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ABSTRACT

This paper establishes rates of universal approximation for the shallow neural
tangent kernel (NTK): network weights are only allowed microscopic changes from
random initialization, which entails that activations are mostly unchanged, and
the network is nearly equivalent to its linearization. Concretely, the paper has two
main contributions: a generic scheme to approximate functions with the NTK by
sampling from transport mappings between the initial weights and their desired
values, and the construction of transport mappings via Fourier transforms. Regard-
ing the first contribution, the proof scheme provides another perspective on how the
NTK regime arises from rescaling: redundancy in the weights due to resampling
allows individual weights to be scaled down. Regarding the second contribution,
the most notable transport mapping asserts that roughly 1/δ10d nodes are sufficient
to approximate continuous functions, where δ depends on the continuity properties
of the target function. By contrast, nearly the same proof yields a bound of 1/δ2d

for shallow ReLU networks; this gap suggests a tantalizing direction for future
work, separating shallow ReLU networks and their linearization.

1 MAIN RESULT AND OVERVIEW

Consider functions computed by a single ReLU layer, meaning

x 7→
m∑
j=1

sjσ
(〈
wj , x

〉
+ bj

)
, (1.1)

where σ(z) := max{0, z}. While shallow networks are celebrated as being universal approximators
(Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989) — they approximate continuous functions
arbitrarily well over compact sets — what is more shocking is that gradient descent can learn the
parameters to these networks, and they generalize (Zhang et al., 2016).

Working towards an understanding of gradient descent on shallow (and deep!) networks, researchers
began investigating the neural tangent kernel (NTK) (Jacot et al., 2018; Du et al., 2018; Allen-Zhu
et al., 2018), which replaces a network with its linearization at initialization, meaning

x 7→ ε√
m

m∑
j=1

sj
〈
τj , x̃

〉
σ′
(〈
w̃j , x̃

〉)
, where x̃ = (x, 1) ∈ Rd+1, w̃ = (w, b) ∈ Rd+1; (1.2)

here each w̃j = (wj , bj) is frozen at Gaussian initialization (henceforth the bias is collapsed in for
convenience), and each transported weight τj is microscopically close to the corresponding initial
weight w̃j , concretely ‖τj − w̃j‖ = O(1/ε

√
m), where ε > 0 is a parameter and the scaling ε/

√
m is

conventional in this literature (Allen-Zhu et al., 2018).

As eq. (1.2) is merely affine in the parameters, it is not outlandish that gradient descent can be
analyzed. What is outlandish is firstly that gradient descent on eq. (1.1) with small learning rate will
track the behavior of eq. (1.2), and secondly the weights hardly change as a function ofm, specifically
‖τj − w̃j‖2 = O(1/ε

√
m).
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Contributions. This work provides rates of function approximation for the NTK as defined in
eq. (1.2), moreover in the “NTK setting”: the transported weights must be near initialization, meaning
‖τj − w̃j‖ = Õ(1/ε

√
m). In more detail:

Continuous functions (cf. Theorem 1.5). The main theorem packages the primary tools here to
say: the NTK can approximate continuous functions arbitrarily well, so long as the width is
at least 1/δ10d, where δ depends on continuity properties of the target function; moreover,
the transports satisfy ‖τj − w̃j‖ = O(1/ε

√
m), and the ReLU network (eq. (1.1)) and its

linearization (eq. (1.2)) stay close. Re-using many parts of the proof, a nearly-optimal rate
1/δ2d is exhibited for ReLU networks in Theorem E.1; this gap between ReLU networks and
their NTK poses a tantalizing gap for future work.

Approximation via sampling of transport mappings. The first component of the proof of Theo-
rem 1.5, detailed in Section 2, is a procedure which starts with an infinite width network,
and describes how sampling introduces redundancy in the weights, and automatically leads
to the desired microscopic transports ‖τj − w̃j‖ = O(1/ε

√
m). As detailed in Theorem 2.1,

the error between the infinite width and sampled networks is Õ(ε+ 1/
√
m). In this way, the

analysis provides another perspective on the scaling behavior and small weight changes of
the NTK.

Construction of transport mappings. The second component of the proof of Theorem 1.5, detailed
in Section 3, is to construct explicit transport mappings for various types of functions. As
detailed in Lemma 3.3, approximating continuous functions proceeds by constructing an
infinite width network not directly for the target function f , but instead its convolution
f ∗Gα with a Gaussian Gα with tiny variance α2. Care is needed in order to obtain a rate
of the form 1/δO(d), rather than, say, 1/δO(d/δ). The main constructions are based on Fourier
transforms.

Rounding out the organization of this paper: this introduction will state the main summarizing result
and its intuition, and then close with related work; Section 4 will describe certain odds and ends
for approximating continuous functions which were left out from the main tools in Section 2 and
Section 3; Section 5 sketches abstract approaches to constructing transport mappings, including ones
based on a corresponding Hilbert space; Section 6 will conclude with open problems and related
discussion. Proofs are sketched in the paper body, but details are deferred to the appendices.

1.1 BASIC NOTATION, INTUITION, AND MAIN RESULT

The NTK views networks as finite width realizations of intrinsically infinite width objects. In order
to transport an infinite number of parameters away from their initialization, one option is to use a
transport mapping T : Rd+1 → Rd+1 to show where weights should go:

x 7→ Ew̃
〈
T (w̃),Φ(x; w̃)

〉
= Ew̃

〈
T (w̃), x̃

〉
σ′(〈w̃, x̃〉) = Ew̃

〈
T (w̃), x̃

〉
1
[
〈w̃, x̃〉 ≥ 0

]
,

where Φ(x; w̃) = x̃σ′(〈w̃, x̃〉) is a random feature representation of x (Rahimi & Recht, 2008). This
abstracts the individual transported weights (τj)

m
j=1 from before into transported weights defined

over arbitrary weights w̃ ∈ Rd+1. These (augmented) weights w̃ = (w, b) (with weight w ∈ Rd and
bias b ∈ R) will always be distributed according to a standard Gaussian with identity covariance,
with G denoting the density and probability law simultaneously.

A key message of this work, developed in Section 2, is (a) the infinite width network can be sampled
to give rates of approximation by finite width networks, (b) the microscopic adjustments of the NTK
setting arise naturally from the sampling process! Indeed, letting s ∈ {−1,+1} denote a uniformly
distributed random sign,

Ẽ
w

〈
T (w̃),Φ(x; w̃)

〉
= Ẽ
w,s

〈
s2T (w̃) + sw̃ε

√
m,Φ(x; w̃)

〉
∵ E s2 = 1,E s = 0

≈
1

m

m∑
j=1

〈
s2jT (w̃j) + sjw̃jε

√
m,Φ(x; w̃j)

〉
sampling (wj , sj)

=
ε

√
m

m∑
j=1

〈
sjT (w̃j)

ε
√
m

+ w̃j , sjΦ(x; w̃j)

〉
.

(1.3)
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As highlighted by the bolded terms: increasing the width m corresponds to resampling, and allows
the transported weights to be scaled down! Indeed, the distance moved is O(1/ε

√
m) by construction.

To this end, for convenience define

τj := Tε(w̃j , sj) :=
sjT (w̃j)

ε
√
m

+ w̃j1[‖w̃j‖ ≤ R],

φj(x) := Φε(x; w̃j , sj) :=
εsj√
m

Φ(x; w̃j) =
εsj√
m
x̃σ′(

〈
w̃j , x̃

〉
),

(1.4)

where R is a truncation radius included for purely technical reasons. The transport mappings
constructed in Section 3 satisfy B := supw̃ ‖T (w̃)‖ < ∞, and thus maxj ‖τj − w̃j‖ ≤ B/ε

√
m by

construction as promised (with high probability).

The key message of Section 2 is to control the deviations of this process, culminating in Theorem 2.1
and also Theorem 1.5 below, which yields upper bounds on the width necessary to approximate
infinite width networks. The notion of approximation here will follow (Barron, 1993) and use the
L2(P ) metric, where P is a probability measure on the ball {x ∈ Rd : ‖x‖ ≤ 1}:

‖h‖L2(P ) =

√∫
h(x)2 dP (x).

Additionally ‖h‖L2
=
√∫

h(x)2 dx and ‖h‖L1
=
∫
|h(x)|dx will respectively denote the usual L2

and L1 metrics over functions on Rd.
Theorem 1.5 (Simplification of Theorems 2.1 and 4.3). Let continuous function f : Rd → R be given,
along with δ ∈ (0, 1] so that |f(x)−f(x′)| ≤ εwhenever ‖x−x′‖2 ≤ δ and max{‖x‖, ‖x′‖} ≤ 1+δ.
Let P be any probability distribution over ‖x‖ ≤ 1. Then there exists a transport mapping T (defining
Tε and τj as in eq. (1.4)) and associated scalars

B := sup
w̃
‖T (w̃)‖2 = Õ

(
M5d(5d+9)/2

ε4δ5(d+1)

)
, where M := sup

‖x‖≤1+δ
|f(x)|,

so that with probability at least 1− 3η over Gaussian weights (w̃j)
m
j=1 and uniform signs (sj)

m
j=1,

then maxj ‖τj − w̃j‖ ≤ B/ε
√
m, and∥∥∥∥∥∥f −

m∑
j=1

〈
τj , φj(·)

〉∥∥∥∥∥∥
L2(P )

≤ Õ

([
B√
m

+ ε
√
d

]√
ln(1/η)

)
,

∥∥∥∥∥∥ ε√
m

m∑
j=1

sjσ(
〈
τj , x̃

〉
)−

m∑
j=1

〈
τj , φj(·)

〉∥∥∥∥∥∥
L2(P )

≤ Õ

[ B2

εm3/2
+
B
√
d

m
+

B√
m

+ ε
√
d

]√
ln(1/η)

 .

In words: given an arbitrary target function f and associated continuity parameter δ, width (B/ε)2 =

Õ(d5d+9/ε10δ10(d+1)) suffices for error Õ(ε), parameters are close to initialization, and the NTK and
the original network behave similarly. The randomized construction does not merely give existence,
but holds with high probability: the sampling process is thus in a sense robust, and may be used
algorithmically!

As provided in Theorem 4.5, elements of the proof of Theorem 1.5 can be extracted and converted
into a direct approximation rate of continuous functions by ReLU networks, and the rate becomes
Õ(dd+2/ε2δ2d+2). Since this rate is nearly tight, together these rates pose an interesting question: is
there a purely approximation-theoretic gap between shallow ReLU networks and their NTK?

1.2 RELATED WORK

Optimization literature; the NTK. This work is motivated and inspired by the optimization
literature, which introduced the NTK to study gradient descent in a variety of nearly-parallel works
(Jacot et al., 2018; Du et al., 2018; Du et al., 2018; Allen-Zhu et al., 2018; Arora et al., 2019; Oymak
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& Soltanolkotabi, 2019; Li & Liang, 2018; Cao & Gu, 2019). These works require the network width
to be polynomial in n, the size of the training set; by contrast, the analysis here studies closeness in
function space, and the width instead scales with properties of the target function.

One close relative to the present work is that of (Chizat & Bach, 2019), which provides an abstract
proof scheme following the preceding works, and explains the microscopic change of the weights
as a consequence of the scaling ε/

√
m. This is consistent with the resampling perspective here, as

summarized in eq. (1.3).

Random features and the mean-field perspective. The random features perspective (Rahimi &
Recht, 2008) studies a related convex problem: similarly to the NTK, the activations σ′(

〈
w̃j , x̃

〉
) are

held fixed, and what are trained are scalar weights aj ∈ R on each feature. The Fourier transport map
construction used both for the NTK here in Theorem 1.5 and for shallow networks in Theorem E.1
proceeds by constructing exactly such a reweighting, and thus the present work also establishes
universal approximation properties of random features. A related perspective is presented in the
mean-field literature, which relate gradient descent on (w̃j)

m
j=1 to a Wasserstein flow in the space of

distributions on these features (Chizat & Bach; Mei et al., 2018). The analysis here does not have
any explicit ties to the mean-field literature, however it is interesting and suggestive that transport
mappings appear in both.

Approximation literature. The closest prior work is due to Barron (1993), who gave good rates
of approximation for functions f : Rd → R when the associated quantity

∫
‖w‖ · |f̂(w)|dw is small,

where f̂ denotes the Fourier transform of f . The proofs in Section 3 will use elements from the
proofs in (Barron, 1993), but with many distinct components, and thus it is interesting that the same
quantity

∫
‖w‖ · |f̂(w)|dw arises once again. Like the work of (Barron, 1993), the present work also

chooses to approximate in the L2(P ) metric. Standard classical works in this literature are general
universal approximation guarantees without rates or attention to the weight magnitudes (Cybenko,
1989; Hornik et al., 1989; Funahashi, 1989; Leshno et al., 1993). The rate given here of roughly
1/δ2d in Theorem 4.5 does not seem to appear rigorously in prior work, though it is mentioned as a
consequence of a proof in (Mhaskar & Micchelli, 1992), who also take the approach of approximation
via Gaussian convolutions; the use of convolutions is not only standard (Wendland, 2004), it is
moreover classical, having been used in Weierstrass’s original proof (Weierstrass, 1885).

Many related works use a RKHSes directly. Sun et al. (2018) prove universal approximation (with
rates) via an RKHS, however they do not consider the NTK (or the NTK setting of small weight
changes). Bach (2017a) (see also (Bach, 2017b; Basri et al., 2019; Bietti & Mairal, 2019)) studies a
variety of questions related to function fitting with the random features model, including establishing
rates of approximation for Lipschitz functions on the surface of the sphere (with a few further
conditions); the rates are better than those here (roughly Θ(1/δd/2)), however they do not consider the
NTK setting, meaning either the setting of small changes from initialization nor the linearization.

Another close parallel work studies exact representation power of infinite width networks, developing
representations for functions with Ω(d) derivatives (Ongie et al., 2019); similarly, the constructions
here use an exact representation result for Gaussian convolutions, as developed in Section 3.

Regarding lower bounds from the literature, there are two lower bounds of the form 1/δd/2 for general
shallow networks, not necessarily in the NTK setting (Yarotsky, 2016; Bach, 2017a). Interestingly,
Yarotsky (2016) also presents a lower bound of 1/δd for approximations whose parameters vary
continuously with the target function; this seems to hold for the Fourier constructions here in
Section 3, though an argument needs to be made for the sampling step.

2 SAMPLING FROM A TRANSPORT

This section establishes that by sampling from an infinite width NTK, the resulting finite width NTK
is close in L2(P ) both to the infinite width idealization, and also to the finite width non-linearized
ReLU network; moreover, the sampling process introduces redundancy in the weights, allowing them
to be scaled down and lie close to initialization.
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Theorem 2.1. Suppose B ≥ max
{

2, supw̃ ‖T (w̃)‖2
}

, and set R :=
√
d+ 1 + 2

√
ln(m/η). With

probability at least 1− 3η, then maxj ‖τj − w̃j‖ ≤ B/ε
√
m, and∥∥∥∥∥∥

m∑
j=1

〈
τj , φj(·)

〉
− Ew̃

〈
T (w̃),Φ(·; w̃)

〉∥∥∥∥∥∥
L2(P )

≤ 2

(
B√
m

+ εR

)[
1 +

√
ln(1/η)

]
, (2.2)

∥∥∥∥∥∥
∑
j

〈
τj , φj(·)

〉
−
∑
j

sjε√
m
σ(
〈
τj , ·
〉
)

∥∥∥∥∥∥
L2(P )

≤ 2

(
B2

εm3/2
+
BR

m
+

B√
m

+ εR

)[
1 +

√
ln(1/η)

]
.

(2.3)

As discussed in the introduction, maxj ‖τj − w̃j‖ ≤ B/ε
√
m is essentially by construction. Next,

recall the sampling derivation in eq. (1.3), restated here as a lemma for convenience, the notation
(W, S) collecting all random variables together, meaningW = (w̃1, . . . , w̃m) and S = (s1, . . . , sm).

Lemma 2.4. Ẽ
w

〈
T (w̃),Φ(x; w̃)

〉
= E
W̃ ,S

∑
j

〈
Tε(w̃j , sj),Φε(x; w̃j , sj)

〉
= E
W̃ ,S

∑
j

〈
τj , φj(x)

〉
.

The proof of eq. (2.2) now follows from the classical Maurey sampling lemma (Pisier, 1980), which
was also used in the related work by Barron (1993). The following version additionally includes a
high probability control, which results from an application of McDiarmid’s inequality. Applying the
following sampling lemma to the present setting, the deviations will scale with B := supw̃ ‖T (w̃)‖2.
Lemma 2.5 (Maurey). Let functions {g(·; v) : v ∈ V} be given, where V ⊆ Rp is a set of possible
parameters. Let ν be a probability measure over V , let (v1, . . . , vm) be an iid random draw from ν,
and define

f(x) := E
v∼ν

g(x; v) and gj(x) := g(x; vj).

Then

E
((sj ,vj))mj=1

∥∥∥∥∥∥f − 1

m

m∑
j=1

gj

∥∥∥∥∥∥
2

L2(P )

≤ 1

m
E
v

∥∥g(·; v)
∥∥2
L2(P )

≤ 1

m
sup
v∈V

∥∥g(·; v)
∥∥2
L2(P )

,

and with probability at least 1− η,∥∥∥∥∥∥f − 1

m

m∑
j=1

gj

∥∥∥∥∥∥
L2(P )

≤ sup
v∈V
‖g(·; v)‖L2(P )

[
1 +

√
2 ln(1/η)√
m

]
.

Concretely, here gj(x) = m
〈
τj , φj(x)

〉
, and supv∈V ‖g(·; w̃)‖L2(P ) ≤

√
2 supw̃ ‖T (w̃)‖2 =

O(B +Rε
√
m) by Cauchy-Schwarz. Before continuing, note also that there are other proof schemes

attaining similar bounds (Bach, 2017a;b, Proposition 1), and that similar bounds are possible for the
uniform norm, albeit with more sensitivity to the basis functions g (cf. Lemma B.2).

Turning now to the final bound in eq. (2.3), the first step is to note by positive homogeneity of the
ReLU that σ(

〈
τj , x̃

〉
) =

〈
τj , x̃

〉
σ′(
〈
τj , x̃

〉
), thus

m∑
j=1

〈
τj , φj

〉
− ε√

m

m∑
j=1

sjσ(
〈
τj , x̃

〉
) =

m∑
j=1

〈
τj , φj −

sjε√
m
x̃σ′(

〈
τj , x̃

〉
)

〉
,

which boils down to checking the difference in activations, namely σ′(
〈
w̃j , x̃

〉
)− σ′(

〈
τj , x̃

〉
). As

is standard in the NTK literature, since τj − w̃j is (with high probability) microscopic compared to〈
w̃j , x̃

〉
, the activations should also be close. The following lemma makes this precise.

Lemma 2.6. For any x ∈ Rp, if R ≥
√
d+ 2

√
ln
(
ε
√
mπ

B
√
2

)
(as used in eq. (1.4)), then

Ẽ
w

∣∣∣σ′(〈w̃, x̃〉)− σ′(〈Tε(w̃), x̃
〉
)
∣∣∣ ≤ 2B

√
2

ε
√
mπ

.

From here, the eq. (2.3) can be established with another application of Lemma 2.5. This completes
the proof of Theorem 2.1 after an application of Gaussian concentration to ensure maxj ‖w̃j‖ ≤ R.
This also establishes the first half of Theorem 1.5.
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3 CONCRETE TRANSPORT MAPPINGS VIA FOURIER TRANSFORMS

The previous section showed function approximation in the NTK setting assuming the existence of
an infinite width NTK defined by a transport mapping T ; this section will close the gap by providing
a variety of transport maps.

The transport mappings here will be constructed via Fourier transforms, with convention

f̂(x) =

∫
exp

(
−2πixTw

)
f(x) dx;

a few general properties are summarized in Appendix A. Interestingly, these transports are all random
feature transports: they have the form T (w̃) = (0, · · · , 0, p(w̃)) where p is a signed density over
random features, and Ew̃

〈
T (w̃),Φ(x; w̃)

〉
= Ew̃p(w̃)σ′(〈w̃, x̃〉). This perspective of a signed

density will be used to prove universal approximation — again via sampling! — of shallow ReLU
networks (and random features) later in Theorems 4.5 and E.1. (For constructions which are not
based on random features, see Section 5.)

The first steps of the approach here follow a derivation due to Barron (1993). Specifically, the inverse
Fourier transform gives a way to rewrite a function as an infinite with network with complex-valued
activations x 7→ exp(2πixTw):

f(x) =

∫
exp(2πixTw)f̂(w) dw.

A key trick due to Barron (1993) is to force the right hand side to be real (since the left hand side
is real): specifically, letting f̂(w) = |f̂(w)| exp(2πiθf (w)) with |θf (w)| ≤ 1 denote the radial
decomposition of f̂ ,

Ref(x) = Re
∫

exp(2πixTw)f̂(w) dw

= Re
∫

exp(2πixTw + 2πiθf (w))|f̂(w)|dw

=

∫
cos
(
2π(xTw + θf (w))

)
|f̂(w)|dw.

After this step, the proofs diverge: the approach here is to use the fundamental theorem of calculus to
rewrite cos in terms of σ′:

cos(z)− cos(0) = −
∫ z

0

sin(b) db = −
∫ ∞
0

sin(b)1[z − b ≥ 0] db,= −
∫ ∞
0

sin(b)σ′(z − b) db;

plugging this back in gives an explicit representation of f in terms of an infinite width threshold
network! A similar approach can be used to obtain an infinite width ReLU network.

This is summarized in the following lemma, which includes a calculation of the error incurred
by truncating the weights; this truncation is necessary when applying the sampling of Section 2.
Interestingly, this truncation procedure leads to the quantity

∫
‖w‖ · |f̂(w)|dw, which was explicitly

introduced as a key quantity by Barron (1993) via a different route, namely of introducing a factor
‖w‖ to enforce decay on cos.

Lemma 3.1. Let f : Rd → R be given with Fourier transform f̂ and truncation radius r ∈ [0,∞].

1. Define infinite width threshold network

Fr(x) := f(0) +

∫
|f̂(w)| cos

(
2π(θf (w)− ‖w‖)

)
dw

+ 2π

∫
σ′(〈w̃, x̃〉)|f̂(w)| sin(2π(θf (w)− b))1[|b| ≤ ‖w‖ ≤ r] dw̃.

For any ‖x‖ ≤ 1, F∞ = f and
∣∣f(x)− Fr(x)

∣∣ ≤ 4π
∫
‖w‖>r ‖w‖ · |f̂(w)|dw.
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2. Define infinite width ReLU network

Qr(x) := f(0) +

∫
|f̂(w)|

[
cos(2π(θf (w)− ‖w‖))− 2π‖w‖ sin(2π(θf (w)− ‖w‖))

]
dw

+ xT

∫
w|f̂(w)|dw

+ 4π2

∫
σ(w̃Tx̃)|f̂(w)| cos(2π(‖w‖ − b))1[|b| ≤ ‖w‖ ≤ r] dw̃.

For any ‖x‖ ≤ 1, Q∞ = f and
∣∣f(x)−Qr(x)

∣∣ ≤ 12π2
∫
‖w‖>r ‖w‖

2 · |f̂(w)|dw.

(The second part of the shows that the same technique allows functions to be written with equality as
ReLU networks; this is included as a curiosity and used in a few places in the appendices, but is not
part of the main NTK story.)

The preceding constructions immediately yield transport mappings from Gaussian initialization to the
function f in a brute-force way: by introducing the fraction G(w̃)/G(w̃), calling the numerator part of
the integration measure, and the denominator part of the integrand. As stated before, these transport
maps are random feature maps: they zero out the coordinates corresponding to x!

Lemma 3.2. Let f : Rd → R be given with Fourier transform f̂ . For any r ∈ [0,∞], define
transport mapping Tr(w, b) := (0, . . . , 0, pr(w̃)) with

Tr(w, b)d+1 = pr(w̃) := 2

[
f(0) +

∫
|f̂(v)| cos(2π(θf (v)− ‖v‖)) dv

]
+ 2π

(
|f̂(w)|
G(w̃)

)
cos(2π(θf (w)− b))1[|b| ≤ ‖w‖ ≤ r].

By this choice, for any ‖x‖ ≤ 1, f(x) = Ew̃
〈
T∞(w̃),Φ(x; w̃)

〉
, and

sup
w̃
‖Tr(w̃)‖2 ≤ 2

∣∣f(0)
∣∣+ 2

∫
|f̂(v)|dv + 2π sup

‖w‖≤r
|b|≤‖w‖

|f̂(w)|
G(w̃)

,

∣∣∣f(x)− E
〈
T (w̃),Φ(x; w̃)

〉∣∣∣ ≤ 4π

∫
‖w‖>r

|f̂(w)| · ‖w‖dw.

The preceding construction may seem general, however it is quite loose, noting the final supremum
term within supw̃ ‖Tr(w̃)‖2; indeed, attempting to plug this construction into Theorem 2.1 does not
yield the 1/δO(d) rate in Theorem 1.5, but instead a rate 1/δO(d/δ), which is disastrously larger!

Interestingly, a fix is possible for special functions of the form f ∗Gα, namely convolutions with
Gaussians of coordinate-wise variance α2. These are exactly the types of functions used in Section 4
to approximate continuous functions. The fix is simply to apply a change of variable so that, in a
sense, the target function and the initialization distribution have similar units.
Lemma 3.3. Let function f , variance α2 > 0, and r ∈ [0,∞] be given, and define fα := f ∗ Gα
and φ := (2πα)−1, and transport mapping Tr(w, b) := (0, . . . , 0, pr(w̃)) with

Tr(w, b)d+1 = pr(w̃) := 2

[
fα(0) +

∫
|f̂α(v)| cos(2π(θfα(v)− ‖v‖)) dv

]
+ 2π(2πφ2)(d+1)/2|f̂(φw)|eb

2/2 sin(2π(θfα(φw)− b))1[|b| ≤ ‖w‖ ≤ r].

Then fα(x) = Ew̃
〈
T∞(w̃),Φ(x; w̃)

〉
for ‖x‖ ≤ 1, and for r ∈ [

√
d,∞),

sup
w̃
‖Tr(w̃)‖ ≤ 2

[
M + (2πφ2)d/2Mf

(
1 +

√
2π3φ2er

2/2
)]
,

where M := supx |f(x)|, and Mf = 1 when fα = Gα and Mf = ‖f(φ·)‖L1 otherwise, and

sup
‖x‖≤1

∣∣∣f(x)− E
〈
Tr(w̃),Φ(x; w̃)

〉∣∣∣ ≤ 4π(2πφ2)(d+1)/2Mf (
√
d+ 3) exp

(
−(r −

√
d)2/4

)
.
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4 APPROXIMATING CONTINUOUS FUNCTIONS

The final piece needed to prove Theorem 1.5 is to show that a function f is close to its Gaussian
convolution f ∗Gα, at least when α > 0 is chosen appropriately. This is a classical topic (Wendland,
2004), and indeed it was used in the original proof of the Weierstrass approximation theorem
(Weierstrass, 1885). The treatment here will include enough detail necessary to yield explicit rates.

The following definition will be used to replace the usual (ε, δ) conditions associated with continuous
functions with an exact quantity.
Definition 4.1. Let f : Rd → R be given, and define modulus of continuity ωf as

ωf (δ) := sup
{
f(x)− f(x′) : max{‖x‖, ‖x′‖} ≤ 1 + δ, ‖x− x′‖ ≤ δ

}
. ♦

If f is continuous, then ωf (defined here over a compact set) is not only finite for all inputs, but
moreover limδ→0 ωf (δ)→ 0. It is also possible to use this definition with discontinuous functions;
note additionally that the convolution bounds in Section 3 only required an L1 bound on the pre-
convolution function f , and therefore the tools throughout may be applied to discontinuous functions,
albeit with some care to their Fourier transforms!

Lemma 4.2. Let f : Rd → R and δ > 0 be given, and define

M := sup
‖x‖≤1+δ

|f(x)|, f|δ(x) := f(x)1[‖x‖ ≤ 1 + δ], α :=
δ√

d+
√

2 ln(2M/ωf (δ))
.

Let Gα denote a Gaussian with the preceding variance α2. Then

sup
‖x‖≤1

∣∣∣f − f|δ ∗Gα∣∣∣ ≤ 2ωf (δ).

The proof splits the integrand into two parts: points close to x, and points far from it. Points close to
x must behave like f(x) due to continuity, whereas points far from x are rare and do not matter due
to the Gaussian convolution. The full details are in the appendix.

Lemma 4.2 can be combined with the transport for f ∗ Gα from Section 3 to give a transport for
approximating continuous functions.

Theorem 4.3. As in Lemma 4.2, let f : Rd → R and δ > 0 be given, and define

M := sup
‖x‖≤1+δ

|f(x)|, f|δ(x) := f(x)1[‖x‖ ≤ 1 + δ],

α :=
δ√

d+
√

2 ln(2M/ωf (δ))
= Õ(δ/

√
d), r :=

√
d+ 2

√√√√ln

(
4πMf (

√
d+ 3)

(2πα2)(d+1)/2ωf (δ)

)
.

Let Gα denote a Gaussian with the preceding variance α2, and let Tr denote the truncated Fourier
map constructed in Lemma 3.3 for f|δ ∗Gα, with preceding truncation choice r. Then

sup
w̃
‖Tr(w̃)‖ = Õ

‖f|δ‖5L1

(√
d

δ

)5(d+1) [ √
d

ωf (δ)

]4 ,

sup
‖x‖≤1

∣∣∣f − Ew̃
〈
Tr(w̃),Φ(x; w̃)

〉∣∣∣ ≤ ωf (δ).

This completes all the pieces needed to prove Theorem 1.5.

Proof of Theorem 1.5. Let f be given, and let Tr denote the transport mapping provided by Theo-
rem 4.3 for f|δ ∗Gα, whose various parameters match those in the statement of Theorem 1.5. The
proof is completed by plugging Tr into Theorem 2.1, and simplifying by noting that ε ≥ ωf (δ) by
definition, and ‖f|δ‖L1 = O(M) since δ ≤ 1.

8
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As mentioned earlier, the infinite width network constructed in Lemma 3.1 via inverse Fourier
transforms can be used to succinctly prove (via Lemma 2.5 and Lemma 4.2) that threshold and ReLU
networks are universal approximators, with a rate vastly improving upon that of Theorem 1.5.

Before stating the result, one more tool is needed: a sampling semantics for signed densities; see also
(Bach, 2017a;b) for further development and references.
Definition 4.4. A sample from a signed (Lebesgue) density p : Rd+1 → R with ‖p‖L1

<∞ is a pair
(w̃, s) where w̃ is sampled from the probability density |p|/‖p‖L1

, and s := sgn(p(w̃)). Let Ep denote
the corresponding expectation over (w̃, s) ∼ p. ♦

This notion of signed sampling also has a corresponding Maurey lemma, and an analogue for the
uniform norm; both are provided in Appendix B. The full detailed universal approximation theorems
for threshold and ReLU networks are provided in Appendix E; a simplified form for threshold
networks alone is as follows. In either case, the proof proceeds by applying signed density sampling
bounds (e.g., appropriate generalizations of Lemma 2.5) to the infinite width networks constructed in
Lemma 3.1. Curiously, the simplified bound stated here for threshold networks for the uniform norm
is only a multiplicative factor

√
d larger than the L2(P ) bound in Theorem E.1.

Theorem 4.5 (Simplification of Theorem E.1). Let f : Rd → R and δ > 0 be given, and define

M := sup
‖x‖≤1+δ

|f(x)|, f|δ(x) := f(x)1[‖x‖ ≤ 1 + δ], α :=
δ√

d+
√

2 ln(2M/ωf (δ))
.

Then there exist c ∈ R and p : Rd+1 → R with

|c| ≤M + ‖f|δ‖L1(2πα2)d/2, and ‖p‖L1 ≤ 2‖f|δ‖L1

√
2πd

(2πα2)d+1
,

so that, with probability ≥ 1− 3η over ((sj , w̃j))
m
j=1 drawn from p (cf. Definition 4.4),

sup
‖x‖≤1

∣∣∣∣∣∣f(x)−

c1 +
‖p‖L1

m

m∑
j=1

sjσ
′(
〈
w̃j , x

〉
)

∣∣∣∣∣∣ ≤ 2ωf (δ) +
‖p‖L1√
m

[
8
√
d ln(m) +

√
ln(1/η)

]
.

5 ABSTRACT TRANSPORT MAPPINGS, AND AN RKHS

Section 3 provided concrete transport mappings via Fourier transforms: it was, for instance, easy to
use these constructions to develop approximation rates for continuous functions. These constructions
had a major weakness: they were random feature transport mappings, meaning they arguably did
not fully utilize the transport sampling provided in Section 2. This section will develop one abstract
approach via RKHSes, but first will revisit the random feature constructions.

Suppose f(x) =
∫
p(w̃)σ′(〈w̃, x̃〉) dw̃ for some density p; as in the proof of Lemma 3.2, introducing

the term G(w̃)/G(w̃) gives f(x) =
∫ p(w̃)
G(w̃)σ

′(〈w̃, x̃〉) dG(w̃), which is now in the desired form,
however the ratio term can be large (and a truncation is needed to make it finite in Lemma 3.2). The
refined construction in Lemma 3.3 achieved a better bound on supw̃ ‖T (w̃)‖ by being careful about
the scaling of the Gaussian, and then standardizing it with a change-of-variable transformation, but
still it yields a random feature transport.

Another approach would be to start from the second construction in Lemma 3.1, which writes f(x) =∫
p(w̃)σ(〈w̃, x̃〉) dw̃ =

∫
p(w̃) 〈w̃, x̃〉σ′(〈w̃, x̃〉), and thus build a transport around w̃ 7→ p(w̃)w̃,

which now uses all coordinates. This transport mapping is still just a rescaling, however, and does
not lead to improvements when plugged into the other parts of this work.

Consider the following approach to building a general T and an associated Reproducing Kernel
Hilbert Space (RKHS). To start, define an inner product 〈·, ·〉H and norm ‖ · ‖H via ‖T ‖2H =
〈T , T 〉H =

∫
‖T (w̃)‖22 dG(w̃) = ‖T ‖2L2(G); to justify this Hilbert space, note that it gives rise to

the usual kernel product (Cho & Saul, 2009), namely

(x, x′) 7→ Ew̃Φ(x; w̃)TΦ(x′; w̃) =
〈
Φ(x; ·),Φ(x′; ·)

〉
H ,

and moreover our earlier predictors can be written as Ew̃
〈
T (w̃),Φ(x; w̃)

〉
=
〈
T ,Φ(x; ·)

〉
H.

9
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The utility of these definitions is highlighted in the following bounds; specifically, while a given T
may have supw̃ ‖T (w̃)‖2 =∞, truncation can make this quantity finite (and thus Theorem 2.1 may
be applied), and the approximation error can be bounded with ‖T ‖H.

Proposition 5.1. 1. The output-truncated transport TB(w̃) := T (w̃)1
[
‖T (w̃)‖2 ≤ B

]
has

approximation error

sup
‖x‖≤1

∣∣∣〈TB ,Φ(x; ·)
〉
H −

〈
T ,Φ(x; ·)

〉
H

∣∣∣ ≤ ‖T ‖2H√2

B2
.

2. The input-truncated transport Tr(w̃) := T (w̃)1[‖w̃‖ ≤ r] with r >
√
d has approximation

error

sup
‖x‖≤1

∣∣∣〈Tr,Φ(x; ·)
〉
H −

〈
T ,Φ(x; ·)

〉
H

∣∣∣ ≤ ‖T ‖H√2

e(r−
√
d)2/4

.

Unfortunately, this formalism can not be applied to the pre-truncation mapping T∞ from Lemma 3.3,
since ‖T∞‖H =∞. Consequently, this approach is left as an interesting direction for future work.

6 OPEN PROBLEMS

The main open question is: how much can the rates 1/δ2d for ReLU networks and 1/δ10d for their
NTK be tightened, and is there a genuine gap? Expanding this inquiry, firstly there are three relevant
choices regarding which layers are trained: training just the output layer as with random features
(Bach, 2017b;a), training just the input layer (as in this work), and training both layers. Secondly,
for each of these choices, there is a question of norm; e.g., by requiring the maximum over node
weight Euclidean norms to be small, the NTK regime is enforced. Are there genuine separations
between these settings? Which settings are most relevant empirically? What happens beyond the
NTK (Allen-Zhu & Li, 2019)?

Another direction is to use the Fourier tools of Section 2, as well as other tools for constructing
transportation maps, and identify function classes with good approximation rates by the NTK and by
shallow networks, in particular rates with a merely polynomial dependence on dimension.

Connecting back to the optimization literature, the referenced NTK optimization works for the
squared loss seem to require a width which scales with n, and the test error sometimes scales with
detailed functions of the observed labels, which require a further argument to go to 0 (see, e.g.,
yT(H∞)−1y in (Arora et al., 2019)). Perhaps such quantities can be replaced with a function space
or other approximation theoretic perspective on the conditional mean function (and samples thereof)?

Lastly, what are connections to optimal transport? It seems natural to choose T as an optimal
transport, in which case one would hope the parameter B := supw̃ ‖T (w̃)‖2 can be small, and
moreover easily bounded by the optimal transport cost, ideally in ways similarly easy to the bounding
by the Hilbert norm in Proposition 5.1.
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A TECHNICAL LEMMAS

Gaussian Concentration. The following lemma collects a few properties of Gaussian concentra-
tion needed throughout.

Lemma A.1. Let w ∼ Gd be a standard Gaussian in Rd, and let r ≥
√
d be given.

1.
∫
‖w‖ dG(w) ≤

√
d.

2. P[‖w‖ > r] ≤ exp(−(r −
√
d)2/2); alternatively, with probability at least 1− η, ‖w‖ ≤√

d+
√

2 ln(1/η).

3.
∫
‖w‖>r

‖w‖ dG(w) ≤ (r+ 2) exp
(
−(r −

√
d)2/2

)
≤ 2(
√
d+ 3) exp

(
−(r −

√
d)2/4

)
.

4.
∫
‖w‖>r

‖w‖2 dG(w) ≤ 2(r + 2)2 exp
(
−(r −

√
d)2/2

)
≤ 2(

√
d +

7)2 exp
(
−(r −

√
d)2/4

)
.

12

https://www.stat.berkeley.edu/~mjwain/stat210b/


Published as a conference paper at ICLR 2020

The more convenient form of some of the inequalities will need to following technical lemma.

Lemma A.2. Given b ≥ 0 and c > 0 and a ≥ 0 with a+ b ≥ 2c and x ≥ b, then

(x+ a) exp(−(x− b)2/c) ≤ (a+ b) exp(−(x− b)2/(2c)),

and if moreover a+ b ≥ 4c,

(x+ a)2 exp(−(x− b)2/c) ≤ (a+ b)2 exp(−(x− b)2/(2c))

Proof. Since ln(x+ a) ≤ ln(b+ a) + (x− b)/(b+ a),

(x+ a) exp(−(x− b)2/c) ≤ (a+ b) exp(−(x− b)2/c+ (x− b)/(b+ a))

≤ (a+ b) exp(−(x− b)2/c+ (x− b)2/(2c))
≤ (a+ b) exp(−(x− b)2/(2c)).

Similarly, multiplying the preceding Taylor expansion by 2,

(x+ a)2 exp(−(x− b)2/c) ≤ (a+ b)2 exp(−(x− b)2/c+ 2(x− b)/(b+ a))

≤ (a+ b)2 exp(−(x− b)2/c+ 2(x− b)2/(4c))
≤ (a+ b)2 exp(−(x− b)2/(2c)).

Proof of Lemma A.1. 1. By Jensen’s inequality,
∫
‖w‖ dG(w) ≤

√∫
‖w‖2 dG(w) =

√
d.

2. The claim follows from Gaussian concentration with Lipschitz mappings (Wainwright, 2015,
Theorem 2.4), specifically since w 7→ ‖w‖ is 1-Lipschitz, meaning∣∣∣‖w‖ −∥∥w′∥∥∣∣∣ ≤∥∥w − w′∥∥ ,
and since E ‖w‖ <

√
d.

3. Note that ∫
‖w‖>r

‖w‖ dG(w) ≤
∞∑
i=0

∫
r+i<‖w‖≤r+i+1

(r + i+ 1) dG(w),

whereas the Gaussian concentration from the preceding part grants

P[‖w‖ > r + i] ≤ exp(−(r + i−
√
d)2/2) ≤ exp(−(r −

√
d)2/2) exp(−i2/2),

whereby∫
‖w‖>r

‖w‖ dG(w) ≤ (r + 1)

∫
‖w‖>r

dG(w) +

∞∑
i=0

i

∫
‖w‖>r+i

dG(w)

≤ (r + 1) exp(−(r −
√
d)2/2) +

∞∑
i=0

i exp(−(r −
√
d)2/2) exp(−i2/2)

≤ exp(−(r −
√
d)2/2)

r + 1 +

∞∑
i=0

i exp(−i2/2)


≤ exp(−(r −

√
d)2/2) [r + 2] .

The final inequality follows by applying Lemma A.2 with (a, b, c, x) = (3,
√
d, 2, r)
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4. Proceeding similarly,∫
‖w‖>r

‖w‖ dG(w) ≤
∞∑
i=0

∫
r+i<‖w‖≤r+i+1

(r + i+ 1)2 dG(w),

≤ 2(r + 1)2
∫
‖w‖>r

dG(w) + 2

∞∑
i=0

i2
∫
‖w‖>r+i

dG(w)

≤ 2(r + 1)2 exp(−(r −
√
d)2/2) + 2

∞∑
i=0

i2 exp(−(r −
√
d)2/2) exp(−i2/2)

≤ 2 exp(−(r −
√
d)2/2)

(r + 1)2 +

∞∑
i=0

i2 exp(−i2/2)


≤ 2 exp(−(r −

√
d)2/2) [r + 2]

2
.

The final inequality follows by applying Lemma A.2 with (a, b, c, x) = (7,
√
d, 2, r).

Fourier transforms. The convention for the Fourier transform used here is

f̂(w) =

∫
f(x) exp(2πiwTx) dx;

see for instance (Folland, 1999, Section 8.8) for a discussion of other conventions, and the resulting
tradeoffs. Note also the polar decomposition notation f̂(w) = |f̂(w)| exp(2πiθf (w)) with |θf (w)| ≤
1. The following lemma collects a few properties used throughout.

Lemma A.3. 1. |f̂ | ≤ ‖f‖L1
.

2. f̂ ∗ g = f̂ ĝ and |f̂ ∗ g| ≤ ‖f‖L1
|ĝ|.

3. Let α > 0 be given and define φ := (2πα)−1. Then |Ĝα| = Ĝα (meaning Ĝα has no radial
component, thus θGα(w) = 0), and

Ĝα(w) = (2πα2)−d/2Gφ(w) = (2πφ2)d/2Gφ(w) = (2π)d/2G(w/φ).

Proof. 1. Directly,

|ĥ(w)| ≤
∫
|h(x)| · | exp(2πiwTx)|dx ≤ ‖h‖L1

,

2. The first equality is standard (Folland, 1999, Theorem 8.22c), and the inequality combines
it with the preceding bound.

3. The form of Ĝα and the first displayed inequality are standard (Folland, 1999, Proposition
8.24). The second and third inequalities use the choice of φ and the form of Gφ.

ReLU representation. Lastly, the exact ReLU representation constructions (e.g., Lemma 3.1) will
use the following folklore lemma to write a univariate twice continuously differentiable function as
an infinite width ReLU network.

Lemma A.4. Let f : R→ R be given with f(0) = f ′(0) = 0 and f ′′ continuous. For any z ≥ 0,

f(z) =

∫ ∞
0

σ(z − b)f ′′(b) db.

14
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Proof. Using integration by parts,∫ ∞
0

σ(z − b)f ′′(b) db =

∫ z

0

(z − b)f ′′(b) db

= z

∫ z

0

f ′′(b) db−
∫ z

0

bf ′′(b) db

= zf ′(b)|z0 −
(
bf ′(b)|z0 −

∫ z

0

f ′(b) db

)
= zf ′(z)− zf ′(0)−

(
zf ′(z)− 0− f(z) + f(0)

)
= f(z).

B SAMPLING TOOLS: MAUREY’S LEMMA AND CO-VC DIMENSION

This section collects various sampling tools used as a basis for Section 2. First is a proof of Lemma 2.5,
which here is combined with an application of McDiarmid’s inequality to give a high probability
guarantee.

Proof of Lemma 2.5. Following the usual Maurey scheme (Pisier, 1980),

E
(vj)mj=1

∥∥∥∥∥∥f − 1

m

∑
j

gj

∥∥∥∥∥∥
2

L2(P )

=
1

m2 E
(vj)mj=1

∥∥∥∥∥∥
∑
j

(
f − gj

)∥∥∥∥∥∥
2

L2(P )

=
1

m2 E
(vj)mj=1

∑
j

∥∥f − gj∥∥2L2(P )

=
1

m
E
v1
‖f − g1‖2L2(P )

=
1

m
E
v1

(
‖g1‖2L2(P ) −‖f‖

2
L2(P )

)
≤ 1

m
Ev1‖g1‖

2
L2(P )

≤ 1

m
sup
v∈V

∥∥g(·; v)
∥∥2
L2(P )

.

The high probability bound will follow from McDiarmid’s inequality. To establish the bounded
differences property, define

F (V ) := F ((v1, . . . , vm)) =

∥∥∥∥∥∥f − 1

m

∑
j

g(·; vj)

∥∥∥∥∥∥
L2(P )

,

and note from the general metric space inequality
∣∣‖p‖ − ‖q‖∣∣ ≤ ‖p − q‖ that for any V =

(v1, . . . , vm) and V ′ = (v′1, . . . , v
′
m) differing only on a single vk 6= v′k,

∥∥F (V )− F (V ′)
∥∥ ≤

∥∥∥∥∥∥ 1

m

∑
j

g(·; vj)−
1

m

∑
j

g(·; v′j)

∥∥∥∥∥∥
L2(P )

=
1

m

∥∥g(·; vk)− g(·; v′k)
∥∥
L2(P )

≤ 1

m

(∥∥g(·; vk)
∥∥
L2(P )

+
∥∥g(·; v′k)

∥∥
L2(P )

)
≤ 2

m
sup
v∈V

∥∥g(·; v)
∥∥
L2(P )

.
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Thus, with probability at least 1− η, McDiarmid’s inequality grants,

F (V ) ≤ EV F (V ) + sup
v∈V
‖g(·; v)‖L2(P )

√
2 ln(1/η)

m
,

and the statement follows by Jensen’s inequality, specifically EV F (V ) ≤
√
EV F (V )2.

Maurey’s lemma also applies to sampling from signed densities in the sense of Definition 4.4.

Lemma B.1. Let f(x) =
∫
p(w̃)g(〈w̃, x̃〉) dw̃ be given with ‖p‖L1

< ∞ and p is supported
on a ball of radius B, and let ((sj , w̃j))

m
j=1 be sampled from p as in Definition 4.4, and define

gj(x) := g(〈w̃, x̃〉). With probability at least 1− η,∥∥∥∥∥∥f − ‖p‖L1

m

m∑
j=1

sjgj

∥∥∥∥∥∥
L2(P )

≤ sup
‖w̃‖≤B

‖g(〈w̃, ·〉)‖L2(P )‖p‖L1

[
1 +

√
2 ln(1/η)√
m

]
.

Proof. Since∫
p(w̃)g(〈w̃, x̃〉) dw̃ = ‖p‖L1

∫
sgn(p)

|p(w̃)|
‖p‖L1

g(〈w̃, x̃〉) dw̃ = ‖p‖L1 E
s,w̃

sg(〈w̃, x̃〉),

the sampling procedure indeed provides an unbiased estimate of the integral, and thus by Maurey’s
Lemma (cf. Lemma 2.5), with probability at least 1− η,∥∥∥∥∥∥f − ‖p‖L1

m

m∑
j=1

sjgj

∥∥∥∥∥∥
L2(P )

= ‖p‖L1

∥∥∥∥∥∥Es,w̃sg(〈w̃, ·〉)− 1

m

m∑
j=1

sjgj

∥∥∥∥∥∥
L2(P )

≤ ‖p‖L1 sup
s∈{±1}
‖w̃‖≤B

‖sg(〈w̃, ·〉)‖L2(P )

[
1 +

√
2 ln(1/η)√
m

]

= ‖p‖L1
sup
‖w̃‖≤B

‖g(〈w̃, ·〉)‖L2(P )

[
1 +

√
2 ln(1/η)√
m

]
.

Lastly, here is a uniform norm analog of the preceding L2(P ) signed density sampling bound.
Interestingly, the bound only gives a

√
d degradation with σ′, and no degradation for σ. The method

of proof is to use uniform convergence, but with data and parameters switched; consequently, this has
been called “co-VC dimension” (Gurvits & Koiran, 1995; Sun et al., 2018). The proof is somewhat
more complicated than the proof of the Maurey lemma, and in particular needs to be a bit more
attentive to the fine-grained structure of the functions being sampled.

Lemma B.2. Let density p : Rd+1 → R with ‖p‖L1
<∞, and let ((sj , wj))

m
j=1 be a sample from p

in the sense of Definition 4.4.

1. With probability at least 1− 2η,

sup
‖x‖≤1

∣∣∣∣∣∣
∫
p(w̃)σ′(〈w̃, x̃〉) dw̃ − ‖p‖L1

m

∑
j

sjσ
′(
〈
w̃j , x̃

〉
)

∣∣∣∣∣∣ ≤ ‖p‖L1√
m

[√
8(d+ 1) ln(m+ 1) +

√
ln(1/η)

]
.

2. Suppose p is supported on the set W := {w̃ ∈ Rd+1 : ‖w‖ ≤ r, |b| ≤ ‖w‖}. With
probability at least 1− 2η,

sup
‖x‖≤1

∣∣∣∣∣∣
∫
p(w̃)σ(〈w̃, x̃〉) dw̃ − ‖p‖L1

m

∑
j

sjσ(
〈
w̃j , x̃

〉
)

∣∣∣∣∣∣ ≤ 4r‖p‖L1√
m

[
1 +

√
ln(1/η)

]
.
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Proof of Lemma B.2. In both cases, letting g denote either of σ′ or σ,

sup
‖x‖≤1

∣∣∣∣∣∣
∫
p(w̃)g(〈w̃, x̃〉) dw̃ − ‖p‖L1

m

∑
j

sjg(
〈
w̃j , x̃

〉
)

∣∣∣∣∣∣
= ‖p‖L1

sup
‖x‖≤1

∣∣∣∣∣∣Ep sg(〈w̃, x̃〉) dw̃ − 1

m

∑
j

sjg(
〈
w̃j , x̃

〉
)

∣∣∣∣∣∣ ,
and at this point it is a classical uniform deviations problem, but with the role of parameter and data
swapped, an approach which has been used before (sometimes under the heading “co-VC dimension”
(Gurvits & Koiran, 1995; Sun et al., 2018)). Continuing, with probability at least 1− 2η, standard
Rademacher complexity (Shalev-Shwartz & Ben-David, 2014) grants

sup
‖x‖≤1

∣∣∣∣∣∣Ep sg(〈w̃, x̃〉) dw̃ − 1

m

∑
j

sjg(
〈
w̃j , x̃

〉
)

∣∣∣∣∣∣ ≤ 2Rad
({

(sjg(
〈
w̃j , x̃

〉
))mj=1 : ‖x‖ ≤ 1

})

+ 3 sup
w̃∈W
‖x‖≤1

|g(〈w̃, x̃〉)|
√

ln(1/η)

2m
.

whereW is a constraint set on w̃ (when g = σ′, it is Rd+1, whereas with g = σ it is |b| ≤ ‖w‖ ≤ r).
To simplify further, note that a Rademacher random vector (ε1, . . . , εm) is distributionally equivalent
to (s1ε1, . . . , smεm) for any fixed vector of signs (s1, . . . , sm), and therefore

Rad
({

(sjg(
〈
w̃j , x̃

〉
))mj=1 : ‖x‖ ≤ 1

})
=

1

n
Eε sup
‖x‖≤1

∑
j

sjεjg(〈w̃, x̃〉)

=
1

n
Eε sup
‖x‖≤1

∑
j

εjg(〈w̃, x̃〉)

= Rad
({

(g(
〈
w̃j , x̃

〉
))mj=1 : ‖x‖ ≤ 1

})
.

Combining these steps, with probability at least 1− 2η,

sup
‖x‖≤1

∣∣∣∣∣∣
∫
p(w̃)g(〈w̃, x̃〉) dw̃ − ‖p‖L1

m

∑
j

sjg(
〈
w̃j , x̃

〉
)

∣∣∣∣∣∣
≤ ‖p‖L1

2Rad
({

(g(
〈
w̃j , x̃

〉
))mj=1 : ‖x‖ ≤ 1

})
+ 3 sup

w̃∈W
‖x‖≤1

|g(〈w̃, x̃〉)|
√

ln(1/η)

2m

 .
The proof now splits into two cases g ∈ {σ′, σ}, bounding the remaining terms.

1. Since the range of σ′ is {0, 1},
sup
w̃∈W
‖x‖≤1

|σ′(〈w̃, x̃〉)| ≤ 1,

and the Rademacher complexity is the VC dimension of linear predictors, thus

Rad
({

(σ′(
〈
w̃j , x̃

〉
))mj=1 : ‖x‖ ≤ 1

})
≤
√

2(d+ 1) ln(m+ 1)

m
.

2. In the case g = σ, sinceW := {w̃ ∈ Rd+1 : ‖w‖ ≤ r, |b| ≤ ‖w‖},
sup
w̃∈W
‖x‖≤1

|σ(〈w̃, x̃〉)| ≤ sup
‖w‖≤r
|b|≤‖w‖
‖x‖≤1

|wTx+ b| ≤ 2r.
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Moreover, the Rademacher complexity is a standard combination of the Lipschitz composi-
tion rule and linear prediction rules (Shalev-Shwartz & Ben-David, 2014), and thus

Rad
({

(σ′(
〈
w̃j , x̃

〉
))mj=1 : ‖x‖ ≤ 1

})
≤ Rad

({
(
〈
w̃j , x̃

〉
)mj=1 : ‖x‖ ≤ 1

})
≤ 4r√

m
.

C DEFERRED PROOFS FROM SECTION 2

For convenience throughout this appendix, define

B := sup
w̃
‖T (w̃)‖ and Bε := sup

w̃,s
‖Tε(w̃, s)‖2 ≤

B

ε
√
m

+R.

The first step is to prove eq. (2.2), restated here as follows.

Lemma C.1. With probability at least 1− η over (W̃ , S),∥∥∥∥∥∥
m∑
j=1

〈
τj , φj(·)

〉
− Ew̃

〈
T (w̃),Φ(·; w̃)

〉∥∥∥∥∥∥
L2(P )

≤ εBε
[√

2 + 2
√

ln(1/η)
]
.

Proof. The proof proceeds by applying Maurey sampling (cf. Lemma 2.5) to the functions gj(x) :=
m
〈
τj , φj(x)

〉
, noting by Lemma 2.4 that

f(x) := E
W̃ ,S

1

m

∑
j

gj(x) = E
W̃ ,S

∑
j

〈
τj , φj(x)

〉
= E
W̃ ,S

〈
Tε(W̃ , S),Φε(x; W̃ , S)

〉
= Ẽ

w

〈
T (w̃),Φ(x; w̃)

〉
.

Applying Lemma 2.5, with probability at least 1− η,∥∥∥∥∥∥f − 1

m

m∑
j=1

gj

∥∥∥∥∥∥
L2(P )

≤
supw̃,sm‖

〈
Tε(w̃, s),Φε(·; w̃, s)

〉
‖L2(P )√

m

[
1 +

√
2 ln(1/η)

]
,

where

sup
w̃,s
‖
〈
Tε(w̃, s),Φε(·; w̃, s)

〉
‖2L2(P ) ≤ sup

w̃,s
Ex
∥∥Tε(w̃)

∥∥2
2

∥∥Φε(x; w̃, s)
∥∥2
2
≤ 2ε2B2

ε

m
.

Next, the restatement of eq. (2.3) is as follows.

Lemma C.2. With probability at least 1− η, If R ≥
√
d+ 2

√
ln
(
ε
√
mπ

B
√
2

)
, then with probability at

least 1− η,∥∥∥∥∥∥
∑
j

〈
τj , φj(·)

〉
−
∑
j

sjε√
m
σ(
〈
τj , x̃

〉
)

∥∥∥∥∥∥
L2(P )

≤ BεB

m
√
π

+ εBε

[√
2 + 2

√
ln(1/η)

]
.

Recall that the proof of Lemma C.2, as discussed in the body, must calculate the fraction of activations
which change, which was collected into Lemma 2.6.

Proof of Lemma 2.6. Consider an idealized T ′ε which does not truncate, whereby∣∣∣| 〈T ′ε (w̃), x̃
〉
| − | 〈w̃, x̃〉 |

∣∣∣ ≤ ∣∣∣∣∣
〈
T (w̃), x̃

〉
ε
√
m

+ 〈w̃, x̃〉 − 〈w̃, x̃〉

∣∣∣∣∣ ≤ B‖x̃‖
ε
√
m
.
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The event
[
sgn(〈w̃, x̃〉) 6= sgn(

〈
T ′ε (w̃), x̃

〉
)
]

implies the event
[
| 〈w̃, x̃〉 | ≤ B‖x̃‖/ε

√
m
]
, and thus,

additionally using rotational invariance of the Gaussian,

Ẽ
w

∣∣∣σ′(〈w̃, x̃〉)− σ′(〈T ′ε (w̃), x̃
〉
)
∣∣∣ = P̃

w

[
sgn(〈w̃, x̃〉) 6= sgn(

〈
T ′ε (w̃), x̃

〉
)
]

≤ P̃
w

[
| 〈w̃, x̃〉 | ≤ B‖x̃‖/ε

√
m
]

= P̃
w

[
|w1| · ‖x̃‖ ≤ B‖x̃‖/ε

√
m
]

=
1√
2π

∫ B/(ε
√
m)

−B/(ε
√
m)

e−z
2/2 dz

≤ B

ε

√
2

mπ
.

Returning to the general case with truncation, by Lemma A.1, using the assumed lower bound on R,

P[‖w̃‖ > R] ≤ exp(−(R−
√
d)2/2) ≤ B

ε

√
2

mπ
,

which gives the final bound via triangle inequality.

With Lemma 2.6 in hand, the proof of Lemma C.2 is now an application of Maurey’s lemma, with an
invocation of positive homogeneity to massage terms.

Proof of Lemma C.2. The approach is once again to apply Maurey sampling (cf Lemma 2.5). To this
end, define

g(x; w̃, s) := m

(〈
Tε(w̃, s),Φε(x; w̃, s)

〉
− sε√

m
σ
(〈
Tε(w̃, s), x̃

〉))
and f(x) = Ẽ

w,s
g(x; w̃, s),

as well as gj(x) := g(x; w̃j , sj). Using this notation, the goal of this proof is to upper bound∥∥∥∥∥∥
∑
j

〈
τj , φj(·)

〉
−
∑
j

sjε√
m
σ(
〈
τj , ·
〉
)

∥∥∥∥∥∥
L2(P )

=

∥∥∥∥∥∥ 1

m

∑
j

gj

∥∥∥∥∥∥
L2(P )

.

By Lemma 2.5, with probability at least 1− η,∥∥∥∥∥∥ 1

m

∑
j

gj

∥∥∥∥∥∥
L2(P )

≤ ‖f‖L2(P ) +

∥∥∥∥∥∥f − 1

m

∑
j

gj

∥∥∥∥∥∥
L2(P )

≤ ‖f‖L2(P ) + sup
w̃,s
‖g(·; w̃, s)‖L2(P )

[
1 +

√
2 ln(1/η)√
m

]
.

To control these terms, fixing any (w̃, s), it holds by positive homogeneity of σ that∥∥g(x; w̃, s)
∥∥2
L2(P )

= m2 E
x

〈
Tε(w̃, s),Φε(x; w̃, s)− sε√

m
Φ(x; Tε(w̃, s))

〉2

≤ m2B2
ε E
x

ε2‖x‖2

m
≤ 2mε2B2

ε .

On the other hand, by Lemma 2.6, for any ‖x‖ ≤ 1,

|f(x)| ≤ Ew̃,s

∣∣∣∣∣
〈
Tε(w̃, s),Φε(x; w̃, s)− sε√

m
Φ(x; Tε(w̃, s))

〉∣∣∣∣∣
≤ BεEw̃,s

ε‖x̃‖
∣∣σ′(Tε(w̃)Tx̃)− σ′(w̃Tx̃)

∣∣
√
m

≤ εBε√
m

(
B

ε
√
mπ

)
,

which also upper bounds ‖f‖L2(P ).
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The proof of Theorem 2.1 now follows by combining Lemmas C.1 and C.2.

Proof of Theorem 2.1. By Lemma A.1 and a union bound on (w̃1, . . . , w̃m), maxj ‖w̃j‖ ≤ R, thus

max
j
‖Tε(w̃j)− w̃j‖ ≤ max

j

‖T (w̃j)‖
ε
√
m

≤ B

ε
√
m
.

Moreover, R ≥
√
d+ 2

√
ln
(
ε
√
mπ

B
√
2

)
, and thus the two other bounds are from Lemmas C.1 and C.2.

D DEFERRED PROOFS FROM SECTION 3

The first core lemma shows how to write a target function f as an infinite-width network via its
Fourier transform.

Proof of Lemma 3.1. The first steps are the same for σ and σ′, and indeed match the initial steps of
(Barron, 1993), namely

f(x)− f(0) = Re
∫

exp(2πixTw)f̂(w) dw

= Re
∫

exp(2πixTw + 2πiθf (w))|f̂(w)|dw

=

∫
cos
(
2π(xTw + θf (w))

)
|f̂(w)|dw.

For convenience, define h(z) := cos(2πz), whereby

f(x)− f(0) =

∫
h(xTw + θf (w))|f̂(w)|dw, (D.1)

and the proofs not differ for both activations and from (Barron, 1993).

1. Consider first σ′. Since ‖x‖ ≤ 1, by Cauchy-Schwarz it suffices to approximate h along the
interval [−‖w‖+ θf (w), ‖w‖+ θf (w)]. By the fundamental theorem of calculus,

h(〈w, x〉+ θf (w))− h
(
−‖w‖+ θf (w)

)
=

∫ 〈w,x〉+θf (w)

−‖w‖+θf (w)

h′(b) db

=

∫
h′(b)1[〈w, x〉+ θf (w) ≥ b]1[b ≥ −‖w‖+ θf (w)] db

= −
∫
h′(θf (w)− b)1[xTw + b ≥ 0]1[‖w‖ ≥ b] db, b 7→ θf (w)− b

= −
∫
h′(θf (w)− b)1[xTw + b ≥ 0]1[‖w‖ ≥ |b|] db,

where the last step follows since 1[xTw + b ≥ 0] implies b ≥ −‖w‖. Plugging this back in
to eq. (D.1) and still using h(z) = cos(2πz),

f(x)− f(0) =

∫
|f̂(w)| cos

(
2π(xTw + θf (w))

)
dw

=

∫
|f̂(w)|

[
h(−‖w‖+ θf (w))−

∫
h′(θf (w)− b)1[xTw + b ≥ 0]1[‖w‖ ≥ |b|] db

]
dw,
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which after pushing more terms onto the left hand side gives

f(x)− f(0)−
∫
|f̂(w)|h(θf (w)− ‖w‖) dw

= −
∫∫
|f̂(w)|h′(θf (w)− b)1[xTw + b ≥ 0]1[‖w‖ ≥ |b|] dbdw

= 2π

∫
|f̂(w)| sin(2π(θf (w)− b))σ′(〈w̃, x̃〉)1[‖w‖ ≥ |b|] dw̃,

which gives F∞ = f for ‖x‖ ≤ 1. To bound the error of Fr, note by the form of F∞ for
any ‖x‖ ≤ 1 that

∣∣f(x)− Fr(x)
∣∣ =

∣∣∣∣∣2π
∫
‖w‖>r

∫
|f̂(w)| sin(2π(θf (w)− b))σ′(〈w̃, x̃〉)1[‖w‖ ≥ |b|] dbdw

∣∣∣∣∣
≤ 2π

∫
‖w‖>r

∫
|b|≤‖w‖

|f̂(w)|| sin(2π(θf (w)− b))|σ′(〈w̃, x̃〉) dbdw

≤ 2π

∫
‖w‖>r

|f̂(w)|
∫
|b|≤‖w‖

dbdw

= 4π

∫
‖w‖>r

‖w‖ · |f̂(w)|dw.

2. Now consider σ. Rather than using FTC as above, this proof replaces h with ReLUs via
Lemma A.4, which requires a function which is both zero and flat at 0. To this end, define

H(b) = h(b+ q)−
(
h(q) + bh′(q)

)
with q = −‖w‖+ θf (w),

whereby H(0) = 0 = H ′(0). Invoking Lemma A.4 on H gives, for any z := wTx +
θf (w) ≥ q,

h(z)−
(
h(q) + (z − q)h′(q)

)
= H(z − q)

=

∫
H ′′(b)σ(z − q − b)1[b ≥ 0] db

=

∫
H ′′(b)σ(wTx+ θf (w) + ‖w‖ − θf (w)− b)1[b ≥ 0] db

= −
∫
H ′′(‖w‖ − b)σ(wTx+ b)1[‖w‖ ≥ b] db b 7→ ‖w‖ − b

= −
∫
H ′′(‖w‖ − b)σ(wTx+ b)1[‖w‖ ≥ |b|] db,

the final equality since −b > ‖w‖ implies wTx+ b ≤ ‖w‖+ b < 0, thus σ(w̃Tx̃) = 0 and
this case has no effect. Plugging this back into eq. (D.1),

f(x)− f(0) =

∫
|f̂(w)|h(z) dw

=

∫
|f̂(w)|

[
h(q) + (z − q)h′(q)−

∫
H ′′(‖w‖ − b)σ(w̃Tx̃)1[‖w‖ ≥ |b|] db

]
dw

=

∫
|f̂(w)|

[
h(q) + (wTx+ ‖w‖)h′(q)−

∫
H ′′(‖w‖ − b)σ(w̃Tx̃)1[‖w‖ ≥ |b|] db

]
dw,
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which gives Q∞ = f for ‖x‖ ≤ 1 after expanding h and H . To bound the error of Qr, for
any ‖x‖ ≤ 1

∣∣f(x)−Qr(x)
∣∣ =

∣∣∣∣∣
∫
‖w‖>r

|f̂(w)|
∫
H ′′(‖w‖ − b)σ(w̃Tx̃)1[‖w‖ ≥ |b|] db

∣∣∣∣∣ dw
≤
∫
‖w‖>r

|f̂(w)|
∫
|H ′′(‖w‖ − b)|σ(w̃Tx̃)1[‖w‖ ≥ |b|] dbdw

≤ 4π2

∫
‖w‖>r

|f̂(w)|
∫ ‖w‖
−‖w‖

σ(w̃Tx̃) dbdw

≤ 4π2

∫
‖w‖>r

|f̂(w)|
∫ ‖w‖
−‖w‖

(‖w‖+ |b|) dbdw

≤ 12π2

∫
‖w‖>r

‖w‖2 · |f̂(w)|dw.

Next, Lemma 3.2 converts Lemma 3.1 into a (random feature) transport map by introducing the
fraction G(w̃)/G(w̃).

Proof of Lemma 3.2. Starting from the construction in Lemma 3.1, again using h(z) = cos(2πz) for
convenience, and manually introducing a factor G(w̃),

f(x)− f(0)−
∫
|f̂(w)|h(θf (w)− ‖w‖) dw

= −
∫∫
|f̂(w)|h′(θf (w)− b)1[xTw + b ≥ 0]1[‖w‖ ≥ |b|] dbdw

= −
∫
|f̂(w)|
G(w̃)

h′(θf (w)− b)σ′(〈w̃, x̃〉)1[‖w‖ ≥ |b|] dG(w̃).

To construct T∞, rotational invariance of the Gaussian gives E1[w̃Tx̃ ≥ 0] = 1/2, thus

f(0)+

∫
|f̂(w)|h(θf (w)−‖w‖) dw =

∫
2

[
f(0) +

∫
|f̂(v)|h(θf (v)− ‖v‖) dv

]
σ′(〈w̃, x̃〉) dG(w̃),

and transport mapping is T∞(w, b) = (0, p∞(w̃)) ∈ Rd × R with

p∞(w̃) = 2

[
f(0) +

∫
|f̂(v)|h(θf (v)− ‖v‖) dv

]
− |f̂(w)|

G(w̃)
h′(θf (w)− b)1[‖w‖ ≥ |b|],

By construction, Ew̃
〈
Tr(w̃),Φ(x; w̃)

〉
= Fr(x), and therefore Lemma 3.1 grants for all ‖x‖ ≤ 1

f(x) = Ew̃
〈
T∞(w̃),Φ(x; w̃)

〉
and

∣∣∣f(x)− E
〈
Tr(w̃),Φ(x; w̃)

〉∣∣∣ ≤ 4π

∫
‖w‖>r

|f̂(w)|·‖w‖ dw.

With more care (in particular, a crucial change of variable), a much better bound is possible for
convolutions with Gaussians.

Proof of Lemma 3.3. By Lemma A.3, setting φ := (2πσ)−1,

|f̂α(w)| = |f̂(w)|Ĝα(w) = (2π)d/2|f̂(w)|G(w/φ).

Plugging this into Lemma 3.1 and again defining h(z) := cos(2πz) for convenience, but unlike
Lemma 3.2 performing a change of variable to directly introduceG(w̃), and then manually introducing
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G(b),

fα(x)− fα(0)−
∫
|f̂α(w)|h(θfα(w)− ‖w‖) dw

= −
∫∫
|f̂α(w)|h′(θfα(w)− b)σ′(w̃Tx̃)1[‖w‖ ≥ |b|] dbdw

= −(2π)d/2
∫∫
|f̂(w)|G(w/φ)h′(θfα(w)− b)σ′(w̃Tx̃)1[‖w‖ ≥ |b|] dbdw

= −(2πφ2)d/2φ

∫
|f̂(φw)|G(w)h′(θfα(φw)− b)σ′(φ 〈w̃, x̃〉)1[φ‖w‖ ≥ φ|b|] dbdw

= −(2πφ2)(d+1)/2

∫
|f̂(φw)|eb

2/2h′(θfα(φw)− b)σ′(〈w̃, x̃〉)1[‖w‖ ≥ |b|] dG(w̃).

As in Lemma 3.2, the transport is constructed by using Eσ′(〈w̃, x̃〉) = 1/2 to model constants:
Tr(w, b) = (0, . . . , 0, pr(w̃)), where

pr(w̃) := 2

[
fα(0) +

∫
|f̂α(v)|h(θfα(v)− ‖v‖) dv

]
− (2πφ2)(d+1)/2|f̂(φw)|eb

2/2h′(θfα(φw)− b)1
[
|b| ≤ ‖w‖ ≤ r

]
,

with f(x) = Ew̃
〈
T∞(w̃),Φ(x; w̃)

〉
for ‖x‖ ≤ 1 by construction.

When r <∞, by construction

sup
w̃
‖Tr(w̃)‖ ≤ 2

∣∣fα(0)
∣∣+ 2

∫
|f̂α(v)|dv + 2π(2πφ2)(d+1)/2 sup

‖w‖≤r
|b|≤‖w‖

|f̂(φw)|eb
2/2,

where |f̂(φw)| = 1 when fα = Gα (meaning f itself is the Dirac at 0), and more generally
Lemma A.3 grants |f̂(φw)| ≤ ‖f(φ·)‖L1

; as in the lemma statement, these cases are summarized
with |f̂(φw)| ≤Mf . Plugging this in and simplifying further via Lemma A.3,

sup
w̃
‖Tr(w̃)‖ ≤ 2

∣∣∣∣∫ f(x)Gα(−x) dx

∣∣∣∣+ 2(2π)d/2
∫
|f̂(v)|G(v/φ) dv + 2π(2πφ2)(d+1)/2Mf sup

|b|≤r
eb

2/2

≤ 2

[
M + 2(2πφ2)d/2Mf + 2π(2πφ2)(d+1)/2Mf sup

|b|≤r
eb

2/2

]
.

For the approximation estimate, for any ‖x‖ ≤ 1, the preceding derivation and Lemma A.1 grant∣∣∣f(x)− E
〈
Tr(w̃),Φ(x; w̃)

〉∣∣∣
=
∣∣∣E 〈T∞(w̃)− Tr(w̃),Φ(x; w̃)

〉∣∣∣
≤ 2π(2πφ2)(d+1)/2

∫
‖w‖>r

∫
|b|≤‖w‖

|f̂(φw)|| sin(2π(wTx+ θfα(w)))σ′(w̃Tx̃)|dbdG(w)

≤ 2π(2πφ2)(d+1)/2Mf

∫
‖w‖>r

∫
|b|≤‖w‖

dbdG(w)

≤ 4π(2πφ2)(d+1)/2Mf

∫
‖w‖>r

‖w‖ dG(w)

≤ 4π(2πφ2)(d+1)/2Mf (
√
d+ 3) exp

(
−(r −

√
d)2/4

)
.

E DEFERRED PROOFS FROM SECTION 4

The first proof is of the approximation properties of Gaussian convolution; as stated in the body, the
proof proceeds by splitting the error into two terms, one for nearby points, the other for distant points.
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Proof of Lemma 4.2. Splitting the integral into two terms, for any ‖x‖ ≤ 1,∣∣∣f(x)− (f|δ ∗Gα)(x)
∣∣∣ =

∣∣∣∣∫ f|δ(x)Gα(z) dz −
∫
f|δ(z)Gα(x− z) dz

∣∣∣∣
=

∣∣∣∣∫ f|δ(x)Gα(z) dz −
∫
f|δ(x− z)Gα(z) dz

∣∣∣∣
≤
∫ ∣∣∣f|δ(x)− f|δ(x− z)

∣∣∣Gα(z) dz

=

∫
‖z‖≤δ

∣∣∣f|δ(x)− f|δ(x− z)
∣∣∣Gα(z) dz

+

∫
‖z‖>δ

∣∣∣f|δ(x)− f|δ(x− z)
∣∣∣Gα(z) dz.

Analyzing these terms separately, the definition of ωf (δ) gives∫
‖z‖≤δ

∣∣∣f|δ(x)− f|δ(x− z)
∣∣∣Gα(z) dz ≤

∫
‖z‖≤δ

ωf (δ)Gα(z) dz ≤ ωf (δ),

whereas Gaussian concentration (cf. Lemma A.1) gives∫
‖z‖>δ

∣∣∣f|δ(x)− f|δ(x− z)
∣∣∣Gα(z) dz ≤ 2M P[‖αz‖ > δ] ≤ 2M exp(−(δ/α−

√
d)2/2) ≤ ωf (δ).

This now combines with Lemma 3.3 to prove Theorem 4.3.

Proof of Theorem 4.3. Plugging the choice of r into Lemma 3.3, for any ‖x‖ ≤ 1,∣∣∣f(x)− E
〈
Tr(w̃),Φ(x; w̃)

〉∣∣∣ ≤ 4π(2πφ2)(d+1)/2Mf (
√
d+ 3) exp

(
−(r −

√
d)2/4

)
≤ ωf (δ).

Moreover, plugging r into the estimate on supw̃ ‖Tr(w̃)‖ provided by Lemma 3.3 gives

sup
w̃
‖Tr(w̃)‖ ≤ 2

[
M + (2πφ2)d/2Mf

(
1 +

√
2π3φ2er

2/2
)]
,

where Lemma A.3 and the choice of r give

Mf ≤ ‖f|δ‖L1 , and er
2/2 ≤ ede(r−

√
d)2 ,

where

e(r−
√
d)2 =

(
4π(2πφ2)(d+1)/2Mf (

√
d+ 3)

ωf (δ)

)4

= O

( Mf

√
d

ωf (δ)αd+1

)4
 ,

and noting moreover that α = Õ(δ/
√
d).

To close this section comes the full version of Theorem 4.5, which gives explicit constructions for
both threshold σ′ and ReLU σ. Interestingly, in the case of σ′, it is not necessary to truncate the
density, as is the case everywhere else in this work.

Theorem E.1. As in Lemma 4.2, let f : Rd → R and δ > 0 be given, and define

M := sup
‖x‖≤1+δ

|f(x)|, f|δ(x) := f(x)1[‖x‖ ≤ 1 + δ], α :=
δ√

d+
√

2 ln(2M/ωf (δ))
.

Let Gα denote a Gaussian with the preceding variance α2, and define h := f|δ ∗Gα with Fourier
transform ĥ satisfying radial decomposition ĥ(w) = |ĥ(w)| exp(2πiθh(w). Lastly, let P be a
probability measure supported on ‖x‖ ≤ 1.
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1. Additionally define

c1 := h(0)+

∫
|ĥ(w)| cos

(
2π(θh(w)− ‖w‖)

)
dw, p1 := 2π|ĥ(w)| sin(2π(θh(w)−b))1

[
|b| ≤ ‖w‖

]
.

Then

|c1| ≤M + ‖f|δ‖L1
(2πα2)d/2, and ‖p1‖L1

≤ 2‖f|δ‖L1

√
2πd

(2πα2)d+1
,

and with probability at least 1−3η over a draw of ((sj , w̃j))
m
j=1 from p1 (cf. Definition 4.4),∥∥∥∥∥∥f −

c1 + ‖p1‖L1

m∑
j=1

sjσ
′(
〈
w̃j , ·

〉
)

∥∥∥∥∥∥
L2(P )

≤ 2ωf (δ) + ‖p1‖L1

[
1 +

√
2 ln(1/η)√
m

]
,

sup
‖x‖≤1

∣∣∣∣∣∣f(x)−

c1 + ‖p1‖L1

m∑
j=1

sjσ
′(
〈
w̃j , x

〉
)

∣∣∣∣∣∣ ≤ 2ωf (δ) +
‖p‖L1√
m

[√
8(d+ 1) ln(m+ 1) +

√
ln(1/η)

]
.

2. Additionally define

c2 := f(0)f(0) +

∫
|ĥ(w)|

[
cos(2π(θh(w)− ‖w‖))− 2π‖w‖ sin(2π(θh(w)− ‖w‖))

]
dw,

a2 :=

∫
w|ĥ(w)|dw,

r2 :=
√
d+ 2

√
ln

24π2(
√
d+ 7)2‖f|δ‖L1

ωf (δ)
,

p2(w̃) := 4π2|ĥ(w)| cos(2π(‖w‖ − b))1[|b| ≤ ‖w‖ ≤ r2],

and for convenience create fake (weight, bias, sign) triples

(w, b, s)m+1 := (0, |c2|,m · sgn(c2)), (w, b, s)m+2 := (a2, 0,+m), (w, b, s)m+3 := (−a2, 0,−m).

Then

‖a2‖2 ≤
√
d‖f|δ‖L1

φ(2πα2)−d/2,

‖p2‖L1
≤ 2‖f|δ‖L1

√
(2π)3d

(2πα2)d+1
,

|c2| ≤M + 2
√
d‖f|δ‖L1

(2πα2)−d/2,

and with probability at least 1−3η over a draw of ((sj , w̃j))
m
j=1 from p2 (cf. Definition 4.4),∥∥∥∥∥∥f − 1

m

m+3∑
j=1

sjσ(
〈
w̃j , ·

〉
)

∥∥∥∥∥∥
L2(P )

≤ 3ωf (δ) + r2‖p‖L1

[
1 +

√
2 ln(1/η)√
m

]
,

sup
‖x‖≤1

∣∣∣∣∣∣f(x)− 1

m

m+3∑
j=1

sjσ(
〈
w̃j , ·

〉
)

∣∣∣∣∣∣ ≤ 3ωf (δ) +
4r2‖p‖L1√

m

[
1 +

√
ln(1/η)

]
.

Proof. 1. By Lemma 3.1 and the choice of b1, for any ‖x‖ ≤ 1,

h(x) = c1 +

∫
p1(w̃)σ′(〈w̃, x〉) dw̃,
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thus by Lemma 4.2 and Lemma B.1, defining hj := ‖p‖L1
σ′(
〈
w̃j , ·

〉
) for convenience, with

probability at least 1− η,∥∥∥∥∥∥f − (c1 +
∑
j

hj/m)

∥∥∥∥∥∥
L2(P )

≤‖f − h‖L2(P ) +

∥∥∥∥∥∥h− (c1 +
∑
j

hj/m)

∥∥∥∥∥∥
L2(P )

≤ 2ωf (δ) + ‖p1‖L1
sup
‖w̃‖≤r2

‖σ′(〈w̃, ·〉 ‖L2(P )

[
1 +

√
2 ln(1/η)√
m

]

≤ 2ωf (δ) + ‖p1‖L1

[
1 +

√
2 ln(1/η)√
m

]
.

Similarly, the uniform norm bound follows by Lemma 4.2 and Lemma B.2: with probability
at least 1− 2η, for any ‖x‖ ≤ 1,∣∣∣∣∣∣f(x)− (c1 +

∑
j

hj(x)/m)

∣∣∣∣∣∣ ≤ ∣∣f(x)− h(x)
∣∣+

∣∣∣∣∣∣h(x)− (c1 +
∑
j

hj(x)/m)

∣∣∣∣∣∣
≤ 2ωf (δ) +

‖p1‖L1√
m

[√
8(d+ 1) ln(m+ 1) +

√
ln(1/η)

]
.

For the estimates on |c1| and ‖p1‖L1
, note setting φ := (2πα)−1, note by Lemma A.3 and a

change of variable w 7→ φw and Lemma A.1 that

‖p1‖L1 ≤ 2π

∫
| ̂f|δ ∗Gα(w)|

∫
1[|b| ≤ ‖w‖] dbdw

≤ 4π‖f|δ‖L1

∫
‖w‖(2πφ2)d/2Gφ(w) dw

= 4π(2π)d/2‖f|δ‖L1

∫
‖φw‖φdG(w) dw

≤ 4π(2π)d/2φd+1‖f|δ‖L1

∫
‖w‖G(w) dw

≤ 4
√
dπ(2π)d/2φd+1‖f|δ‖L1

,

≤ 2‖f|δ‖L1

√
2πd

(2πα2)d+1
.

Similarly,

|c1| ≤M + ‖f|δ‖L1

∫
Ĝα(w) dw ≤M + ‖f|δ‖L1(2πφ2)d/2.

2. By Lemma 3.1 and Lemma A.1 and the various chosen parameters, for any ‖x‖ ≤ 1,∣∣∣∣b2 + 〈x, a2〉+

∫
p2(w̃)σ(〈w̃, x〉) dw̃ − h(x)

∣∣∣∣ ≤ 12π2

∫
‖w‖>r2

‖w‖2|ĥ(w)|dw

≤ 24π2(
√
d+ 7)2 exp(−(r2 −

√
d)2/4)

≤ ωf (δ).

Thus by Lemma 4.2 and Lemma B.1, defining hj := ‖p‖L1
sjσ(

〈
w̃j , ·

〉
) for convenience,

with probability at least 1− η,∥∥∥∥∥∥f −
m+3∑
j=1

hj/m

∥∥∥∥∥∥
L2(P )

≤‖f − h‖L2(P ) +
∥∥f − (b2 + (·)Tc2 + Ep2s1h1

∥∥+

∥∥∥∥∥∥Ep2s1h1 −
m∑
j=1

sjhj/m

∥∥∥∥∥∥
L2(P )

≤ 3ωf (δ) + ‖p2‖L1 sup
‖w̃‖≤r2

‖σ(〈w̃, ·〉 ‖L2(P )

[
1 +

√
2 ln(1/η)√
m

]

≤ 3ωf (δ) + 2r2‖p‖L1

[
1 +

√
ln(1/η)√
m

]
.
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Similarly, the uniform norm bound follows by Lemma 4.2 and Lemma B.2: with probability
at least 1− 2η, for any ‖x‖ ≤ 1,∣∣∣∣∣∣f(x)−

m+3∑
j=1

hj(x)/m

∣∣∣∣∣∣ ≤ ∣∣f(x)− h(x)
∣∣+
∣∣f(x)− (b2 + xTc2 + Ep2s1h1(x)

∣∣+

∣∣∣∣∣∣Ep2 s1h1(x)−
m∑
j=1

sjhj(x)/m

∣∣∣∣∣∣
≤ 3ωf (δ) +

4r2‖p2‖L1√
m

[
1 +

√
ln(1/η)

]
.

For the estimates on |c1| and ‖p1‖L1 , note setting φ := (2πα)−1, note by Lemma A.3 and a
change of variable w 7→ φw and Lemma A.1 that

‖p2‖L1 ≤ 4π2

∫
| ̂f|δ ∗Gα(w)|

∫
1[|b| ≤ ‖w‖ ≤ r2] dbdw

≤ 8π2‖f|δ‖L1

∫
‖w‖≤r2

‖w‖(2πφ2)d/2Gφ(w) dw

= 8π2(2π)d/2‖f|δ‖L1

∫
‖φw‖≤r2

‖φw‖φdG(w) dw

≤ 8π2(2π)d/2φd+1‖f|δ‖L1

∫
‖φw‖≤r2

‖w‖G(w) dw

≤ 8
√
dπ2(2π)d/2φd+1‖f|δ‖L1

≤ 2‖f|δ‖L1

√
(2π)3d

(2πα2)d+1
.

Similarly,

|c2| ≤M + ‖f|δ‖L1

∫
(1 + ‖w‖)Ĝα(w) dw

≤M + ‖f|δ‖L1
(2πφ2)d/2

∫
(1 + ‖φw‖) dG(w)

≤M + 2
√
d‖f|δ‖L1

(2πφ2)d/2,

‖a2‖2 =

∥∥∥∥∫ w|ĥ(w)|dw
∥∥∥∥

≤
∫
‖w‖|ĥ(w)|dw

≤ ‖f|δ‖L1(2πφ2)d/2
∫
‖φw‖|ĥ(w)|dw

≤
√
d‖f|δ‖L1φ(2πφ2)d/2.

F DEFERRED PROOFS FROM SECTION 5

Lastly, the two short proofs leading to the RKHS bounds.

Proof of Proposition 5.1. 1. By Markov’s inequality∫
1[‖T (w̃)‖2 > B] dG(w̃) ≤ ‖T ‖

2
H

B2
,
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thus by Cauchy-Schwarz, for any ‖x‖ ≤ 1,∣∣∣〈TB ,Φ(x; ·)
〉
H −

〈
T ,Φ(x; ·)

〉
H

∣∣∣ =

∣∣∣∣∫ (TB(w̃)− T (w̃)
)T
x̃σ′(〈w̃, x̃〉) dG(w̃)

∣∣∣∣
≤
∫ ∣∣∣1 [‖T (w̃)‖2 > B

]∣∣∣ ·∣∣T (w̃)Tx̃
∣∣ ·∣∣σ′(〈w̃, x̃〉)∣∣dG(w̃)

≤

√∫
1
[
‖T (w̃)‖2 > B

]2
dG(w̃) ·

√∫ (
T (w̃)Tx̃

)2
dG(w̃)

≤ ‖T ‖H
B

·

√∫
2‖T (w̃)‖2 dG(w̃)

=
‖T ‖2H

√
2

B
.

2. Proceeding similarly, but now using Lemma A.1 to control the indicator,∣∣∣〈Tr,Φ(x; ·)
〉
H −

〈
T ,Φ(x; ·)

〉
H

∣∣∣ =

∣∣∣∣∫ (Tr(w̃)− T (w̃)
)T
x̃σ′(〈w̃, x̃〉) dG(w̃)

∣∣∣∣
≤
∫ ∣∣∣1 [‖w̃‖2 > r

]∣∣∣ ·∣∣T (w̃)Tx̃
∣∣ ·∣∣σ′(〈w̃, x̃〉)∣∣dG(w̃)

≤

√∫
1
[
‖w̃‖2 > r

]2
dG(w̃) ·

√∫ (
T (w̃)Tx̃

)2
dG(w̃)

≤
√

exp
(
−(r −

√
d)2/2

)
·

√∫
2‖T (w̃)‖2 dG(w̃)

=
‖T ‖H

√
2

e(r−
√
d)2/4

.

28


	Main result and overview
	Basic notation, intuition, and main result
	Related work

	Sampling from a transport
	Concrete transport mappings via Fourier transforms
	Approximating continuous functions
	Abstract transport mappings, and an RKHS
	Open problems
	Technical lemmas
	Sampling tools: Maurey's lemma and co-VC dimension
	Deferred proofs from sec:samp
	Deferred proofs from sec:transport
	Deferred proofs from sec:cont
	Deferred proofs from sec:rkhs

