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A B S T R A C T

This paper introduces Meta-Q-Learning (MQL), a new off-policy algorithm for
meta-Reinforcement Learning (meta-RL). MQL builds upon three simple ideas.
First, we show that Q-learning is competitive with state-of-the-art meta-RL algo-
rithms if given access to a context variable that is a representation of the past
trajectory. Second, a multi-task objective to maximize the average reward across
the training tasks is an effective method to meta-train RL policies. Third, past data
from the meta-training replay buffer can be recycled to adapt the policy on a new
task using off-policy updates. MQL draws upon ideas in propensity estimation to
do so and thereby amplifies the amount of available data for adaptation. Experi-
ments on standard continuous-control benchmarks suggest that MQL compares
favorably with the state of the art in meta-RL.

1 I N T R O D U C T I O N
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Figure 1: How well does meta-RL work? Aver-
age returns on validation tasks compared for two
prototypical meta-RL algorithms, MAML (Finn
et al., 2017) and PEARL (Rakelly et al., 2019),
with those of a vanilla Q-learning algorithm named
TD3 (Fujimoto et al., 2018b) that was modified to
incorporate a context variable that is a represen-
tation of the trajectory from a task (TD3-context).
Even without any meta-training and adaptation on
a new task, TD3-context is competitive with these
sophisticated algorithms.

Reinforcement Learning (RL) algorithms have
demonstrated good performance on simulated data.
There are however two main challenges in translat-
ing this performance to real robots: (i) robots are
complex and fragile which precludes extensive data
collection, and (ii) a real robot may face an environ-
ment that is different than the simulated environment
it was trained in. This has fueled research into Meta-
Reinforcement Learning (meta-RL) which develops
algorithms that “meta-train” on a large number of dif-
ferent environments, e.g., simulated ones, and aim to
adapt to a new environment with few data.

How well does meta-RL work today? Fig. 1 shows
the performance of two prototypical meta-RL algo-
rithms on four standard continuous-control bench-
marks.1 We compared them to the following simple
baseline: an off-policy RL algorithm (TD3 by Fuji-
moto et al. (2018b)) and which was trained to max-
imize the average reward over all training tasks and
modified to use a “context variable” that represents
the trajectory. All algorithms in this figure use the
same evaluation protocol. It is surprising that this
simple non-meta-learning-based method is competitive with state-of-the-art meta-RL algorithms.
This is the first contribution of our paper: we demonstrate that it is not necessary to meta-train
policies to do well on existing benchmarks.

Our second contribution is an off-policy meta-RL algorithm named Meta-Q-Learning (MQL) that
builds upon the above result. MQL uses a simple meta-training procedure: it maximizes the average

∗Work done while at Amazon Web Services
1We obtained the numbers for MAML and PEARL from training logs published by Rakelly et al. (2019).
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rewards across all meta-training tasks using off-policy updates to obtain

θ̂meta = arg max
θ

1

n

n∑
k=1

E
τ∼Dk

[
`k(θ)

]
(1)

where `k(θ) is the objective evaluated on the transition τ obtained from the task Dk(θ), e.g., 1-step
temporal-difference (TD) error would set `k(θ) = TD2(θ; τ). This objective, which we call the
multi-task objective, is the simplest form of meta-training.

For adapting the policy to a new task, MQL samples transitions from the meta-training replay buffer
that are similar to those from the new task. This amplifies the amount of data available for adaptation
but it is difficult to do because of the large potential bias. We use techniques from the propensity
estimation literature for performing this adaptation and the off-policy updates of MQL are crucial to
doing so. The adaptation phase of MQL solves

arg max
θ

{
E

τ∼Dnew

[
`new(θ)

]
+ E
τ∼Dmeta

[
β(τ ;Dnew,Dmeta) `

new(θ)
]
−
(
1− ÊSS

)
‖θ − θ̂meta‖22

}
(2)

whereDmeta is the meta-training replay buffer, the propensity score β(τ ;Dnew,Dmeta) is the odds of a
transition τ belonging to Dnew versusDmeta, and ÊSS is the Effective Sample Size between Dnew and
Dmeta that is a measure of the similarly of the new task with the meta-training tasks. The first term
computes off-policy updates on the new task, the second term performs β(·)-weighted off-policy
updates on old data, while the third term is an automatically adapting proximal term that prevents
degradation of the policy during adaptation.

We perform extensive experiments in Sec. 4.2 including ablation studies using standard meta-RL
benchmarks that demonstrate that MQL policies obtain higher average returns on new tasks even if
they are meta-trained for fewer time-steps than state-of-the-art algorithms.

2 B A C K G R O U N D

This section introduces notation and formalizes the meta-RL problem. We discuss techniques for
estimating the importance ratio between two probability distributions in Sec. 2.2.

Consider a Markov Decision Processes (MDP) denoted by

xt+1 = fk(xt, ut, ξt) x0 ∼ pk0 , (3)

where xt ∈ X ⊂ Rd are the states and ut ∈ U ⊂ Rp are the actions. The dynamics fk is
parameterized by k ∈ {1, . . . , n} where each k corresponds to a different task. The domain of all
these tasks, X for the states and U for the actions, is the same. The distribution pk0 denotes the initial
state distribution and ξt is the noise in the dynamics. Given a deterministic policy uθ(xt), the action-
value function for γ-discounted future rewards rkt := rk(xt, uθ(xt)) over an infinite time-horizon
is

qk(x, u) = E
ξ(·)

[ ∞∑
t=0

γt rkt |x0 = x, u0 = u, ut = uθ(xt)
]
. (4)

Note that we have assumed that different tasks have the same state and action space and may only
differ in their dynamics fk and reward function rk. Given one task k ∈ {1, . . . , n}, the standard
Reinforcement Learning (RL) formalism solves for

θ̂k = arg max
θ

`k(θ) where `k(θ) = E
x∼p0

[
qk(x, uθ(x))

]
. (5)

Let us denote the dataset of all states, actions and rewards pertaining to a task k and policy uθ(x) by

Dk(θ) =
{
xt, uθ(xt), r

k, xt+1 = fk(xt, uθ(xt), ξt)
}
t≥0, x(0)∼pk0 , ξ(·)

;

we will often refer toDk as the “task” itself. The Deterministic Policy Gradient (DPG) algorithm (Sil-
ver et al., 2014) for solving (5) learns a ϕ-parameterized approximation qϕ to the optimal value func-
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tion qk by minimizing the Bellman error and the optimal policy uθ that maximizes this approximation
by solving the coupled optimization problem

ϕ̂k = arg min
ϕ

E
τ∼Dk

[ (
qϕ(x, u)− rk − γ qϕ(x′, uθ̂k(x

′))
)2 ]

,

θ̂k = arg max
θ

E
τ∼Dk

[
q
ϕ̂k(x, uθ(x))

]
.

(6)

The 1-step temporal difference error (TD error) is defined as

TD2(θ) =
(
qϕ(x, u)− rk − γ qϕ(x′, uθ(x′))

)2
(7)

where we keep the dependence of TD(·) on ϕ implicit. DPG, or its deep network-based variant
DDPG (Lillicrap et al., 2015), is an off-policy algorithm. This means that the expectations in (6) are
computed using data that need not be generated by the policy being optimized (uθ), this data can
come from some other policy.

In the sequel, we will focus on the parameters θ parameterizing the policy. The parameters ϕ of the
value function are always updated to minimize the TD-error and are omitted for clarity.

2 . 1 M E TA - R E I N F O R C E M E N T L E A R N I N G ( M E TA - R L )

Meta-RL is a technique to learn an inductive bias that accelerates the learning of a new task by training
on a large of number of training tasks. Formally, meta-training on tasks from the meta-training set
Dmeta =

{
Dk
}
k=1,...,n

involves learning a policy

θ̂meta = arg max
θ

1

n

n∑
k=1

`kmeta(θ) (8)

where `kmeta(θ) is a meta-training loss that depends on the particular method. Gradient-based meta-RL,
let us take MAML by Finn et al. (2017) as a concrete example, sets

`kmeta(θ) = `k(θ + α∇θ`k(θ)) (9)

for a step-size α > 0; `k(θ) is the objective of non-meta-RL (5). In this case `kmeta is the objective
obtained on the task Dk after one (or in general, more) updates of the policy on the task. The idea
behind this is that even if the policy θ̂meta does not perform well on all tasks in Dmeta it may be
updated quickly on a new task Dnew to obtain a well-performing policy. This can either be done
using the same procedure as that of meta-training time, i.e., by maximizing `new

meta(θ) with the policy
θ̂meta as the initialization, or by some other adaptation procedure. The meta-training method and the
adaptation method in meta-RL, and meta-learning in general, can be different from each other.

2 . 2 L O G I S T I C R E G R E S S I O N F O R E S T I M AT I N G T H E P R O P E N S I T Y S C O R E

Consider standard supervised learning: given two distributions q(x) (say, train) and p(x) (say, test),
we would like to estimate how a model’s predictions ŷ(x) change across them. This is formally done
using importance sampling:

E
x∼p(x)

E
y|x

[
`(y, ŷ(x))

]
= E
x∼q(x)

E
y|x

[
β(x) `(y, ŷ(x))

]
; (10)

where y|x are the true labels of data, the predictions of the model are ŷ(x) and `(y, ŷ(x)) is the
loss for each datum (x, y). The importance ratio β(x) = dp

dq (x), also known as the propensity
score, is the Radon-Nikodym derivative (Resnick, 2013) of the two data densities and measures
the odds of a sample x coming from the distribution p versus the distribution q. In practice, we do
not know the densities q(x) and p(x) and therefore need to estimate β(x) using some finite data
Xq = {x1, . . . , xm} drawn from q and Xp = {x′1, . . . , x′m} drawn from p. As Agarwal et al. (2011)
show, this is easy to do using logistic regression. Set zk = 1 to be the labels for the data in Xq and
zk = −1 to be the labels of the data in Xp for k ≤ m and fit a logistic classifier on the combined 2m
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samples by solving

w∗ = min
w

1

2m

∑
(x,z)

log
(
1 + e−zw

>x
)
+ c ‖w‖2. (11)

This gives

β(x) =
P(z = −1|x)
P(z = 1|x)

= e−w
∗>x. (12)

Normalized Effective Sample Size (ÊSS): A related quantity to β(x) is the normalized Effective
Sample Size (ÊSS) which we define as the relative number of samples from the target distribution
p(x) required to obtain an estimator with performance (say, variance) equal to that of the importance
sampling estimator (10). It is not possible to compute the ÊSS without knowing both densities
q(x) and p(x) but there are many heuristics for estimating it. A popular one in the Monte Carlo
literature (Kong, 1992; Smith, 2013; Elvira et al., 2018) is

ÊSS =
1

m

(
∑m
k=1 β(xk))

2∑m
k=1 β(xk)

2
∈ [0, 1] (13)

where X = {x1, . . . , xm} is some finite batch of data. Observe that if two distributions q and p are
close then the ÊSS is close to one; if they are far apart the ÊSS is close to zero.

3 M Q L

This section describes the MQL algorithm. We begin by describing the meta-training procedure of
MQL including a discussion of multi-task training in Sec. 3.1. The adaptation procedure is described
in Sec. 3.2.

3 . 1 M E TA - T R A I N I N G

MQL performs meta-training using the multi-task objective. Note that if one sets

`kmeta(θ) , `k(θ) = E
x∼pk0

[
qk(x, uθ(x))

]
(14)

in (8) then the parameters θ̂meta are such that they maximize the average returns over all tasks from
the meta-training set. We use an off-policy algorithm named TD3 (Fujimoto et al., 2018b) as the
building block and solve for

θ̂meta = arg min
θ

1

n

n∑
k=1

E
τ∼Dk

[
TD2(θ)

]
; (15)

where TD(·) is defined in (7). As is standard in TD3, we use two action-value functions parameterized
by ϕ1 and ϕ2 and take their minimum to compute the target in (7). This trick known as “double-
Q-learning” reduces the over-estimation bias. Let us emphasize that (14) is a special case of the
procedure outlined in (8). The following remark explains why MQL uses the multi-task objective
as opposed to the meta-training objective used, for instance, in existing gradient-based meta-RL
algorithms.

Remark 1. Let us compare the critical points of the m-step MAML objective (9) to those of the
multi-task objective which uses (14). As is done by the authors in Nichol et al. (2018), we can
perform a Taylor series expansion around the parameters θ to obtain

∇`kmeta(θ) = ∇`k(θ) + 2α(m− 1)
(
∇2`k(θ)

)
∇`k(θ) +O(α2). (16)

Further, note that∇`kmeta in (16) is also the gradient of the loss

`k(θ) + α(m− 1)‖∇`k(θ)‖22 (17)
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up to first order. This lends a new interpretation that MAML is attracted towards regions in the loss
landscape that under-fit on individual tasks: parameters with large ‖∇`k‖2 will be far from the local
maxima of `k(θ). The parameters α and m control this under-fitting. Larger the number of gradient
steps, larger the under-fitting effect. This remark suggests that the adaptation speed of gradient-based
meta-learning comes at the cost of under-fitting on the tasks.

3 . 1 . 1 D E S I G N I N G C O N T E X T

As discussed in Sec. 1 and 4.4, the identity of the task in meta-RL can be thought of as the hidden
variable of an underlying partially-observable MDP. The optimal policy on the entire trajectory of
the states, actions and the rewards. We therefore design a recurrent context variable zt that depends
on {(xi, ui, ri)}i≤t. We set zt to the hidden state at time t of a Gated Recurrent Unit (GRU by Cho
et al. (2014)) model. All the policies uθ(x) and value functions qϕ(x, u) in MQL are conditioned on
the context and implemented as uθ(x, z) and qϕ(x, u, z). Any other recurrent model can be used to
design the context; we used a GRU because it offers a good trade-off between a rich representation
and computational complexity.

Remark 2 (MQL uses a deterministic context that is not permutation invariant). We have
aimed for simplicity while designing the context. The context in MQL is built using an off-the-shelf
model like GRU and is not permutation invariant. Indeed, the direction of time affords crucial in-
formation about the dynamics of a task to the agent, e.g., a Half-Cheetah running forward versus
backward has arguably the same state trajectory but in a different order. Further, the context in MQL
is a deterministic function of the trajectory. Both these aspects are different than the context used
by Rakelly et al. (2019) who design an inference network and sample a probabilistic context condi-
tioned on a moving window. RL algorithms are quite complex and challenging to reproduce. Current
meta-RL techniques which build upon them further exacerbate this complexity. Our demonstration
that a simple context variable is enough is an important contribution.

3 . 2 A D A P TAT I O N T O A N E W TA S K

We next discuss the adaptation procedure which adapts the meta-trained policy θ̂meta to a new task
Dnew with few data. MQL optimizes the adaptation objective introduced in (2) into two steps.

1. Vanilla off-policy adaptation: The first step is to update the policy using the new data as

arg max
θ

{
E

τ∼Dnew

[
`new(θ)

]
− λ

2
‖θ − θ̂meta‖22

}
. (18)

The quadratic penalty ‖θ − θ̂meta‖2 keeps the parameters close to θ̂meta. This is crucial to reducing
the variance of the model that is adapted using few data from the new task (Reddi et al., 2015).
Off-policy learning is critical in this step because of its sample efficiency. We initialize θ to θ̂meta
while solving (18).

2. Importance-ratio corrected off-policy updates: The second step of MQL exploits the meta-
training replay buffer. Meta-training tasksDmeta are disjoint fromDnew but because they are expected
to come from the same task distribution, transitions collected during meta-training can potentially be
exploited to adapt the policy. This is difficult to do on two counts. First, the meta-training transitions
do not come from Dnew. Second, even for transitions from the same task, it is non-trivial to update
the policy because of extrapolation error (Fujimoto et al., 2018a): the value function has high error
on states it has not seen before. Our use of the propensity score to reweigh transitions is a simpler
version of the conditional generative model used by Fujimoto et al. (2018a) in this context.

MQL fits a logistic classifier on a mini-batch of transitions from the meta-training replay buffer and
the transitions collected from the new task in step 1. The context variable zt is the feature for this
classifier. The logistic classifier estimates the importance ratio β(τ ;Dnew,Dmeta) and can be used to
reweigh data from the meta-training replay buffer for taking updates as

arg max
θ

{
E

τ∼Dmeta

[
β(τ ;Dnew,Dmeta) `

new(θ)
]
− λ

2
‖θ − θ̂meta‖22

}
. (19)
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We have again included a quadratic penalty ‖θ− θ̂meta‖2 that keeps the new parameters close to θ̂meta.
Estimating the importance ratio involves solving a convex optimization problem on few samples
(typically, 200 from the new task and 200-400 from the meta-training tasks). This classifier allows
MQL to exploit the large amount of past data. In practice, we perform as many as 100× more weight
updates using (19) than (18).

Remark 3 (Picking the coefficient λ). Following Fakoor et al. (2019), we pick

λ = 1− ÊSS

for both the steps (18–19). This relaxes the quadratic penalty if the new task is similar to the meta-
training tasks (ÊSS is large) and vice-versa. While λ could be tuned as a hyper-parameter, our
empirical results show that adapting it using ÊSS is a simple and effective heuristic.

Remark 4 (Details of estimating the importance ratio). It is crucial to ensure that the logistic
classifier for estimating β generalizes well if we are to reweigh transitions in the meta-training replay
buffer that are different than the ones the logistic was fitted upon. We do so in two ways: (i) the
regularization co-efficient in (11) is chosen to be relatively large, that way we prefer false negatives
than risk false positives; (ii) transitions with very high β are valuable for updating (19) but cause
a large variance in stochastic gradient descent-based updates, we clip β before taking the update
in (19). The clipping constant is a hyper-parameter and is given in Sec. 4.

MQL requires having access to the meta-training replay buffer during adaptation. This is not a
debilitating requirement and there are a number of clustering techniques that can pick important
transitions from the replay-buffer if a robotic agent is limited by available hard-disk space. The
meta-training replay buffer is at most 3 GB for the experiments in Sec. 4.

4 E X P E R I M E N T S

This section presents the experimental results of MQL. We first discuss the setup and provide details
the benchmark in Sec. 4.1. This is followed by empirical results and ablation experiments in Sec. 4.2.

4 . 1 S E T U P

Figure 2: Average undiscounted return of TD3 and
TD3-context compared with PEARL for validation
tasks from four meta-RL environments. The agent
fails to learn if the policy is conditioned only on the state.
In contrast, everything else remaining same, if TD3 is
provided access to context, the rewards are much higher.
In spite of not adaptating on the validation tasks, TD3-
context is comparable to PEARL.

Tasks and algorithms: We use the Mu-
JoCo (Todorov et al., 2012) simulator with
OpenAI Gym (Brockman et al., 2016) on
continuous-control meta-RL benchmark tasks.
These tasks have different rewards, randomized
system parameters (Walker-2D-Params) and
have been used in previous papers such as Finn
et al. (2017); Rothfuss et al. (2018); Rakelly
et al. (2019). We compare against standard base-
line algorithms, namely MAML (TRPO (Schul-
man et al., 2015) variant) (Finn et al., 2017),
RL2 (Duan et al., 2016), ProMP (Rothfuss et al.,
2018) and PEARL (Rakelly et al., 2019). We ob-
tained the training curves and hyper-parameters
for all the three algorithms from the published
code by Rakelly et al. (2019).

We will compare the above algorithms against:
(i) vanilla TD3 (Fujimoto et al., 2018a) without
any adaptation on new tasks, (ii) TD3-context:
TD3 with GRU-based context Sec. 3.1.1 with-
out any adaptation, and (iii) MQL: TD3 with
context and adaptation on new task using the
procedure in Sec. 3.2. All the three variants use
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the multi-task objective for meta-training (15).
We use Adam (Kingma & Ba, 2014) for opti-
mizing all the loss functions in this paper.

Evaluation: Current meta-RL benchmarks lack a systematic evaluation procedure. 2 For each envi-
ronment, Rakelly et al. (2019) constructed a fixed set of meta-training tasks (Dmeta) and a validation
set of tasks Dnew that are disjoint from the meta-training set. To enable direct comparison with pub-
lished empirical results, we closely followed the evaluation code of Rakelly et al. (2019) to create
these tasks. We also use the exact same evaluation protocol as that of these authors, e.g., 200 time-
steps of data from the new task, or the number of evaluation episodes. We report the undiscounted
return on the validation tasks with statistics computed across 5 random seeds.

4 . 2 R E S U LT S

Figure 3: Comparison of the average undiscounted return of MQL (orange) against existing meta-RL al-
gorithms on continuous-control environments. We compare against four existing algorithms, namely MAML
(green), RL2 (red), PROMP (purple) and PEARL (blue). In all environments except Walker-2D-Params and
Ant-Goal-2D, MQL is better or comparable to existing algorithms in terms of both sample complexity and final
returns.

Our first result, in Fig. 2, is to show that vanilla off-policy learning with context, without any adap-
tation is competitive with state of the art meta-RL algorithms. We used a standard implementation
of TD3 and train on the meta-training tasks using the multi-task objective (15). Hyper-parameters
for these tasks are provided in Appendix D. This result is surprising and had gone unnoticed in the
current literature. Policies that have access to the context can easily generalize to the validation tasks
and achieve performance that is comparable to more sophisticated meta-RL algorithms.

We next evaluate MQL against existing meta-RL benchmarks on all environments. The results are
shown in Fig. 3. We see that for all environments except Walker-2D-Params and Ant-Goal-2D,
MQL obtains comparable or better returns on the validation tasks. In most cases, in particular for
the challenging Humanoid-Direc-2D environment, MQL converges faster than existing algorithms.
MAML and ProMP require about 100M time-steps to converge to returns that are significantly worse

2For instance, training and validation tasks are not explicitly disjoint in Finn et al. (2017); Rothfuss et al.
(2018) and these algorithms may benefit during adaptation from having seen the same task before. The OpenAI
Gym environments used in Finn et al. (2017); Rothfuss et al. (2018); Rakelly et al. (2019) provide different
rewards for the same task. The evaluation protocol in existing papers, e.g., length of episode for a new task,
amount of data available for adaptation from the new task, is not consistent. This makes reproducing experiments
and comparing numerical results extremely difficult.
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than the returns of off-policy algorithms like MQL and PEARL. Compare the training curve for
TD3-context for the Ant-Goal-2D environment in Fig. 2 with that of the same environment in Fig. 3:
the former shows a prominent dip in performance as meta-training progresses; this dip is absent
in Fig. 3 and can be attributed to the adaptation phase of MQL.

4 . 3 A B L AT I O N E X P E R I M E N T S

We conduct a series of ablation studies to analyze the different components of the MQL algorithm.
We use two environments for this purpose, namely Half-Cheetah-Fwd-Back and Ant-Fwd-Back.
Fig. 4a shows that the adaptation in MQL in (18) and (19) improves performance. Also observe that
MQL has a smaller standard deviation in the returns as compared to TD3-context which does not
perform any adaptation; this can be seen as the adaptation phase making up for the lost performance
of the meta-trained policy on a difficult task. Next, we evaluate the importance of the additional
data from the replay buffer in MQL. Fig. 4b compares the performance of MQL with and without
updates in (19). We see that the old data, even if it comes from different tasks, is useful to improve
the performance on top of (18). Fig. 4c shows the effectiveness of setting λ = 1− ÊSS as compared
to a fixed value of λ = 0.5. We see that modulating the quadratic penalty with ÊSS helps, the effect
is minor for Sec. 4.3. The ideal value of λ depends on a given task and using 1 − ÊSS can help to
adjust to different tasks without the need to do hyper-parameter search per task. Finally, Fig. 5 shows
the evolution of λ and β(z) during meta-training. The coefficient λ is about 0.55 and β(z) is 0.8
for a large fraction of the time. The latter indicates that propensity score estimation is successful
in sampling transitions from the meta-training replay buffer that are similar to the validation tasks.
The value of λ remains relatively unchanged during training. This value indicates the fraction of
transitions in the old data that are similar to those from the new tasks; since there are two distinct
tasks in Ant-Fwd-Back, the value λ = 0.55 is appropriate.

(a.1)

(a.2)

(a) MQL vs. TD3-context

(b.1)

(b.2)

(b) MQL vs. MQL (β = 0)

(c.1)

(c.2)

(c) Choice of λ = 1− ÊSS

Figure 4: Ablation studies to examine various components of MQL.

4 . 4 R E L AT E D W O R K

Learning to learn: The idea of building an inductive bias for learning a new task by training on a
large number of related tasks was established in a series of works (Utgoff, 1986; Schmidhuber, 1987;
Baxter, 1995; Thrun, 1996; Thrun & Pratt, 2012). These papers propose building a base learner that
fits on each task and a meta-learner that learns properties of the base learners to output a new base

8



Published as a conference paper at ICLR 2020

learner for a new task. The recent literature instantiates this idea in two forms: (i) the meta-learner
directly predicts the base-learner (Wang et al., 2016; Snell et al., 2017) and (ii) the meta-learner
learns the updates of the base-learner (Bengio et al., 1992; Hochreiter et al., 2001; Finn et al., 2017).

Figure 5: Evolution of λ and β(z) during
meta-training.

Meta-training versus multi-task training: Meta-
training aims to train a policy that can be adapted
efficiently on a new task. Conceptually, the improved
efficiency of a meta-learner comes from two things:
(i) building a better inductive bias to initialize the
learning (Schmidhuber et al., 1997; Baxter, 1995; 2000;
Mitchell, 1980), or (ii) learning a better learning pro-
cedure (Bengio et al., 1997; Lee et al., 2019). The two
notions of meta-learning above are complementary to
each other and in fact, most recent literature using deep
neural networks, e.g., MAML (Finn et al., 2017) and
Prototypical Networks (Snell et al., 2017) confirms to the
first notion of building a better inductive bias.

The multi-task training objective in MQL is the simplest
possible instantiation of this idea: it maximizes the aver-
age reward on all tasks and learns a better prior without explicitly training for improving adaptation.
This aspect of MQL coincides with a recent trend in meta-learning for image classification where
it has been observed that modifications to episodic meta-training (Snell et al., 2017; Gidaris & Ko-
modakis, 2018; Chen et al., 2018), or even foregoing meta-training completely (Dhillon et al., 2019)
performs better. We speculate two reasons for this phenomenon: (i) meta-training methods are com-
plex to implement and tune, and (ii) powerful function classes such as deep neural networks may
have leftover capacity to adapt to a new task even if they are not explicitly trained for adaptation.

Context-based approaches: Both forms of meta-learning above have been employed relatively
successfully for image classification (Snell et al., 2017; Ravi & Larochelle, 2016; Finn et al., 2017).
It has however been difficult to replicate that empirical performance in RL: sensitivity to hyper-
parameters (Henderson et al., 2018) precludes directly predicting the base-learner while long-range
temporal dependencies make it difficult to learn the updates of the base learner (Nichol et al., 2018).
Recent methods for meta-RL instead leverage context and learn a policy that depends on just on the
current state xt but on the previous history. This may be done in a recurrent fashion (Heess et al.,
2015; Hausknecht & Stone, 2015) or by learning a latent representation of the task (Rakelly et al.,
2019). Context is a powerful construct: as Fig. 1 shows, even a simple vanilla RL algorithm (TD3)
when combined with context performs comparably to state-of-the-art meta-RL algorithms. However,
context is a meta-training technique, it does not suggest a way to adapt a policy to a new task. For
instance, Rakelly et al. (2019) do not update parameters of the policy on a new task. They rely on
the latent representation of the context variable generalizing to new tasks. This is difficult if the new
task is different from the training tasks; we discuss this further in Sec. 3.1.1.

Policy-gradient-based algorithms versus off-policy methods: Policy-gradient-based methods
have high sample complexity (Ilyas et al., 2018). This is particularly limiting for meta-RL (Finn
et al., 2017; Rothfuss et al., 2018; Houthooft et al., 2018) where one (i) trains on a large number
of tasks and, (ii) aims to adapt to a new task with few data. Off-policy methods offer substantial
gains in sample complexity. This motivates our use of off-policy updates for both meta-training and
adaptation. Off-policy updates allow using past data from other policies. MQL exploits this substan-
tially, it takes up to 100× more updates using old data than new data during adaptation. Off-policy
algorithms are typically very sensitive to hyper-parameters (Fujimoto et al., 2018a) but we show that
MQL is robust to such sensitivity because it adapts automatically to the distribution shift using the
Effective Sample Size (ESS).

Propensity score estimation has been extensively studied in both statistics (Robert & Casella, 2013;
Quionero-Candela et al., 2009) and RL (Dudı́k et al., 2011; Jiang & Li, 2015; Kang et al., 2007;
Bang & Robins, 2005). It is typically used to reweigh data from the proposal distribution to compute
estimators on the target distribution. MQL uses propensity scores in a novel way: we fit a propensity
score estimator on a subset of the meta-training replay buffer and use this model to sample transitions
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from the replay buffer that are similar to the new task. The off-policy updates in MQL are essential to
exploiting this data. The coefficient of the proximal term in the adaptation-phase objective (18–19)
using the effective sample size (ESS) is inspired from the recent work of Fakoor et al. (2019).

5 D I S C U S S I O N

The algorithm proposed in this paper, namely MQL, builds upon on three simple ideas. First, Q-
learning with context is sufficient to be competitive on current meta-RL benchmarks. Second, maxi-
mizing the average reward of training tasks is an effective meta-learning technique. The meta-training
phase of MQL is significantly simpler than that of existing algorithms and yet it achieves comparable
performance to the state of the art. This suggests that we need to re-think meta-learning in the context
of rich function approximators such as deep networks. Third, if one is to adapt to new tasks with
few data, it is essential to exploit every available avenue. MQL recycles data from the meta-training
replay buffer using propensity estimation techniques. This data is essentially free and is completely
neglected by other algorithms. This idea can potentially be used in problems outside RL such as
few-shot and zero-shot image classification.

Finally, this paper sheds light on the nature of benchmark environments in meta-RL. The fact that
even vanilla Q-learning with a context variable—without meta-training and without any adaptation—
is competitive with state of the art algorithms indicates that (i) training and validation tasks in the
current meta-RL benchmarks are quite similar to each other and (ii) current benchmarks may be
insufficient to evaluate meta-RL algorithms. Both of these are a call to action and point to the need to
invest resources towards creating better benchmark problems for meta-RL that drive the innovation
of new algorithms.
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A P S E U D O - C O D E

The pseudo-code for MQL during training and adaption are given in Algorithm 1 and Algorithm 2.
After MQL is trained for a given environment as described in Algorithm 1, it returns the meta-trained
policy θ and replay buffer containing train tasks.

Next, Algorithm 2 runs the adaptation procedure which adapts the meta-trained policy to a test taskD
with few data. To do so, MQL optimizes the adaptation objective into two steps. After gathering data
from a test task D, MQL first updates the policy using the new data (line 4). MQL then fits a logistic
classifier on a mini-batch of transitions from the meta-training replay buffer and the transitions
collected from the test task and then estimates ÊSS (lines 5-6). Finally, the adaptation step runs for
n iterations (lines 7 - 10) in which MQL can exploit past data in which it uses propensity score to
decide whether or not a given sample is related to the current test task.

Algorithm 1: MQL - Meta-training
Input: Set of training tasks Dmeta

1 Initialize the replay buffer
2 Initialize parameters θ of an off-policy method, e.g., TD3
3 while not done do
4 // Rollout and update policy
5 Sample a task D ∼ Dmeta
6 Gather data from task D using policy πθ while feeding transitions through context GRU. Add

trajectory to the replay buffer.
7 b ← Sample mini-batch from buffer
8 Update parameters θ using mini-batch b and Eqn. (15)

9 θmeta ← θ
10 return θmeta , replay buffer

Algorithm 2: MQL - Adaptation

Input: Test task D, meta-training replay buffer, meta-trained policy θmeta

1 Initialize temporary buffer buf
2 θ ← θmeta
3 buf ← Gather data from D using πθmeta

4 Update Eqn. (18) using buf
5 Fit β(D) using buf and meta-training replay buffer using Eqn. (12)

6 Estimate ÊSS using β(D) using Eqn. (13)
7 for i ≤ n do
8 b ← sample mini-batch from meta-training replay buffer
9 Calculate β for b

10 Update θ using Eqn. (19)

11 Evaluate θ on a new rollout from task D
12 return θ

B O U T- O F - D I S T R I B U T I O N TA S K S

MQL is designed for explicitly using data from the new task along with off-policy data from old,
possibly very different tasks. This is on account of two things: (i) the loss function of MQL does not
use the old data if it is very different from the new task, β is close to zero for all samples, and (ii) the
first term in (18) makes multiple updates using data from the new task. To explore this aspect, we
create an out-of-distribution task using the “Half-Cheetah-Vel” environment wherein we use disjoint
sets of velocities for meta-training and testing. The setup is as follows:

• Half-Cheetah-Vel-OOD-Medium: target velocity for a training task is sampled uniformly
randomly from [0, 2.5] while that for test task is sampled uniformly randomly from [2.5, 3.0].
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This is what we call “medium” hardness task because although the distributions of train and
test velocities is disjoint, they are close to each other.

• Half-Cheetah-Vel-OOD-Hard: target velocity for a training task is sampled uniformly
randomly from [0, 1.5] while that for test task is sampled uniformly randomly from [2.5, 3.0].
This is a “hard” task because the distributions of train and test velocities are far away from
each other.

Fig. 6a shows that MQL significantly outperforms PEARL when the train and test target velocities
come from disjoint sets. We used the published code of PEARL (Rakelly et al., 2019) for this
experiment. This shows that the adaptation in MQL is crucial to generalizing to new situations which
are not a part of the meta-training process. Fig. 6b shows the evolution of the proximal penalty
coefficient λ and the propensity score β(z) during meta-training for the medium-hard task. We see
that λ ≈ 0.8 while β(z) ≈ 0.2 throughout training. This indicates that MQL automatically adjusts its
test-time adaptation to use only few samples in (19) if the test task provides transitions quite different
than those in the replay buffer.

We next discuss results on the harder task Half-Cheetah-Vel-OOD-Hard. There is a very large gap
between training and test target velocities in this case. Fig. 7a shows the comparison with the same
test protocol as the other experiments in this paper. In particular, we collect 200 time-steps from
the new task and use it for adaptation in both MQL and TD3-context. Since this task is particularly
hard, we also ran an experiment where 1200 time-steps (6 episodes) are given to the two algorithms
for adaptation. The results are shown in Fig. 7b. In both cases, we see that MQL is better than
TD3-context by a large margin (the standard deviation on these plots is high because the environment
is hard). Note that since we re-initialize the hidden state of the context network at the beginning of
each episode, TD3-context cannot take advantage of the extra time-steps. MQL on the other hand
updates the policy explicitly and can take advantage of this extra data.

For sake of being thorough, we collected 800 time-steps from the new task from the same episode,
the results are shown in Fig. 8a. We again notice that MQL results in slightly higher rewards than
TD3-context in spite of the fact that both the algorithms suffer large degradation in performance as
compared to Figs. 7a and 7b.

Figs. 7c, 7d and 8b show that the proximal penalty coefficient λ ≈ 1 and the propensity score
β(z) ≈ 0 for a large fraction of training. This proves that MQL is able to automatically discard
samples unrelated to the new test during the adaptation phase.

(a) (b)

Figure 6: Comparison of the average return of MQL (orange) against existing PEARL algorithms (blue).
Fig. 6a shows that MQL significantly outperforms PEARL when the train and test target velocities come from
disjoint sets. Fig. 6b shows the evolution of the proximal penalty coefficient λ and the propensity score β(z).
We see that β(z) is always small which demonstrates that MQL automatically adjusts the adaptation in (19) if
the test task is different from the training tasks.
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(a) (b)

(c) (d)

Figure 7: (a,b) Comparison of the average return of MQL (orange) against TD3-context (blue). Fig. 7a
shows the comparison with the same test protocol as the other experiments in this paper. In particular, we collect
200 time-steps from the new task and use it for adaptation in both MQL and TD3-context. Since this task is
particularly hard, we also ran an experiment where 1200 time-steps (6 episodes) where results are shown in
Fig. 7b. In both cases, we see that MQL is better than TD3-context by a large margin (the standard deviation
on these plots is high because the environment is hard). (c,d) Evolution of λ and β(z) during meta-training.
shows the evolution of the proximal penalty coefficient λ and the propensity score β(z). We see in Fig. 7c
and Fig. 7d that β(z) is always small which demonstrates that MQL automatically adjusts the adaptation if the
test task is different from the training tasks.

(a) (b)

Figure 8: (a) Comparison of the average return of MQL (orange) against TD3-context (blue). For these
experiments, we collected 800 time-steps from the new task from the same episode, the results are shown
in Fig. 8a. We again notice that MQL results in slightly higher rewards than TD3-context in spite of the fact that
both the algorithms suffer large degradation in performance as compared to Figs. 7a and 7b. (b) Evolution of λ
and β(z) during meta-training shows the evolution of the proximal penalty coefficient λ and the propensity
score β(z).

15



Published as a conference paper at ICLR 2020

(a) (b) (c)

(d) (e) (f)

Figure 9: Ablation studies to examine various components of MQL. Fig. 9a shows that the adaptation in
MQL in (18) and (19) improves performance. One reason for that is because test and training tasks in Walker-
2D-Params are very similar as it shown in Fig. 10b. Next, we evaluate the importance of the additional data from
the replay buffer in MQL. Fig. 9b compares the performance of MQL with and without updates in (19). We
see that the old data, even if it comes from different tasks, is useful to improve the performance on top of (18).
Fig. 9c and Fig. 9f show the effectiveness of setting λ = 1 − ÊSS as compared to a fixed value of λ = 0.5.
We see that modulating the quadratic penalty with ÊSS helps, the effect is minor for Sec. 4.3. The ideal value
of λ depends on a given task and using 1 − ÊSS can help to adjust to different tasks without the need to do
hyper-parameter search per task.

(a) (b)

Figure 10: Evolution of λ and β(z) during meta-training shows the evolution of the proximal penalty coeffi-
cient λ and the propensity score β(z). We see in Fig. 10a that β(z) stays around 0.4 which demonstrates MQL
automatically adjusts the adaptation if the test task is different from the training tasks. Fig. 10b shows that test
and training tasks are very similar as β(z) is around 0.6.
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C M O R E A B L AT I O N S T U D I E S

We conduct a series of additional ablation studies to analyze the different components of the MQL
algorithm. We use two environments for this purpose, namely Half-Cheetah-Vel and Walker-2D-
Params. Fig. 9 and Fig. 10 show the result of these experiments. These experiments show that
adaptation phase is more useful for Half-Cheetah-Vel than Walker-2D-Params as test and training
tasks are very similar in Walker-2D-Params which helps TD3-context achieves strong performance
that leaves no window for improvement with adaptation.

D H Y P E R - PA R A M E T E R S A N D M O R E D E TA I L S O F T H E E M P I R I C A L

R E S U LT S

Table 1: Hyper-parameters for MQL and TD3 for continuous-control meta-RL benchmark tasks. We use
a network with two full-connected layers for all environments. The batch-size in Adam is fixed to 256 for all
environments. The abbreviation HC stands for Half-Cheetah. These hyper-parameters were tuned by grid-search.

Humanoid HC-Vel Ant-FB Ant-Goal Walker HC-FB

β clipping 1 1.1 1 1.2 2 0.8
TD3 exploration noise 0.3 0.3 0.3 0.2 0.3 0.2
TD3 policy noise 0.2 0.3 0.3 0.4 0.3 0.2
TD3 policy update frequency 2 2 2 4 4 3
Parameter updates per iteration
(meta-training)

500 1000 200 1000 200 200

Adaptation parameter updates per
episode (eq. 18)

10 5 10 5 10 10

Adaptation parameter updates per
episode (eq. 19)

200 400 100 400 400 300

GRU sequence length 20 20 20 25 10 10
Context dimension 20 20 15 30 30 30
Adam learning rate 0.0003 0.001 0.0003 0.0004 0.0008 0.0003
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