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ABSTRACT

Homotopy methods, also known as continuation methods, are a powerful math-
ematical tool to efficiently solve various problems in numerical analysis. In this
work, we propose a novel homotopy-based numerical method that can be used to
gradually transfer optimized parameters of a neural network across different data
distributions. This method generalizes the widely-used heuristic of pre-training
parameters on one dataset and then fine-tuning them on another dataset of inter-
est. We conduct a theoretical analysis showing that, under some assumptions, the
homotopy method combined with Stochastic Gradient Descent (SGD) is guaran-
teed to converge in expectation to an rθ-optimal solution for a target task when
started from an expected rθ-optimal solution on a source task. Empirical evalua-
tions on a toy regression dataset and for transferring optimized parameters from
MNIST to Fashion-MNIST and CIFAR-10 show substantial improvement of the
numerical performance over random initialization and pre-training.

1 INTRODUCTION

Homotopy methods (Allgower & Georg, 1980), also known as continuation methods, are a powerful
mathematical tool to efficiently solve various problems in numerical analysis (e.g., Tran-Dinh et al.
(2012), Zanelli et al. (2019)). The core idea consists in sequentially solving a series of parametric
problems, starting from an easy-to-solve problem and progressively deforming it, via a homotopy
function, to the target one. Homotopy methods are suitable to solve complex non-convex optimiza-
tion problems where no or only little prior knowledge regarding the localization of the solutions
is available. In addition, in contrast to state-of-the-art algorithms in deep learning (e.g., Bottou
(2010), Duchi et al. (2011), Kingma & Ba (2015)), these methods often achieve global convergence
guarantees by only exploiting local structures of the problem. Concepts, such as curriculum-learning
and warm-starting, that are related to different degrees to homotopy methods, have been explored
both in the deep learning (e.g., Gulcehre et al. (2016), Mobahi (2016), Gulcehre et al. (2017)) and
in the reinforcement learning (e.g., Narvekar (2017)) communities.

In this work, we propose a novel homotopy-based numerical method to transfer knowledge regarding
the localization of a minimizer across different task distributions in deep learning. This method grad-
ually tracks a neural network’s (close-to-)optimal parameters from one data distribution to another
one via the homotopy method (Allgower & Georg, 1980) and can be interpreted as a generalization
of the very common heuristic of fine-tuning a pre-trained network. After discussing related work
(Section 2) and background on homotopy methods (Section 3), our contributions are as follows:

1. We provide a general theoretical analysis of the homotopy method when using SGD as
an iterative solver, proving that under some local assumptions it tracks in expectation an
rθ-optimal solution from the source task to the target task (Section 4).
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2. We introduce homotopy functions for transferring optimality across data distributions for
supervised regression and classification tasks (Section 5).

3. For a toy regression dataset and for transferring optimized parameters from MNIST to
Fashion-MNIST and from MNIST to CIFAR-10, we show that our method obtains up to
two orders of magnitude better numerical performance than random initialization and sub-
stantial improvement of the numerical performance over pre-training (Section 6).

2 RELATED WORK

Deep neural networks have led to establish a new state-of-the-art in many applications. Despite their
great success and the many theoretical studies that have been published in the last years (e.g., Bal-
duzzi et al. (2017), Li et al. (2018), Feizi et al. (2018), Kunin et al. (2019)), training these deep
models remains a big challenge. Various stochastic optimization algorithms (e.g., Duchi et al.
(2011), Kingma & Ba (2015), Reddi et al. (2018)) and initialization heuristics (e.g., Daniely et al.
(2016), Klambauer et al. (2017), Hanin & Rolnick (2018)) have been recently suggested in order
to improve and speed up the training procedure. We now briefly discuss the state-of-the-art deep
learning optimization techniques and initialization strategies that are most related with the proposed
homotopy-based method, drawing connections with existing and ongoing research works in the field.

Curriculum Learning. First introduced by Bengio et al. (2009) and then extended in different
works (e.g., Graves et al. (2017), Weinshall et al. (2018), Hacohen & Weinshall (2019)), curriculum
learning can also be listed among the optimization heuristics proposed to alleviate the complexity of
solving high dimensional and non-convex problems. In particular, taking inspiration from the fact
that humans and animals learn “better” when exposed to progressively more complex situations in
an organized manner, curriculum learning techniques guide the training by starting with “easy-to-
learn” samples and progressively introducing more “complex-to-learn” ones. This guided learning
process can also be rephrased in a homotopy-like fashion (see Algorithm 1) as solving a sequence
of optimization problems where the target training distribution gradually changes from considering
only the “easy” examples to the full original training distribution.

Meta-Learning and Transfer-Learning. Due to the massive amount of computational resources
required by the development of modern deep learning applications, the community has started to
explore the possibility of re-using learned parameters across different tasks, leading to the develop-
ment of many new transfer-learning (e.g., Rohrbach et al. (2013), Wang & Schneider (2014), Cui
et al. (2019)) and meta-learning (e.g., Schmidhuber (1987), Hochreiter et al. (2001), Finn et al.
(2017), Zintgraf et al. (2019)) algorithms. The simplest way to transfer knowledge across different
tasks consists in using warm-start initialization. This heuristic is amply used in computer vision ap-
plications, where it is also known as the fine-tuning technique (e.g., Krizhevsky et al. (2012), Yosin-
ski et al. (2014), Reyes et al. (2015), Käding et al. (2016)). So far, there is no rigorous explanation
of why and when fine-tuning works. However, numerous empirical evaluations on different bench-
marks show that warm-starting the parameters of deep models often leads to faster convergence and
better generalization than using random initialization.

3 BACKGROUND

In this work, we will focus on solving problems of the form

θ∗ ∈ arg min
θ∈Rd

1

N

N∑
j=1

`j(θ)︸ ︷︷ ︸
:=J(θ)

, (1)

where J : Rd → R is our target objective function and θ∗ is a minimizer. Problems as described
in (1) arise, for instance, in classification and regression scenarios.

In the following section we briefly review the main concepts of homotopy and continuation methods,
which the proposed technique to solve problem (1) is based on.
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3.1 HOMOTOPIC FUNCTIONS AND CONTINUATION METHODS FOR OPTIMIZATION

Given two topological spaces Z and Y , a homotopy is a continuous deformation between two con-
tinuous functions g, f : Z → Y that fulfills certain properties. We can formalize this concept with
the following definition

Definition 3.1. Let g, f : Z → Y be continuous maps on the topological spaces Z, Y . A homotopy
from g to f is a continuous function H : Z × [0, 1]→ Y such that

H(z, 0) = g(z) , H(z, 1) = f(z) , ∀z ∈ Z . (2)

If such function H exists, g is said to be homotopic of f , and this relation is denoted by g ' f .

It is straightforward to show that, A ⊆ Rn being a convex set, any two continuous maps g, f :
Z → A are homotopic (see (Suciu, 2016) for a derivation). From this fact it follows that any two
continuous and real functions are homotopic. See Figures 4a– 4b in the appendix for a graphical
representation of two different homotopy maps between the probability density functions of two
Gaussian distributions, where λ ∈ [0, 1] denotes the homotopy parameter. See also Section A in the
appendix for details on some of the main properties of homotopic functions.

Continuation methods (also known as homotopy methods) are a widely used mathematical tool to
solve complex non-convex optimization problems where no or only very limited prior knowledge
regarding the localization of optimal solutions is available (see (Allgower & Georg, 1980) for a
full characterization of continuation methods). The core idea of a homotopy approach consists in
defining a homotopy function H(θ, λ) with λ ∈ [0, 1] such that H(θ, 0) = J0(θ) is a trivial to
optimize smooth map (or a smooth map of which a surrogate θ0 of an optimal solution is available)
and H(θ, 1) = J(θ) is our target objective function. Instead of directly addressing problem (1), we
approximately and sequentially solve γ > 0 parametric optimization problems of the form

θ∗i ∈ arg min
θ∈Rd

1

N

N∑
j=1

`j(θ, λi)︸ ︷︷ ︸
:=H(θ,λi)

, (3)

for increasing values of the parameter λi for i = 1, . . . , γ and warm-starting each problem with the
previously derived approximate solution. Conceptually, Algorithm 1 describes the basic steps of a
general homotopy algorithm. Under appropriate assumptions, if the increment ∆λ is sufficiently
small, then the iterative procedure in Algorithm 1 will converge to a neighborhood of an optimal
solution of the target objective J that depends in some sense on the number of iterations k > 0
performed (Allgower & Georg, 1980). Many different variations of Algorithm 1 exist. In particular,

Algorithm 1 A Conceptual Homotopy Algorithm

1: θ0 ≈ θ∗0 ∈ arg minθH(θ, 0)
2: γ > 0 , γ ∈ Z
3: λ0 = 0, ∆λ = 1/γ
4: k > 0 , k ∈ Z
5: for i = 1, . . . , γ do
6: λi ← λi−1 + ∆λ
7: procedure θi ←ITERATIVESOLVER(θi−1, k,H(θ, λi))
8: return θγ

different update schemes for the homotopy parameter can be adopted (e.g., geometric or sublinear
rate of increase), various iterative solvers can be used under distinct and specific assumptions, and,
finally, also diverse levels of approximation for the solutions θ∗i can be considered, i.e. different k
values.

Before going into the details of two concrete formulations of the conceptual homotopy method
outlined in Algorithm 1 (see Section 5) when applied to transfer optimality knowledge in regression
and classification scenarios, we provide a general theoretical analysis in a simplified setting.
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4 THEORETICAL ANALYSIS

In this section, we provide a local theoretical analysis of homotopy methods when Stochastic Gra-
dient Descent (SGD) (Bottou, 2010) is used as iterative solver in Algorithm 1. The locality of the
analysis consists in the definition of hyperspheres of radius B ≥ 0 around the optimal solutions of
each homotopy problem H(θ, λi) where it is possible to exploit certain structures of the problem.
In particular, we approximately and sequentially solve γ > 0 unconstrained optimization problems
of the form

θ∗i ∈ arg min
θ∈Rd

H(θ, λi) , ∀i = 1, . . . , γ , (4)

where H(θ, λi) fulfills the assumptions described in Section 4.1 and λi ∈ [0, 1]. Let θi be an ap-
proximate solution of the problem associated with parameter λi derived by applying k > 0 iterations
of SGD (in the limit, k = 1) and also the starting point for the problem associated with parameter
λi+1, ∀i = 1, . . . , γ − 1. In addition, let θ0 denote an approximate solution for the source task, i.e.
λ0 = 0, that is used as initial point for the problem associated with λ1. In this section we charac-
terize the maximum allowed variation of the homotopy parameter in order for the method to able to
track in expectation an rθ-optimal solution from source to target task.

4.1 ASSUMPTIONS

We now expose the fundamental assumptions for our general local theoretical analysis on which
all the derivations in Sections 4.2 and 4.3 rely. In addition, throughout the analysis the `-functions
in (3) are implicitly assumed to be differentiable in θ. We start by giving the definition of the regions
around the optimal solutions of the homotopy problems where the analysis is conducted.
Definition 4.1. Given θ∗i and B ≥ 0, let BB,θ∗i be the following set of vectors

BB,θ∗i := {θ s.t. ‖θ − θ∗i ‖ ≤ B} , ∀i = 0, . . . , γ .

Assumption 4.2 (local L-smoothness). Assume that there exists a constant L > 0 such that

‖∇θH(θ̃, λi)−∇θH(θ̂, λi)‖ ≤ L‖θ̃ − θ̂‖ , ∀θ̃, θ̂ ∈ BB,θ∗i , ∀i = 0, . . . , γ . (5)

Corollary 4.2.1. If H is locally L-smooth in θ, then the following inequality holds

H(θ∗i , λi)−H(θ̂, λi) ≤ −
1

2L
‖∇θH(θ̂, λi)‖2 , ∀θ̂ ∈ BB,θ∗i , ∀i = 0, . . . , γ. (6)

Proof. See Lemma 1.1 in (Gower, 2018) for a proof.

Assumption 4.3 (local µ-strong convexity). Assume that there exists µ > 0 such that

H(θ̃, λi) ≥ H(θ̂, λi) +∇θH(θ̂, λi)
T (θ̃− θ̂) +

µ

2
‖θ̃− θ̂‖2 , ∀θ̃, θ̂ ∈ BB,θ∗i , ∀i = 0, . . . , γ . (7)

Assumption 4.4 (bounded `-derivative). Assume that there exists ν > 0 such that

‖∇θ`j(θ̂, λi)‖ ≤ ν , ∀θ̂ ∈ BB,θ∗i , ∀i = 0, . . . , γ, ∀j = 1, . . . , N. (8)

Assumption 4.5 (local bounded “variance”). Let g(θ̂, λi) denote an unbiased estimate of the gra-
dient ∇θH(θ̂, λi). Assume that there exists a constant C ≥ 0 such that the following bound on the
expected squared norm of the estimate of the gradient holds

E
[
‖g(θ̂, λi)‖2

]
≤ C2 , ∀θ̂ ∈ BB,θ∗i , ∀i = 0, . . . , γ. (9)

Remark 4.6. Assumption 4.5 is standard for proving error bounds on SGD iterates (see (Schmidt,
2014)). In addition, notice that, since

E
[
‖g(θ̂, λi)‖2

]
= Var

(
‖g(θ̂, λi)‖

)
+ E

[
‖g(θ̂, λi)‖

]2
,

the C constant is proportional to the variance and the squared expected value of the norm of the
gradient estimate. Therefore, it decreases when the iterates approach a minimizer and by reducing
the noise in the estimate of the gradient. In the limit (i.e. exact gradient and convergence to a
minimizer), C = 0.
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Recall that θ∗(λi) ≡ θ∗i .
Assumption 4.7 (strong regularity). Assume that there exists δ > 0 such that the following inequal-
ity holds

‖θ∗(λi+1)− θ∗(λi)‖ ≤ δ|λi+1 − λi| , ∀i = 0, . . . , γ − 1.

Remark 4.8. Assumption 4.7 follows directly from the application of the Implicit Function Theorem
by introducing some milder assumptions on the problem structure (see Lemma 2.1.8 in (Allgower &
Georg, 1980)).

4.2 FUNDAMENTAL THEORETICAL PRELIMINARIES

Before proceeding with the main theoretical contributions, we extend the existing results in the
literature on global error bounds for the iterates of Stochastic Gradient Descent such that they can
be applied when the underlying assumptions are only required to hold locally. The derived local
error bounds for SGD iterates are used in Proposition 4.11 and Theorem 4.12.
Proposition 4.9. Let θi ∈ BB,θ∗i be the starting point for the problem described in (3), and let
θi := θi,0 and θi+1 := θi,k denote the iterate after k > 0 SGD steps, where an SGD step is defined
as

θi,k = θi,k−1 − αg(θi,k−1, λi) .

Under Assumptions 4.2– 4.5 and by setting the batch size 0 < M ≤ N to a value such that
(N−M)
N ≤ (1−κd)

2αν B with κd =
√

(1− αµ) and the learning rate α to a constant value such that

0 < α ≤ min
(

1
2µ ,

1
L

)
, the following error bound on the iterates holds

E
[
‖θi+1 − θ∗i+1‖2

]
≤ (1− 2αµ)k · E

[
‖θi − θ∗i+1‖2

]
+
αC2

2µ
. (10)

Proof. See Section D in the appendix.

Remark 4.10. The expectation in (10) is taken w.r.t. all the random variables, i.e. estimates of the
gradients and initial point θ0, involved in the optimization procedure up to the current i+1 iteration
of the algorithm.

4.3 MAIN THEORETICAL CONTRIBUTIONS

Under the considered assumptions and by exploiting the previously derived results on local error
bounds for SGD iterates, we show that, if the approximate solution θi for the problem with parameter
λi is “sufficiently close” to a minimizer θ∗i in expectation, i.e. E

[
‖θi − θ∗i ‖2

]
≤ r2θ , then, for a

“sufficiently small” change in the homotopy parameter, the same vicinity to a minimizer θ∗i+1 is
preserved in expectation for the approximate solution θi+1 of the problem with parameter λi+1, i.e.
E
[
‖θi+1 − θ∗i+1‖2

]
≤ r2θ . In particular, with Theorem 4.12 we characterize the maximum allowed

variation of the homotopy parameter based on the properties of the parametric problems and the
convergence characteristics of the adopted iterative solver, i.e. rate of convergence and number of
iterations.

First, in order to apply the results derived in Theorem 4.12, given a realization of θi ∈ BB,θ∗i , we
have to derive the conditions on ‖θi − θ∗i ‖ such that ‖θi − θ∗i+1‖ ≤ B. In addition, we derive the
necessary conditions in order to apply these results recursively across the iterations of Algorithm 1.
Proposition 4.11. Let θi ∈ BB,θ∗i and |λi − λi+1| ≤ ε, with 0 ≤ ε ≤ B

δ . If ‖θi − θ∗i ‖ ≤ B − δε,
then ‖θi − θ∗i+1‖ ≤ B. Moreover, let κd =

√
(1− αµ) and assume that

(N −M)

N
≤ (1− κkd)(1− κd)B

2αν
,

and

ε ≤ 1

δ

(
(1− κkd)B − (N −M)

N

2αν

(1− κd)

)
.

Then, after applying k iterations of SGD, we obtain that

‖θi+1 − θ∗i+1‖ ≤ B − δε .
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Proof. See Section E.1 in the appendix.

See Figure 9 in the appendix for a graphical representation of the results derived in Proposition 4.11,
where the continuous and dashed lines are used to represent the circles of radius B and B − δε,
respectively.
Theorem 4.12. Consider Algorithm 1 with Stochastic Gradient Descent as solver and let k > 0 be
the number of iterations, 0 < α ≤ min

(
1
2µ ,

1
L

)
be the step size and 0 < M ≤ N be the batch size

such that
(N −M)

N
≤ (1− κkd)(1− κd)B

2αν
,

where κd =
√

(1− αµ). For θ0 ∈ BB−δε,θ∗0 and rθ ∈ R such that

r2θ ≥
αC2

2µ
, (11)

then, if E
[
‖θi − θ∗i ‖2

]
≤ r2θ and |λi − λi+1| ≤ ε̃, where ε̃ := min {ε̄, ε} with

ε̄ = −rθ
δ

+
1

δ

√
r2θ − αC2/2µ

(1− 2αµ)k
, (12)

the following inequality holds
E
[
‖θi+1 − θ∗i+1‖2

]
≤ r2θ . (13)

Proof. See Section E.2 in the appendix.

The results derived in Theorem 4.12 show that the homotopy method used in combination with
SGD allows to track in expectation an rθ-optimal solution across the parametric problems for “small
enough” variations of the homotopy parameter, i.e. ∆λ ≤ ε̃. Notice that rθ can potentially be smaller
than B − δε and has to be bigger than the radius of the “noise-dominant” hypersphere centered at
the minimizers, i.e. r2θ ≥ αC2

2µ . In particular, by exploiting the local structure of the parametric
problems we derive the maximum allowed variation of the homotopy parameter across the iterations
of Algorithm 1. The derived upper bound is inversely proportional to the strong regularity constant
δ and depends on the number of iterations k performed with SGD, such that the more iterations we
perform on each parametric problem the more we are allowed to change the homotopy parameter.
Finally, notice that these results can be applied recursively across the parametric problems.

5 TRANSFERRING OPTIMALITY VIA HOMOTOPY METHODS

In this section we describe a possible application of homotopy methods to solve supervised regres-
sion and classification tasks. We address the case where deep neural networks are used as models.
We start by introducing the problem framework of supervised learning and then we propose two
different homotopy functions for the regression and classification scenarios, respectively.

5.1 PROBLEM FORMULATION

Despite the generality of the proposed methodology, in this work we specifically address the su-
pervised learning framework, and, in particular, when the predictive model is constituted by a deep
neural network f(x; θ) parameterized by θ ∈ Rd.

In the supervised learning scenario, independently from the type of task t, we typically dispose of
a training set Dt consisting of N pairs of examples (xj , yj). The goal of the learning process is to
find a value of θ that minimizes an objective function which measures the discrepancy between the
outputs produced by the network ŷ = f(x; θ) and the target outputs y. In particular, the learning
process consists in minimizing the following empirical objective function

J(θ) :=
1

N

∑
(xj ,yj)∈Dt

`(yj , f(xj ; θ)) , (14)
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whose non-convexity originates from the high non-convexity of our model f .

In the classical setting, J is chosen based on the KL divergence between the target data distribution
Qx,y , with density qx,y = q(y|x)q(x), and the learned data distribution Px,y(θ), with density px,y =
p(y|x; θ)q(x), where p(y|x; θ) is modeled via a neural network, (Goodfellow et al., 2016). With the
appropriate approximations, this leads to the following form for the objective function

J(θ) =
1

N

∑
(xj ,yj)∈Dt

q(y|x) log
q(y|x)

p(y|x; θ)
. (15)

5.2 HOMOTOPY FUNCTIONS ACROSS DATA DISTRIBUTIONS

Finding a value of θ that attains a local minimum of the objective function in (14) is often a hard
optimization task, given the high dimensionality and non-convexity of the problem. In addition,
prior knowledge regarding the localization of the solutions is rarely available. The complexity of
minimizing such functions also depends in some non-trivial way on the task distribution Qx,y that
is addressed (e.g., Ionescu et al. (2016), Zendel et al. (2017)). For some tasks, convergence to a
good approximate solution is achieved after a few epochs, while for other tasks, orders of magnitude
more iterations are required to reach the neighborhood of a solution. In this perspective, different
heuristics have been recently proposed in the attempt of re-using across different data distributions
the prior knowledge gained from approximately solving the learning problem associated with a
certain task. The question whether we could exploit easy-to-solve or already-solved tasks to speed
up and improve the learning of unsolved hard tasks arises. The method we propose in this paper
addresses this question and attempts to do so by using a rigorous and well-established mathematical
framework, with the goal of speeding up the learning process in presence of hard-to-solve tasks.

In the perspective of homotopy methods, this goal can be achieved under some assumptions by
defining a homotopy transformation between starting and target tasks and by following the procedure
described in Algorithm 1. Despite the flexibility and generality of the method, with this work we
only focus on homotopy deformations across different task distributions, but similar transformations
can be applied in numerous different manners that are also worth exploring, e.g., progressively
modifying the architecture of the network or the weights of the objective function terms.

Let s be the source task with training data Ds of pairs (xs, ys) ∼ Qxs,ys whose good approximate
solution θ∗s for the minimization of the objective in (14) is available (or cheaply computable), and
let t denote the target task with training data Dt of pairs (xt, yt) ∼ Qxt,yt whose conditional distri-
bution we aim to learn. We propose two different homotopy deformations from task s to task t for
regression and classification, respectively.

5.2.1 SUPERVISED REGRESSION

In the supervised regression scenario, by modeling the density of the conditional learned distribu-
tion as p(y|x; θ) = N

(
y; f(x, θ), σ2 I

)
and using the approximate KL divergence objective func-

tion described in (15), we recover the mean squared error as minimization criterion. The proposed
homotopy deformation is based on the following equations

yλ|x = (1− λ) ys|x+ λ yt|x , (16)

p(yλ|x) = N (yλ ; f(x; θ), σ2 I) . (17)

Notice that the transformation described in (16) preserves the unimodality of the conditional distri-
bution (see caption of Figures 4a and 4b in the appendix), and, when used in combination with the
objective function defined in Equation (15), leads to the minimization w.r.t. θ of

H(θ, λ) := E(x,yλ) ‖(1− λ) (ys − f(x; θ)) + λ (yt − f(x; θ)) ‖2 . (18)

See Figure 6a in the appendix for a graphical representation of this homotopy deformation when
applied to gradually transform a one-dimensional sine wave function with a frequency of 1 radian
into a one-dimensional sine wave function with a frequency of 137 radians. A downside of this
homotopy deformation is that the same support for x is required (the absence of the subscripts s and
t on x stands to indicate that the same realization for xs and xt has to be considered). Alternatively,
it is possible to approximate (16) by using a Gaussian filter (see Figure 6b and Section B in the
appendix).

7



Published as a conference paper at ICLR 2020

5.2.2 SUPERVISED CLASSIFICATION

In the case of supervised classification, by modeling the density of the conditional learned distribu-
tion as p(y|x; θ) = Multinoulli(y; f(x; θ)), and using the approximate KL divergence objective
function described in (15), we recover the cross-entropy loss function, (Goodfellow et al., 2016). A
possible homotopy deformation for the classification case consists in applying the following trans-
formations

xλ = (1− λ)xs + λxt , (19)
yλ|xλ = (1− λ) ys|xs + λ yt|xt , (20)

which corresponds to the use of probabilistic labels. See Figure 8 in the appendix for a graphical
representation of the proposed homotopy deformation. The corresponding label vector for the de-
formed image represented in Figure 8b is y0.5 = [0, 0, 0.5, 0, 0, 0.5, 0, 0, 0, 0], given that λ = 0.5
and that the sampled realizations of xs and xt, represented in Figures 8a and 8c, belong to class 2
and 5, respectively.

6 EXPERIMENTAL EVALUATION

In this section, we present some experimental evaluations of homotopy methods when applied to
solve supervised regression and classification tasks. As homotopy functions we adopt the ones
discussed in Section 5.2. We empirically show that homotopy methods outperform random and
warm-start initialization schemes in terms of numerical performance. In particular, when the target
task is complex and/or, in the transfer-learning scenario, when the data distributions are signifi-
cantly different, continuation methods can achieve significant speed-up compared to random and
warm-start initializations. We believe that their superior numerical performance relies on the use of
homotopy functions that progressively deform the data distribution from an easy-to-solve or already-
solved task to the target data distribution. In addition, consistently across all the benchmarks, our
homotopy-based method shows faster convergence than random-initialization and faster or compa-
rable convergence than warm-start initialization. When the source task is “similar” to the target one,
there is indeed no need to gradually vary the λ parameter in Algorithm 1, but it suffices to directly
set it to 1. In this extreme case, our homotopy method boils down to warm-start initialization.

6.1 REGRESSION

For the supervised regression scenario, the problem we address is how to transfer “optimality knowl-
edge” across two tasks that involve regressing from the input to the output of two sine wave functions
with different values of phase ω. Each considered dataset has 10000 samples split across training
and testing, where x and y are defined as follows

x ∼ U(0, 1) , y = sin(ωx) + ε , ε ∼ N (0, 0.01) . (21)

The goal is to start with an “easy-to-learn” task, i.e. ω ≈ 1 rad, whose optimum is available
by performing only few epochs with a first-order optimizer, e.g. SGD, Adam, and progressively
transfer the “optimality knowledge” to a more complex task, i.e. ω >> 1 rad, by approximately
solving the homotopy problems for increasing values of λ as described in Algorithm 1. We set
ω = 1 rad for our source task distribution, and study the performance of the proposed approach with
homotopy function as described in Equation (16) for different target distributions with ω >> 1 rad.
See Figures 5a and 5b in the appendix for a visualization of the source data distribution with ω = 1
rad and the target data distribution when ω = 137 rad, respectively. The regressor is a feedforward
neural network with 6 hidden layers of 100 units each and relu as activation function. In order to
make the experiments more robust with respect to the choice of the step size α, we use Adam as
optimizer. For the experiments in Figures 1a–1b, Figures 7a–7b in the appendix, and Figure 2a,
we set α = 0.001, γ = 10, k = 200 and then performed an additional 500 epochs on the final
target problem, while for the experiments in Figure 2b, we set γ = 10, k = 300 and performed an
additional 600 epochs on the final target problem. In this last scenario we set α = 0.001 and then
decrease it with a cosine annealing schedule to observe convergence to an optimum. As shown in
Figures 1a–1b, Figures 7a–7b in the appendix, and Figures 2a and 2b, the homotopy method leads
to faster convergence than the considered baselines by preserving the vicinity to an optimal solution
for problems H(θ, λ) across the different λ values. In particular, we achieve a training loss up to
two orders of magnitude better than the considered baselines.
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(a) ωs = 1 rad, ωt = 74 rad. (b) ωs = 1 rad, ωt = 137 rad.

Figure 1: Median train loss across 100 runs versus epochs for sine wave regression tasks with
different frequency values. The shaded areas represent the 25th and 75th percentiles. See Section F.1
in the appendix for an evaluation of the test performance.

(a) Median train loss versus omega values. (b) ωs = 1 rad, ωt = 137 rad.

Figure 2: Comparison of homotopy method, warm start and random initialization on sine wave
regression tasks. The shaded areas represent the 25th and 75th percentiles. On the left, the median
train loss achieved by the considered methods after 2500 epochs across 100 runs versus different
omega values for the target task is plotted. For the homotopy method and warm-start initialization,
ωs = 1 rad is used. On the right, the median train loss across 100 runs versus epochs for target task
with ω = 137 rad is plotted. With respect to Figure 1b, in Figure 2b a cosine decay schedule is used
for the learning rate, and more epochs are performed to better observe the convergence properties of
the different methods.

6.2 CLASSIFICATION

For the supervised classification scenario, we first apply the continuation method with the homotopy
deformation described in Equations (19) and (20) in order to transfer optimality from the MNIST
task, a notoriously “easy-to-learn” task for neural networks, to the FashionMNIST task. Since the
two datasets have the same input dimensionality and the same number of classes, no additional pre-
processing of the data is required. As network architecture, we use a VGG-type network, (Simonyan
& Zisserman, 2015), and Adam as optimizer with a step size of α = 0.001.

Secondly, we consider CIFAR-10 as target data distribution. Differently from the previous scenario,
padding of the MNIST samples is required in order to apply Equation (19). The MNIST samples are
also replicated across three channels. Also in this case we adopt a VGG-type network, (Simonyan
& Zisserman, 2015), and Adam as optimizer with a step size of α = 0.0001.

As shown in Figures 3a and 3b, in both benchmarks the homotopy method leads to faster con-
vergence than random initialization. While in the second benchmark our method reaches a lower
value of training loss in fewer epochs than warm-start, in the MNIST-to-FashionMNIST case the
performance is comparable to using warm-start initialization. A possible interpretation is that,
when the source and target task distributions are “too similar”, as we hypothesize in the MNIST-
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(a) FashionMNIST. (b) CIFAR-10.

Figure 3: Median train loss across 10 runs versus epochs for different target task distributions. In
both cases, the source task is the classification of the MNIST dataset. See Section F.2 in the appendix
for an evaluation of the test performance.

to-FashionMNIST scenario, then there is no need for homotopy deformations to be applied, i.e.
0 < λ < 1, but we can directly apply λ = 1 in our scheme, which corresponds to simply using
warm-start initialization.

7 CONCLUSIONS

In this paper we propose a new methodology based on homotopy methods in order to transfer knowl-
edge across different task distributions. In particular, our homotopy-based method allows one to
exploit easy-to-solve or already-solved learning problems to solve new and complex tasks, by ap-
proximately and sequentially solving a sequence of optimization problems where the task distribu-
tion is gradually deformed from the source to the target one. We conduct a theoretical analysis of
a general homotopy method in a simplified setting, and then we test our method on some popular
deep learning benchmarks, where it shows superior numerical performance compared to random
and warm-start initialization schemes. The proposed framework, in its limiting case, corresponds
to the widely used fine-tuning heuristic, allowing for a new and more rigorous interpretation of the
latter. Finally, the generality of homotopy methods also opens many novel and promising research
directions in fundamental fields for deep learning, such as stochastic non-convex optimization and
transfer-learning.
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A PROPERTIES OF HOMOTOPIC FUNCTIONS

Among the numerous properties of homotopic functions, we recall the following ones
Proposition A.1. Suppose that there exists a homotopy H : Z × [0, 1]→ Y from g to f , i.e. g ' f .
Then

• g ' g (reflexive property)

• g ' f =⇒ f ' g (symmetric property)

• g ' f and f ' h =⇒ g ' h (transitive property)

Proof. See proof of Theorem 1.5 in (Suciu, 2016).

Proposition A.2. Let g, g′ : Z → Y and f, f ′ : Y →W be continuous maps, and let f ◦ g, f ′ ◦ g′ :
Z →W be the respective composite maps. If g ' g′ and f ' f ′, then f ◦ g ' f ′ ◦ g′.

Proof. See proof of Proposition 1.7 in (Suciu, 2016).

B APPROXIMATION VIA GAUSSIAN FILTER

For the supervised regression scenario, we propose the following homotopy deformation

yλ|x = λ ys|x+ (1− λ) yt|x . (22)

A downside of this homotopy function is that the same support for x is required (the absence of the
subscripts s and t on x stands to indicate that the same realization for xs and xt has to be considered).
Alternatively, it is possible to approximate Equation (22) by using a Gaussian filter, as depicted in
Figure 6b.

In particular, having sampled one realization z of the pair (xs, ys) from the training set Ds, 0 <
MGF ≤ N realizations of the pair (xt, yt) are sampled from Dt. Each yt,j realization is then
weighted based on the vicinity of xt,j to the sampled xs,z realization. This leads to the following
approximation of the z realization of yλ

yλ,z = (1− λ) ys,z +
λ

MGF

MGF∑
j=1

wj yt,j , (23)

wj =
1√
2πξ2

exp

(
−||xs,z − xt,j ||

2

2ξ2

)
, (24)

where ξ > 0 is the standard deviation of the Gaussian filter.
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C ADDITIONAL FIGURES

(a) Homotopy 1. (b) Homotopy 2.

Figure 4: Two different homotopy deformations between the probability density functions of two
one-dimensional Gaussian distributions with mean and standard deviation given by µ1 = 1, σ1 = 1
and µ2 = 5, σ2 = 0.1, respectively. The homotopy represented in Figure 4a results in a mixture of
Gaussian distributions, with mixture coefficient given by the homotopy parameter λ. In Figure 4b
the deformation concerns instead the parameters µ and σ of the original distributions. Preserving
unimodality is a desirable property when the homotopy function is used in combination with a
continuation method since, as shown in Figure 4b, the location of the optimum moves together with
the function deformation, allowing the optimizer to track it and gradually reach the optimum of the
final target task. On the contrary, deforming the function as shown in Figure 4a does not lead to
a gradual shift of the optimal solutions. Consequently, approximately and sequentially solving the
problems corresponding to intermediate values of the homotopy parameter λ, i.e. 0 < λ < 1, will
not allow the homotopy method to gradually approach the desired final optimal solution.

(a) ω = 1 rad. (b) ω = 137 rad.

Figure 5: Graphical representations of the source (left) and target with ω = 137 rad (right) data
distributions used for the sine-wave regression evaluation.
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(a) Homotopy transformation described in
Equation (16).

(b) Approximation of the homotopy transfor-
mation in Equation (16) (also Equation (22))
with a Gaussian filter as described in Equa-
tions (23) and (24).

Figure 6: Graphical representation of the proposed homotopy transformation for the supervised
regression scenario when applied to progressively deform a sine wave function with frequency of
1 radian into a sine wave function with frequency of 137 radians for different values of homotopy
parameter.

(a) ωs = 1 rad, ωt = 95 rad. (b) ωs = 1 rad, ωt = 116 rad.

Figure 7: Median train loss across 100 runs versus epochs for sine wave regression tasks with
different omega values.

(a) Sampled image of an
handwritten digit 2 (class 2)
from the MNIST dataset.

(b) Homotopy deformation
of the images represented
in Figures 8a and 8c corre-
sponding to λ = 0.5.

(c) Sampled image of a
sandal (class 5) from the
FahionMNIST dataset.

Figure 8: Graphical representation of the homotopy transformation from xs to xt as described in
Equation (19) for two sampled images from the MNIST and FashionMNIST datasets.
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D LOCAL ERROR BOUNDS FOR SGD ITERATES

Before proving local error bounds for SGD iterates in the considered framework, given the local
nature of our assumptions, we need to demonstrate two important facts, on which the proof relies.
In particular, we need to show:

• local linear contraction of Gradient Descent (GD) iterates, and that
• starting in a hypersphere of radius B around a minimizer and given a “big enough” batch

size, the next SGD iterate is also contained in this region for all possible realizations of the
gradient estimate.

Considering problem (4) with fixed parameter λi, in the following subsections we will refer to
θ∗ = θ∗i , θk = θi,k and gk = g(θk, λi), where we drop the subscript i and the explicit dependence
on λi in order to simplify the notation. The analysis holds for all fixed parameters λi.

D.1 LOCAL LINEAR CONTRACTION OF GD ITERATES

Let us use GD to solve the following optimization problem

θ∗ ∈ arg min
θ
H(θ, λi) ,

where the objective function H fulfills Assumptions 4.2 and 4.3.

We now derive error bounds on the iterates of GD

θk+1 = θk − α∇θH(θk, λi) ,

where θk ∈ BB,θ∗ and 0 < α ≤ 1
L is the step size.

We start by applying the definition of GD iterates and then we exploit the introduced assumptions

‖θk+1 − θ∗‖2 = ‖θk − α∇θH(θk, λi)− θ∗‖2

= ‖θk − θ∗‖2 − 2α∇θH(θk, λi)
T (θk − θ∗) + α2‖∇θH(θk, λi)‖2

strong convexity
≤ (1− αµ)‖θk − θ∗‖2 − 2α(H(θk, λi)−H(θ∗, λi)) + α2‖∇θH(θk, λi)‖2

corollary 4.2.1

≤ (1− αµ)‖θk − θ∗‖2 − 2α(1− αL)(H(θk, λi)−H(θ∗, λi)) .

Since H(θk, λi)−H(θ∗, λi) ≥ 0 and −2α(1− αL) ≤ 0 when 0 < α ≤ 1
L , we can safely drop the

second term and obtain the final result

‖θk+1 − θ∗‖2 ≤ (1− αµ)‖θk − θ∗‖2.

See also Theorem 2.3 in (Gower, 2018) for a derivation where Assumptions 4.2 and 4.3 are required
to hold globally.

D.2 REALIZATION OF THE SGD ITERATES IN THE STRONG CONVEXITY AND
L-SMOOTHNESS REGION AROUND A MINIMIZER

We address the following optimization problem

θ∗ ∈ arg min
θ

1

N

N∑
j=1

`j(θ, λi)︸ ︷︷ ︸
:=H(θ,λi)

,

where H fulfills Assumptions 4.2– 4.4.

As proved in Section D.1, under Assumptions 4.2 and 4.3, whenever θ0 ∈ BB,θ∗ and 0 < α ≤ 1
L ,

deterministic gradient descent iterates converge linearly with contraction rate κd :=
√

(1− αµ).

In particular, the following inequality holds

‖θDk+1 − θ∗‖ ≤ κd · ‖θk − θ∗‖ ,
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for any θk such that ‖θk− θ∗‖ ≤ B, and superscript D denotes iterates obtained by applying the full
gradient∇Hk := ∇H(θk, λi)

θDk+1 = θk − α∇Hk .

Let θk+1 denote the iterate obtained by applying one iteration of stochastic gradient descent

θk+1 = θk − αgk ,

where gk := 1
M

∑
j∈M∇`j(θk, λi) and M is a set of 0 < M ≤ N indexes randomly sampled

from N = {1, . . . , N}.
Given any realization of θk s.t. ‖θk − θ∗‖ ≤ B and any realization of gk, by exploiting Assump-
tion 4.4 and the results derived in Section D.1, we have that

‖θk+1 − θ∗‖ = ‖θk − αgk − θ∗‖
= ‖θk − α∇Hk + α∇Hk − αgk − θ∗‖
≤ ‖θk − α∇Hk − θ∗‖+ α‖∇Hk − gk‖

= ‖θk − α∇Hk − θ∗‖+ α
∥∥∥ 1

N

∑
j∈N\M

∇`j +
1

N

∑
j∈M

∇`j −
1

M

∑
j∈M

∇`j
∥∥∥

= ‖θk − α∇Hk − θ∗‖+ α
∥∥∥ 1

N

∑
j∈N\M

∇`j +
M −N
NM

∑
j∈M

∇`j
∥∥∥

≤ ‖θk − α∇Hk − θ∗‖+ α

 1

N

∑
j∈N\M

‖∇`j‖+
N −M
NM

∑
j∈M

‖∇`j‖


≤ ‖θDk+1 − θ∗‖+ 2α

(N −M)

N
ν

≤ κd‖θk − θ∗‖+ 2α
(N −M)

N
ν .

(25)

Since we have assumed that the current realization of θk lies in the hypersphere of radius B around
the optimal solution θ∗, by solving for N−MN the following inequality

κdB + 2α
(N −M)

N
ν ≤ B ,

we obtain that, whenever (N−M)
N ≤ (1−κd)

2αν B, the realization of θk+1 will also lie in this region.

These derivations show that when the realization of the current iterate θk lies in the hypersphere
of radius B around the minimizer θ∗, and (N−M)

N ≤ (1−κd)
2αν B, then the next iterate θk+1 will also

lie in this region. Consequently, in our scenario, if we assume that the initial point θ0 lies in the
hypersphere of radius B around the minimizer θ∗, then, by applying the derivations recursively,
we can show that the iterates will remain in this local region around the minimizer where strong
convexity and smoothness hold.

D.3 PROOF OF PROPOSITION 4.9

Let us use SGD to solve the following optimization problem

θ∗ ∈ arg min
θ
H(θ, λi) ,

where the objective function H fulfills Assumptions 4.2– 4.4. We now derive error bounds for the
iterates of SGD

θk+1 = θk − αgk ,
where gk is the unbiased estimate of ∇Hk defined in the previous section and fulfills Assump-
tion 4.5, θk ∈ BB,θ∗ , 0 < α ≤ min

(
1
2µ ,

1
L

)
is the step size and the batch size is set to a value M

such that (N−M)
N ≤ (1−κd)

2αν B.
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We start by applying the definition of SGD iterates

‖θk+1 − θ∗‖2
SGD iterate

= ‖θk − αgk − θ∗‖2

= ‖θk − θ∗‖2 − 2αgTk (θk − θ∗) + α2‖gk‖2 .
We now take the expectation w.r.t. θ0, g0, . . . , gk−1, gk and, considering Assumptions 4.2- 4.5, we
obtain the following series of inequalities

Eθ0,g0,...,gk−1,gk

[
‖θk+1 − θ∗‖2

]
= Eθ0,g0,...,gk−1,gk

[
‖θk − θ∗‖2 − 2αgTk (θk − θ∗)

+α2‖gk‖2
]

law of iterated expectations
= Eθ0,g0,...,gk−1

[
Egk

[
‖θk − θ∗‖2

−2αgTk (θk − θ∗) + α2‖gk‖2 | θ0, g0, . . . , gk−1
]]

unbiased gk+bounded “variance”
≤ Eθ0,g0,...,gk−1

[
‖θk − θ∗‖2

−2α∇HT
k (θk − θ∗)

]
+ α2C2

strong convexity
≤ (1− 2αµ) · Eθ0,g0,...,gk−1

[
‖θk − θ∗‖2

]
+ α2C2 .

By applying this result recursively, we derive the following bound on the error for the SGD iterates

Eθ0,g0,...,gk−1,gk

[
‖θk+1 − θ∗‖2

]
≤ (1− 2αµ)k+1 · Eθ0

[
‖θ0 − θ∗‖2

]
+
αC2

2µ
.

See also Section 3 in (Schmidt, 2014) for a derivation where Assumptions 4.2 and 4.3 are required
to hold globally.

E MAIN THEORETICAL CONTRIBUTIONS

E.1 PROOF OF PROPOSITION 4.11

Proposition E.1. Let θi ∈ BB,θ∗i and |λi − λi+1| ≤ ε, with 0 ≤ ε ≤ B
δ . If ‖θi − θ∗i ‖ ≤ B − δε,

then ‖θi − θ∗i+1‖ ≤ B. Moreover, let κd =
√

(1− αµ) and assume that

(N −M)

N
≤ (1− κkd)(1− κd)B

2αν
,

and

ε ≤ 1

δ

(
(1− κkd)B − (N −M)

N

2αν

(1− κd)

)
.

Then, after applying k iterations of SGD, we obtain that

‖θi+1 − θ∗i+1‖ ≤ B − δε .

Proof.

‖θi − θ∗i+1‖ = ‖θi − θ∗i + θ∗i − θ∗i+1‖
Triangle Ineq.
≤ ‖θi − θ∗i ‖+ ‖θ∗i − θ∗i+1‖

Assumption 4.7
≤ ‖θi − θ∗i ‖+ δ|λi − λi+1| .

Finally, using the fact that |λi − λi+1| ≤ ε, it follows that, if ‖θi − θ∗i ‖ ≤ B − δε with 0 ≤ ε ≤ B
δ ,

then ‖θi − θ∗i+1‖ ≤ B.

We now derive the conditions on ε such that ‖θi+1 − θ∗i+1‖ ≤ B − δε. By applying recursively the
results derived in Section D.2 (25), we obtain that

‖θi+1 − θ∗i+1‖ ≤ κkd‖θi − θ∗i+1‖+ 2α
(N −M)

N
ν

k−1∑
i=0

κid .
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By using the limit of the geometric series, we have that

‖θi+1 − θ∗i+1‖ ≤ κkd‖θi − θ∗i+1‖+
(N −M)

N

2αν

(1− κd)
.

Finally, by considering that ‖θi − θ∗i+1‖ ≤ B and by solving in ε the following inequality

κkdB +
(N −M)

N

2αν

(1− κd)
≤ B − δε ,

we obtain the following upper bound on ε

ε ≤ 1

δ

(
(1− κkd)B − (N −M)

N

2αν

(1− κd)

)
,

from which also the extra condition on the batch size
(N −M)

N
≤ (1− κkd)(1− κd)B

2αν
.

Figure 9: Graphical representation of the results derived in Proposition 4.11. The continuous and
dashed lines are used to represent the circles of radius B and B − δε around the optimal solutions,
respectively.

E.2 PROOF OF THEOREM 4.12

Theorem E.2. Consider Algorithm 1 with Stochastic Gradient Descent as solver and let k > 0 be
the number of iterations, 0 < α ≤ min

(
1
2µ ,

1
L

)
be the step size and 0 < M ≤ N be the batch size

such that
(N −M)

N
≤ (1− κkd)(1− κd)B

2αν
,

where κd =
√

(1− αµ). For θ0 ∈ BB−δε,θ∗0 and rθ ∈ R such that

r2θ ≥
αC2

2µ
, (26)

then, if E
[
‖θi − θ∗i ‖2

]
≤ r2θ and |λi − λi+1| ≤ ε̃, where ε̃ := min {ε̄, ε} with

ε̄ = −rθ
δ

+
1

δ

√
r2θ − αC2/2µ

(1− 2αµ)k
, (27)

the following inequality holds
E
[
‖θi+1 − θ∗i+1‖2

]
≤ r2θ . (28)
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Proof.

E
[
‖θi+1 − θ∗i+1‖2

] Ineq. 10
≤ (1− 2αµ)kE

[
‖θi − θ∗i+1‖2

]
+
αC2

2µ

= (1− 2αµ)kE
[
‖θi − θ∗i + θ∗i − θ∗i+1‖2

]
+
αC2

2µ
Triangle Ineq.
≤ (1− 2αµ)kE

[(
‖θi − θ∗i ‖+ ‖θ∗i − θ∗i+1‖

)2]
+
αC2

2µ

= (1− 2αµ)kE
[(
‖θi − θ∗i ‖2 + ‖θ∗i − θ∗i+1‖2

+2‖θi − θ∗i ‖‖θ∗i − θ∗i+1‖
)]

+
αC2

2µ
Assumption 4.7

≤ (1− 2αµ)kE
[(
‖θi − θ∗i ‖2 + δ2|λi − λi+1|2

+2δ‖θi − θ∗i ‖|λi − λi+1|)] +
αC2

2µ

≤ (1− 2αµ)k
(
δ2ε̃2 + 2δrθ ε̃+ r2θ

)
+
αC2

2µ
.

We now solve in ε̃ the following second degree inequality

(1− 2αµ)k
(
δ2ε̃2 + 2δrθ ε̃+ r2θ

)
+
αC2

2µ
≤ r2θ . (29)

The inequality (29) admits solutions if and only if r2θ ≥ αC2

2µ . In particular, inequality (29) holds

∀ε̃ ∈ [0, ε̄], where ε̄ = − rθδ + 1
δ

√
r2θ−αC2/2µ

(1−2αµ)k .
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F EXPERIMENTAL EVALUATION: TEST PERFORMANCES

F.1 REGRESSION

(a) ωs = 1 rad, ωt = 74 rad. (b) ωs = 1 rad, ωt = 95 rad.

(c) ωs = 1 rad, ωt = 116 rad. (d) ωs = 1 rad, ωt = 137 rad.

Figure 10: Median test loss across 100 runs versus epochs for target tasks with different ω values.
The shaded areas represent the 25th and 75th percentiles. For warm-start initialization and homotopy
method, ωs = 1 rad is used for the source task.

F.2 CLASSIFICATION

Method Final Mean Test Accuracy Best Mean Test Accuracy
homotopy γ = 5, k = 2 0.89± 0.003 0.91± 0.002
homotopy γ = 5, k = 4 0.89± 0.002 0.91± 0.003
homotopy γ = 10, k = 1 0.89± 0.004 0.91± 0.001
homotopy γ = 10, k = 4 0.90± 0.002 0.91± 0.003
warm start 0.89± 0.003 0.90± 0.002
random init 0.89± 0.004 0.90± 0.003

Table 1: MNIST-FashionMNIST

Method Final Mean Test Accuracy Best Mean Test Accuracy
homotopy γ = 5, k = 2 0.55± 0.004 0.59± 0.003
homotopy γ = 10, k = 1 0.55± 0.005 0.60± 0.002
homotopy γ = 10, k = 2 0.56± 0.003 0.60± 0.003
homotopy γ = 10, k = 4 0.56± 0.005 0.61± 0.004
warm start 0.54± 0.006 0.59± 0.005
random init 0.64± 0.02 0.64± 0.02

Table 2: MNIST-CIFAR-10
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