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ABSTRACT

Many neural network pruning algorithms proceed in three steps: train the network
to completion, remove unwanted structure to compress the network, and retrain
the remaining structure to recover lost accuracy. The standard retraining technique,
fine-tuning, trains the unpruned weights from their final trained values using a
small fixed learning rate. In this paper, we compare fine-tuning to alternative
retraining techniques. Weight rewinding (as proposed by Frankle et al. (2019)),
rewinds unpruned weights to their values from earlier in training and retrains
them from there using the original training schedule. Learning rate rewinding
(which we propose) trains the unpruned weights from their final values using
the same learning rate schedule as weight rewinding. Both rewinding techniques
outperform fine-tuning, forming the basis of a network-agnostic pruning algorithm
that matches the accuracy and compression ratios of several more network-specific
state-of-the-art techniques.

1 INTRODUCTION

Pruning is a set of techniques for removing weights, filters, neurons, or other structures from neural
networks (e.g., Le Cun et al., 1990; Reed, 1993; Han et al., 2015; Li et al., 2017; Liu et al., 2019).
Pruning can compress standard networks across a variety of tasks, including computer vision and
natural language processing, while maintaining the accuracy of the original network. Doing so can
reduce the parameter count and resource demands of neural network inference by decreasing storage
requirements, energy consumption, and latency (Han, 2017).

We identify two classes of pruning techniques in the literature. One class, exemplified by regulariza-
tion (Louizos et al., 2018) and gradual pruning (Zhu & Gupta, 2018; Gale et al., 2019), prunes the
network throughout the standard training process, producing a pruned network by the end of training.

The other class, exemplified by retraining (Han et al., 2015), prunes after the standard training process.
Specifically, when parts of the network are removed during the pruning step, accuracy typically
decreases (Han et al., 2015). It is therefore standard to retrain the pruned network to recover accuracy.
Pruning and retraining can be repeated iteratively until a target sparsity or accuracy threshold is
met; doing so often results in higher accuracy than pruning in one shot (Han et al., 2015). A single
iteration of the retraining based pruning algorithm proceeds as follows (Liu et al., 2019):

1. TRAIN the network to completion.
2. PRUNE structures of the network, chosen according to some heuristic.
3. RETRAIN the network for some time (t epochs) to recover the accuracy lost from pruning.

The most common retraining technique, fine-tuning, trains the pruned weights for a further t epochs
at a fixed learning rate (Han et al., 2015), often the final learning rate from training (Liu et al., 2019).

Work on the lottery ticket hypothesis introduces a new retraining technique, weight rewinding (Frankle
et al., 2019), although Frankle et al. do not evaluate it as such. The lottery ticket hypothesis proposes
that early in training, sparse subnetworks emerge that can train in isolation to the same accuracy
as the original network (Frankle & Carbin, 2019). To find such subnetworks, Frankle et al. (2019)
propose training to completion and pruning (steps 1 and 2 above) and then rewinding the unpruned
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weights by setting their values back to what they were earlier in training. If this pruned and rewound
subnetwork trains to the same accuracy as the original network (reusing the original learning rate
schedule), then—for their purposes—this validates that such trainable subnetworks exist early in
training. For our purposes, this rewinding and retraining technique is simply another approach for
retraining after pruning. The selection of where to rewind the weights to is controlled by the retraining
time t; retraining for t epochs entails rewinding to t epochs before the end of training.

We also propose a new variation of weight rewinding, learning rate rewinding. While weight
rewinding rewinds both the weights and the learning rate, learning rate rewinding rewinds only the
learning rate, continuing to train the weights from their values at the end of training (like fine-tuning).
This is similar to the learning rate schedule used by cyclical learning rates (Smith, 2017).

In this paper, we compare fine-tuning, weight rewinding, and learning rate rewinding as retraining
techniques after pruning. We evaluate these techniques according to three criteria:

ACCURACY The accuracy of the resulting pruned network.
EFFICIENCY The resources required to represent or execute the pruned network.
SEARCH COST The cost to find the pruned network (i.e., the amount of retraining required).

The goal of neural network pruning is to increase EFFICIENCY while maintaining ACCURACY. In
this paper we specifically study PARAMETER-EFFICIENCY, the parameter count of the pruned neural
network.1 We also evaluate the SEARCH COST of finding the pruned network, measured as the
number of epochs for which the network is retrained.

We compare the pruning and retraining techniques evaluated in this paper against pruning algorithms
from the literature that are shown to be state-of-the-art by Ortiz et al. (2020). These state-of-the-art
algorithms are complex to use, requiring network-specific hyperparameters (Carreira-Perpiñán &
Idelbayev, 2018; Zhu & Gupta, 2018) or reinforcement learning (He et al., 2018).

Contributions.

• We show that retraining with weight rewinding outperforms retraining with fine-tuning across
networks and datasets. When rewinding to anywhere within a wide range of points through-
out training, weight rewinding is a drop-in replacement for fine-tuning that achieves higher
ACCURACY for equivalent SEARCH COST.
• We propose a simplification of weight rewinding, learning rate rewinding, which rewinds the

learning rate schedule but not the weights. Learning rate rewinding matches or outperforms
weight rewinding in all scenarios.
• We propose a pruning algorithm based on learning rate rewinding with network-agnostic

hyperparameters that matches state-of-the-art tradeoffs between ACCURACY and PARAMETER-
EFFICIENCY across networks and datasets. The algorithm proceeds as follows: 1) train to
completion, 2) globally prune the 20% of weights with the lowest magnitudes, 3) retrain with
learning rate rewinding for the full original training time, and 4) iteratively repeat steps 2 and 3
until the desired sparsity is reached.
• We find that weight rewinding can nearly match the ACCURACY of this proposed pruning

algorithm, meaning that lottery tickets found by pruning and rewinding are state-of-the-art
pruned networks.

We show that learning rate rewinding outperforms the standard practice of fine-tuning without
requiring any network-specific hyperparameters in all settings that we study. This technique forms
the basis of a simple, state-of-the-art pruning algorithm that we propose as a valuable baseline for
future research and as a compelling default choice for pruning in practice.

2 METHODOLOGY

In this paper, we evaluate weight rewinding and learning rate rewinding as retraining techniques.
We therefore do not consider regularization or gradual pruning techniques, except when comparing
against state-of-the-art. Creating a retraining based pruning algorithm involves instantiating each

1We discuss other instantiations of EFFICIENCY, such as FLOPs, in Section 6 and Appendix F.
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of the steps in Section 1 (TRAIN, PRUNE, RETRAIN) from a range of choices. Below, we discuss
the set of design choices considered in our experiments and mention other standard choices. Our
implementation and the data from the experiments in this paper are available at:
https://github.com/lottery-ticket/rewinding-iclr20-public

2.1 HOW DO WE TRAIN?

We assume that TRAIN is provided as the standard training schedule for a network. Here, we discuss
the networks, datasets, and training hyperparameters used in the experiments in this paper.

We study neural network pruning on a variety of standard architectures for image classification and
machine translation. Specifically, we consider ResNet-56 (He et al., 2016) for CIFAR-10 (Krizhevsky,
2009), ResNet-34 and ResNet-50 (He et al., 2016) for ImageNet (Russakovsky et al., 2015), and
GNMT (Wu et al., 2016) for WMT16 EN-DE. Our implementations and hyperparameters are from
standard reference implementations, as described in Table 1, with the exception of the GNMT
model. For GNMT, we extend the training schedule used in the reference implementation to reach
standard BLEU scores on the validation set, rather than the lower BLEU reached by the reference
implementation.2 This extended schedule uses the same standard GNMT warmup and decay schedule
as the original training schedule (Luong et al., 2017), but expanded to span 5 epochs rather than 2.

Dataset Network #Params Optimizer Learning rate (t = training epoch) Test accuracy

CIFAR-10 ResNet-563 852K

Nesterov SGD
β = 0.9

Batch size: 128
Weight decay: 0.0002

Epochs: 182

α =


0.1 t ∈ [0, 91)

0.01 t ∈ [91, 136)

0.001 t ∈ [136, 182]

93.46± 0.21%

ImageNet

ResNet-344 21.8M
Nesterov SGD
β = 0.9

Batch size: 1024
Weight decay: 0.0001

Epochs: 90

α =



0.4 · t
5

t ∈ [0, 5)

0.4 t ∈ [5, 30)

0.04 t ∈ [30, 60)

0.004 t ∈ [60, 80)

0.0004 t ∈ [80, 90]

73.60± 0.27% top-1

ResNet-504 25.5M 76.17± 0.14% top-1

WMT16
EN-DE GNMT5 165M

Adam
β1 = 0.9
β2 = 0.999

Batch size: 2048
Epochs: 5

α =



0.002 · 0.011−8t t ∈ [0, 0.125)

0.002 t ∈ [0.125, 3.75)

0.001 t ∈ [3.75, 4.165)

0.0005 t ∈ [4.165, 4.58)

0.00025 t ∈ [4.58, 5)

newstest2015:
26.87± 0.23 BLEU

Table 1: Networks, datasets, and hyperparameters. We use standard implementations available
online and standard hyperparameters. All accuracies are in line with baselines reported for these
networks (Liu et al., 2019; He et al., 2018; Gale et al., 2019; Wu et al., 2016; Zhu & Gupta, 2018).

2.2 HOW DO WE PRUNE?

What structure do we prune?
UNSTRUCTURED PRUNING. Unstructured pruning prunes individual weights without consideration
for where they occur within each tensor (e.g., Le Cun et al., 1990; Han et al., 2015).

STRUCTURED PRUNING. Structured pruning involves pruning weights in groups, removing neurons,
convolutional filters, or channels (e.g., Li et al., 2017).

Unstructured pruning reduces the number of parameters, but may not improve performance on
commodity hardware until a large fraction of weights have been pruned (Park et al., 2017). Struc-
tured pruning preserves dense computation, meaning that it can lead to immediate performance
improvements (Liu et al., 2017). In this paper, we study both unstructured and structured pruning.

What heuristic do we use to prune?
MAGNITUDE PRUNING. Pruning weights with the lowest magnitudes (Han et al., 2015) is a standard

2The reference implementation is from MLPerf 0.5 (Mattson et al., 2020) and reaches a newstest-2014
BLEU of 21.8. With the extended training schedule, we reach a more standard BLEU of 24.2 (Wu et al., 2016).

3
https://github.com/tensorflow/models/tree/v1.13.0/official/resnet

4
https://github.com/tensorflow/tpu/tree/98497e0b/models/official/resnet

5
https://github.com/mlperf/training_results_v0.5/tree/7238ee7/v0.5.0/google/cloud_v3.8/gnmt-tpuv3-8
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choice that achieves state-of-the-art ACCURACY versus EFFICIENCY tradeoffs (Gale et al., 2019). For
unstructured pruning, we prune the lowest magnitude weights globally throughout the network (Lee
et al., 2019; Frankle & Carbin, 2019). For structured pruning, we prune convolutional filters by their
L1 norms using the per-layer pruning rates hand-chosen by Li et al. (2017).6 Specifically, we study
ResNet-56-B and ResNet-34-A from Li et al. (2017).

We only consider magnitude-based pruning heuristics in this paper, although there are a wide variety
of other pruning heuristics in the literature, including those that learn which weights to prune as part
of the optimization process (e.g., Louizos et al., 2018; Molchanov et al., 2017) and those that prune
based on other information (e.g., Le Cun et al., 1990; Theis et al., 2018; Lee et al., 2019).

2.3 HOW DO WE RETRAIN?

Let Wg ∈ Rd be the weights of the network at epoch g. Let m ∈ {0, 1}d be the pruning mask, such
that the element-wise product W�m denotes the pruned network. Let T be the number of epochs
that the network is trained for. Let S[g] be the learning rate for each epoch g, defined such that
S[g > T ] = S[T ] (i.e., the last learning rate is extended indefinitely). Let TRAINt(W,m, g) be a
function that trains the network W�m for t epochs according to the original learning rate schedule
S, starting from epoch g.

FINE-TUNING. Fine-tuning retrains the unpruned weights from their final values for a specified
number of epochs t using a fixed learning rate. Fine-tuning is the current standard practice in the
literature (Han et al., 2015; Liu et al., 2019). It is typical to fine-tune using the last learning rate of the
original training schedule (Li et al., 2017; Liu et al., 2019), a convention we follow in our experiments.
Other choices are possible, including those found through hyperparameter search (Han et al., 2015;
Han, 2017; Guan et al., 2019). Formally, fine-tuning for t epochs runs TRAINt(WT ,m, T ).

WEIGHT REWINDING. Weight rewinding retrains by rewinding the unpruned weights to their values
from t epochs earlier in training and subsequently retraining the unpruned weights from there. It
also rewinds the learning rate schedule to its state from t epochs earlier in training. Retraining with
weight rewinding therefore depends on the hyperparameter choices made during the initial training
phase of the unpruned network. Weight rewinding was proposed to study the lottery ticket hypothesis
by Frankle et al. (2019). Formally, weight rewinding for t epochs runs TRAINt(WT−t,m, T − t).

LEARNING RATE REWINDING. Learning rate rewinding is a hybrid between fine-tuning and weight
rewinding. Like fine-tuning, it uses the final weight values from the end of training. However, when
retraining for t epochs, learning rate rewinding uses the learning rate schedule from the last t epochs
of training (what weight rewinding would use) rather than the final learning rate from training (what
fine-tuning would use). Formally, learning rate rewinding for t epochs runs TRAINt(WT ,m, T − t).
We propose learning rate rewinding in this paper as a novel retraining technique.

In this paper, we compare all three retraining techniques. For each network, we consider ten retraining
times t evenly distributed between 0 epochs and the number of epochs for which the network was
originally trained. For iterative pruning, this retraining time is ran per pruning iteration.

2.4 DO WE PRUNE ITERATIVELY?

ONE-SHOT PRUNING. The outline above prunes the network to a target sparsity level all at once,
known as one-shot pruning (Li et al., 2017; Liu et al., 2019).

ITERATIVE PRUNING. An alternative is to iterate steps 2 and 3, pruning weights (step 2), retraining
(step 3), pruning more weights, retraining further, etc., until a target sparsity level is reached. Doing
so is known as iterative pruning. In practice, iterative pruning typically makes it possible to prune
more weights while maintaining accuracy (Han et al., 2015; Frankle & Carbin, 2019).

In this paper, we consider both one-shot and iterative pruning. When running iterative pruning, we
prune 20% of weights per iteration (Frankle & Carbin, 2019). When iteratively pruning with weight
rewinding, weights are always rewound to the same values WT−t from the original run of training.

6To study multiple sparsity levels using these hand-chosen rates, we extrapolate these per-layer pruning rates
to higher levels of sparsity, by exponentiating each per-layer pruning rate pi (which denotes the resulting density
of layer i) by k ∈ {1, 2, 3, 4, 5}, creating new per-layer pruning rates pki .
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2.5 METRICS

We evaluate a pruned network according to three criteria.

ACCURACY is the performance of the pruned network on unseen data from the same distribution as
the training set (i.e., the validation or test set). Higher accuracy values indicate better performance,
and a typical goal is to match the accuracy of the unpruned network. All plots show the median,
minimum, and maximum test accuracies reached across three different training runs.

For vision networks, we use 20% of the original test set, selected at random, as the validation set;
the remainder of the original test set is used to report test accuracies. For WMT16 EN-DE, we use
newstest2014 as the validation set (following Wu et al., 2016), and newstest2015 as the test
set (following Zhu & Gupta, 2018).

EFFICIENCY is the resources required to represent or perform inference with the pruned network. This
can take multiple forms. We study PARAMETER-EFFICIENCY, the parameter count of the network.
We specifically measure PARAMETER-EFFICIENCY relative to the full network with the compression
ratio of the pruned network. For instance, if the pruned network has 5% of weights remaining, then
its compression ratio is 20×. Higher compression ratios indicate better PARAMETER-EFFICIENCY.
We discuss other instantiations of EFFICIENCY in Section 6 and Appendix F

SEARCH COST is the computational resources required to find the pruning mask and retrain the
remaining weights. We approximate SEARCH COST using retraining time, the total number of
additional retraining epochs. Fewer retraining epochs indicates a lower SEARCH COST. Note that this
metric does not consider speedup from retraining pruned networks. For instance, a network pruned to
20× compression may be faster to retrain than if only pruned to 2× compression.

3 ACCURACY VERSUS PARAMETER-EFFICIENCY TRADEOFF

In this section, we consider the Pareto frontier of the tradeoff between ACCURACY and PARAMETER-
EFFICIENCY using each retraining technique, without regard for SEARCH COST. In other words,
we study the highest accuracy each retraining technique can achieve at each compression ratio.
We find that weight rewinding can achieve higher accuracy than fine-tuning across compression
ratios on all studied networks and datasets. We further find that learning rate rewinding matches or
outperforms weight rewinding in all scenarios. With iterative unstructured pruning, learning rate
rewinding achieves state-of-the-art ACCURACY versus PARAMETER-EFFICIENCY tradeoffs, and
weight rewinding remains close.

Methodology. For each retraining technique, network, and compression ratio, we select the setting
of retraining time with the highest validation accuracy and plot the corresponding test accuracy.

One-shot pruning results. Figure 1 presents the results for one-shot pruning. At low compression
ratios (when all techniques match the accuracy of the unpruned network), there is little differentiation
between the techniques. However, learning rate rewinding typically results in higher accuracy
than the unpruned network, whereas other techniques only match the original accuracy. At higher
compression ratios (when no techniques match the unpruned network accuracy), there is more
differentiation between the techniques, with fine-tuning losing more accuracy than either rewinding
technique. Weight rewinding outperforms fine-tuning in all scenarios. Learning rate rewinding in
turn outperforms weight rewinding by a small margin.

Iterative pruning results. Figure 2 presents the results for iterative unstructured pruning. As a basis
for comparison, we also plot the drop in accuracy achieved by state-of-the-art techniques (as described
in Appendix C and shown to be state-of-the-art by Ortiz et al. (2020)) as individual black dots. In
iterative pruning, weight rewinding continues to outperform fine-tuning, and learning rate rewinding
continues to outperform weight rewinding. Learning rate rewinding matches the ACCURACY versus
PARAMETER-EFFICIENCY tradeoffs of state-of-the-art techniques across all datasets. In particular,
learning rate rewinding with iterative unstructured pruning produces a ResNet-50 that matches the
accuracy of the original network at 5.96× compression, to the best of our knowledge a new state-
of-the-art ResNet-50 compression ratio with no drop in accuracy. Weight rewinding nearly matches
these state-of-the-art results, with the exception of high compression ratios on GNMT.
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One-shot ACCURACY versus PARAMETER-EFFICIENCY Tradeoff
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Figure 1: The best achievable accuracy across retraining times by one-shot pruning.

Iterative ACCURACY versus PARAMETER-EFFICIENCY Tradeoff
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Figure 2: The best achievable accuracy across retraining times by iteratively pruning.

Takeaway. Retraining with weight rewinding outperforms retraining with fine-tuning across networks
and datasets. Learning rate rewinding in turn matches or outperforms weight rewinding in all scenarios.
Combined with iterative unstructured pruning, learning rate rewinding matches the tradeoffs between
ACCURACY and PARAMETER-EFFICIENCY achieved by more complex techniques. Weight rewinding
nearly matches these state-of-the-art tradeoffs.
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4 ACCURACY VERSUS SEARCH COST TRADEOFF

In this section, we consider the tradeoff between ACCURACY and SEARCH COST for each retraining
technique across a selection of compression ratios. In other words, we consider each method’s
ACCURACY given a fixed SEARCH COST. We show that both rewinding techniques achieve higher
accuracy than fine-tuning for a variety of different retraining times t (corresponding to different
SEARCH COSTS). Therefore, in many contexts either rewinding technique can serve as a drop-in
replacement for fine-tuning and achieve higher accuracy. Moreover, we find that using learning rate
rewinding and retraining for the full training time of the original network leads to the highest accuracy
among all tested retraining techniques, simplifying the hyperparameter search process.

Methodology. Figures 3 (unstructured pruning) and 4 (structured pruning) show the accuracy of
each retraining technique as we vary the amount of retraining time; that is, the tradeoff between
ACCURACY and SEARCH COST. Each plot shows this tradeoff at a specific compression ratio. The
left column shows comparisons for No Accuracy Drop, which we define as the highest compression
ratio at which any retraining technique can match the accuracy of the original network for any amount
of SEARCH COST. The right column shows comparisons for 1%/1 BLEU Accuracy Drop, which we
define as the highest compression ratio at which any retraining technique gets within 1% accuracy
or 1 BLEU of the original network. We include similar plots for all tested compression ratios in
Appendix E. All results presented in this section are for one-shot pruning; Appendix E also includes
iterative pruning results, which exhibit the same trends.

Unstructured pruning results. Both rewinding techniques almost always match or outperform fine-
tuning for equivalent retraining epochs. The sole exception is using weight rewinding and retraining
for the full original training time, thereby rewinding the weights to the beginning of training: Frankle
et al. (2019) show that accuracy drops if weights are rewound too close to initialization, and we find
the same behavior here. We define the rewinding safe zone as the maximal region (as a percentage of
original training time) across all networks in which both forms of rewinding outperform fine-tuning
for an equivalent SEARCH COST. This zone (shaded gray in Figure 3) occurs when retraining for
25% to 90% of the original training time. Within this region, either rewinding technique can serve as
a drop-in replacement for fine-tuning.

With learning rate rewinding, retraining for longer almost always results in higher accuracy. The
same is true for weight rewinding other than when weights are rewound to near the beginning of
training. On most networks and compression ratios, accuracy from rewinding saturates after retraining
for roughly half of the original training time: while accuracy can continue to increase with more
retraining, this gain is limited.

Structured pruning results. Structured pruning exhibits the same trends as unstructured pruning,7
except that retraining with weight rewinding does not result in a drop in accuracy when retraining
for the full training time (thereby rewinding to the beginning of training). This is consistent with
the findings of Liu et al. (2019), who show that fine-tuning after structured pruning provides no
accuracy advantage over reinitializing and training the pruned network from scratch. Liu et al. (2019)
indicate that initialization is less consequential for retraining after structured pruning than for it is for
retraining after unstructured pruning. Since weight rewinding and learning rate rewinding only differ
in initialization before retraining, we expect and observe that they achieve similar accuracies when
used for retraining after structured pruning.

Takeaway. Both weight rewinding and learning rate rewinding outperform fine-tuning across a
wide range of retraining times, thereby serving as drop-in replacements that achieve higher accuracy
anywhere within the rewinding safe zone. To achieve the most accurate network, retrain with learning
rate rewinding for the full original training time (although accuracy saturates after retraining for about
half of the original training time).

7On the CIFAR-10 ResNet-56 Structured-B at 1% Accuracy Drop, we find that learning rate rewinding
reaches lower accuracy than fine-tuning when retraining for 30 epochs. At this retraining time, the techniques are
identical: the learning rate in the last 30 epochs of training, which learning rate rewinding uses, is the same as
the final learning rate, which fine-tuning uses. The observed accuracy difference at that point therefore appears
to be a result of random noise, and is not characteristic of the retraining techniques.
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Unstructured ACCURACY versus SEARCH COST Tradeoff
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ACCURACY versus PARAMETER-EFFICIENCY Tradeoff from Algorithm 1
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Figure 5: ACCURACY versus PARAMETER-EFFICIENCY tradeoff of our pruning algorithm.

5 OUR PRUNING ALGORITHM

Based on the results in Sections 3 and 4, we propose a pruning algorithm that is on the state-of-the-art
ACCURACY versus PARAMETER-EFFICIENCY Pareto frontier. Algorithm 1 presents an instantiation
of the pruning algorithm from Section 2 using network-agnostic hyperparameters:

Algorithm 1 Our pruning algorithm

1. TRAIN to completion.
2. PRUNE the 20% lowest-magnitude weights globally.
3. RETRAIN using learning rate rewinding for the original training time.
4. Repeat steps 2 and 3 iteratively until the desired compression ratio is reached.

Figure 5 presents an evaluation of our pruning algorithm. Specifically, we compare the ACCURACY
versus PARAMETER-EFFICIENCY tradeoff achieved by our pruning algorithm and by state-of-the-art
baselines. This results in the same state-of-the-art behavior seen in Section 3, without requiring any
per-compression-ratio hyperparameter search. We evaluate other retraining methods in Appendix D.

The hyperparameters for our pruning algorithm are shared across all networks and tasks we consider:
there are neither layer-wise pruning rates nor a pruning schedule to select, beyond the network-
agnostic 20% per-iteration pruning rate from prior work (Frankle & Carbin, 2019). Moreover, our
pruning algorithm matches the accuracy of pruning algorithms that require more hyperparameters
and/or additional methods, such as reinforcement learning (He et al., 2018; Carreira-Perpiñán &
Idelbayev, 2018; Zhu & Gupta, 2018).

6 DISCUSSION

Weight rewinding. When retraining with weight rewinding, the weights are rewound to their values
from early in training. This means that after retraining with weight rewinding, the weights themselves
receive no more gradient updates than in the original training phase. Nevertheless, weight rewinding
outperforms fine-tuning and is competitive with learning rate rewinding, losing little accuracy even
though it reverts most of training. These results show that when pruning, it is not necessary to train
the weights for a large number of steps; the pruning mask itself is a valuable output of pruning.

Learning rate rewinding. We propose learning rate rewinding, an alternative retraining technique
that achieves state-of-the-art ACCURACY versus PARAMETER-EFFICIENCY tradeoffs. In this paper
we do not investigate why the learning rate schedule used by learning rate rewinding achieves higher
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accuracy than that of the standard fine-tuning schedule. We hope that further work on the optimization
of sparse neural networks can shed light on why learning rate rewinding achieves higher accuracy than
standard fine-tuning and can help derive other techniques for the training of sparse networks (Smith,
2017; Dettmers & Zettlemoyer, 2019).

The retraining techniques we consider reuse the hyperparameters from the original training process.
This choice inherently narrows the design space of retraining techniques by coupling the learning rate
schedule of retraining to that of the original training process. There may be further opportunities to
improve performance by decoupling the hyperparameters of training and retraining and considering
other retraining learning rate schedules. However, these potential opportunities come with the cost of
added hyperparameter search.

SEARCH COST. Achieving state-of-the-art ACCURACY versus PARAMETER-EFFICIENCY tradeoffs
with our pruning algorithm requires substantial SEARCH COST. Our pruning algorithm requires
T · (1 + k) total training epochs to reach compression ratio 1 / 0.8k, where T is the original network
training time, and k is the number of pruning iterations. In contrast, on CIFAR-10 (T = 182 epochs)
Carreira-Perpiñán & Idelbayev (2018) employ a gradual pruning technique followed by fine-tuning,
training for a total of 317 epochs to reach any compression ratio. On ImageNet (T = 90 epochs),
He et al. (2018) retrain the ResNet-50 for 376 epochs to match the accuracy of the original network
at 5.13× compression. On WMT-16 (T = 5 epochs), Zhu & Gupta (2018) use a gradual pruning
technique that trains and prunes over the course of about 11 epochs to reach any compression ratio.

The SEARCH COSTS of these other methods do not take into account the per-network hyperparameter
search that each method required to find the settings that produced the reported results, nor the cost
of the pruning heuristics themselves (e.g., training a reinforcement learning agent to predict pruning
rates). In addition to optimizing ACCURACY and PARAMETER-EFFICIENCY, we believe that pruning
research should also consider SEARCH COST (including hyperparameter search and training time).

EFFICIENCY. In this paper we study PARAMETER-EFFICIENCY: the number of parameters in the
network. This provides a notion of scale of the network (Rosenfeld et al., 2020) and can serve as an
input for theoretical analyses (Arora et al., 2018). There are other useful forms of EFFICIENCY that
we do not study in this paper. One commonly studied form is INFERENCE-EFFICIENCY, the cost of
performing inference with the pruned network. This is often measured in floating point operations
(FLOPs) or wall clock time (Han, 2017; Han et al., 2016a). In Sections 3 and 4, we demonstrate
that both rewinding techniques outperform fine-tuning after structured pruning (which explicitly
targets INFERENCE-EFFICIENCY). In Appendix F, we show that iterative unstructured pruning and
retraining with either rewinding technique results in networks that require fewer FLOPs to execute
than those found by iterative unstructured pruning and retraining with fine-tuning.

Other forms of EFFICIENCY include STORAGE-EFFICIENCY (Han et al., 2016b), COMMUNICATION-
EFFICIENCY (Alistarh et al., 2017), and ENERGY-EFFICIENCY (Yang et al., 2017).

The Lottery Ticket Hypothesis. Weight rewinding was first proposed by work on the lottery ticket
hypothesis (Frankle & Carbin, 2019; Frankle et al., 2019), which studies the existence of sparse
subnetworks that can train in isolation to full accuracy from near initialization. We present the first
detailed comparison between the performance of these lottery ticket networks and pruned networks
generated by standard fine-tuning. From this perspective, our results show that the sparse, lottery
ticket networks that Frankle et al. (2019) uncover from early in training using weight rewinding can
train to full accuracy at compression ratios that are competitive for pruned networks in general.

7 CONCLUSION

We find that both weight rewinding and learning rate rewinding outperform fine-tuning as techniques
for retraining after pruning. When we perform iterative unstructured pruning and retrain with learning
rate rewinding for the full original training time, we match the ACCURACY versus PARAMETER-
EFFICIENCY tradeoffs of more complex techniques requiring network-specific hyperparameters. We
believe that this algorithm is a valuable baseline for future research and a compelling default choice
for pruning in practice.
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B APPENDIX TABLE OF CONTENTS

Appendix C. We describe the state-of-the-art baselines that we compare against in Section 3.

Appendix D. We evaluate other retraining methods using the algorithm described in Section 5.

Appendix E. We extend the results in the main body of the paper to include more networks, pruning
techniques, baselines, and ablations.

Appendix F. We discuss theoretical speedup via FLOP reduction, rather than just compression.

C STATE-OF-THE-ART BASELINES

In Sections 3 and 5, we compare rewinding against state-of-the-art techniques from the literature. In
this section, we describe the techniques we compare against. We specifically consider the techniques
from the literature on the Pareto frontier of the ACCURACY versus PARAMETER-EFFICIENCY curve,
where ACCURACY is measured as relative loss in accuracy to the original network, and PARAMETER-
EFFICIENCY is measured by compression ratio. As there is no consensus on the definition of
state-of-the-art in the pruning literature, we base our search on techniques listed in Ortiz et al. (2020).

CIFAR-10 ResNet-56: Carreira-Perpiñán & Idelbayev (2018). For the CIFAR-10 ResNet-56, we
compare against “Learning Compression” (Carreira-Perpiñán & Idelbayev, 2018). This technique is
selected as the most accurate technique at high sparsities, from Ortiz et al. (2020).

Carreira-Perpiñán & Idelbayev (2018) use unstructured gradual global magnitude pruning, derived
from an alternating optimization formulation of the gradual pruning process which allows for weights
to be reintroduced after being pruned. The pruning schedule is a hyperparameter, and the paper does
not explain how the chosen value was found. After gradual pruning, Carreira-Perpiñán & Idelbayev
fine-tune the remaining weights.

ImageNet ResNet-50: He et al. (2018). For the ImageNet ResNet-50, we compare against AMC (He
et al., 2018). This technique is not listed in Ortiz et al. (2020), but achieves less reduction in accuracy
at a higher sparsity than other techniques, losing 0.02% top-1 accuracy at 5.13× compression.

He et al. iteratively prune a ResNet-50, using manually selected per-iteration pruning rates (pruning
by 50%, then 35%, then 25%, then 20%, resulting in a network that is 80.5% sparse, a compression
ratio of 5.13×), and retrain with fine-tuning for 30 epochs per iteration. On each pruning iteration,
He et al. use a reinforcement-learning approach to determine layerwise pruning rates.

WMT16 EN-DE GNMT: Zhu & Gupta (2018). For the WMT16 EN-DE GNMT model, we
compare against Zhu & Gupta (2018). This technique is not listed in Ortiz et al. (2020), as Ortiz et al.
do not consider the GNMT model. To confirm that this technique is state-of-the-art on the GNMT
model, we extensively searched among papers citing Zhu & Gupta (2018) and Wu et al. (2016) and
found no results claiming a better ACCURACY versus PARAMETER-EFFICIENCY tradeoff curve.

Zhu & Gupta search across multiple pruning techniques, and ultimately use a pruning technique
that prunes each layer at an equal rate, excluding the attention layers. Zhu & Gupta use a training
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Carreira-Perpiñán & Idelbayev (2018)

1.25× 2.44× 4.77× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

CIFAR-10 ResNet-110 Unstructured (iterative)

1.56× 2.44× 3.81× 5.96× 9.31×
Compression ratio

-3%

-2%

-1%

0%

+1%

∆
A

cc
u

ra
cy

ImageNet ResNet-50 Unstructured (iterative)

He et al. (2018)

1.25× 3.05× 7.45× 18.18×
Compression ratio

−6

−4

−2

0

∆
B

L
E

U

WMT16 GNMT Unstructured (iterative)

Zhu & Gupta (2017)

Retraining with Weight rewinding

Retraining with Fine-tuning

Retraining with Learning rate rewinding

Figure 6: ACCURACY versus PARAMETER-EFFICIENCY tradeoff of our pruning algorithm.

algorithm that gradually prunes the network as it trains, using a specific polynomial to decide pruning
rates over time, rather then fully training then pruning. Zhu & Gupta (2018) use a larger GNMT
model than defined in the MLPerf benchmark, with 211M parameters to only 165M parameters in
ours. Therefore, a model at a given compression ratio from Zhu & Gupta (2018) has more remaining
parameters than a model at a given compression ratio using the GNMT model in this paper.

D OTHER INSTANTIATIONS OF OUR PRUNING ALGORITHMS

In this appendix, we present a comparison of the algorithm presented in Section 5 to instantiations
of that algorithm with other retraining techniques. Specifically, we compare against retraining with
weight rewinding for 90% of the original training time, learning rate rewinding for the original
training time (as presented in the algorithm in the main body of the paper), or fine-tuning for the
original training time.

Algorithm 2 Our pruning algorithm

1. TRAIN to completion.
2. PRUNE the 20% lowest-magnitude weights globally.
3. RETRAIN using either weight rewinding for 90% of the original training time, learning rate

rewinding for the original training time, or fine-tuning for the original training time.
4. Repeat steps 2 and 3 iteratively until the desired compression ratio is reached.

Figure 6 presents an evaluation of our pruning algorithm. We find that retraining with weight
rewinding performs similarly well to retraining with learning rate rewinding, except for at high
sparsities on the GNMT.
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E ADDITIONAL NETWORKS AND BASELINES

In this appendix, we include results for more networks, pruning techniques, baselines, and ablations.
We consider a larger set of networks than the paper, more structured pruning techniques from Li et al.
(2017), a reinitialization baseline from Liu et al. (2019), and a natural ablation of rewinding, where
we rewind the weights but use the learning rate of fine-tuning.

METHODOLOGY

Retraining techniques. We include two baselines of the techniques presented in the main body of
the paper, using the notation from Section 2. For convenience, we duplicate that notation here.

Neural network pruning is an algorithm that begins with a randomly initialized neural network with
weights W0 ∈ Rd and returns two objects: weights W ∈ Rd and a pruning mask m ∈ {0, 1}d such
that W�m is the state of the pruned network (where � is the element-wise product operator). Let
Wg be the weights of the network at epoch g. Let T be the standard number of epochs for which the
network is trained. Let S[g] be the learning rate schedule of the network for each epoch g, defined
such that S[g > T ] = S[T ] (i.e., the last learning rate is extended indefinitely). Let TRAINt(W,m, g)
be a function that trains the weights of W that are not pruned by mask m for t epochs according to
the original learning rate schedule S, starting from step g.

LOW-LR WEIGHT REWINDING. The other natural ablation of weight rewinding (other than learning
rate rewinding) is to rewind just the weights and use the learning rate that would have been used in
fine-tuning. Formally, Low-LR weight rewinding for t epochs runs TRAINt(WT−t,m, T ).

REINITIALIZATION. We also consider reinitializing the discovered pruned network and retraining
it by extending the original training schedule to the same total number of training epochs as fine-
tuning trains for. Liu et al. (2019) found that for many pruning techniques, pruning and fine-tuning
results in the same or worse performance as simply training the pruned network from scratch for an
equivalent number of epochs. To address these concerns, we include comparisons against random
reinitializations of networks with the discovered pruned structure, trained for the original T training
epochs plus the extra t epochs that networks were retrained for. Formally reinitializing and retraining
for t epochs is sampling a new W ′0 ∈ Rd then running TRAINT+t(W ′0,m, 0).

In this baseline, we consider the discovered structure from training and pruning the original network
according to the given pruning technique. For unstructured pruning, this discovered structure is
the specific structure left behind after magnitude pruning; for structured pruning, this discovered
structure is the structure determined by the layerwise rates derived in Li et al. (2017). We note that in
both of these cases, the resulting structure is determined by having trained the network, whether that
occurs explicitly (as with unstructured pruning) or implicitly (as Li et al. determine layerwise pruning
rates by pruning individual layers of a trained network). We therefore expect this to perform at least
as well as randomly pruning the network before any amount of training, since the pruned structure
incorporates knowledge from having already trained the network at least once.

Networks, Datasets, and Hyperparameters. We include two more CIFAR-10 vision networks in
this appendix: ResNet-20 and ResNet-110. We also include several more structured pruning results
from these networks, again given by Li et al. (2017): ResNet-56-{A,B} on CIFAR-10, ResNet-110-
{A,B} on CIFAR-10, and ResNet-34-{A,B} on ImageNet. The networks and hyperparameters are
described in Table 2.

Data. All plots are collected using the same methodology described in the main body of the paper.
We also include the data from the networks presented in the main body of the paper for comparison.
On each structured pruning plot, we plot the accuracy delta observed by Liu et al. (2019).

RESULTS

ACCURACY versus PARAMETER-EFFICIENCY tradeoff results (Figures 7 and 8). Low-LR
weight rewinding results in a large drop in accuracy relative to the best achievable accuracy, and a

8
https://github.com/tensorflow/models/tree/v1.13.0/official/resnet

9
https://github.com/tensorflow/tpu/tree/98497e0b/models/official/resnet

10
https://github.com/mlperf/training_results_v0.5/tree/7238ee7/v0.5.0/google/cloud_v3.8/gnmt-tpuv3-8
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Dataset Network #Params Optimizer Learning rate (t = training epoch) Accuracy

CIFAR-10

ResNet-208 271K Nesterov SGD
β = 0.9

Batch size: 128
Weight decay: 0.0002

Epochs: 182

α =


0.1 t ∈ [0, 91)

0.01 t ∈ [91, 136)

0.001 t ∈ [136, 182]

91.71± 0.23%

ResNet-568 852K 93.46± 0.21%

ResNet-1108 1.72M 93.77± 0.23%

ImageNet

ResNet-349 21.8M
Nesterov SGD
β = 0.9

Batch size: 1024
Weight decay: 0.0001

Epochs: 90

α =



0.4 · t
5

t ∈ [0, 5)

0.4 t ∈ [5, 30)

0.04 t ∈ [30, 60)

0.004 t ∈ [60, 80)

0.0004 t ∈ [80, 90]

73.60± 0.27% top-1

ResNet-509 25.5M 76.17± 0.14% top-1

WMT16
EN-DE GNMT10 165M

Adam
β1 = 0.9
β2 = 0.999

Batch size: 2048
Epochs: 5

α =



0.002 · 0.011−8t t ∈ [0, 0.125)

0.002 t ∈ [0.125, 3.75)

0.001 t ∈ [3.75, 4.165)

0.0005 t ∈ [4.165, 4.58)

0.00025 t ∈ [4.58, 5)

newstest2015:
26.87± 0.23 BLEU

Table 2: Networks, datasets, and hyperparameters. We use standard implementations available
online and standard hyperparameters. All accuracies are in line with baselines reported for these
networks (Liu et al., 2019; He et al., 2018; Gale et al., 2019; Wu et al., 2016; Zhu & Gupta, 2018).

small drop in accuracy compared to standard fine-tuning. With unstructured pruning, reinitialization
performs poorly relative to all other retraining techniques. With structured pruning, reinitialization
performs much better, roughly matching the performance of rewinding the weights and learning rate.
This is expected from the results of Liu et al. (2019), which find that reinitialization comparatively
performs well with structured pruning techniques.

ACCURACY versus SEARCH COST tradeoff results (Figures 9 and 10). Low-LR weight rewind-
ing has markedly different behavior than other techniques when picking where to rewind to. Specifi-
cally, when performing low-LR weight rewinding, longer training does not always result in higher
accuracy. Instead, accuracy peaks at different points on different networks and compression ratios,
often when rewinding to near the middle of training.

Reinitialization typically saturates in accuracy with the original training schedule, and does not gain
a significant boost in accuracy from adding extra retraining epochs. When performing structured
pruning, this means that reinitialization achieves the highest accuracy with few retraining epochs,
although rewinding the learning rate can still achieve higher accuracy than reinitialization with
sufficient training.

16



Published as a conference paper at ICLR 2020

One-shot ACCURACY versus PARAMETER-EFFICIENCY Tradeoff
Unstructured Structured-A Structured-B
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Figure 7: The best achievable accuracy across retraining times by one-shot pruning.
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Iterative ACCURACY versus PARAMETER-EFFICIENCY Tradeoff
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Figure 8: The best achievable accuracy across retraining times by iteratively pruning.
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Unstructured ACCURACY versus SEARCH COST Tradeoff
One-shot Iterative
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Figure 9: Accuracy curves across different networks and compressions using unstructured pruning.
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One-shot Iterative
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Structured ACCURACY versus SEARCH COST Tradeoff
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Figure 10: Accuracy curves across different networks and compressions using structured pruning.
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Iterative pruning FLOP speedup over original network
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Figure 11: Speedup over original network for different retraining techniques and networks

Iterative pruning FLOP speedup over fine-tuning
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Figure 12: Speedup over original network for different retraining techniques and networks

F COMPRESSION RATIO VS FLOPS

In the main body of the paper, we use the compression ratio as the metric denoting the EFFICIENCY
of a given neural network. However, the compression ratio does not tell the full story: networks of
different compression ratios can require different amounts of floating point operations (FLOPs) to
perform inference. For instance, pruning a weight in the first convolutional layer of a ResNet results
in pruning more FLOPs than pruning a weight in the last convolutional layer. Reduction in FLOPs
can (but does not necessarily) result in wall clock speedup (Baghdadi et al., 2019). In this appendix,
we analyze the number of FLOPs required to perform inference on pruned networks acquired through
fine-tuning and rewinding. Our methodology for one-shot pruning uses the same initial trained
network for our comparisons between all techniques, and prunes using the same pruning technique.
This means that both networks have the exact same sparsity pattern, and therefore same number of
FLOPs. For iterative pruning the networks diverge, meaning the FLOPs also differ, since we use
global pruning.

Methodology. In this appendix, we compare the FLOPs between different retraining techniques.
We specifically consider iteratively pruned vision networks, where pruning weights in earlier layers
results in a larger reduction in FLOPs than pruning weights in later layers. We compare using the
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same networks as selected in the iterative subsection of Section 3, i.e. the using the retraining time that
results in the set of networks with the highest validation accuracy for each different compression ratio.
Therefore the FLOPs reported in this section are the FLOPs resulting from the most accurate network
at a given compression ratio, not necessarily the minimum required FLOPs at that compression ratio.
In Figure 11, we plot the theoretical speedup over the original network – i.e., the ratio of original
FLOPs over pruned FLOPs. In Figure 12, we plot the theoretical speedup of each technique over
fine-tuning – i.e., the ratio of fine-tuning FLOPs at that compression ratio to the FLOPs of each other
technique at that compression ratio.

Results. Both rewinding techniques find networks that require fewer FLOPs than those found by
iterative pruning with standard fine-tuning. Due to the increased accuracy from rewinding, this results
in a magnified decrease in INFERENCE-EFFICIENCY for rewinding compared to fine-tuning. For
instance, a ResNet-50 pruned to maintain the same accuracy as the original network results in a 4.8×
theoretical speedup from the original network with rewinding the learning rate, whereas a similarly
accurate network attained through fine-tuning has a speedup of 1.7×.
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