
Published as a conference paper at ICLR 2020

DEEP LEARNING FOR SYMBOLIC MATHEMATICS

Guillaume Lample∗
Facebook AI Research
glample@fb.com

François Charton∗
Facebook AI Research
fcharton@fb.com

ABSTRACT

Neural networks have a reputation for being better at solving statistical or approxi-
mate problems than at performing calculations or working with symbolic data. In
this paper, we show that they can be surprisingly good at more elaborated tasks
in mathematics, such as symbolic integration and solving differential equations.
We propose a syntax for representing mathematical problems, and methods for
generating large datasets that can be used to train sequence-to-sequence models.
We achieve results that outperform commercial Computer Algebra Systems such
as Matlab or Mathematica.

1 INTRODUCTION

A longstanding tradition in machine learning opposes rule-based inference to statistical learning
(Rumelhart et al., 1986), and neural networks clearly stand on the statistical side. They have proven to
be extremely effective in statistical pattern recognition and now achieve state-of-the-art performance
on a wide range of problems in computer vision, speech recognition, natural language processing
(NLP), etc. However, the success of neural networks in symbolic computation is still extremely
limited: combining symbolic reasoning with continuous representations is now one of the challenges
of machine learning.

Only a few studies investigated the capacity of neural network to deal with mathematical objects, and
apart from a small number of exceptions (Zaremba et al., 2014; Loos et al., 2017; Allamanis et al.,
2017; Arabshahi et al., 2018b), the majority of these works focus on arithmetic tasks like integer
addition and multiplication (Zaremba & Sutskever, 2014; Kaiser & Sutskever, 2015; Trask et al.,
2018). On these tasks, neural approaches tend to perform poorly, and require the introduction of
components biased towards the task at hand (Kaiser & Sutskever, 2015; Trask et al., 2018).

In this paper, we consider mathematics, and particularly symbolic calculations, as a target for NLP
models. More precisely, we use sequence-to-sequence models (seq2seq) on two problems of symbolic
mathematics: function integration and ordinary differential equations (ODEs). Both are difficult, for
trained humans and computer software. For integration, humans are taught a set of rules (integration
by parts, change of variable, etc.), that are not guaranteed to succeed, and Computer Algebra Systems
use complex algorithms (Geddes et al., 1992) that explore a large number of specific cases. For
instance, the complete description of the Risch algorithm (Risch, 1970) for function integration is
more than 100 pages long.

Yet, function integration is actually an example where pattern recognition should be useful: detecting
that an expression is of the form yy′(y2 + 1)−1/2 suggests that its primitive will contain

√
y2 + 1.

Detecting this pattern may be easy for small expressions y, but becomes more difficult as the number
of operators in y increases. However, to the best of our knowledge, no study has investigated the
ability of neural networks to detect patterns in mathematical expressions.

We first propose a representation of mathematical expressions and problems that can be used by
seq2seq models, and discuss the size and structure of the resulting problem space. Then, we show
how to generate datasets for supervised learning of integration and first and second order differential
equations. Finally, we apply seq2seq models to these datasets, and show that they achieve a better
performance than state-of-the-art computer algebra programs, namely Matlab and Mathematica.

∗ Equal contribution.

1

Published as a conference paper at ICLR 2020

2 MATHEMATICS AS A NATURAL LANGUAGE

2.1 EXPRESSIONS AS TREES

Mathematical expressions can be represented as trees, with operators and functions as internal nodes,
operands as children, and numbers, constants and variables as leaves. The following trees represent
expressions 2 + 3× (5 + 2), 3x2 + cos(2x)− 1, and ∂2ψ

∂x2 − 1
ν2

∂2ψ
∂t2 :

+

2 ×

3 +

5 2

+

×

3 pow

x 2

−

cos

×

2 x

1

-

∂

∂

ψ x

x

×

/

1 pow

ν 2

∂

∂

ψ t

t

Trees disambiguate the order of operations, take care of precedence and associativity and eliminate the
need for parentheses. Up to the addition of meaningless symbols like spaces, punctuation or redundant
parentheses, different expressions result in different trees. With a few assumptions, discussed in
Section A of the appendix, there is a one-to-one mapping between expressions and trees.

We consider expressions as sequences of mathematical symbols. 2 + 3 and 3 + 2 are different
expressions, as are

√
4x and 2x, and they will be represented by different trees. Most expressions

represent meaningful mathematical objects. x / 0,
√
−2 or log(0) are also legitimate expressions,

even though they do not necessarily make mathematical sense.

Since there is a one-to-one correspondence between trees and expressions, equality between expres-
sions will be reflected over their associated trees, as an equivalence : since 2+3 = 5 = 12−7 = 1×5,
the four trees corresponding to these expressions are equivalent.

Many problems of formal mathematics can be reframed as operations over expressions, or trees. For
instance, expression simplification amounts to finding a shorter equivalent representation of a tree.
In this paper, we consider two problems: symbolic integration and differential equations. Both boil
down to transforming an expression into another, e.g. mapping the tree of an equation to the tree of
its solution. We regard this as a particular instance of machine translation.

2.2 TREES AS SEQUENCES

Machine translation systems typically operate on sequences (Sutskever et al., 2014; Bahdanau et al.,
2015). Alternative approaches have been proposed to generate trees, such as Tree-LSTM (Tai et al.,
2015) or Recurrent Neural Network Grammars (RNNG) (Dyer et al., 2016; Eriguchi et al., 2017).
However, tree-to-tree models are more involved and much slower than their seq2seq counterparts,
both at training and at inference. For the sake of simplicity, we use seq2seq models, which were
shown to be effective at generating trees, e.g. in the context of constituency parsing (Vinyals et al.,
2015), where the task is to predict a syntactic parse tree of input sentences.

Using seq2seq models to generate trees requires to map trees to sequences. To this effect, we use
prefix notation (also known as normal Polish notation), writing each node before its children, listed
from left to right. For instance, the arithmetic expression 2+3∗ (5+2) is represented as the sequence
[+ 2 ∗ 3 + 5 2]. In contrast to the more common infix notation 2 + 3 ∗ (5 + 2), prefix sequences
need no parentheses and are therefore shorter. Inside sequences, operators, functions or variables are
represented by specific tokens, and integers by sequences of digits preceded by a sign. As in the case
between expressions and trees, there exists a one-to-one mapping between trees and prefix sequences.

2.3 GENERATING RANDOM EXPRESSIONS

To create training data, we need to generate sets of random mathematical expressions. However,
sampling uniformly expressions with n internal nodes is not a simple task. Naive algorithms (such as

2

Published as a conference paper at ICLR 2020

recursive methods or techniques using fixed probabilities for nodes to be leaves, unary, or binary)
tend to favour deep trees over broad trees, or left-leaning over right leaning trees. Here are examples
of different trees that we want to generate with the same probability.

cos

+

×

3 sqrt

+

pow

x 2

8

x

×

+

3 ×

x 3

pow

x 2

+

×

×

+

sin

x

8

x

5

3

+

3 ×

5 ×

x +

8 sin

x

In Section C of the appendix, we present an algorithm to generate random trees and expressions,
where the four expression trees above are all generated with the same probability.

2.4 COUNTING EXPRESSIONS

We now investigate the number of possible expressions. Expressions are created from a finite set of
variables (i.e. literals), constants, integers, and a list of operators that can be simple functions (e.g.
cos or exp) or more involved operators (e.g. differentiation or integration). More precisely, we define
our problem space as:

• trees with up to n internal nodes

• a set of p1 unary operators (e.g. cos, sin, exp, log)

• a set of p2 binary operators (e.g. +,−,×,pow)

• a set of L leaf values containing variables (e.g. x, y, z), constants (e.g. e, π), integers (e.g.
{−10, . . . , 10})

If p1 = 0, expressions are represented by binary trees. The number of binary trees with n internal
nodes is given by the n-th Catalan numbers Cn (Sloane, 1996). A binary tree with n internal nodes
has exactly n+ 1 leaves. Each node and leaf can take respectively p2 and L different values. As a
result, the number of expressions with n binary operators can be expressed by:

En = Cnp
n
2L

n+1 ≈ 4n

n
√
πn

pn2L
n+1 with Cn =

1

n+ 1

(
2n

n

)
If p1 > 0, expressions are unary-binary trees, and the number of trees with n internal nodes is the n-th
large Schroeder number Sn (Sloane, 1996). It can be computed by recurrence using the following
equation:

(n+ 1)Sn = 3(2n− 1)Sn−1 − (n− 2)Sn−2 (1)

Finally, the number En of expressions with n internal nodes, p1 unary operator, p2 binary operators
and L possible leaves is recursively computed as

(n+ 1)En = (p1 + 2Lp2)(2n− 1)En−1 − p1(n− 2)En−2 (2)

If p1 = p2 = L = 1, Equation 2 boils down to Equation 1. If p2 = L = 1, p1 = 0, we have
(n + 1)En = 2(2n − 1)En−1 which is the recurrence relation satisfied by Catalan numbers. The
derivations and properties of all these formulas are provided in Section B of the appendix.

In Figure 1, we represent the number of binary trees (Cn) and unary-binary trees (Sn) for different
numbers of internal nodes. We also represent the number of possible expressions (En) for different
sets of operators and leaves.

3

Published as a conference paper at ICLR 2020

0 4 8 12 16 20 24 28
Internal nodes

107

1018

1029

1040

1051

1062

Nu
m

be
r o

f e
xp

re
ss

io
ns

L=11, p1=15, p2=4 (unary-binary expressions)
L=11, p1=0, p2=4 (binary expressions)
L=11, p1=15, p2=1
L=11, p1=0, p2=1
L=5, p1=0, p2=1
L=1, p1=1, p2=1 (unary-binary trees)
L=1, p1=0, p2=1 (binary trees)

Figure 1: Number of trees and expressions for different numbers of operators and leaves. p1 and p2
correspond to the number of unary and binary operators respectively, and L to the number of possible leaves.
The bottom two curves correspond to the number of binary and unary-binary trees (enumerated by Catalan
and Schroeder numbers respectively). The top two curves represent the associated number of expressions. We
observe that adding leaves and binary operators significantly increases the size of the problem space.

3 GENERATING DATASETS

Having defined a syntax for mathematical problems and techniques to randomly generate expressions,
we are now in a position to build the datasets our models will use. In the rest of the paper, we focus
on two problems of symbolic mathematics: function integration and solving ordinary differential
equations (ODE) of the first and second order.

To train our networks, we need datasets of problems and solutions. Ideally, we want to generate
representative samples of the problem space, i.e. randomly generate functions to be integrated and
differential equations to be solved. Unfortunately, solutions of random problems sometimes do not
exist (e.g. the integrals of f(x) = exp(x2) or f(x) = log(log(x)) cannot be expressed with usual
functions), or cannot be easily derived. In this section, we propose techniques to generate large
training sets for integration and first and second order differential equations.

3.1 INTEGRATION

We propose three approaches to generate functions with their associated integrals.

Forward generation (FWD). A straightforward approach is to generate random functions with up
to n operators (using methods from Section 2) and calculate their integrals with a computer algebra
system. Functions that the system cannot integrate are discarded. This generates a representative
sample of the subset of the problem space that can be successfully solved by an external symbolic
mathematical framework.

Backward generation (BWD). An issue with the forward approach is that the dataset only contains
functions that symbolic frameworks can solve (they sometimes fail to compute the integral of
integrable functions). Also, integrating large expressions is time expensive, which makes the overall
method particularly slow. Instead, the backward approach generates a random function f , computes
its derivative f ′, and adds the pair (f ′, f) to the training set. Unlike integration, differentiation
is always possible and extremely fast even for very large expressions. As opposed to the forward
approach, this method does not depend on an external symbolic integration system.

Backward generation with integration by parts (IBP). An issue with the backward approach is
that it is very unlikely to generate the integral of simple functions like f(x) = x3 sin(x). Its integral,
F (x) = −x3 cos(x) + 3x2 sin(x) + 6x cos(x)− 6 sin(x), a function with 15 operators, has a very
low probability of being generated randomly. Besides, the backward approach tends to generate
examples where the integral (the solution) is shorter than the derivative (the problem), while forward
generation favors the opposite (see Figure 2 in Section E in the Appendix). To address this issue, we

4

Published as a conference paper at ICLR 2020

leverage integration by parts: given two randomly generated functions F and G, we compute their
respective derivatives f and g. If fG already belongs to the training set, we know its integral, and we
can compute the integral of Fg as: ∫

Fg = FG−
∫
fG

Similarly, if Fg is in the training set, we can infer the integral of fG. Whenever we discover the
integral of a new function, we add it to the training set. If none of fG or Fg are in the training set,
we simply generate new functions F and G. With this approach, we can generate the integrals of
functions like x10 sin(x) without resorting to an external symbolic integration system.

Comparing different generation methods. Table 1 in Section 4.1 summarizes the differences
between the three generation methods. The FWD method tends to generate short problems with long
solutions (that computer algebras can solve). The BWD approach, on the other hand, generates long
problems with short solutions. IBP generates datasets comparable to FWD (short problems and long
solutions), without an external computer algebra system. A mixture of BWD and IBP generated data
should therefore provide a better representation of problem space, without resorting to external tools.
Examples of functions / integrals for the three approaches are given in Table 9 of the Appendix.

3.2 FIRST ORDER DIFFERENTIAL EQUATION (ODE 1)

We now present a method to generate first order differential equations with their solutions. We
start from a bivariate function F (x, y) such that the equation F (x, y) = c (where c is a constant)
can be analytically solved in y. In other words, there exists a bivariate function f that satisfies
∀(x, c), F

(
x, f(x, c)

)
= c. By differentiation with respect to x, we have that ∀x, c:

∂F
(
x, fc(x))

∂x
+ f ′c(x)

∂F (x, fc(x))

∂y
= 0

where fc = x 7→ f(x, c). As a result, for any constant c, fc is solution of the first order differential
equation:

∂F
(
x, y)

∂x
+ y′

∂F (x, y)

∂y
= 0 (3)

With this approach, we can use the method described in Section C of the appendix to generate
arbitrary functions F (x, y) analytically solvable in y, and create a dataset of differential equations
with their solutions.

Instead of generating a random function F , we can generate a solution f(x, c), and determine a differ-
ential equation that it satisfies. If f(x, c) is solvable in c, we compute F such that F

(
x, f(x, c)

)
= c.

Using the above approach, we show that for any constant c, x 7→ f(x, c) is a solution of differential
Equation 3. Finally, the resulting differential equation is factorized, and we remove all positive factors
from the equation.

A necessary condition for this approach to work is that the generated functions f(x, c) can be solved
in c. For instance, the function f(x, c) = c× log(x+ c) cannot be analytically solved in c, i.e. the
function F that satisfies F

(
x, f(x, c)

)
= c cannot be written with usual functions. Since all the

operators and functions we use are invertible, a simple condition to ensure the solvability in c is to
guarantee that c only appears once in the leaves of the tree representation of f(x, c). A straightforward
way to generate a suitable f(x, c) is to sample a random function f(x) by the methods described in
Section C of the appendix, and to replace one of the leaves in its tree representation by c. Below is an
example of the whole process:

Generate a random function f(x) = x log(c / x)

Solve in c c = xe
f(x)
x = F (x, f(x))

Differentiate in x e
f(x)
x

(
1 + f ′(x)− f(x)

x

)
= 0

Simplify xy′ − y + x = 0

5

Published as a conference paper at ICLR 2020

3.3 SECOND ORDER DIFFERENTIAL EQUATION (ODE 2)

Our method for generating first order equations can be extended to the second order, by considering
functions of three variables f(x, c1, c2) that can be solved in c2. As before, we derive a function of
three variables F such that F

(
x, f(x, c1, c2), c1

)
= c2. Differentiation with respect to x yields a first

order differential equation:

∂F (x, y, c1)

∂x
+ f ′c1,c2(x)

∂F
(
x, y, c1

)
∂y

∣∣∣∣∣
y=fc1,c2

(x)

= 0

where fc1,c2 = x 7→ f(x, c1, c2). If this equation can be solved in c1, we can infer another three-
variable function G satisfying ∀x,G

(
x, fc1,c2(x), f

′
c1,c2(x)

)
= c1. Differentiating with respect to x

a second time yields the following equation:

∂G(x, y, z)

∂x
+ f ′c1,c2(x)

∂G(x, y, z)

∂y
+ f ′′c1,c2(x)

∂G(x, y, z)

∂z

∣∣∣∣∣y=fc1,c2 (x)

z=f ′
c1,c2

(x)

= 0

Therefore, for any constants c1 and c2, fc1,c2 is solution of the second order differential equation:

∂G(x, y, y′)

∂x
+ y′

∂G(x, y, y′)

∂y
+ y′′

∂G(x, y, y′)

∂z
= 0

Using this approach, we can create pairs of second order differential equations and solutions, provided
we can generate f(x, c1, c2) is solvable in c2, and that the corresponding first order differential
equation is solvable in c1. To ensure the solvability in c2, we can use the same approach as for
first order differential equation, e.g. we create fc1,c2 so that c2 has exactly one leaf in its tree
representation. For c1, we employ a simple approach where we simply skip the current equation if
we cannot solve it in c1. Although naive, we found that the differentiation equation can be solved in
c1 about 50% the time. As an example:

Generate a random function f(x) = c1e
x + c2e

−x

Solve in c2 c2 = f(x)ex − c1e2x = F (x, f(x), c1)

Differentiate in x ex
(
f ′(x) + f(x)

)
− 2c1e

2x = 0

Solve in c1 c1 =
1

2
e−x

(
f ′(x) + f(x)

)
= G(x, f(x), f ′(x))

Differentiate in x 0 =
1

2
e−x

(
f ′′(x)− f(x)

)
Simplify y′′ − y = 0

3.4 DATASET CLEANING

Equation simplification In practice, we simplify generated expressions to reduce the number of
unique possible equations in the training set, and to reduce the length of sequences. Also, we do
not want to train our model to predict x+ 1 + 1 + 1 + 1 + 1 when it can simply predict x+ 5. As
a result, sequences [+ 2 + x 3] and [+ 3 + 2 x] will both be simplified to [+ x 5] as they both
represent the expression x+ 5. Similarly, the expression log(ex+3) will be simplified to x+ 3, the
expression cos2(x) + sin2(x) will be simplified to 1, etc. On the other hand,

√
(x− 1)2 will not be

simplified to x− 1 as we do not make any assumption on the sign of x− 1.

Coefficients simplification In the case of first order differential equations, we modify generated
expressions by equivalent expressions up to a change of variable. For instance, x+x tan(3)+ cx+1
will be simplified to cx + 1, as a particular choice of the constant c makes these two expressions
identical. Similarly, log(x2) + c log(x) becomes c log(x).

6

Published as a conference paper at ICLR 2020

We apply a similar technique for second order differential equations, although simplification is
sometimes a bit more involved because there are two constants c1 and c2. For instance, c1 − c2x/5 +
c2 + 1 is simplified to c1x+ c2, while c2ec1ec1xe−1 can be expressed with c2ec1x, etc.

We also perform transformations that are not strictly equivalent, as long as they hold under specific
assumptions. For instance, we simplify tan(

√
c2x)+cosh(c1+1)+4 to c1+tan(c2x), although the

constant term can be negative in the second expression, but not the first one. Similarly e3ec1xec1 log(c2)

is transformed to c2ec1x.

Invalid expressions Finally, we also remove invalid expressions from our dataset. For instance,
expressions like log(0) or

√
−2. To detect them, we compute in the expression tree the values of

subtrees that do not depend on x. If a subtree does not evaluate to a finite real number (e.g. −∞,
+∞ or a complex number), we discard the expression.

4 EXPERIMENTS

4.1 DATASET

For all considered tasks, we generate datasets using the method presented in Section 3, with:

• expressions with up to n = 15 internal nodes

• L = 11 leaf values in {x} ∪ {−5, . . . , 5} \ {0}
• p2 = 4 binary operators: +,−,×, /
• p1 = 15 unary operators: exp, log, sqrt, sin, cos, tan, sin-1, cos-1, tan-1, sinh, cosh, tanh,
sinh-1, cosh-1, tanh-1

Statistics about our datasets are presented in Table 1. As discussed in Section 3.1, we observe that the
backward approach generates derivatives (i.e. inputs) significantly longer than the forward generator.
We discuss this in more detail in Section E of the appendix.

Forward Backward Integration by parts ODE 1 ODE 2

Training set size 20M 40M 20M 40M 40M

Input length 18.9±6.9 70.2±47.8 17.5±9.1 123.6±115.7 149.1±130.2
Output length 49.6±48.3 21.3±8.3 26.4±11.3 23.0±15.2 24.3±14.9
Length ratio 2.7 0.4 2.0 0.4 0.1
Input max length 69 450 226 508 508
Output max length 508 75 206 474 335

Table 1: Training set sizes and length of expressions (in tokens) for different datasets. FWD and IBP tend
to generate examples with outputs much longer than the inputs, while the BWD approach generates shorter
outputs. Like in the BWD case, ODE generators tend to produce solutions much shorter than their equations.

4.2 MODEL

For all our experiments, we train a seq2seq model to predict the solutions of given problems, i.e.
to predict a primitive given a function, or predict a solution given a differential equation. We use a
transformer model (Vaswani et al., 2017) with 8 attention heads, 6 layers, and a dimensionality of
512. In our experiences, using larger models did not improve the performance. We train our models
with the Adam optimizer (Kingma & Ba, 2014), with a learning rate of 10−4. We remove expressions
with more than 512 tokens, and train our model with 256 equations per batch.

At inference, expressions are generated by a beam search (Koehn, 2004; Sutskever et al., 2014), with
early stopping. We normalize the log-likelihood scores of hypotheses in the beam by their sequence
length. We report results with beam widths of 1 (i.e. greedy decoding), 10 and 50.

During decoding, nothing prevents the model from generating an invalid prefix expression, e.g.
[+ 2 ∗ 3]. To address this issue, Dyer et al. (2016) use constraints during decoding, to ensure

7

Published as a conference paper at ICLR 2020

that generated sequences can always be converted to valid expression trees. In our case, we found
that model generations are almost always valid and we do not use any constraint. When an invalid
expression is generated, we simply consider it as an incorrect solution and ignore it.

4.3 EVALUATION

At the end of each epoch, we evaluate the ability of the model to predict the solutions of given
equations. In machine translation, hypotheses given by the model are compared to references written
by human translators, typically with metrics like the BLEU score (Papineni et al., 2002) that measure
the overlap between hypotheses and references. Evaluating the quality of translations is a very
difficult problem, and many studies showed that a better BLEU score does not necessarily correlate
with a better performance according to human evaluation. Here, however, we can easily verify the
correctness of our model by simply comparing generated expressions to their reference solutions.

For instance, for the given differential equation xy′− y+x = 0 with a reference solution x log(c / x)
(where c is a constant), our model may generate x log(c) − x log(x). We can check that these
two solutions are equal, although they are written differently, using a symbolic framework like
SymPy (Meurer et al., 2017).

However, our model may also generate xc− x log(x) which is also a valid solution, that is actually
equivalent to the previous one for a different choice of constant c. In that case, we replace y in the
differential equation by the model hypothesis. If xy′ − y + x = 0, we conclude that the hypothesis is
a valid solution. In the case of integral computation, we can simply differentiate the model hypothesis,
and compare it with the function to integrate. For the three problems, we measure the accuracy of our
model on equations from the test set.

Since we can easily verify the correctness of generated expressions, we consider all hypotheses in the
beam, and not only the one with the highest score. We verify the correctness of each hypothesis, and
consider that the model successfully solved the input equation if one of them is correct. As a result,
results with “Beam size 10” indicate that at least one of the 10 hypotheses in the beam was correct.

4.4 RESULTS

Table 2 reports the accuracy of our model for function integration and differential equations. For
integration, the model achieves close to 100% performance on a held-out test set, even with greedy
decoding (beam size 1). This performance is consistent over the three integration datasets (FWD,
BWD, and IBP). Greedy decoding (beam size 1) does not work as well for differential equations. In
particular, we observe an improvement in accuracy of almost 40% when using a large beam size of
50 for second order differential equations. Unlike in machine translation, where increasing the beam
size does not necessarily increase the performance (Ott et al., 2018), we always observe significant
improvements with wider beams. Typically, using a beam size of 50 provides an improvement of 8%
accuracy compared to a beam size of 10. This makes sense, as increasing the beam size will provide
more hypotheses, although a wider beam may displace a valid hypothesis to consider invalid ones
with better log-probabilities.

Integration (FWD) Integration (BWD) Integration (IBP) ODE (order 1) ODE (order 2)

Beam size 1 93.6 98.4 96.8 77.6 43.0
Beam size 10 95.6 99.4 99.2 90.5 73.0
Beam size 50 96.2 99.7 99.5 94.0 81.2

Table 2: Accuracy of our models on integration and differential equation solving. Results are reported
on a held out test set of 5000 equations. For differential equations, using beam search decoding significantly
improves the accuracy of the model.

4.5 COMPARISON WITH MATHEMATICAL FRAMEWORKS

We compare our model with three popular mathematical frameworks: Mathematica (Wolfram-
Research, 2019), Maple and Matlab (MathWorks, 2019)1. Prefix sequences in our test set are

1All experiments were run with Mathematica 12.0.0.0, Maple 2019 and Matlab R2019a.

8

Published as a conference paper at ICLR 2020

converted back to their infix representations, and given as input to the computer algebra. For a
specific input, the computer algebra either returns a solution, provides no solution (or a solution
including integrals or special functions), or, in the case of Mathematica, times out after a preset
delay. When Mathematica times out, we conclude that it is not able to compute a solution (although
it might have found a solution given more time). For integration, we evaluate on the BWD test set. By
construction, the FWD data only consists of integrals generated by computer algebra systems, which
makes comparison uninteresting.

In Table 3, we present accuracy for our model with different beam sizes, and for Mathematica with a
timeout delay of 30 seconds. Table 8 in the appendix provides detailed results for different values of
timeout, and explains our choice of 30 seconds. In particular, we find that with 30 seconds, only 20%
of failures are due to timeouts, and only 10% when the timeout is set to 3 minutes. Even with timeout
limits, evaluation would take too long on our 5000 test equations, so we only evaluate on a smaller
test subset of 500 equations, on which we also re-evaluate our model.

Integration (BWD) ODE (order 1) ODE (order 2)

Mathematica (30s) 84.0 77.2 61.6
Matlab 65.2 - -
Maple 67.4 - -

Beam size 1 98.4 81.2 40.8
Beam size 10 99.6 94.0 73.2
Beam size 50 99.6 97.0 81.0

Table 3: Comparison of our model with Mathematica, Maple and Matlab on a test set of 500 equations.
For Mathematica we report results by setting a timeout of 30 seconds per equation. On a given equation, our
model typically finds the solution in less than a second.

On all tasks, we observe that our model significantly outperforms Mathematica. On function
integration, our model obtains close to 100% accuracy, while Mathematica barely reaches 85%. On
first order differential equations, Mathematica is on par with our model when it uses a beam size
of 1, i.e. with greedy decoding. However, using a beam search of size 50 our model accuracy goes
from 81.2% to 97.0%, largely surpassing Mathematica. Similar observations can be made for second
order differential equations, where beam search is even more critical since the number of equivalent
solutions is larger. On average, Matlab and Maple have slightly lower performance than Mathematica
on the problems we tested.

Table 4 shows examples of functions that our model was able to solve, on which Mathematica and
Matlab did not find a solution. The denominator of the function to integrate, −16x8 + 112x7 −
204x6 + 28x5 − x4 + 1, can be rewritten as 1− (4x4 − 14x3 + x2)2. With the simplified input:

16x3 − 42x2 + 2x(
1− (4x4 − 14x3 + x2)2

)1/2
integration becomes easier and Mathematica is able to find the solution.

Equation Solution

y′ =
16x3 − 42x2 + 2x

(−16x8 + 112x7 − 204x6 + 28x5 − x4 + 1)1/2
y = sin−1(4x4 − 14x3 + x2)

3xy cos(x)−
√

9x2 sin(x)2 + 1y′ + 3y sin(x) = 0 y = c exp
(
sinh−1(3x sin(x))

)
4x4yy′′−8x4y′2−8x3yy′−3x3y′′−8x2y2−6x2y′−3x2y′′−9xy′−3y = 0 y =

c1 + 3x+ 3 log (x)

x (c2 + 4x)

Table 4: Examples of problems that our model is able to solve, on which Mathematica and Matlab were not
able to find a solution. For each equation, our model finds a valid solution with greedy decoding.

9

Published as a conference paper at ICLR 2020

4.6 EQUIVALENT SOLUTIONS

An interesting property of our model is that it is able to generate solutions that are exactly equivalent,
but written in different ways. For instance, we consider the following first order differential equation,
along with one of its solutions:

162x log(x)y′ + 2y3 log(x)2 − 81y log(x) + 81y = 0 y =
9
√
x
√

1
log (x)

√
c+ 2x

In Table 5, we report the top 10 hypotheses returned by our model for this equation. We observe that
all generations are actually valid solutions, although they are expressed very differently. They are
however not all equal: merging the square roots within the first and third equations would give the
same expression except that the third one would contain a factor 2 in front of the constant c, but up to
a change of variable, these two solutions are actually equivalent. The ability of the model to recover
equivalent expressions, without having been trained to do so, is very intriguing.

Hypothesis Score Hypothesis Score

9
√
x
√

1
log (x)

√
c+ 2x

−0.047 9√
c log (x)

x
+ 2 log (x)

−0.124

9
√
x

√
c+ 2x

√
log (x)

−0.056 9
√
x√

c log (x) + 2x log (x)
−0.139

9
√
2
√
x
√

1
log (x)

2
√
c+ x

−0.115 9√
c
x
+ 2
√

log (x)
−0.144

9
√
x

√
1

c log (x) + 2x log (x)
−0.117 9

√
1

c log (x)
x

+ 2 log (x)
−0.205

9
√
2
√
x

2
√
c+ x

√
log (x)

−0.124 9
√
x

√
1

c log (x) + 2x log (x) + log (x)
−0.232

Table 5: Top 10 generations of our model for the first order differential equation 162x log(x)y′+2y3 log(x)2−
81y log(x) + 81y = 0, generated with a beam search. All hypotheses are valid solutions, and are equivalent up
to a change of the variable c. Scores are log-probabilities normalized by sequence lengths.

4.7 GENERALIZATION ACROSS GENERATORS

Models for integration achieve close to 100% performance on held-out test samples generated with
the same method as their training data. In Table 6, we compare the accuracy on the FWD, BWD and
IBP test sets for 4 models trained using different combinations of training data. When the test set
is generated with the same generator as the training set, the model performs extremely well. For
instance, the three models trained either on BWD, BWD + IBP or BWD + IBP + FWD achieve 99.7%
accuracy on the BWD test set with a beam size of 50.

On the other hand, even with a beam size of 50, a FWD-trained model only achieves 17.2% accuracy
on the BWD test set, and a BWD-trained model achieves 27.5% on the FWD test set. This results from
the very different structure of the FWD and BWD data sets (cf. Table 1 and the discussion in Section E
of the appendix). Overall, a model trained on BWD samples learns that integration tends to shorten
expressions, a property that does not hold for FWD samples. Adding diversity to the training set
improves the results. For instance, adding IBP-generated examples to the BWD-trained model raises
the FWD test accuracy from 27.5% to 56.1%, and with additional FWD training data the model reaches
94.3% accuracy. Generalization is further discussed in Section E of the appendix.

10

Published as a conference paper at ICLR 2020

Forward (FWD) Backward (BWD) Integration by parts (IBP)
Training data Beam 1 Beam 10 Beam 50 Beam 1 Beam 10 Beam 50 Beam 1 Beam 10 Beam 50

FWD 93.6 95.6 96.2 10.9 13.9 17.2 85.6 86.8 88.9
BWD 18.9 24.6 27.5 98.4 99.4 99.7 42.9 54.6 59.2
BWD + IBP 41.6 54.9 56.1 98.2 99.4 99.7 96.8 99.2 99.5
BWD + IBP + FWD 89.1 93.4 94.3 98.1 99.3 99.7 97.2 99.4 99.7

Table 6: Accuracy of our models on function integration. We report the accuracy of our model on the three
integration datasets: forward (FWD), backward (BWD), and integration by parts (IBP), for four models trained
with different combinations of training data. We observe that a FWD-trained model performs poorly when it tries
to integrate functions from the BWD dataset. Similarly, a BWD-trained model only obtain 27.5% accuracy on
the FWD dataset, as it fails to integrate simple functions like x5 sin(x). On the other hand, training on both the
BWD + IBP datasets allows the model to reach up to 56.1% accuracy on FWD. Training on all datasets allows the
model to perform well on the three distributions.

4.8 GENERALIZATION BEYOND THE GENERATOR - SYMPY

Our forward generator, FWD, generates a set of pairs (f, F) of functions with their integrals. It
relies on an external symbolic framework, SymPy (Meurer et al., 2017), to compute the integral
of randomly generated functions. SymPy is not perfect, and fails to compute the integral of many
integrable functions. In particular, we found that the accuracy of SymPy on the BWD test set is only
30%. Our FWD-trained model only obtains an accuracy of 17.2% on BWD. However, we observed that
the FWD-trained model is sometimes able to compute the integral of functions that SymPy cannot
compute. This means that by only training on functions that SymPy can integrate, the model was able
to generalize to functions that SymPy cannot integrate. Table 7 presents examples of such functions
with their integrals.

x2
(
tan2 (x) + 1

)
+ 2x tan (x) + 1 x2 tan (x) + x

1 +
2 cos (2x)√
sin2 (2x) + 1

x+ asinh (sin (2x))

x tan (x) + log (x cos (x))− 1

log (x cos (x))
2

x

log (x cos (x))

−
2x cos

(
asin2 (x)

)
asin (x)

√
1− x2 sin2

(
asin2 (x)

) +
1

sin
(
asin2 (x)

) x

sin
(
asin2 (x)

)
√
x+ x

(
2x√
x4 + 1

+ 1 +
1

2
√
x

)
+ x+ asinh

(
x2
)

x
(√
x+ x+ asinh

(
x2
))

−3−
3
(
−3x2 sin (x3)+ 1

2
√

x

)
√
x+cos (x3)

(x+ log (
√
x+ cos (x3)))

2

3

x+ log (
√
x+ cos (x3))

−2 tan2 (log (log (x)))− 2

log (x) tan2 (log (log (x)))
+

2

tan (log (log (x)))

2x

tan (log (log (x)))

Table 7: Examples of functions / integrals that the FWD-trained model can integrate, but not SymPy.
Although the FWD model was only trained on a subset of functions that SymPy can integrate, it learned to
generalize to functions that SymPy cannot integrate.

11

Published as a conference paper at ICLR 2020

5 RELATED WORK

Computers were used for symbolic mathematics since the late 1960s (Moses, 1974). Computer
algebra systems (CAS), such as Matlab, Mathematica, Maple, PARI and SAGE, are used for a variety
of mathematical tasks (Gathen & Gerhard, 2013). Modern methods for symbolic integration are
based on Risch algorithm (Risch, 1970). Implementations can be found in Bronstein (2005) and
Geddes et al. (1992). However, the complete description of the Risch algorithm takes more than 100
pages, and is not fully implemented in current mathematical framework.

Deep learning networks have been used to simplify treelike expressions. Zaremba et al. (2014)
use recursive neural networks to simplify complex symbolic expressions. They use tree represen-
tations for expressions, but provide the model with problem related information: possible rules
for simplification. The neural network is trained to select the best rule. Allamanis et al. (2017)
propose a framework called neural equivalence networks to learn semantic representations of alge-
braic expressions. Typically, a model is trained to map different but equivalent expressions (like
the 10 expressions proposed in Table 5) to the same representation. However, they only consider
Boolean and polynomial expressions. More recently, Arabshahi et al. (2018a;b) used tree-structured
neural networks to verify the correctness of given symbolic entities, and to predict missing entries in
incomplete mathematical equations. They also showed that these networks could be used to predict
whether an expression is a valid solution of a given differential equation.

Most attempts to use deep networks for mathematics have focused on arithmetic over integers
(sometimes over polynomials with integer coefficients). For instance, Kaiser & Sutskever (2015)
proposed the Neural-GPU architecture, and train networks to perform additions and multiplications
of numbers given in their binary representations. They show that a model trained on numbers with
up-to 20 bits can be applied to much larger numbers at test time, while preserving a perfect accuracy.
Freivalds & Liepins (2017) proposed an improved version of the Neural-GPU by using hard non-linear
activation functions, and a diagonal gating mechanism.

Saxton et al. (2019) use LSTMs (Hochreiter & Schmidhuber, 1997) and transformers on a wide
range of problems, from arithmetic to simplification of formal expressions. However, they only
consider polynomial functions, and the task of differentiation, which is significantly easier than
integration. Trask et al. (2018) propose the Neural arithmetic logic units, a new module designed to
learn systematic numerical computation, and that can be used within any neural network. Like Kaiser
& Sutskever (2015), they show that at inference their model can extrapolate on numbers orders of
magnitude larger than the ones seen during training.

6 CONCLUSION

In this paper, we show that standard seq2seq models can be applied to difficult tasks like function
integration, or solving differential equations. We propose an approach to generate arbitrarily large
datasets of equations, with their associated solutions. We show that a simple transformer model
trained on these datasets can perform extremely well both at computing function integrals, and
solving differential equations, outperforming state-of-the-art mathematical frameworks like Matlab or
Mathematica that rely on a large number of algorithms and heuristics, and a complex implementation
(Risch, 1970). Results also show that the model is able to write identical expressions in very different
ways.

These results are surprising given the difficulty of neural models to perform simpler tasks like integer
addition or multiplication. However, proposed hypotheses are sometimes incorrect, and considering
multiple beam hypotheses is often necessary to obtain a valid solution. The validity of a solution itself
is not provided by the model, but by an external symbolic framework (Meurer et al., 2017). These
results suggest that in the future, standard mathematical frameworks may benefit from integrating
neural components in their solvers.

12

Published as a conference paper at ICLR 2020

REFERENCES

Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles Sutton. Learning con-
tinuous semantic representations of symbolic expressions. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pp. 80–88. JMLR.org, 2017.

Forough Arabshahi, Sameer Singh, and Animashree Anandkumar. Combining symbolic expressions
and black-box function evaluations for training neural programs. In International Conference on
Learning Representations, 2018a.

Forough Arabshahi, Sameer Singh, and Animashree Anandkumar. Towards solving differential
equations through neural programming. 2018b.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and
translate. In International Conference on Learning Representations (ICLR), 2015.

M. Bronstein. Symbolic Integration I: Transcendental Functions. Algorithms and combinatorics.
Springer, 2005. ISBN 978-3-540-21493-9.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A Smith. Recurrent neural network
grammars. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 199–209, 2016.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun Cho. Learning to parse and translate improves
neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 72–78, 2017.

Philippe Flajolet and Andrew M. Odlyzko. Singularity analysis of generating functions. SIAM J.
Discrete Math., 3(2):216–240, 1990.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, New
York, NY, USA, 1 edition, 2009. ISBN 0521898064, 9780521898065.

Karlis Freivalds and Renars Liepins. Improving the neural gpu architecture for algorithm learning.
ArXiv, abs/1702.08727, 2017.

Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 3rd edition, 2013. ISBN 1107039037, 9781107039032.

Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for Computer Algebra. Kluwer
Academic Publishers, Norwell, MA, USA, 1992. ISBN 0-7923-9259-0.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. CoRR, abs/1511.08228, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997. ISBN 0-201-
89683-4.

Philipp Koehn. Pharaoh: a beam search decoder for phrase-based statistical machine translation
models. In Conference of the Association for Machine Translation in the Americas, pp. 115–124.
Springer, 2004.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided proof
search. arXiv preprint arXiv:1701.06972, 2017.

MathWorks. Matlab optimization toolbox (r2019a), 2019. The MathWorks, Natick, MA, USA.

13

Published as a conference paper at ICLR 2020

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean
Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik
Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh
Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, January 2017. ISSN 2376-5992. doi:
10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103.

Joel Moses. Macsyma - the fifth year. SIGSAM Bull., 8(3):105–110, August 1974. ISSN 0163-5824.

Myle Ott, Michael Auli, David Grangier, et al. Analyzing uncertainty in neural machine translation.
In International Conference on Machine Learning, pp. 3953–3962, 2018.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pp. 311–318. Association for Computational Linguistics, 2002.

Robert H. Risch. The solution of the problem of integration in finite terms. Bull. Amer. Math. Soc.,
76(3):605–608, 05 1970.

David E. Rumelhart, James L. McClelland, and CORPORATE PDP Research Group (eds.). Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations. MIT
Press, Cambridge, MA, USA, 1986. ISBN 0-262-68053-X.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. In International Conference on Learning Representations,
2019.

N. J. A. Sloane. The encyclopedia of integer sequences, 1996.

Richard P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge University Press, New York,
NY, USA, 2nd edition, 2011. ISBN 1107602629, 9781107602625.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems, pp. 3104–3112, 2014.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations from
tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566, 2015.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic
logic units. In Advances in Neural Information Processing Systems, pp. 8035–8044, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 6000–6010, 2017.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. Grammar
as a foreign language. In Advances in neural information processing systems, pp. 2773–2781,
2015.

H.S. Wilf. generatingfunctionology: Third Edition. CRC Press, 2005. ISBN 978-1-4398-6439-5.
URL https://www.math.upenn.edu/ wilf/gfologyLinked2.pdf.

Wolfram-Research. Mathematica, version 12.0, 2019. Champaign, IL, 2019.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Wojciech Zaremba, Karol Kurach, and Rob Fergus. Learning to discover efficient mathematical
identities. In Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’14, pp. 1278–1286, Cambridge, MA, USA, 2014. MIT Press.

14

Published as a conference paper at ICLR 2020

A A SYNTAX FOR MATHEMATICAL EXPRESSIONS

We represent mathematical expressions as trees with operators as internal nodes, and numbers,
constants or variables, as leaves. By enumerating nodes in prefix order, we transform trees into
sequences suitable for seq2seq architectures.

For this representation to be efficient, we want expressions, trees and sequences to be in a one-to-one
correspondence. Different expressions will always result in different trees and sequences, but for the
reverse to hold, we need to take care of a few special cases.

First, expressions like sums and products may correspond to several trees. For instance, the expression
2 + 3 + 5 can be represented as any one of those trees:

+

2 3 5

+

+

2 3

5

+

2 +

3 5

We will assume that all operators have at most two operands, and that, in case of doubt, they are
associative to the right. 2 + 3 + 5 would then correspond to the rightmost tree.

Second, the distinction between internal nodes (operators) and leaves (mathematical primitive objects)
is somewhat arbitrary. For instance, the number −2 could be represented as a basic object, or as a
unary minus operator applied to the number 2. Similarly, there are several ways to represent

√
5,

42x5, or the function log10. For simplicity, we only consider numbers, constants and variables as
possible leaves, and avoid using a unary minus. In particular, expressions like −x are represented as
−1× x. Here are the trees for −2,

√
5, 42x5 and −x:

−2 sqrt

5

×

42 pow

x 5

×

−1 x

Integers are represented in positional notation, as a sign followed by a sequence of digits (from 0 to 9
in base 10). For instance, 2354 and −34 are represented as +2 3 5 4 and − 3 4. For zero, a unique
representation is chosen (+0 or −0).

B MATHEMATICAL DERIVATIONS OF THE PROBLEM SPACE SIZE

In this section, we investigate the size of the problem space by computing the number of expressions
with n internal nodes. We first deal with the simpler case where we only have binary operators
(p1 = 0), then consider trees and expressions composed of unary and binary operators. In each case,
we calculate a generating function (Flajolet & Sedgewick, 2009; Wilf, 2005) from which we derive a
closed formula or recurrence on the number of expressions, and an asymptotic expansion.

B.1 BINARY TREES AND EXPRESSIONS

The main part of this derivation follows (Knuth, 1997) (pages 388-389).

Generating function Let bn be the number of binary trees with n internal nodes. We have b0 = 1
and b1 = 1. Any binary tree with n internal nodes can be generated by concatenating a left and a
right subtree with k and n− 1− k internal nodes respectively. By summing over all possible values
of k, we have that:

bn = b0bn−1 + b1bn−2 + · · ·+ bn−2b1 + bn−1b0

Let B(z) be the generating function of bn, B(z) = b0 + b1z + b2z
2 + b3z

3 + . . .

15

Published as a conference paper at ICLR 2020

B(z)2 = b0
2 + (b0b1 + b1b0)z + (b0b2 + b1b1 + b2b0)z

2 + . . .

= b1 + b2z + b3z
2 + . . .

=
B(z)− b0

z

So, zB(z)2 −B(z) + 1 = 0. Solving for B(z) gives:

B(z) =
1±
√
1− 4z

2z

and since B(0) = b0 = 1, we derive the generating function for sequence bn

B(z) =
1−
√
1− 4z

2z

We now derive a closed formula for bn. By the binomial theorem,

B(z) =
1

2z

(
1−

∞∑
k=0

(
1/2

k

)
(−4z)k

)

=
1

2z

(
1 +

∞∑
k=0

1

2k − 1

(
2k

k

)
zk

)

=
1

2z

∞∑
k=1

1

2k − 1

(
2k

k

)
zk

=

∞∑
k=1

1

2(2k − 1)

(
2k

k

)
zk−1

=

∞∑
k=0

1

2(2k + 1)

(
2k + 2

k + 1

)
zk

=

∞∑
k=0

1

k + 1

(
2k

k

)
zk

Therefore

bn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!

These are the Catalan numbers, a closed formula for the number of binary trees with n internal nodes.
We now observe that a binary tree with n internal nodes has exactly n+ 1 leaves. Since each node in
a binary tree can represent p2 operators, and each leaf can take L values, we have that a tree with n
nodes can take pn2L

n+1 possible combinations of operators and leaves. As a result, the number of
binary expressions with n operators is given by:

En =
(2n)!

(n+ 1)!n!
pn2L

n+1

Asymptotic estimate To derive an asymptotic approximation of bn, we apply the Stirling formula:

n! ≈
√
2πn

(n
e

)n
so

(
2n

n

)
≈ 4n√

πn
and bn ≈

4n

n
√
πn

Finally, we have the following formulas for the number of expressions with n internal nodes:

En ≈
1

n
√
πn

(4p2)
nLn+1

16

Published as a conference paper at ICLR 2020

B.2 UNARY-BINARY TREES

Generating function Let sn be the number of unary-binary trees (i.e. trees where internal nodes
can have one or two children) with n internal nodes. We have s0 = 1 and s1 = 2 (the only internal
node is either unary or binary).

Any tree with n internal nodes is obtained either by adding a unary internal node at the root of a tree
with n− 1 internal nodes, or by concatenating with a binary operator a left and a right subtree with k
and n− 1− k internal nodes respectively. Summing up as before, we have:

sn = sn−1 + s0sn−1 + s1sn−2 + · · ·+ sn−1s0

Let S(z) be the generating function of the sn. The above formula translates into

S(z)2 =
S(z)− s0

z
− S(z)

zS(z)
2
+ (z − 1)S(z) + 1 = 0

solving and taking into account the fact that S(0) = 1, we obtain the generating function of the sn

S(z) =
1− z −

√
1− 6z + z2

2z

The numbers sn generated by S(z) are known as the Schroeder numbers (OEIS A006318) (Sloane,
1996). They appear in different combinatorial problems (Stanley, 2011). Notably, they correspond to
the number of paths from (0, 0) to (n, n) of a n× n grid, moving north, east, or northeast, and never
rising above the diagonal.

Calculation Schroeder numbers do not have a simple closed formula, but a recurrence allowing for
their calculation can be derived from their generating function. Rewriting S(z) as

2zS(z) + z − 1 = −
√
1− 6z + z2

and differentiating, we have

2zS′(z) + 2S(z) + 1 =
3− z√

1− 6z + z2
=

3− z
1− 6z + z2

(1− z − 2zS(z))

2zS′(z) + 2S(z)

(
1 +

3z − z2

1− 6z + z2

)
=

(3− z)(1− z)
1− 6z + z2

− 1

2zS′(z) + 2S(z)
1− 3z

1− 6z + z2
=

2 + 2z

1− 6z + z2

z(1− 6z + z2)S′(z) + (1− 3z)S(z) = 1 + z

Replacing S(z) and S′(z) with their n-th coefficient yields, for n > 1

nsn − 6(n− 1)sn−1 + (n− 2)sn−2 + sn − 3sn−1 = 0

(n+ 1)sn = 3(2n− 1)sn−1 − (n− 2)sn−2

Together with s0 = 1 and s1 = 2, this allows for fast (O(n)) calculation of Schroeder numbers.

Asymptotic estimate To derive an asymptotic formula of sn, we develop the generating function
around its smallest singularity (Flajolet & Odlyzko, 1990), i.e. the radius of convergence of the power
series. Since

1− 6z + z2 =
(
1− (3−

√
8)z
)(

1− (3 +
√
8)z
)

The smallest singular value is

r1 =
1

(3 +
√
8)

and the asymptotic formula will have the exponential term

r−n1 = (3 +
√
8)n = (1 +

√
2)2n

17

Published as a conference paper at ICLR 2020

In a neighborhood of r1, the generating function can be rewritten as

S(z) ≈ (1 +
√
2)

(
1− 21/4

√
1− (3 +

√
8)z

)
+O(1− (3 +

√
8)z)3/2

Since
[zn]
√
1− az ≈ − an√

4πn3

where [zn]F (z) denotes the n-th coefficient in the formal series of F, we have

sn ≈
(1 +

√
2)(3 +

√
8)n

23/4
√
πn3

=
(1 +

√
2)2n+1

23/4
√
πn3

Comparing with the number of binary trees, we have
sn ≈ 1.44(1.46)nbn

B.3 UNARY-BINARY EXPRESSIONS

In the binary case, the number of expressions can be derived from the number of trees. This cannot
be done in the unary-binary case, as the number of leaves in a tree with n internal nodes depends on
the number of binary operators (n2 + 1).

Generating function The number of trees with n internal nodes and n2 binary operators can be
derived from the following observation: any unary-binary tree with n2 binary internal nodes can be
generated from a binary tree by adding unary internal nodes. Each node in the binary tree can receive
one or several unary parents.

Since the binary tree has 2n2+1 nodes and the number of unary internal nodes to be added is n−n2,
the number of unary-binary trees that can be created from a specific binary tree is the number of
multisets with 2n2 + 1 elements on n− n2 symbols, that is(

n+ n2
n− n2

)
=

(
n+ n2
2n2

)
If bq denotes the q-th Catalan number, the number of trees with n2 binary operators among n is(

n+ n2
2n2

)
bn2

Since such trees have n2 + 1 leaves, with L leaves, p2 binary and p1 unary operators to choose from,
the number of expressions is

E(n, n2) =

(
n+ n2
2n2

)
bn2

pn2
2 pn−n2

1 Ln2+1

Summing over all values of n2 (from 0 to n) yields the number of different expressions

En =

n∑
n2=0

(
n+ n2
2n2

)
bn2p

n2
2 pn−n2

1 Ln2+1zn

Let E(z) be the corresponding generating function.

E(z) =

∞∑
n=0

Enz
n

=

∞∑
n=0

n∑
n2=0

(
n+ n2
2n2

)
bn2

pn2
2 pn−n2

1 Ln2+1zn

= L

∞∑
n=0

n∑
n2=0

(
n+ n2
2n2

)
bn2

(
Lp2
p1

)n2

pn1 z
n

= L

∞∑
n=0

∞∑
n2=0

(
n+ n2
2n2

)
bn2

(
Lp2
p1

)n2

(p1z)
n

18

Published as a conference paper at ICLR 2020

since
(
n+n2

2n2

)
= 0 when n > n2

E(z) = L

∞∑
n2=0

bn2

(
Lp2
p1

)n2 ∞∑
n=0

(
n+ n2
2n2

)
(p1z)

n

= L

∞∑
n2=0

bn2

(
Lp2
p1

)n2 ∞∑
n=0

(
n+ 2n2
2n2

)
(p1z)

n+n2

= L

∞∑
n2=0

bn2
(Lp2z)

n2

∞∑
n=0

(
n+ 2n2
2n2

)
(p1z)

n

applying the binomial formula

E(z) = L

∞∑
n2=0

bn2
(Lp2z)

n2
1

(1− p1z)2n2+1

=
L

1− p1z

∞∑
n2=0

bn2

(
Lp2z

(1− p1z)2

)n2

applying the generating function for binary trees

E(z) =
L

1− p1z

1−
√
1− 4 Lp2z

(1−p1z)2

2 Lp2z
(1−p1z)2


=

1− p1z
2p2z

(
1−

√
1− 4

Lp2z

(1− p1z)2

)

=
1− p1z −

√
(1− p1z)2 − 4Lp2z

2p2z

Reducing, we have

E(z) =
1− p1z −

√
1− 2(p1 + 2Lp2k)z + p1z2

2p2z

Calculation As before, there is no closed simple formula for En, but we can derive a recurrence
formula by differentiating the generating function, rewritten as

2p2zE(z) + p1z − 1 = −
√

1− 2(p1 + 2p2L)z + p1z2

2p2zE
′(z) + 2p2E(z) + p1 =

p1 + 2p2L− p1z√
1− 2(p1 + 2p2L)z + p1z2

2p2zE
′(z) + 2p2E(z) + p1 =

(p1 + 2p2L− p1z)(1− p1z − 2p2zE(z))

1− 2(p1 + 2p2L)z + p1z2

2p2zE
′(z) + 2p2E(z)

(
1 +

z(p1 + 2p2L− p1z)
1− 2(p1 + 2p2L)z + p1z2

)
=

(p1 + 2p2L− p1z)(1− p1z)
1− 2(p1 + 2p2L)z + p1z2

− p1

2p2zE
′(z) + 2p2E(z)

(
1− (p1 + 2p2L)z

1− 2(p1 + 2p2L)z + p1z2

)
=

2p2L(1 + p1z) + p1(p1 − 1)z

1− 2(p1 + 2p2L)z + p1z2

2p2zE
′(z)(1− 2(p1 + 2p2L)z + p1z

2) + 2p2E(z)(1− (p1 + 2p2L)z) = (2p2L(1 + p1z) + p1(p1 − 1)z)

replacing E(z) and E′(z) with their coefficients
2p2(nEn − 2(p1 + 2p2L)(n− 1)En−1 + p1(n− 2)E(n− 2)) + 2p2(En − (p1 + 2p2L)En−1) = 0

(n+ 1)En − (p1 + 2p2L)(2n− 1)En−1 + p1(n− 2)En−2 = 0

(n+ 1)En = (p1 + 2p2L)(2n− 1)En−1 − p1(n− 2)En−2

19

Published as a conference paper at ICLR 2020

which together with

E0 = L

E1 = (p1 + p2L)L

provides a formula for calculating En.

Asymptotic estimate As before, approximations of En for large n can be found by developing
E(z) in the neighbourhood of the root with the smallest module of

1− 2(p1 + 2p2L)z + p1z
2

The roots are
r1 =

p1

p1 + 2p2L−
√
p21 + 4p22L

2 + 4p2p1L− p1

r2 =
p1

p1 + 2p2L+
√
p21 + 4p22L

2 + 4p2p1L− p1
both are positive and the smallest one is r2

To alleviate notation, let

δ =
√
p21 + 4p22L

2 + 4p2p1L− p1

r2 =
p1

p1 + 2p2L+ δ

developing E(z) near r2,

E(z) ≈
1− p1r2 −

√
1− r2(p1+2p2L−δ

p1
)
√

1− z
r2

2p2r2
+O(1− z

r2
)3/2

E(z) ≈
p1 + 2p2L+ δ − p21 −

√
p1 + 2p2L+ δ

√
2δ
√

1− z
r2

2p2p1
+O(1− z

r2
)3/2

and therefore

En ≈
√
δr
−n− 1

2
2

2p2
√
2πp1n3

=

√
δ

2p2
√
2πn3

(p1 + 2p2L+ δ)n+
1
2

pn+1
1

C GENERATING RANDOM EXPRESSIONS

In this section we present algorithms to generate random expressions with n internal nodes. We
achieve this by generating random trees, and selecting randomly their nodes and leaves. We begin
with the simpler binary case (p1 = 0).

C.1 BINARY TREES

To generate a random binary tree with n internal nodes, we use the following one-pass procedure.
Starting with an empty root node, we determine at each step the position of the next internal nodes
among the empty nodes, and repeat until all internal nodes are allocated.

Start with an empty node, set e = 1;
while n > 0 do

Sample a position k from K(e, n);
Sample the k next empty nodes as leaves;
Sample an operator, create two empty children;
Set e = e− k + 1 and n = n− 1;

end
Algorithm 1: Generate a random binary tree

20

Published as a conference paper at ICLR 2020

We denote by e the number of empty nodes, by n > 0 the number of operators yet to be generated,
and by K(e, n) the probability distribution of the position (0-indexed) of the next internal node to
allocate.

To calculate K(e, n), let us define D(e, n), the number of different binary subtrees that can be
generated from e empty elements, with n internal nodes to generate. We have

D(0, n) = 0

D(e, 0) = 1

D(e, n) = D(e− 1, n) +D(e+ 1, n− 1)

The first equation states that no tree can be generated with zero empty node and n > 0 operators. The
second equation says that if no operator is to be allocated, empty nodes must all be leaves and there
is only one possible tree. The last equation states that if we have e > 0 empty nodes, the first one is
either a leaf (and there are D(e− 1, n) such trees) or an internal node (D(e+ 1, n− 1) trees). This
allows us to compute D(e, n) for all e and n.

To calculate distribution K(e, n), observe that among the D(e, n) trees with e empty nodes and n
operators, D(e+ 1, n− 1) have a binary node in their first position. Therefore

P (K(e, n) = 0) =
D(e+ 1, n− 1)

D(e, n)

Of the remaining D(e − 1, n) trees, D(e, n − 1) have a binary node in their first position (same
argument for e− 1), that is

P (K(e, n) = 1) =
D(e, n− 1)

D(e, n)

By induction over k, we have the general formula

P
(
K(e, n) = k

)
=
D(e− k + 1, n− 1)

D(e, n)

C.2 UNARY-BINARY TREES

In the general case, internal nodes can be of two types: unary or binary. We adapt the previous
algorithm by considering the two-dimensional probability distribution L(e, n) of position (0-indexed)
and arity of the next internal node (i.e. P (L(e, n) = (k, a) is the probability that the next internal
node is in position k and has arity a).

Start with an empty node, set e = 1;
while n > 0 do

Sample a position k and arity a from L(e, n) (if a = 1 the next internal node is unary);
Sample the k next empty nodes as leaves;
if a = 1 then

Sample a unary operator;
Create one empty child;
Set e = e− k;

end
else

Sample a binary operator;
Create two empty children;
Set e = e− k + 1;

end
Set n = n− 1;

end
Algorithm 2: Generate a random unary-binary tree

21

Published as a conference paper at ICLR 2020

To compute L(e, n), we derive D(e, n), the number of subtrees with n internal nodes that can be
generated from e empty nodes. We have, for all n > 0 and e:

D(0, n) = 0

D(e, 0) = 1

D(e, n) = D(e− 1, n) +D(e, n− 1) +D(e+ 1, n− 1)

The first equation states that no tree can be generated with zero empty node and n > 0 operators.
The second says that if no operator is to be allocated, empty nodes must all be leaves and there is
only one possible tree. The third equation states that with e > 0 empty nodes, the first one will either
be a leaf (D(e − 1, n) possible trees), a unary operator (D(e, n − 1) trees), or a binary operator
(D(e+ 1, n− 1) trees).

To derive L(e, n), we observe that among the D(e, n) subtrees with e empty nodes and n internal
nodes to be generated, D(e, n− 1) have a unary operator in position zero, and D(e+ 1, n− 1) have
a binary operator in position zero. As a result, we have

P
(
L(e, n) = (0, 1)

)
=
D(e, n− 1)

D(e, n)
and P

(
L(e, n) = (0, 2)

)
=
D(e+ 1, n− 1)

D(e, n)

As in the binary case, we can generalize these probabilities to all positions k in {0 . . . e− 1}

P
(
L(e, n) = (k, 1)

)
=
D(e− k, n− 1)

D(e, n)
and P

(
L(e, n) = (k, 2)

)
=
D(e− k + 1, n− 1)

D(e, n)

C.3 SAMPLING EXPRESSIONS

To generate expressions, we sample random trees (binary, or unary binary), that we “decorate” by
randomly selecting their internal nodes and leaves from a list of possible operators or mathematical
entities (integers, variables, constants).

Nodes and leaves can be selected uniformly, or according to a prior probability. For instance, integers
between −a and a could be sampled so that small absolute values are more frequent than large ones.
For operators, addition and multiplication could be more common than substraction and division.

If all L leaves, p1 and p2 operators are equiprobable, an alternative approach to generation can be
defined by computing D(e, n) as

D(0, n) = 0

D(e, 0) = Le

D(e, n) = LD(e− 1, n) + p1D(e, n− 1) + p2D(e+ 1, n− 1)

and normalizing the probabilities P (L(e, n)) as

P
(
L(e, n) = (k, 1)

)
=
LeD(e− k, n− 1)

D(e, n)
and P

(
L(e, n) = (k, 2)

)
=
LeD(e− k + 1, n− 1)

D(e, n)

Samples then become dependent on the number of possible leaves and operators.

D IMPACT OF TIMEOUT ON MATHEMATICA

In the case of Mathematica, we use function DSolve to solve differential equations, and function
Integrate to integrate functions. Since computations can take a long time, we set a finite timeout to
limit the time spent on each equation. Table 8 shows the impact of the timeout value on the accuracy
with Mathematica. Increasing the timeout delay naturally improves the accuracy. With a timeout
of 30 seconds, Mathematica times out on 20% of unsolved equations. With a limit of 3 minutes,
timeouts represent about 10% of failed equations. This indicates that even in the ideal scenario where
Mathematica would succeed on all equations where it times out, the accuracy would not exceed
86.2%.

22

Published as a conference paper at ICLR 2020

Timeout (s) Success Failure Timeout

5 77.8 9.8 12.4
10 82.2 11.6 6.2
30 84.0 12.8 3.2
60 84.4 13.4 2.2
180 84.6 13.8 1.6

Table 8: Accuracy of Mathematica on 500 functions to integrate, for different timeout values. As the
timeout delay increases, the percentage of failures due to timeouts decreases. With a limit of 3 minutes, timeouts
only represent 10% of failures. As a result, the accuracy without timeout would not exceed 86.2%.

E GENERALIZATION ACROSS GENERATORS

On the integration problem, we achieve (c.f. Table 6) near perfect performance when the training and
test data are generated by the same method (either FWD, BWD, or IBP). Given the relatively small
size of the training set (4.107 examples), the model cannot overfit to the entire problem space (1034
possible expressions). This shows that:

• Our model generalizes well to functions created by the training generator.
• This property holds for the three considered generators, FWD, BWD, and IBP.

Table 6 also measures the ability of our model to generalize across generators. A FWD-trained model
achieves a low performance (17.2% with beam 50) on a BWD-generated test set. A BWD-trained
model does a little better on the FWD test set (27.5%), but accuracy remains low. On the other
hand, FWD-trained models achieve very good accuracy over an IBP-generated test set (88.9%), and
BWD-trained models stand in the middle (59.2%).

Figure 2 provides an explanation for these results. The input/output pairs produced by FWD and BWD
have very different distributions: integration tends to shorten BWD generated expressions, and to
expand FWD generated expressions. As a result, a model trained on BWD generated data will learn
this shortening feature of integration, which will prove wrong on a FWD test set. Similar problems
will happen on a FWD trained model with a BWD test set. Since IBP keeps average expression lengths
unchanged, BWD and FWD-trained models will generalize better to IBP test sets (and be more accurate
on FWD-trained models, since their input length distributions are closer).

0 20 40 60 80 100
Number of tokens

0.00

0.02

0.04

0.06

De
ns

ity

Length of derivatives
Forward
Backward
Integration by parts

0 20 40 60 80 100
Number of tokens

0.00

0.01

0.02

0.03

0.04

De
ns

ity

Length of integrals
Forward
Backward
Integration by parts

Figure 2: Distribution of input and output lengths for different integration datasets. The FWD generator
produces short problems with long solutions. Conversely, the BWD generator creates long problems, with short
solutions. The IBP approach stands in the middle, and generates short problems with short solutions.

This suggests that what looks at first glance like a generalization problem (bad accuracy of BWD-
trained models on FWD generated sets, and the converse) is in fact a consequence of data generation.
BWD and FWD methods generate training sets with specific properties, that our model will learn. But
this can be addressed by adding IBP or FWD data to the BWD dataset, as shown in the two last lines
of Table 6. In practice, a better approach could be implemented with self-supervised learning, where
new training examples are generated by the model itself.

23

Published as a conference paper at ICLR 2020

Functions and their primitives generated with the forward approach (FWD)

cos-1(x) x cos-1(x)−
√

1− x2

x (2x+ cos (2x))
2x3

3
+

x sin (2x)

2
+

cos (2x)

4

x (x+ 4)

x+ 2

x2

2
+ 2x− 4 log (x+ 2)

cos (2x)

sin (x)

log (cos (x)− 1)

2
− log (cos (x) + 1)

2
+ 2 cos (x)

3x2 sinh-1 (2x) x3 sinh-1 (2x)− x2
√
4x2 + 1

6
+

√
4x2 + 1

12

x3 log
(
x2)4 x4 log

(
x2
)4

4
−

x4 log
(
x2
)3

2
+

3x4 log
(
x2
)2

4
−

3x4 log
(
x2
)

4
+

3x4

8

Functions and their primitives generated with the backward approach (BWD)

cos (x) + tan2 (x) + 2 x+ sin (x) + tan (x)

1

x2
√
x− 1

√
x+ 1

√
x− 1

√
x+ 1

x(
2x

cos2 (x)
+ tan (x)

)
tan (x) x tan2 (x)

x tan
(

ex

x

)
+ (x−1)ex

cos2 (ex

x)

x
x tan

(
ex

x

)
1 +

1

log (log (x))
− 1

log (x) log (log (x))2
x+

x

log (log (x))

−2x2 sin
(
x2) tan (x) + x

(
tan2 (x) + 1

)
cos
(
x2)+ cos

(
x2) tan (x) x cos

(
x2) tan (x)

Functions and their primitives generated with the integration by parts approach (IBP)

x (x+ log (x))
x2 (4x+ 6 log (x)− 3)

12

x

(x+ 3)2
−x+ (x+ 3) log (x+ 3)

x+ 3

x+
√
2

cos2 (x)

(
x+
√
2
)
tan (x) + log (cos (x))

x (2x+ 5) (3x+ 2 log (x) + 1)
x2
(
27x2 + 24x log (x) + 94x+ 90 log (x)

)
18(

x− 2x
sin2 (x)

+ 1
tan (x)

)
log (x)

sin (x)

x log (x) + tan (x)

sin (x) tan (x)

x3 sinh (x) x3 cosh (x)− 3x2 sinh (x) + 6x cosh (x)− 6 sinh (x)

Table 9: Examples of functions with their integrals, generated by our FWD, BWD and IBP approaches.
We observe that the FWD and IBP approaches tend to generate short functions, with long integrals, while the
BWD approach generates short functions with long derivatives.

24

