 TERMINATION CONDITION

There are several episode termination conditions that may be triggered before the task is solved:

• An agent places a block in a position that overlaps with an existing block or obstacle.

• An agent has placed a block that during the settlement phase touches an obstacle.

• An agent has placed a block that, at the end of the block settlement phase overlaps with the
initial marble position.

• Maximum number of steps is reached.

Note that touching obstacles during the marble dynamics phase does not terminate the episode be-
cause we are purely evaluating the reward function and, during the restore state phase, all objects
are returned to there previous locations. This makes it possible for the agent to correct for any ob-
stacle collisions that happened during the marble dynamics phase, by placing additional blocks that
re-route the marble.

D.7 ADDITIONAL RESULTS

We used the same experimental setup as in the other Construction tasks (Appendix C). In particular,
during training, for each seed of each agent we checkpoint the weights which achieve the highest
reward on the highest curriculum level, and then use these checkpoints to evaluate performance
in Figure 4. Figure D.2 additionally shows details of the training performance at each level of
difficulty in the curriculum. We can see that at around difficulty level 4-5, the Q-learning agent
becomes unstable and crashes, while the SAVE agent stays stable and continues to improve. Indeed,
as shown in Figure D.3, the Q-learning agent never makes it to difficulty level 6 (when sticky blocks
are free) or even difficulty level 5 (when sticky blocks have a moderate cost). The SAVE agent is
able to reach harder levels of difficulty, and does so with fewer learning steps.

24

Published as a conference paper at ICLR 2020

0 1 2 3 4 5 6
Difficulty

103

104

105

106

107

#
 E

p
is

o
d
e
s

(a) Sticky block cost = 0

0 1 2 3 4 5 6
Difficulty

103

104

105

106

107 (b) Sticky block cost = 0.04

SAVE

Q-Learning

Figure D.3: Curriculum progress in Marble Run. Light lines show individual curriculum progress
per seed, and dark lines are computed over the median of these seeds. The x-axis shows the particular
curriculum level and the y-axis indicates at which episode that level of difficulty was reached.

Level Baseline Controlled SAVE % Change

Alien 71925.1 96013.5 280227.3 191.9%
Asteroids 251033.3 266306.7 274431.7 3.1%
Beam Rider 96654.4 113930.6 195703.8 71.8%
Centipede 517332.2 562742.3 767206.6 36.3%
Crazy Climber 311203.8 271151.5 324726.4 19.8%
Frostbite 15814.2 11052.3 202744.2 1734.4%
Gravitar 7854.0 11314.3 11484.1 1.5%
Hero 30515.9 44574.3 44796.0 0.5%
Ms. Pacman 25377.4 27776.3 47186.0 69.9%
Name This Game 45027.1 40790.0 58621.1 43.7%
River Raid 33819.5 32720.8 41031.6 25.4%
Space Invaders 3639.2 42387.4 63684.7 50.2%
Up ’n’ Down 563661.0 568735.6 585475.6 2.9%
Zaxxon 116892.6 73073.1 213370.4 192.0%

Median 58476.1 58823.7 199224.0 40.0%
Mean 149339.3 154469.2 222192.1 174.5%

Table E.1: Results on Atari. Scores are final performance averaged over 3 seeds. “Baseline” is the
standard version of R2D2 (Kapturowski et al., 2018). “Controlled” is our version that is controlled
to have the same replay ratio as SAVE. The rightmost column reports the percent change in reward
of SAVE over the controlled version of R2D2. Bold scores indicate scores that are within 5% of the
best score on a particular game. The last two rows show median and mean scores, respectively. The
percentages in the last two rows show the median and mean across percent change, rather than the
percent change of the median/mean scores.

E DETAILS ON ATARI

E.1 EXPERIMENTAL SETUP

We evaluated SAVE on a set of 14 Atari games in the Arcade Learning Environment (Bellemare
et al., 2013). The games were chosen as a combination of classical action Atari games such as As-
teroids and Space Invaders, and games with a stronger strategic component such as Ms. Pacman and
Frostbite, which are commonly used as evaluation environments for model-based agents (Buesing
et al., 2018; Farquhar et al., 2018; Oh et al., 2017; Guez et al., 2019).

SAVE was implemented on top of the R2D2 agent (Kapturowski et al., 2018) as described in Algo-
rithm A.1. Concretely, this means we evaluate the function QMCTS instead of Qθ to select an action
in the actors, and optimize the combined loss function (Equation 6) instead of the TD loss in the
learner. For hyperparameters, we used a search budget of 10, and βQ = 1, βA = 10. We did very
little tuning to select these hyperparameters, only sweeping over two values of βA ∈ {1, 10}. We
found while both of these settings resulted in similar performance, βA = 10 worked slightly better.
It is likely that with further tuning of these parameters, even larger increases in reward be achieved,

25

Published as a conference paper at ICLR 2020

0
1
2
3
4
5
6
7

R
e
w

a
rd

1e5 alien

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 1e5 asteroids

0.0
0.5
1.0
1.5
2.0
2.5
3.0 1e5 beam_rider

0
1
2
3
4
5
6
7
8

R
e
w

a
rd

1e5 centipede

0
1
2
3
4
5
6 1e5 crazy_climber

0
1
2
3
4
5
6 1e5 frostbite

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

R
e
w

a
rd

1e4 gravitar

0
1
2
3
4
5
6 1e4 hero

0
1
2
3
4
5
6 1e4 ms_pacman

0
1
2
3
4
5
6
7
8
9

R
e
w

a
rd

1e4 name_this_game

0

1

2

3

4

5 1e4 riverraid

0.0 0.2 0.4 0.6 0.8 1.0
Learner Steps 1e6

0
1
2
3
4
5
6
7 1e4 space_invaders

0.0 0.2 0.4 0.6 0.8 1.0
Learner Steps 1e6

0
1
2
3
4
5
6
7

R
e
w

a
rd

1e5 up_n_down

0.0 0.2 0.4 0.6 0.8 1.0
Learner Steps 1e6

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5 1e5 zaxxon

SAVE

Baseline

Controlled

Figure E.1: Learning curves on Atari games. Solid lines show the average over 3 seeds, and shaded
regions show min and max seeds.

as LQ and LA will have very different relative magnitudes depending on the scale of the rewards in
each game.

All hyper-parameters of R2D2 remain unchanged from the original paper, with the exception of actor
speed compensation. By running MCTS, multiple environment interactions need to be evaluated
for each actor step, which means transition tuples are added to the replay buffer at a slower rate,
changing the replay ratio. To account for this, we increase the number of actors from 256 to 1024,
and change the actor parameter update interval from 400 to 40 steps.

E.2 EVALUATION

The learning curves of our experiment are shown in Figure E.1, and Table E.1 shows the final
performance in tabular form. We ran three seeds for each of the Baseline, Controlled and SAVE
agents for each game and computed final scores as the average score over the last 2e4 episodes of
training. The Baseline agent represents the unchanged R2D2 agent from (Kapturowski et al., 2018).
The Controlled agent is a R2D2 agent controlled to have the same replay ratio as SAVE, which we
achieve by running MCTS in the actors but then discarding the results. As in SAVE, we use 1024
actors with update interval 40 for the controlled agent.

We can observe that in the majority of games, SAVE performs not only better than the controlled
agent but also better than the original R2D2 baseline. While we see big improvements in the strategic
games such as Ms. Pacman, we also notice a gain in many of the action games. This suggests that

26

Published as a conference paper at ICLR 2020

model-based methods like SAVE can be useful even in domains that do not require as much long-
term reasoning.

27

	Introduction
	Background and Motivation
	Learning from planned actions
	Using prior knowledge in search
	Other related work

	Method
	Standard MCTS
	Incorporating a prior during search
	Q-learning with an amortization loss

	Experiments
	Tightrope
	Construction
	Marble Run
	Atari

	Discussion
	Acknowledgements
	Further agent details
	Q-Learning
	SAVE
	PUCT

	Details on Tightrope
	Environment
	Tabular Experiments
	Function Approximation Experiments

	Details on Construction
	Agent details
	Experimental setup
	Discussion of ablation results
	Additional results

	Details on Marble Run
	Scene generation
	Curriculum difficulty
	Adaptive curriculum
	Agent step, action and reward evaluation
	Observation
	Termination condition
	Additional results

	Details on Atari
	Experimental setup
	Evaluation

