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ABSTRACT

We study the convergence of gradient descent (GD) and stochastic gradient de-
scent (SGD) for training L-hidden-layer linear residual networks (ResNets). We
prove that for training deep residual networks with certain linear transformations
at input and output layers, which are fixed throughout training, both GD and SGD
with zero initialization on all hidden weights can converge to the global minimum
of the training loss. Moreover, when specializing to appropriate Gaussian random
linear transformations, GD and SGD provably optimize wide enough deep linear
ResNets. Compared with the global convergence result of GD for training stan-
dard deep linear networks (Du & Hu, 2019), our condition on the neural network
width is sharper by a factor of OpκLq, where κ denotes the condition number of
the covariance matrix of the training data. We further propose a modified identity
input and output transformations, and show that a pd ` kq-wide neural network
is sufficient to guarantee the global convergence of GD/SGD, where d, k are the
input and output dimensions respectively.

1 INTRODUCTION

Despite the remarkable power of deep neural networks (DNNs) trained using stochastic gradient
descent (SGD) in many machine learning applications, theoretical understanding of the properties
of this algorithm, or even plain gradient descent (GD), remains limited. Many key properties of the
learning process for such systems are also present in the idealized case of deep linear networks. For
example, (a) the objective function is not convex; (b) errors back-propagate; and (c) there is potential
for exploding and vanishing gradients. In addition to enabling study of systems with these properties
in a relatively simple setting, analysis of deep linear networks also facilitates the scientific under-
standing of deep learning because using linear networks can control for the effect of architecture
choices on the expressiveness of networks (Arora et al., 2018; Du & Hu, 2019). For these reasons,
deep linear networks have received extensive attention in recent years.

One important line of theoretical investigation of deep linear networks concerns optimization land-
scape analysis (Kawaguchi, 2016; Hardt & Ma, 2016; Freeman & Bruna, 2016; Lu & Kawaguchi,
2017; Yun et al., 2018; Zhou & Liang, 2018), where major findings include that any critical point
of a deep linear network with square loss function is either a global minimum or a saddle point, and
identifying conditions on the weight matrices that exclude saddle points. Beyond landscape analy-
sis, another research direction aims to establish convergence guarantees for optimization algorithms
(e.g. GD, SGD) for training deep linear networks. Arora et al. (2018) studied the trajectory of gra-
dient flow and showed that depth can help accelerate the optimization of deep linear networks. Ji
& Telgarsky (2019); Gunasekar et al. (2018) investigated the implicit bias of GD for training deep
linear networks and deep linear convolutional networks respectively. More recently, Bartlett et al.
(2019); Arora et al. (2019a); Shamir (2018); Du & Hu (2019) analyzed the optimization trajectory of
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GD for training deep linear networks and proved global convergence rates under certain assumptions
on the training data, initialization, and neural network structure.

Inspired by the great empirical success of residual networks (ResNets), Hardt & Ma (2016) con-
sidered identity parameterizations in deep linear networks, i.e., parameterizing each layer’s weight
matrix as I`W, which leads to the so-called deep linear ResNets. In particular, Hardt & Ma (2016)
established the existence of small norm solutions for deep residual networks with sufficiently large
depth L, and proved that there are no critical points other than the global minimum when the maxi-
mum spectral norm among all weight matrices is smaller than Op1{Lq. Motivated by this intriguing
finding, Bartlett et al. (2019) studied the convergence rate of GD for training deep linear networks
with identity initialization, which is equivalent to zero initialization in deep linear ResNets. They
assumed whitened data and showed that GD can converge to the global minimum if (i) the training
loss at the initialization is very close to optimal or (ii) the regression matrix Φ is symmetric and
positive definite. (In fact, they proved that, when Φ is symmetric and has negative eigenvalues, GD
for linear ResNets with zero-initialization does not converge.) Arora et al. (2019a) showed that GD
converges under substantially weaker conditions, which can be satisfied by random initialization
schemes. The convergence theory of stochastic gradient descent for training deep linear ResNets is
largely missing; it remains unclear under which conditions SGD can be guaranteed to find the global
minimum.

In this paper, we establish the global convergence of both GD and SGD for training deep linear
ResNets without any condition on the training data. More specifically, we consider the training of
L-hidden-layer deep linear ResNets with fixed linear transformations at input and output layers. We
prove that under certain conditions on the input and output linear transformations, GD and SGD can
converge to the global minimum of the training loss function. Moreover, when specializing to appro-
priate Gaussian random linear transformations, we show that, as long as the neural network is wide
enough, both GD and SGD with zero initialization on all hidden weights can find the global mini-
mum. There are two main ingredients of our proof: (i) establishing restricted gradient bounds and
a smoothness property; and (ii) proving that these properties hold along the optimization trajectory
and further lead to global convergence. We point out the second aspect is challenging especially
for SGD due to the uncertainty of its optimization trajectory caused by stochastic gradients. We
summarize our main contributions as follows:

• We prove the global convergence of GD and SGD for training deep linear ResNets. Specifically,
we derive a generic condition on the input and output linear transformations, under which both
GD and SGD with zero initialization on all hidden weights can find global minima. Based on this
condition, one can design a variety of input and output transformations for training deep linear
ResNets.

• When applying appropriate Gaussian random linear transformations, we show that as long as
the neural network width satisfies m “ Ωpkrκ2q, with high probability, GD can converge to
the global minimum up to an ε-error within Opκ logp1{εqq iterations, where k, r are the output
dimension and the rank of training data matrix X respectively, and κ “ }X}22{σ

2
rpXq denotes

the condition number of the covariance matrix of the training data. Compared with previous
convergence results for training deep linear networks from Du & Hu (2019), our condition on
the neural network width is independent of the neural network depth L, and is strictly better by a
factor of OpLκq.

• Using the same Gaussian random linear transformations, we also establish the convergence guar-
antee of SGD for training deep linear ResNets. We show that if the neural network width satisfies
m “ rΩ

`

krκ2 log2
p1{εq ¨n2{B2

˘

, with constant probability, SGD can converge to the global min-
imum up to an ε-error within rO

`

κ2ε´1 logp1{εq ¨ n{B
˘

iterations, where n is the training sample
size and B is the minibatch size of stochastic gradient. This is the first global convergence rate of
SGD for training deep linear networks. Moreover, when the global minimum of the training loss
is 0, we prove that SGD can further achieve linear rate of global convergence, and the condition
on the neural network width does not depend on the target error ε.

As alluded to above, we analyze networks with d inputs, k outputs, and m ě maxtd, ku nodes
in each hidden layer. Linear transformations that are fixed throughout training map the inputs to
the first hidden layer, and the last hidden layer to the outputs. We prove that our bounds hold with
high probability when these input and output transformations are randomly generated by Gaussian
distributions. If, instead, the input transformation simply copies the inputs onto the first d compo-
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nents of the first hidden layer, and the output transformation takes the first k components of the last
hidden layer, then our analysis does not provide a guarantee. There is a good reason for this: a slight
modification of a lower bound argument from Bartlett et al. (2019) demonstrates that GD may fail
to converge in this case. However, we describe a similarly simple, deterministic, choice of input and
output transformations such that wide enough networks always converge. The resulting condition on
the network width is weaker than that for Gaussian random transformations, and thus improves on
the corresponding convergence guarantee for linear networks, which, in addition to requiring wider
networks, only hold with high probability for random transformations.

1.1 ADDITIONAL RELATED WORK

In addition to what we discussed above, a large bunch of work focusing on the optimization of
neural networks with nonlinear activation functions has emerged. We will briefly review them in
this subsection.

It is widely believed that the training loss landscape of nonlinear neural networks is highly noncon-
vex and nonsmooth (e.g., neural networks with ReLU/LeakyReLU activation), thus it is fundamen-
tally difficult to characterize the optimization trajectory and convergence performance of GD and
SGD. Some early work (Andoni et al., 2014; Daniely, 2017) showed that wide enough (polynomial
in sample size n) neural networks trained by GD/SGD can learn a class of continuous functions (e.g.,
polynomial functions) in polynomial time. However, those works only consider training some of the
neural network weights rather than all of them (e.g., the input and output layers) 1. In addition,
a series of papers investigated the convergence of gradient descent for training shallow networks
(typically 2-layer networks) under certain assumptions on the training data and initialization scheme
(Tian, 2017; Du et al., 2018b; Brutzkus et al., 2018; Zhong et al., 2017; Li & Yuan, 2017; Zhang
et al., 2018). However, the assumptions made in these works are rather strong and not consistent
with practice. For example, Tian (2017); Du et al. (2018b); Zhong et al. (2017); Li & Yuan (2017);
Zhang et al. (2018) assumed that the label of each training data is generated by a teacher network,
which has the same architecture as the learned network. Brutzkus et al. (2018) assumed that the
training data is linearly separable. Li & Liang (2018) addressed this drawback; they proved that
for two-layer ReLU network with cross-entropy loss, as long as the neural network is sufficiently
wide, under mild assumptions on the training data SGD with commonly-used Gaussian random
initialization can achieve nearly zero expected error. Du et al. (2018c) proved the similar results
of GD for training two-layer ReLU networks with square loss. Beyond shallow neural networks,
Allen-Zhu et al. (2019); Du et al. (2019); Zou et al. (2019) generalized the global convergence re-
sults to multi-layer over-parameterized ReLU networks. Chizat et al. (2019) showed that training
over-parameterized neural networks actually belongs to a so-called “lazy training” regime, in which
the model behaves like its linearization around the initialization. Furthermore, the parameter scaling
is more essential than over-paramterization to make the model learning within the “lazy training”
regime. Along this line of research, several follow up works have been conducted. Oymak &
Soltanolkotabi (2019); Zou & Gu (2019); Su & Yang (2019); Kawaguchi & Huang (2019) improved
the convergence rate and over-parameterization condition for both shallow and deep networks. Arora
et al. (2019b) showed that training a sufficiently wide deep neural network is almost equivalent to
kernel regression using neural tangent kernel (NTK), proposed in Jacot et al. (2018). Allen-Zhu
et al. (2019); Du et al. (2019); Zhang et al. (2019) proved the global convergence for training deep
ReLU ResNets. Frei et al. (2019) proved the convergence of GD for training deep ReLU ResNets
under an over-parameterization condition that is only logarithmic in the depth of the network, which
partially explains why deep residual networks are preferable to fully connected ones. However, all
the results in Allen-Zhu et al. (2019); Du et al. (2019); Zhang et al. (2019); Frei et al. (2019) require
a very stringent condition on the network width, which typically has a high-degree polynomial de-
pendence on the training sample size n. Besides, the results in Allen-Zhu et al. (2019); Zhang et al.
(2019) also require that all data points are separated by a positive distance and have unit norm. As
shown in Du & Hu (2019) and will be proved in this paper, for deep linear (residual) networks, there
is no assumption on the training data, and the condition on the network width is significantly milder,
which is independent of the sample size n. While achieving a stronger result for linear networks
than for nonlinear ones is not surprising, we believe that our analysis, conducted in the idealized
deep linear case, can provide useful insights to understand optimization in the nonlinear case.

1In Daniely (2017), the weight changes in all hidden layers make negligible contribution to the final output,
thus can be approximately treated as only training the output layer.
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Two concurrent works analyze gradient descent applied to deep linear (residual) networks (Hu et al.,
2020; Wu et al., 2019). Hu et al. (2020) consider deep linear networks with orthogonal initialization,
and Wu et al. (2019) consider zero initialization on the last layer and identity initialization for the
rest of the layers, which are similar to our setting. However, there are several differences between
their work and ours. One major difference is that Hu et al. (2020) and Wu et al. (2019) only prove
global convergence for GD, but our results cover both GD and SGD. In addition, Hu et al. (2020)
focuses on proving the global convergence of GD for sufficiently wide networks, while we provide
a generic condition on the input and output linear transformations for ensuring global convergence.
Wu et al. (2019) assumes whitened data and proves a OpL3 logp1{εqq bound on the number of
iterations required for GD to converge, where we establish a Oplogp1{εqq2 bound.

1.2 NOTATION.

We use lower case, lower case bold face, and upper case bold face letters to denote scalars, vectors
and matrices respectively. For a positive integer, we denote the set t1, . . . , ku by rks. Given a vector
x, we use }x}2 to denote its `2 norm. We use Npµ, σ2q to denote the Gaussian distribution with
mean µ and variance σ2. Given a matrix X, we denote }X}F , }X}2 and }X}2,8 as its Frobenious
norm, spectral norm and `2,8 norm (maximum `2 norm over its columns), respectively. In addition,
we denote by σminpXq, σmaxpXq and σrpXq the smallest, largest and r-th largest singular values
of X respectively. For a square matrix A, we denote by λminpAq and λmaxpAq the smallest and
largest eigenvalues of A respectively. For two sequences takukě0 and tbkukě0, we say ak “ Opbkq
if ak ď C1bk for some absolute constant C1, and use ak “ Ωpbkq if ak ě C2bk for some absolute
constant C2. Except the target error ε, we use rOp¨q and rΩp¨q to hide the logarithmic factors in Op¨q
and Ωp¨q respectively.

2 PROBLEM SETUP

Model. In this work, we consider deep linear ResNets defined as follows:

fWpxq “ BpI`WLq . . . pI`W1qAx,

where x P Rd is the input, fWpxq P Rk is the corresponding output, A P Rmˆd,B P Rkˆm denote
the weight matrices of input and output layers respectively, and W1, . . . ,WL P Rmˆm denote the
weight matrices of all hidden layers. The formulation of ResNets in our paper is different from that
in Hardt & Ma (2016); Bartlett et al. (2019), where the hidden layers have the same width as the
input and output layers. In our formulation, we allow the hidden layers to be wider by choosing the
dimensions of A and B appropriately.

Loss Function. Let tpxi,yiqui“1,...,n be the training dataset, X “ px1, . . . ,xnq P Rdˆn be the
input data matrix and Y “ py1, . . . ,ynq P Rkˆn be the corresponding output label matrix. We
assume the data matrix X is of rank r, where r can be smaller than d. Let W “ tW1, . . . ,WLu be
the collection of weight matrices of all hidden layers. For an example px,yq, we consider the square
loss defined by

`pW; x,yq “
1

2
}fWpxq ´ y}22.

Then the training loss over the training dataset takes the following form

LpWq :“
n
ÿ

i“1

`pW; xi,yiq “
1

2
}BpI`WLq ¨ ¨ ¨ pI`W1qAX´Y}2F .

Algorithm. Similar to Allen-Zhu et al. (2019); Zhang et al. (2019), we consider algorithms that
only train the weights W for hidden layers while leaving the input and output weights A and B
unchanged throughout training. For hidden weights, we follow the similar idea in Bartlett et al.
(2019) and adopt zero initialization (which is equivalent to identity initialization for standard linear
network). We would also like to point out that at the initialization, all the hidden layers automatically
satisfy the so-called balancedness condition (Arora et al., 2018; 2019a; Du et al., 2018a). The
optimization algorithms, including GD and SGD, are summarized in Algorithm 1.

2Considering whitened data immediately gives κ “ 1.
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Algorithm 1 (Stochastic) Gradient descent with zero initialization
1: input: Training data txi,yiuiPrns, step size η, total number of iterations T , minibatch size B,

input and output weight matrices A and B.
2: initialization: For all l P rLs, each entry of weight matrix W

p0q
l is initialized as 0.

Gradient Descent
3: for t “ 0, . . . , T ´ 1 do
4: W

pt`1q
l “ W

ptq
l ´ η∇Wl

LpWptqq for all l P rLs
5: end for
6: output: WpT q

Stochastic Gradient Descent
7: for t “ 0, . . . , T ´ 1 do
8: Uniformly sample a subset Bptq of size B from training data without replacement.
9: For all ` P rLs, compute the stochastic gradient G

ptq
l “ n

B

ř

iPBptq ∇Wl
`pWptq; xi,yiq

10: For all l P rLs, W
pt`1q
l “ W

ptq
l ´ ηG

ptq
l

11: end for
12: output: tWptqut“0,...,T

3 MAIN THEORY

It is clear that the expressive power of deep linear ResNets is identical to that of simple linear model,
which implies that the global minima of deep linear ResNets cannot be smaller than that of linear
model. Therefore, our focus is to show that GD/SGD can converge to a point W˚ with

LpW˚q “ min
ΘPRkˆd

1

2
}ΘX´Y}2F ,

which is exactly the global minimum of the linear regression problem. It what follows, we will show
that with appropriate input and output transformations, both GD and SGD can converge to the global
minimum.

3.1 CONVERGENCE GUARANTEE OF GRADIENT DESCENT

The following theorem establishes the global convergence of GD for training deep linear ResNets.
Theorem 3.1. There are absolute constants C and C1 such that, if the input and output weight
matrices satisfy

σ2
minpAqσ

2
minpBq

}A}2}B}2
ě C

}X}2
`

LpWp0qq ´ LpW˚q
˘1{2

σ2
rpXq

and the step size satisfies

η ď C1 ¨
1

L}A}2}B}2}X}2 ¨
`

a

LpWp0qq ` }A}2}B}2}X}2
˘ ,

then for all iterates of GD in Algorithm 1, it holds that

LpWptqq ´ LpW˚q ď

ˆ

1´
ηLσ2

minpAqσ
2
minpBqσ

2
rpXq

e

˙t

¨
`

LpWp0qq ´ LpW˚q
˘

.

Remark 3.2. Theorem 3.1 can imply the convergence result in Bartlett et al. (2019). Specifically, in
order to turn into the setting considered in Bartlett et al. (2019), we choosem “ d “ k, A “ I,B “

I, LpW˚q “ 0 and XXJ “ I. Then it can be easily observed that the condition in Theorem 3.1
becomes LpWp0qq ´ LpW˚q ď C´2. This implies that the global convergence can be established
as long as LpWp0qq ´ LpW˚q is smaller than some constant, which is equivalent to the condition
proved in Bartlett et al. (2019).

In general, LpWp0qq ´ LpW˚q can be large and thus the setting considered in Bartlett et al. (2019)
may not be able to guarantee global convergence. Therefore, it is natural to ask in which setting
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the condition on A and B in Theorem 3.1 can be satisfied. Here we provide one possible choice
which is commonly used in practice (another viable choices can be found in Section 4). We use
Gaussian random input and output transformations, i.e., each entry in A is independently generated
from Np0, 1{mq and each entry in B is generated from Np0, 1{kq. Based on this choice of transfor-
mations, we have the following proposition that characterizes the quantity of the largest and smallest
singular values of A and B, and the training loss at the initialization (i.e., LpWp0qq). The following
proposition is proved in Section A.2.
Proposition 3.3. In Algorithm 1, if each entry in A is independently generated from Np0, α2q and
each entry in B is independently generated from Np0, β2q, then if m ě C ¨ pd` k ` logp1{δqq for
some absolute constant C, with probability at least 1´ δ, it holds that

σminpAq “ Ωpα
?
mq, σmaxpAq “ Opα

?
mq, σminpBq “ Ω

`

β
?
m
˘

, σmaxpBq “ O
`

β
?
m
˘

,

and LpWp0qq ď O
`

α2β2km logpn{δq}X}2F ` }Y}
2
F

˘

.

Then based on Theorem 3.1 and Proposition 3.3, we provide the following corollary, proved in
Section 3.4, which shows that GD is able to achieve global convergence if the neural network is
wide enough.
Corollary 3.4. Suppose }Y}F “ Op}X}F q. Then using Gaussian random input and output
transformations in Proposition 3.3 with α “ β “ 1, if the neural network width satisfies
m “ Ωpmaxtkrκ2 logpn{δq, k ` d` logp1{δquq then, with probability at least 1´ δ, the output of
GD in Algorithm 1 achieves training loss at most LpW˚q ` ε within T “ O

`

κ logp1{εq
˘

iterations,
where κ “ }X}22{σ

2
rpXq denotes the condition number of the covariance matrix of training data.

Remark 3.5. For standard deep linear networks, Du & Hu (2019) proved that GD with Gaussian
random initialization can converge to a ε-suboptimal global minima within T “ Ωpκ logp1{εqq
iterations if the neural network width satisfies m “ OpLkrκ3 ` dq. In stark contrast, training
deep linear ResNets achieves the same convergence rate as training deep linear networks and linear
regression, while the condition on the neural network width is strictly milder than that for training
standard deep linear networks by a factor of OpLκq. This improvement may in part validate the
empirical advantage of deep ResNets.

3.2 CONVERGENCE GUARANTEE OF STOCHASTIC GRADIENT DESCENT

The following theorem establishes the global convergence of SGD for training deep linear ResNets.
Theorem 3.6. There are absolute constants C, C1 and C2, such for any 0 ă δ ď 1{6 and ε ą 0, if
the input and output weight matrices satisfy

σ2
minpAqσ

2
minpBq

}A}2}B}2
ě C ¨

n}X}2 ¨ logpLpWp0qq{εq

Bσ2
rpXq

¨

b

LpWp0qq,

and the step size and maximum iteration number are set as

η ď C1 ¨
Bσ2

minpAqσ
2
minpBqσ

2
rpXq

Ln}A}42}B}
4
2}X}

2
2

¨min

"

ε

}X}22,8LpW
˚q
,

B

n}X}22 ¨ logpT {δq logpLpWp0qq{εq

*

,

T “ C2 ¨
1

ηLσ2
minpAqσ

2
minpBqσ

2
rpXq

¨ log

ˆ

LpWp0qq ´ LpW˚q

ε

˙

,

then with probability3 at least 1{2 (with respect to the random choices of mini batches), SGD in
Algorithm 1 can find a network that achieves training loss at most LpW˚q ` ε.

By combining Theorem 3.6 and Proposition 3.3, we can show that as long as the neural network is
wide enough, SGD can achieve global convergence. Specifically, we provide the condition on the
neural network width and the iteration complexity of SGD in the following corollary.
Corollary 3.7. Suppose }Y}F “ Op}X}F q. Then using Gaussian random input and output trans-
formations in Proposition 3.3 with α “ β “ 1, for sufficiently small ε ą 0, if the neural network
width satisfies m “ rΩ

`

krκ2 log2
p1{εq ¨n2{B2`d

˘

, with constant probability, SGD in Algorithm 1
can find a point that achieves training loss at most LpW˚q` ε within T “ rO

`

κ2ε´1 logp1{εq ¨n{B
˘

iterations.
3One can boost this probability to 1´ δ by independently running logp1{δq copies of SGD in Algorithm 1.

6



Published as a conference paper at ICLR 2020

From Corollaries 3.7 and 3.4, we can see that compared with the convergence guarantee of GD, the
condition on the neural network width for SGD is worse by a factor of rOpn2 log2

p1{εq{B2q and the
iteration complexity is higher by a factor of rOpκε´1 ¨ n{Bq. This is because for SGD, its trajectory
length contains high uncertainty, and thus we need stronger conditions on the neural network in
order to fully control it.

We further consider the special case that LpW˚q “ 0, which implies that there exists a ground
truth matrix Φ such that for each training data point pxi,yiq we have yi “ Φxi. In this case, we
have the following theorem, which shows that SGD can attain a linear rate to converge to the global
minimum.
Theorem 3.8. There are absolute constants C, and C1 such that for any 0 ă δ ă 1, if the input and
output weight matrices satisfy

σ2
minpAqσ

2
minpBq

}A}2}B}2
ě C ¨

n}X}2
Bσ2

rpXq
¨

b

LpWp0qq,

and the step size is set as

η ď C1 ¨
B2σ2

minpAqσ
2
minpBqσ

2
rpXq

Ln2}A}42}B}
4
2}X}

4
2 ¨ logpT {δq

,

for some maximum iteration number T , then with probability at least 1´ δ, the following holds for
all t ď T ,

LpWptqq ď 2LpWp0qq ¨

ˆ

1´
ηLσ2

minpAqσ
2
minpBqσ

2
rpXq

e

˙t

.

Similarly, using Gaussian random transformations in Proposition 3.3, we show that SGD can achieve
global convergence for wide enough deep linear ResNets in the following corollary.
Corollary 3.9. Suppose }Y}F “ Op}X}F q. Then using Gaussian random transformations in
Proposition 3.3 with α “ β “ 1, for any ε ď rO

`

B}X}22,8{pn}X}
2
2q
˘

, if the neural network width
satisfies m “ rΩ

`

krκ2 ¨ n2{B2 ` d
˘

, with high probability, SGD in Algorithm 1 can find a network
that achieves training loss at most ε within T “ rO

`

κ2 logp1{εq ¨ n2{B2
˘

iterations.

4 DISCUSSION ON DIFFERENT INPUT AND OUTPUT LINEAR
TRANSFORMATIONS

In this section, we will discuss several different choices of linear transformations at input and output
layers and their effects to the convergence performance. For simplicity, we will only consider the
condition for GD.

As we stated in Subsection 3.1, GD converges if the input and output weight matrices A and B

σ2
minpAqσ

2
minpBq

}A}2}B}2
ě C ¨

}X}2
σ2
rpXq

¨
`

LpWp0qq ´ LpW˚q
˘1{2

. (4.1)

Then it is interesting to figure out what kind of choice of A and B can satisfy this condition. In
Proposition 3.3, we showed that Gaussian random transformations (i.e., each entry of A and B is
generated from certain Gaussian distribution) satisfy this condition with high probability, so that GD
converges. Here we will discuss the following two other transformations.

Identity transformations. We first consider the transformations that A “ rIdˆd,0dˆpm´dqs
J and

B “
a

m{k ¨ rIkˆk,0kˆpm´kqs. which is equivalent to the setting in Bartlett et al. (2019) when
m “ k “ d. Then it is clear that

σminpBq “ σmaxpBq “
a

m{k and σminpAq “ σmaxpAq “ 1.

Now let us consider LpWp0qq. By our choices of B and A and zero initialization on weight matrices
in hidden layers, in the case that d “ k, we have

LpWp0qq “
1

2
}BAX´Y}2F “

1

2

›

›

a

m{kX´Y
›

›

2

F
.
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We remark that
›

›

a

m{kX´Y
›

›

2

F
{2 could be as big as 1

2

`

m}X}2F {k ` }Y}
2
F

˘

(for example, when
X and Y are orthogonal). Then plugging these results into (4.1), the condition on A and B becomes

a

m{k ě C ¨
}X}2
σ2
rpXq

¨

ˆ

1

2

`

m}X}2F {k ` }Y}
2
F

˘

´ LpW˚q

˙1{2

ě C ¨
}X}2
σ2
rpXq

¨

c

m}X}2F
2k

,

where the second inequality is due to the fact that LpW˚q ď }Y}2F {2. Then it is clear if }X}F ě?
2{C, the above inequality cannot be satisfied for any choice of m, since it will be cancelled out on

both sides of the inequality. Therefore, in such cases, our bound does not guarantee that GD achieves
global convergence. Thus, it is consistent with the non-convergence results in (Bartlett et al., 2019).
Note that replacing the scaling factor

a

m{k in the definition of B with any other function of d, k
and m would not help.

Modified identity transformations. In fact, we show that a different type of identity transforma-
tions of A and B can satisfy the condition (4.1). Here we provide one such example. Assuming
m ě d`k, we can construct two sets S1,S2 Ă rms satisfying |S1| “ d, |S2| “ k and S1XS2 “ H.
Let S1 “ ti1, . . . , idu and S2 “ tj1, . . . , jku. Then we construct matrices A and B as follows:

Aij “

"

1 pi, jq “ pij , jq
0 otherwise Bij “

"

α pi, jq “ pi, jiq
0 otherwise

where α is a parameter which will be specified later. In this way, it can be verified that BA “ 0,
σminpAq “ σmaxpAq “ 1, and σminpBq “ σmaxpBq “ α. Thus it is clear that the initial training
loss satisfies LpWp0qq “ }Y}2F {2. Then plugging these results into (4.1), the condition on A and
B can be rewritten as

α ě C ¨
}X}2
σ2
rpXq

¨
`

}Y}2F {2´ LpW
˚q
˘1{2

.

The R.H.S. of the above inequality does not depend on α, which implies that we can choose suf-
ficiently large α to make this inequality hold. Thus, GD can be guaranteed to achieve the global
convergence. Moreover, it is worth noting that using modified identity transformation, a neural net-
work with m “ d ` k suffices to guarantee the global convergence of GD. We further remark that
similar analysis can be extended to SGD.

5 EXPERIMENTS

In this section, we conduct various experiments to verify our theory on synthetic data, including i)
comparison between different input and output transformations and ii) comparison between training
deep linear ResNets and standard linear networks.

5.1 DIFFERENT INPUT AND OUTPUT TRANSFORMATIONS

To validate our theory, we performed simple experiment on 10-d synthetic data. Specifically, we
randomly generate X P R10ˆ1000 from a standard normal distribution and set Y “ ´X ` 0.1 ¨ E,
where each entry in E is independently generated from standard normal distribution. Consider
10-hidden-layer linear ResNets, we apply three input and output transformations including identity
transformations, modified identity transformations and random transformations. We evaluate the
convergence performances for these three choices of transformations and report the results in Figures
1(a)-1(b), where we consider two cases m “ 40 and m “ 200. It can be clearly observed that
gradient descent with identity initialization gets stuck, but gradient descent with modified identity
initialization or random initialization converges well. This verifies our theory. It can be also observed
that modified identity initialization can lead to slightly faster convergence rate as its initial training
loss can be smaller. In fact, with identity transformations in this setting, only the first 10 entries of
the m hidden variables in each layer ever take a non-zero value, so that, no matter how large m is,
effectively, m “ 10, and the lower bound of Bartlett et al. (2019) applies.

5.2 COMPARISON WITH STANDARD DEEP LINEAR NETWORKS

Then we compare the convergence performances with that of training standard deep linear networks.
Specifically, we adopt the same training data generated in Section 5.1 and consider training L-
hidden-layer neural network with fixed width m. The convergence results are displayed in Figures

8
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(d) m “ 200

Figure 1: (a)-(b):Convergence performances for three input and output transformations on a 10-
hidden-layer linear ResNets. (c)-(d) Comparison between the convergence performances of training
deep linear ResNets with zero initialization on hidden weights and standard deep linear network with
Gaussian random initialization on hidden weights, where the input and output weights are generated
by random initialization, and remain fixed throughout the training.

1(c)-1(d), where we consider different choices of L. For training linear ResNets, we found that the
convergence performances are quite similar for different L, thus we only plot the convergence result
for the largest one (e.g., L “ 20 for m “ 40 and L “ 100 for m “ 200). However, it can be
observed that for training standard linear networks, the convergence performance becomes worse as
the depth increases. This is consistent with the theory as our condition on the neural network width
is m “ Opkrκ2q (please refer to Corollary 3.4), which has no dependency in L, while the condition
for training standard linear network is m “ OpLkrκ3q (Du & Hu, 2019), which is linear in L.

6 CONCLUSION

In this paper, we proved the global convergence of GD and SGD for training deep linear ResNets
with square loss. More specifically, we considered fixed linear transformations at both input and
output layers, and proved that under certain conditions on the transformations, GD and SGD with
zero initialization on all hidden weights can converge to the global minimum. In addition, we fur-
ther proved that when specializing to appropriate Gaussian random linear transformations, GD and
SGD can converge as long as the neural network is wide enough. Compared with the convergence
results of GD for training standard deep linear networks, our condition on the neural network width
is strictly milder. Our analysis can be generalized to prove similar results for different loss func-
tions such as cross-entropy loss, and can potentially provide meaningful insights to the convergence
analysis of deep non-linear ResNets.
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A PROOF OF MAIN THEOREMS

We first provide the following lemma which proves upper and lower bounds on }∇Wl
LpWq}2F

when W is staying inside a certain region. Its proof is in Section B.1.
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Lemma A.1. For any weight matrices satisfying maxlPrLs }Wl}2 ď 0.5{L, it holds that,

}∇Wl
LpWq}2F ě

2

e
σ2
minpAqσ

2
minpBqσ

2
rpXq

`

LpWq ´ LpW˚q
˘

,

}∇Wl
LpWq}2F ď 2e}A}22}B}

2
2}X}

2
2

`

LpWq ´ LpW˚q
˘

}∇Wl
`pW; xi,yiq}

2
F ď 2e}A}22}B}

2
2}xi}

2
2`pW; xi,yiq.

In addition, the stochastic gradient Gl in Algorithm 1 satisfies

}Gl}
2
F ď

2en2}A}22}B}
2
2}X}

2
2

B2
LpWq,

where B is the minibatch size.

The gradient lower bound can be also interpreted as the Polyak-Łojasiewicz condition, which is
essential to the linear convergence rate. The gradient upper bound is crucial to bound the trajectory
length, since this lemma requires that maxlPrLs }Wl} ď 0.5{L.

The following lemma proves the smoothness property of the training loss function LpWq when W
is staying inside a certain region. Its proof is in Section B.2.

Lemma A.2. For any two collections of weight matrices, denoted by ĂW “ tĂW1, . . . ,ĂWLu and
W “ tW1, . . . ,WLu, satisfying maxlPrLs }Wl}F ,maxlPrLs }ĂWl}F ď 0.5{L that, it holds that

LpĂWq ´ LpWq ď

L
ÿ

l“1

x∇Wl
LpWq,ĂWl ´Wly

` L}A}2}B}2}X}2
`

a

2eLpWq ` 0.5e}A}2}B}2}X}2
˘

L
ÿ

l“1

}ĂWl ´Wl}
2
F .

Based on these two lemmas, we are able to complete the proof of all theorems, which are provided
as follows.

A.1 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. In order to simplify the proof, we use the short-hand notations λA, µA, λB
and µB to denote }A}2, σminpAq, }B}2 and σminpBq respectively. Specifically, we rewrite the
condition on A and B as follows

µ2
Aµ

2
B

λAλB
ě

4
?

2e3}X}2
σ2
rpXq

¨
`

LpWp0qq ´ LpW˚q
˘1{2

.

We prove the theorem by induction on the update number s, using the following two-part inductive
hypothesis:

(i) maxlPrLs }W
psq
l }F ď 0.5{L,

(ii) LpWpsqq ´ LpW˚q ď

ˆ

1´
ηLµ2

Aµ
2
Bσ

2
rpXq

e

˙s

¨
`

LpWp0qq ´ LpW˚q
˘

.

First, it can be easily verified that this holds for s “ 0. Now, assume that the inductive hypothesis
holds for s ă t.

Induction for Part (i): We first prove that maxlPrLs }W
ptq
l }F ď 0.5{L. By triangle inequality and

the update rule of gradient descent, we have

}W
ptq
l }F ď

t´1
ÿ

s“0

η}∇Wl
LpWpsqq}F

ď η
t´1
ÿ

s“0

?
2eλAλB}X}2 ¨

`

LpWpsqq ´ LpW˚q
˘1{2

ď
?

2eηλAλB}X}2 ¨
`

LpWp0qq ´ LpW˚q
˘1{2

¨

t´1
ÿ

s“0

ˆ

1´
ηLµ2

Aµ
2
Bσ

2
rpXq

e

˙s{2
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where the second inequality follows from Lemma A.1, and the third inequality follows from the
inductive hypothesis. Since

?
1´ x ď 1´ x{2 for any x P r0, 1s, we further have

}W
ptq
l }F ď

?
2eηλAλB}X}2 ¨

`

LpWp0qq ´ LpW˚q
˘1{2

¨

t´1
ÿ

s“0

ˆ

1´
ηLµ2

Aµ
2
Bσ

2
rpXq

2e

˙s

ď

?
8e3λAλB}X}2
Lµ2

Aµ
2
Bσ

2
rpXq

¨
`

LpWp0qq ´ LpW˚q
˘1{2

.

Under the condition that µ2
Aµ

2
B{pλAλBq ě 2

?
8e3}X}2

`

LpWp0qq ´ LpW˚q
˘1{2

{σ2
rpXq, it can be

readily verified that }Wptq
l }F ď 0.5{L. Since this holds for all l P rLs, we have proved Part (i) of

the inductive step, i.e., maxlPrLs }W
ptq
l }F ď 0.5{L.

Induction for Part (ii): Now we prove Part (ii) of the inductive step, bounding the improvement in
the objective function. Note that we have already shown that Wptq satisfies maxlPrLs }W

ptq
l }F ď

0.5{L, thus by Lemma A.2 we have

LpWptqq ď LpWpt´1qq ´ η
L
ÿ

l“1

›

›∇Wl
LpWpt´1qq

›

›

2

F

` η2LλAλB}X}2 ¨
`

b

eLpWpt´1qq ` 0.5eλAλB}X}2
˘

¨

L
ÿ

l“1

}∇Wl
LpWpt´1qq}2F ,

where we use the fact that W
ptq
l ´ W

pt´1q
l “ ´η∇Wl

LpWpl´1qq. Note that LpWpt´1qq ď

LpWp0qq and the step size is set to be

η “
1

2LλAλB}X}2 ¨
`

a

eLpWp0qq ` 0.5eλAλB}X}2
˘˘ ,

so that we have

LpWptqq ´ LpWpt´1qq ď ´
η

2

L
ÿ

l“1

›

›∇Wl
LpWpt´1qq

›

›

2

F

ď ´
ηLµ2

Aµ
2
Bσ

2
rpXq

e

`

LpWpt´1qq ´ LpW˚q
˘

,

where the second inequality is by Lemma A.1. Applying the inductive hypothesis, we get

LpWptqq ´ LpW˚q ď

ˆ

1´
ηLµ2

Aµ
2
Bσ

2
rpXq

e

˙

¨
`

LpWpt´1qq ´ LpW˚q
˘

ď

ˆ

1´
ηLµ2

Aµ
2
Bσ

2
rpXq

e

˙t

¨
`

LpWp0qq ´ LpW˚q
˘

, (A.1)

which completes the proof of the inductive step of Part (ii). Thus we are able to complete the proof.

A.2 PROOF OF PROPOSITION 3.3

Proof of Proposition 3.3. We prove the bounds on the singular values and initial training loss sepa-
rately.

Bounds on the singular values: Specifically, we set the neural network width as

m ě 100 ¨
`

a

maxtd, ku `
a

2 logp12{δq
˘2

By Corollary 5.35 in Vershynin (2010), we know that for a matrix U P Rd1ˆd2 (d1 ě d2)
with entries independently generated by standard normal distribution, with probability at least
1´ 2 expp´t2{2q, its singular values satisfy

a

d1 ´
a

d2 ´ t ď σminpUq ď σmaxpUq ď
a

d1 `
a

d2 ` t.
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Based on our constructions of A and B, we know that each entry of 1
βB and 1

αA follows standard
Gaussian distribution. Therefore, set t “ 2

a

logp12{δq and apply union bound, with probability at
least 1´ δ{3, the following holds,

α
`?
m´

?
d´ 2

a

logp12{δq
˘

ď σminpAq ď σmaxpAq ď α
`?
m`

?
d` 2

a

logp12{δq
˘

β
`?
m´

?
k ´ 2

a

logp12{δq
˘

ď σminpBq ď σmaxpBq ď β
`?
m`

?
k ` 2

a

logp12{δq
˘

,

where we use the facts that σminpκUq “ κσminpUq and σmaxpκUq “ κσmaxpUq for any scalar κ
and matrix U. Then applying our choice of m, we have with probability at least 1´ δ{3,

0.9α
?
m ď σminpAq ď σmaxpAq ď 1.1α

?
m and 0.9β

?
m ď σminpBq ď σmaxpBq ď 1.1β

?
m.

This completes the proof of the bounds on the singular values of A and B.

Bounds on the initial training loss: The proof in this part is similar to the proof of Proposition 6.5
in Du & Hu (2019). Since we apply zero initialization on all hidden layers, by Young’s inequality,
we have the following for any px,yq,

`pWp0q; x,yq “
1

2
}BAx´ y}22 ď }BAx}22 ` }y}

2
2. (A.2)

Since each entry of B is generated from N p0, β2q, conditioned on A, each entry of BAx is dis-
tributed according to N p0, β2||Ax||22q, so }BAx}22

}Ax}22β
2 follows a χ2

k distribution. Applying a standard
tail bound for χ2

k distribution, we have, with probability at least 1´ δ1,

}BAx}22
}Ax}22

ď β2kp1` 2
a

logp1{δ1q{k ` 2 logp1{δ1qq.

Note that by our bounds of the singular values, if m ě 100 ¨
`
a

maxtd, ku `
a

2 logp8{δq
˘2

, we
have with probability at least 1 ´ δ{3, }A}2 ď 1.1α

?
m, thus, it follows that with probability at

least 1´ δ1 ´ δ,

}BAx}22 ď 1.21α2β2km
“

1` 2
a

logp1{δ1q ` 2 logp1{δ1q
‰

}x}22.

Then by union bound, it is evident that with probability 1´ nδ1 ´ δ{3,

}BAX}2F “
n
ÿ

i“1

}BAxi}
2
2 ď 1.21α2β2km

“

1` 2
a

logp1{δ1q ` 2 logp1{δ1q
‰

}X}2F .

Set δ1 “ δ{p3nq, suppose logp1{δ1q ě 1, we have with probability at least 1´ 2δ{3,

LpWp0qq “
1

2
}BAX´Y}2F ď }BAX}2F ` }Y}

2
F ď 6.05α2β2km logp2n{δq}X}2F ` }Y}

2
F .

This completes the proof of the bounds on the initial training loss.

Applying a union bound on these two parts, we are able to complete the proof.

A.3 PROOF OF COROLLARY 3.4

Proof of Corollary 3.4. Recall the condition in Theorem 3.1:

σ2
minpAqσ

2
minpBq

}A}2}B}2
ě C ¨

}X}2
σ2
rpXq

¨
`

LpWp0qq ´ LpW˚q
˘1{2

. (A.3)

By Proposition 3.3, we know that, with probability 1´ δ,

σ2
minpAqσ

2
minpBq

}A}2}B}2
“ Θ

`

m
˘

,

}X}2
σrpXq

¨
`

LpWp0qq ´ LpW˚q
˘1{2

“ O

˜

p
a

km logpn{δq ` 1q}X}F }X}2
σrpXq

¸

.
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Note that }X}F ď
?
r}X}2, thus the condition (A.3) can be satisfied if m “ Ωpkrκ2 logpn{δqq

where κ “ }X}22{σ
2
rpXq.

Theorem 3.1 implies that LpWptqq ´ LpW˚q ď ε after T “ O
´

1
ηLσ2

minpAqσ
2
minpBqσ

2
rpXq

log 1
ε

¯

iterations. Plugging in the value of η, we get

T “ O

˜

}A}2}B}2}X}2 ¨
`

a

LpWp0qq ` }A}2}B}2}X}2
˘

σ2
minpAqσ

2
minpBqσ

2
rpXq

log
1

ε

¸

.

By Proposition 3.3, we have

T “ O

˜

}A}2}B}2}X}2 ¨
`
a

km logpn{δq}X}F ` }A}2}B}2}X}2
˘

σ2
minpAqσ

2
minpBqσ

2
rpXq

log
1

ε

¸

“ O

˜

}X}2 ¨
`
a

km logpn{δq}X}F `m}X}2
˘

mσ2
rpXq

log
1

ε

¸

“ O

˜

}X}2 ¨
`
a

kr logpn{δq{m}X}2 ` }X}2
˘

σ2
rpXq

log
1

ε

¸

“ O

ˆ

κ log
1

ε

˙

for m “ Ωpkr logpn{δqq, completing the proof.

A.4 PROOF OF THEOREM 3.6

Proof of Theorem 3.6. The guarantee is already achieved by Wp0q if ε ě LpWp0qq ´ LpW˚q, so
we may assume without loss of generality that ε ă LpWp0qq ´ LpW˚q.

Similar to the proof of Theorem 3.1, we use the short-hand notations λA, µA, λB and µB to denote
}A}2, σminpAq, }B}2 and σminpBq respectively. Then we rewrite the condition on A and B, and
our choices of η and T as follows

µ2
Aµ

2
B

λAλB
ě

?
8e3n}X}2 ¨ logpLpWp0qq{ε1q

Bσ2
rpXq

¨

b

2LpWp0qq

η ď
Bµ2

Aµ
2
Bσ

2
rpXq

6e3Lnλ4Aλ
4
B}X}

2
2

¨min

"

ε1

}X}22,8LpW
˚q
,

log2
p2qB

3n}X}22 ¨ logpT {δq logpLpWp0qq{ε1q

*

,

T “
e

ηLµ2
Aµ

2
Bσ

2
rpXq

¨ log

ˆ

LpWp0qq ´ LpW˚q

ε1

˙

,

where we set ε1 “ ε{3 for the purpose of the proof.

We first prove the convergence guarantees on expectation, and then apply the Markov inequality.

For SGD, our guarantee is not made on the last iterate but the best one. Define Et to be the event
that there is no s ď t such that LpWptqq ´ LpW˚q ď ε1. If 1pEtq “ 0, then there is an iterate Ws

with s ď t that achieves training loss within ε1 of optimal.

Similar to the proof of Theorem 3.1, we prove the theorem by induction on the update number s,
using the following inductive hypothesis: either 1pEsq “ 0 or the following three inequalities hold,

(i) maxlPrLs }W
psq
l }F ď

?
2esηnλAλB}X}2

B ¨
a

2LpWp0qq¨

(ii) E
“`

LpWpsqq ´ LpW˚q
˘‰

ď

´

1´
ηLµ2

Aµ
2
Bσ

2
rpXq

e

¯s

¨
`

LpWp0qq ´ LpW˚q
˘

(iii) LpWpsqq ď 2LpWp0qq,

where the expectation in Part (ii) is with respect to all of the random choices of minibatches. Clearly,
if 1pEsq “ 0, we have already finished the proof since there is an iterate that achieves training loss
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within ε1 of optimal. Recalling that ε ă LpWp0qq ´ LpW˚q, it is easy to verify that the inductive
hypothesis holds when s “ 0.

For the inductive step, we will prove that if the inductive hypothesis holds for s ă t, then it holds
for s “ t. When 1pEt´1q “ 0, then 1pEtq is also 0 and we are done. Therefore, the remaining
part is to prove the inductive hypothesis for s “ t under the assumption that 1pEt´1q “ 1, which
implies that (i), (ii) and (iii) hold for all s ď t´ 1. For Parts (i) and (ii), we will directly prove that
the corresponding two inequalities hold. For Part (iii), we will prove that either this inequality holds
or 1pEtq “ 0.

Induction for Part (i): As we mentioned, this part will be proved under the assumption
1pEt´1q “ 1. Besides, combining Part (i) for s “ t ´ 1 and our choice of η and T implies that
maxlPrLs }W

pt´1q
l }F ď 0.5{L. Then by triangle inequality, we have the following for }Wptq

l }F ,

}W
ptq
l }F ď }W

pt´1q
l }F ` η}G

pt´1q
l }F .

By Lemma A.1, we have

}G
pt´1q
l }F ď

?
2enλAλB}X}2

B
¨

b

LpWpt´1qq.

Then we have
}W

ptq
l }F ď

`

}W
pt´1q
l }F ` η}G

pt´1q
l }F

˘

ď }W
pt´1q
l }F `

?
2eηnλAλB}X}2

B
¨

b

LpWpt´1qq. (A.4)

By Part (iii) for s “ t´ 1, we know that LpWpt´1qq ď 2LpWp0qq. Then by Part (i) for s “ t´ 1,
it is evident that

}W
ptq
l }F ď

?
2etηnλAλB}X}2

B
¨

b

2LpWp0qq¨. (A.5)

This completes the proof of the inductive step of Part (i).

Induction for Part (ii): As we previously mentioned, we will prove this part under the as-
sumption 1pEt´1q “ 1. Thus, as mentioned earlier, the inductive hypothesis implies that
maxlPrLs }W

pt´1q
l }F ď 0.5{L. By Part (i) for s “ t, which has been verified in (A.5), it can

be proved that maxlPrLs }W
ptq
l }F ď 0.5{L, then we have the following by Lemma A.2,

LpWptqq ´ LpWpt´1qq ď ´η
L
ÿ

l“1

@

∇Wl
LpWpt´1qq,G

pt´1q
l

D

` η2LλAλB}X}2 ¨
`

b

eLpWpt´1qq ` 0.5eλAλB}X}2
˘

¨

L
ÿ

l“1

}G
pt´1q
l }2F .

(A.6)
By our condition on A and B, it is easy to verify that

λAλB ě
µ2
Aµ

2
B

λAλB
ě

2
a

2e´1LpWp0qq

}X}2
.

Then by Part (iii) for s “ t´ 1 (A.6) yields

LpWptqq ´ LpWpt´1qq ď ´η
L
ÿ

l“1

@

∇Wl
LpWpt´1qq,G

pt´1q
l

D

` eη2Lλ2Aλ
2
B}X}

2
2 ¨

L
ÿ

l“1

}G
pt´1q
l }2F .

(A.7)

Taking expectation conditioning on Wpt´1q gives

E
“

LpWptqq|Wpt´1q
‰

´ LpWpt´1qq ď ´η
L
ÿ

l“1

›

›∇Wl
LpWpt´1qq}2F

` eη2Lλ2Aλ
2
B}X}

2
2

L
ÿ

l“1

E
“

}G
pt´1q
l }2F |W

pt´1q
‰

. (A.8)
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Note that, for i sampled uniformly from t1, ..., nu, the expectation Er}Gpt´1q
l }2F |W

pt´1qs can be
upper bounded by

Er}Gpt´1q
l }2F |W

pt´1qs “ E
“

}G
pt´1q
l ´∇Wl

LpWpt´1qq}2F |W
pt´1q

‰

` }∇Wl
LpWpt´1qq}2F

ď
n2

B
Er}∇Wl

`pWpt´1q; xi,yiq}
2
F |W

pt´1qs ` }∇Wl
LpWpt´1qq}2F .

(A.9)

By Lemma A.1, we have

Er}∇Wl
`pWpt´1q; xi,yiq}

2
F |W

pt´1qs ď 2eλ2Aλ
2
BEr}xi}22`pWpt´1q; xi,yiq|W

pt´1qs

ď
2eλ2Aλ

2
B

n

n
ÿ

i“1

}xi}
2
2`pW

pt´1q; xi,yiq

ď
2eλ2Aλ

2
B}X}

2
2,8LpW

pt´1qq

n
.

Plugging the above inequality into (A.9) and (A.8), we get

E
“

LpWptqq|Wpt´1q
‰

´ LpWpt´1qq

ď ´η
L
ÿ

l“1

›

›∇Wl
LpWpt´1qq}2F

` eη2Lλ2Aλ
2
B}X}

2
2 ¨

L
ÿ

l“1

ˆ

2enλ2Aλ
2
B}X}

2
2,8LpW

pt´1qq

B
` }∇Wl

LpWpt´1qq}2F

˙

.

Recalling that η ď 1{p6eLλ2Aλ
2
B}X}

2
2q, we have

E
“

LpWptqq|Wpt´1q
‰

´ LpWpt´1qq ď ´
5η

6

L
ÿ

l“1

›

›∇Wl
LpWpt´1qq}2F

`
2e2η2L2nλ4Aλ

4
B}X}

2
2}X}

2
2,8LpW

pt´1qq

B
. (A.10)

By Lemma A.1, we have
L
ÿ

l“1

}∇Wl
LpWpt´1qq}2F ě 2e´1Lµ2

Aµ
2
Bσ

2
rpXq

`

LpWpt´1qq ´ LpW˚q
˘

.

If we set

η ď
Bµ2

Aµ
2
Bσ

2
rpXq

6e3Lnλ4Aλ
4
B}X}

2
2}X}

2
2,8

, (A.11)

then (A.10) yields

E
“

LpWptqq|Wpt´1q
‰

´ LpWpt´1qq

ď ´
5ηLµ2

Aµ
2
Bσ

2
rpXq

3e

`

LpWpt´1qq ´ LpW˚q
˘

`
2e2η2L2nλ4Aλ

4
B}X}

2
2}X}

2
2,8

`

LpWpt´1qq ´ LpW˚q
˘

B

`
2e2η2L2nλ4Aλ

4
B}X}

2
2}X}

2
2,8LpW

˚q

B

ď ´
4ηLµ2

Aµ
2
Bσ

2
rpXq

3e

`

LpWpt´1qq ´ LpW˚q
˘

`
2e2η2L2nλ4Aλ

4
B}X}

2
2}X}

2
2,8LpW

˚q

BL2
. (A.12)

Define

γ0 “
4Lµ2

Aµ
2
Bσ

2
rpXq

3e
, and γ1 “

2e2η2L2nλ4Aλ
4
B}X}

2
2}X}

2
2,8LpW

˚q

B
,
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rearranging (A.12) further gives

E
“

LpWptqq|Wpt´1q
‰

´ LpW˚q ď p1´ ηγ0q ¨
`

LpWptqq ´ LpW˚q
˘

` η2γ1. (A.13)

Therefore, setting the step size as

η ď
γ0ε

1

4γ1
“

Bµ2
Aµ

2
Bσ

2
rpXq

6e3Lnλ4Aλ
4
B}X}

2
2}X}

2
2,8

¨
ε1

LpW˚q
,

we further have

E
“

LpWptqq ´ LpW˚q|Wpt´1q
‰

ď
“

p1´ ηγ0q ¨ rLpW
pt´1qq ´ LpW˚qs ` η2γ1

‰

ď p1´ 3ηγ0{4q ¨ rLpW
pt´1qq ´ LpW˚qs, (A.14)

where the second inequality is by (A.13) and the last inequality is by the fact that we assume
1pEt´1q “ 1, which implies that LpWpt´1qq´LpW˚q ě ε1 ě 4γ1η{γ0. Further taking expectation
over Wpt´1q, we get

E
“

LpWptqq ´ LpW˚q
‰

ď p1´ 3ηγ0{4q ¨ E
“

LpWpt´1qq ´ LpW˚q
‰

ď p1´ 3ηγ0{4q
t ¨

`

LpWp0qq ´ LpW˚q
˘

,

where the second inequality follows from Part (ii) for s “ t´ 1 and the assumption that 1pE0q “ 1.
Plugging the definition of γ0, we are able to complete the proof of the inductive step of Part (ii).

Induction for Part (iii): Recalling that for this part, we are going to prove that either
LpWptqq ď 2LpWp0qq or 1pEtq “ 0, which is equivalent to LpWptqq ¨ 1pEtq ď 2LpWp0qq

since LpWp0qq and LpWptqq are both positive. We will prove this by martingale inequality.
Let Ft “ σtWp0q, ¨ ¨ ¨ ,Wptqu be a σ-algebra, and F “ tFtutě1 be a filtration. We first
prove that ErLpWptqq1pEtq|Ft´1s ď LpWpt´1qq1pEt´1q. Apparently, this inequality holds
when 1pEt´1q “ 0 since both sides will be zero. Then if 1pEt´1q “ 1, by (A.14) we have
ErLpWptqq|Wpt´1qs ď LpWpt´1qq since LpW˚q is the global minimum. Therefore,

ErLpWptqq1pEtq|Ft´1,W
pt´1q,1pEt´1q “ 1s ď ErLpWptqq|Ft´1,1pEt´1q “ 1s

ď LpWpt´1qq.

Combining these two cases, by Jensen’s inequality, we further have

E
“

log
`

LpWptqq1pEtq
˘

|Ft´1

‰

ď log
`

ErLpWptqq1pEtq|Ft´1s
˘

ď log
`

LpWpt´1qq1pEt´1q
˘

,

which implies that tlog
`

LpWptqq ¨1pEtq
˘

utě0 is a super-martingale. Then we will upper bound the
martingale difference log

`

LpWptqq ¨ 1pEtq
˘

´ log
`

LpWpt´1qq ¨ 1pEt´1q
˘

. Clearly this quantity
would be zero if 1pEt´1q “ 0. Then if 1pEt´1q “ 1, by (A.7) we have

LpWptqq ď LpWpt´1qq ` η
L
ÿ

l“1

}∇Wl
LpWpt´1qq}F }G

pt´1q
l }F ` eη

2Lλ2Aλ
2
B}X}

2
2

L
ÿ

l“1

}G
pt´1q
l }2F .

By Part (i) for s “ t´ 1, Lemma A.1, we further have

LpWptqq ď

ˆ

1`
2eηLnλ2Aλ

2
B}X}

2
2

B
`

2e2n2η2L2λ4Aλ
4
B}X}

4
2

B2

˙

LpWpt´1qq

ď

ˆ

1`
3eηnLλ2Aλ

2
B}X}

2
2

B

˙

LpWpt´1qq, (A.15)

where the second inequality follows from the choice of η that

η ď
B

2enLλ2Aλ
2
B}X}

2
2

.

Using the fact that 1pEtq ď 1 and 1pEt´1q “ 1, we further have

log
`

LpWptqq ¨ 1pEtq
˘

ď log
`

LpWpt´1qq ¨ 1pEt´1q
˘

`
3eηLnλ2Aλ

2
B}X}

2
2

B
,
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which also holds for the case 1pEt´1q “ 0. Recall that tlog
`

LpWptqq ¨ 1pEtq
˘

utě0 is a super-
martingale, thus by one-side Azuma’s inequality, we have with probability at least 1´ δ1,

log
`

LpWptqq ¨ 1pEtq
˘

ď log
`

LpWp0qq
˘

`
3eηLnλ2Aλ

2
B}X}

2
2

B
¨
a

2t logp1{δ1q.

Setting δ1 “ δ{T , using the fact that t ď T and leveraging our choice of T and η, we have with
probability at least 1´ δ{T ,

?
Tη “

logp2qB

3e
a

2 logpδ{T qLnλ2Aλ
2
B}X}

2
2

,

which implies that

LpWptqq1pEtq ď exp
”

log
`

LpWp0qq
˘

` logp2q
ı

ď 2LpWp0qq. (A.16)

This completes the proof of the inductive step of Part (iii).

Note that this result holds with probability at least 1 ´ δ{T . Thus applying union bound over all
iterates tWptqut“0,...,T yields that all induction arguments hold for all t ď T with probability at
least 1´ δ.

Moreover, plugging our choice of T and η into Part (ii) gives

E
“

LpWptqq ´ LpW˚q
‰

ď ε1.

By Markov inequality, we further have with probability at least 2{3, it holds that rLpWpT qq ´

LpW˚qs¨1pEtq ď 3ε1 “ ε. Therefore, by union bound (together with the high probability arguments
of (A.16)) and assuming δ ă 1{6, we have with probability at least 2{3´δ ě 1{2, one of the iterates
of SGD can achieve training loss within ε1 of optimal. This completes the proof.

A.5 PROOF OF COROLLARY 3.7

Proof of Corollary 3.7. Recall the condition in Theorem 3.6:

σ2
minpAqσ

2
minpBq

}A}2}B}2
ě C ¨

n}X}2 ¨ logpLpWp0qq{εq

Bσ2
rpXq

¨

b

LpWp0qq, (A.17)

Then plugging in the results in Proposition 3.3 and the fact that }X}F ď
?
r}X}2, we obtain that

condition (A.17) can be satisfied if m “ O
`

krκ2 log2
p1{εq ¨B{n

˘

.

In addition, consider sufficiently small ε such that ε ď rO
`

B}X}22,8{pn}X}
2
2q
˘

, then and use the fact
that }X}2,8 ď }X}2 we have η “ O

`

kBε{pLmnκ}X}22q
˘

based on the results in Proposition 3.3.
Then in order to achieve ε-suboptimal training loss, the iteration complexity is

T “
e

ηLσ2
minσ

2
minpBqσ

2
rpXq

log

ˆ

LpWp0q ´ LpW˚qq

ε

˙

“ O
`

κ2ε´1 logp1{εq ¨ n{B
˘

.

This completes the proof.

A.6 PROOF OF THEOREM 3.8

Proof of Theorem 3.8. Similar to the proof of Theorem 3.6, we set the neural network width and
step size as follows,

µ2
Aµ

2
B

λAλB
ě

4
?

2e3n}X}2
Bσ2

rpXq
¨

b

2LpWp0qq

η ď
logp2qB2µ2

Aµ
2
BpBqσ

2
rpXq

54e3Ln2λ4Aλ
4
B}X}

4
2 ¨ logpT {δq

,

where λA, µA, λB and µB denote }A}2, σminpAq, }B}2 and σminpBq respectively.

Different from the proof of Theorem 3.6, the convergence guarantee established in this regime is
made on the last iterate of SGD, rather than the best one. Besides, we will prove the theorem by
induction on the update parameter t, using the following two-part inductive hypothesis:
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(i) maxlPrLs }W
ptq
l }F ď 0.5{L

(ii) LpWptqq ď 2LpWp0qq ¨

´

1´
sηLµ2

Aµ
2
Bσ

2
rpXq

e

¯s

.

Induction for Part (i) We first prove that maxlPrLs }W
ptq
l }F ď 0.5{L. By triangle inequality and

the update rule of SGD, we have

}W
ptq
l }F ď

t´1
ÿ

s“0

η}Gl}F

ď η
t´1
ÿ

s“0

?
2enλAλB}X}2

B

`

LpWpsqq ´ LpW˚q
˘1{2

ď

?
2eηnλAλB}X}2

B
¨
`

LpWp0qq ´ LpW˚q
˘1{2

¨

t´1
ÿ

s“0

ˆ

1´
ηLµ2

Aµ
2
Bσ

2
rpXq

2e

˙s

ď

?
8e3nλAλB}X}2
BLµ2

Aµ
2
Bσ

2
rpXq

¨
`

LpWp0qq ´ LpW˚q
˘1{2

where the second inequality is by Lemma A.1, the third inequality follows from Part (ii) for all s ă t
and the fact that p1´ xq1{2 ď 1´ x{2 for all x P r0, 1s. Then applying our choice of m implies that
}W

ptq
l }F ď 0.5{L.

Induction for Part (ii) Similar to Part (ii) and (iii) of the induction step in the proof of Theorem 3.6,
we first prove the convergence in expectation, and then use Azuma’s inequality to get the high-
probability based results. It can be simply verfied that

λAλB ě
µ2
Aµ

2
B

λAλB
ě

4
?

2e3n}X}2 ¨ logpLpWp0qq{εq

Bσ2
rpXq

¨

b

2LpWp0qq ě
2
a

2e´1LpWp0qq

}X}2

η ď
logp2qB2µ2

Aµ
2
BpBqσ

2
rpXq

96e3Ln2λ4Aλ
4
B}X}

4
2 ¨ logpT {δq

ď
Bµ2

Aµ
2
Bσ

2
rpXq

6e3Lnλ4Aλ
4
B}X}

2
2}X}

2
2,8

.

Thus, we can leverage (A.12) and obtain

E
“

LpWptqq|Wpt´1q
‰

´ LpWpt´1qq ď ´
4ηLµ2

Aµ
2
Bσ

2
rpXq

3e
LpWpt´1qq,

where we use the fact that LpW˚q “ 0. Then by Jensen’s inequality, we have

E
“

log
`

LpWptqq
˘

|Wpt´1q
‰

ď log
`

LpWpt´1qq
˘

` log

ˆ

1´
4ηLµ2

Aµ
2
Bσ

2
rpXq

3e

˙

,

ď log
`

LpWpt´1qq
˘

´
4ηLµ2

Aµ
2
Bσ

2
rpXq

3e
,

where the second inequality is by logp1 ` xq ď x. Then similar to the proof of Theorem 3.6, we
are going to apply martingale inequality to prove this part. Let Ft “ σtWp0q, ¨ ¨ ¨ ,Wptqu be a
σ-algebra, and F “ tFtutě1 be a filtration, the above inequality implies that

E
“

log
`

LpWptqq
˘

|Ft´1

‰

`
4tηLµ2

Aµ
2
Bσ

2
rpXq

3e
ď log

`

LpWpt´1qq
˘

`
4pt´ 1qηLµ2

Aµ
2
Bσ

2
rpXq

3e
,

(A.18)

which implies that
 

log
`

LpWptqq
˘

` 4tηLµ2
Aµ

2
Bσ

2
rpXq{p3eq

(

is a super-martingale. Besides, by
(A.15), we can obtain

log
`

LpWptqq
˘

ď log
`

LpWpt´1qq
˘

`
3eηLnλ2Aλ

2
B}X}

2
2

B
,

which implies that

log
`

LpWptqq
˘

`
4tηLµ2

Aµ
2
Bσ

2
rpXq

3e

ď log
`

LpWpt´1qq
˘

`
4pt´ 1qηLµ2

Aµ
2
Bσ

2
rpXq

3e
`

4eηLnλ2Aλ
2
B}X}

2
2

B
,
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where we again use the fact that logp1 ` xq ď x. Thus, by the one-sided Azuma’s inequality we
have with probability at least 1´ δ1 that

log
`

LpWptqq
˘

ď log
`

LpWp0qq
˘

´
4tηLµ2

Aµ
2
Bσ

2
rpXq

3e
`

4eηLnλ2Aλ
2
B}X}

2
2

B
¨
a

2t logp1{δ1q

ď log
`

LpWp0qq
˘

´
tηLµ2

Aµ
2
Bσ

2
rpXq

e
`

96e3ηLn2λ4Aλ
4
B}X}

4
2 logp1{δ1q

B2µ2
Aµ

2
Bσ

2
rpXq

ď log
`

LpWp0qq
˘

´
tηLµ2

Aµ
2
Bσ

2
rpXq

e
` logp2q,

where the second inequality follows from the fact that ´at` b
?
t ď b2{a, and the last inequality is

by our choice of η that

η ď
logp2qB2µ2

Aµ
2
BpBqσ

2
rpXq

96e3Ln2λ4Aλ
4
B}X}

4
2 ¨ logp1{δ1q

.

Then it is clear that with probability at least 1´ δ1,

LpWptqq ď 2LpWp0qq ¨ exp

ˆ

´
tηLµ2

Aµ
2
Bσ

2
rpXq

e

˙

, (A.19)

which completes the induction for Part (ii).

Similar to the proof of Theorem 3.6, (A.19) holds with probability at least 1´ δ1 for a given t. Then
we can set δ1 “ δ{T and apply union bound such that with probability at least 1 ´ δ, (A.19) holds
for all t ď T . This completes the proof.

A.7 PROOF OF COROLLARY 3.9

Proof of Corollary 3.9. Recall the condition in Theorem 3.8:

σ2
minpAqσ

2
minpBq

}A}2}B}2
ě C ¨

n}X}2
Bσ2

rpXq
¨

b

LpWp0qq, (A.20)

Then plugging in the results in Proposition 3.3 and the fact that }X}F ď
?
r}X}2, we obtain that

condition (A.17) can be satisfied if m “ O
`

krκ2 ¨B{n
˘

.

In addition, it can be computed that η “ O
`

kB2{pLmn2κ}X}22q
˘

based on the results in Proposition
3.3. Then in order to achieve ε-suboptimal training loss, the iteration complexity is

T “
e

ηLσ2
minσ

2
minpBqσ

2
rpXq

log

ˆ

LpWp0qq ´ LpW˚q

ε

˙

“ O
`

κ2 logp1{εq ¨ n2{B2
˘

.

This completes the proof.

B PROOFS OF TECHNICAL LEMMAS

B.1 PROOF OF LEMMA A.1

We first note the following useful lemmas.
Lemma B.1 (Claim B.1 in Du & Hu (2019)). Define Φ “ arg minΘPRkˆd }ΘX ´Y}2F , then for
any U P Rkˆd it holds that

}UX´Y}2F “ }UX´ΦX}2F ` }ΦX´Y}2F .

Lemma B.2 (Theorem 1 in Fang et al. (1994)). Let U,V P Rdˆd be two positive definite matrices,
then it holds that

λminpUqTrpVq ď TrpUVq ď λmaxpUqTrpVq.

The following lemma is proved in Section B.3.
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Lemma B.3. Let U P Rdˆr be a rank-r matrix. Then for any V P Rrˆk, it holds that

σminpUq}V}F ď }UV}F ď σmaxpUq}V}F .

Proof of Lemma A.1. Proof of gradient lower bound: We first prove the gradient lower bound. Let
U “ BpI`WLq . . . pI`W1qA, by Lemma B.1 and the definition of LpW˚q, we know that there
exist a matrix Φ P Rkˆd such that

LpWq “
1

2
}UX´ΦX}2F ` LpW

˚q. (B.1)

Therefore, based on the assumption that maxlPrLs }Wl}F ď 0.5{L, we have

}∇Wl
LpWq}2F “

›

›

“

BpI`WLq ¨ ¨ ¨ pI`Wl`1q
‰J`

UX´ΦX
˘“

pI`Wl´1q ¨ ¨ ¨AX
‰J›
›

2

F

ě σ2
minppI`WLq ¨ ¨ ¨ pI`Wl`1qq ¨ σ

2
min

`

pI`Wl´1q ¨ ¨ ¨ pI`W1q
˘

¨ }BJpU´ΦqXXJAJ}2F

ě
`

1´ 0.5{L
˘2L´2

}BJpU´ΦqXXJAJ}2F ,

where the last inequality follows from the fact that σminpI `Wlq ě 1 ´ }Wl}2 ě 1 ´ }Wl}F ě

1´ 0.5{L. Applying Lemma B.2, we get

}BJpU´ΦqXXJAJ}2F “ Tr
`

BBJpU´ΦqXXJAJAXXJpU´ΦqJ
˘

ě λminpBBJq ¨ Tr
`

AJAXXJpU´ΦqJpU´ΦqXXJ
˘

ě λminpBBJq ¨ λminpA
JAq ¨ }pU´ΦqXXJ}2F .

Note that X is of r-rank, thus there exists a full-rank matrix rX P Rdˆr such that rXrXJ “ XXJ.
Thus we have

}pU´ΦqX}2F “ Tr
`

pU´ΦqXXJpU´ φqJ
˘

“ Tr
`

pU´ΦqrXrXJpU´ φqJ
˘

“
›

›pU´ΦqrX
›

›

2

F
.

(B.2)

Therefore,

}pU´ΦqXXJ}2F “
›

›pU´ΦqrXrXJ
›

›

2

F

“ Tr
`

pU´ΦqrXrXJ
rXrXJpU´ΦqJ

˘

ě λminprX
J
rXq ¨ }pU´ΦqrX}2F

“ 2σ2
rpXq ¨ pLpWq ´ LpW˚qq, (B.3)

where the inequality follows from Lemma B.2 and the last equality follows from (B.2), (B.1) and
the fact that λminprX

J
rXq “ λrpXXJq “ σ2

rpXq. Note that we assume d, k ď m and d ď n. Thus
it follows that λminpBBJq “ σ2

minpBq and λminpA
JAq “ σ2

minpAq. Then putting everything
together, we can obtain

}∇Wl
LpWq}2F ě 2σ2

minpBqσ
2
minpAqσ

2
rpXqp1´ 0.5{Lq2L´2

`

LpW ´ LpW˚q
˘

.

Then using the inequality p1 ´ 0.5{Lq2L´2 ě e´1, we are able to complete the proof of gradient
lower bound.

Proof of gradient upper bound: The gradient upper bound can be proved in a similar way. Specif-
ically, Lemma B.3 implies

}∇Wl
LpWq}2F “

›

›

“

BpI`WLq ¨ ¨ ¨ pI`Wl`1q
‰J`

UX´ΦX
˘“

pI`Wl´1q ¨ ¨ ¨AX
‰J›
›

2

F

ď σ2
maxppI`WLq ¨ ¨ ¨ pI`Wl`1qq ¨ σ

2
max

`

pI`Wl´1q ¨ ¨ ¨ pI`W1q
˘

¨ }BJpU´ΦqXXJAJ}2F

ď σ2
maxppI`WLq ¨ ¨ ¨ pI`Wl`1qq ¨ σ

2
max

`

pI`Wl´1q ¨ ¨ ¨ pI`W1q
˘

¨ }B}22}A}
2
2 ¨ }pU´ΦqXXJ}2F

ď p1` 0.5{Lq2L´2}B}22}A}
2
2 ¨ }pU´ΦqXXJ}2F ,

22



Published as a conference paper at ICLR 2020

where the last inequality is by the assumption that maxlPrLs }Wl}F ď 0.5{L. By (B.3), we have

}pU´ΦqXXJ}2F “
›

›pU´ΦqpXXJq1{2pXXJq1{2
›

›

2

F

ď λmaxpXXJq ¨ }pU´ΦqpXXJq1{2}2F

“ λmaxpXXJq ¨ }pU´ΦqX}2F

“ 2}X}22 ¨ pLpWq ´ LpW˚qq,

where the inequality is by Lemma B.3 and the second equality is by (B.2). Therefore, combining
the above results yields

}∇Wl
LpWq}2F ď 2σ2

maxpBqσ
2
maxpAq}X}

2
2p1` 0.5{Lq2L´2

`

LpW ´ LpW˚q
˘

.

Using the inequality p1 ` 0.5{Lq2L´2 ď p1 ` 0.5{Lq2L ď e, we are able to complete the proof of
gradient upper bound.

Proof of the upper bound of }∇Wl
`pW; xi,yiq}

2
F : Let U “ BpI ` WLq ¨ ¨ ¨ pI ` W1qA, we

have

∇Wl
`pW; xi,yiq “

“

BpI`WLq ¨ ¨ ¨ pI`Wl`1q
‰J
pUxi ´ yiq

“

pI`Wl´1q ¨ ¨ ¨Ax̄i
‰J
.

Therefore, by Lemma B.3, we have

}∇Wl
`pW; xi,yiq}

2
F ď σ2

max

`

pI`WLq ¨ pI`Wl`1q
˘

¨ σ2
max

`

pI`Wl´1q ¨ ¨ ¨ pI`W1q
˘

¨ }BJpUxi ´ yiqxiA
J}2F

ď p1` 0.5{Lq2L´2 ¨ }B}22}A}
2
2}xi}

2
2 ¨ }Uxi ´ yi}

2
F

ď 2e}A}22}B}
2
2}xi}

2
2`pW; xi,yiq,

where the last inequality is by the fact that p1` 0.5{Lq2L´2 ď e.

Proof of the upper bound of stochastic gradient: Define by B the set of training data points used
to compute the stochastic gradient, then define by X̄ and Ȳ the stacking of txiuiPB and tyiuiPB
respectively. Let U “ BpI`WLq ¨ ¨ ¨ pI`W1qA, the minibatch stochastic gradient takes form

Gl “
n

B

ÿ

iPB
∇Wl

`pW; xi,yiq

“
n

B

“

BpI`WLq ¨ ¨ ¨ pI`Wl`1q
‰J
pUX̄´ Ȳq

“

pI`Wl´1q ¨ ¨ ¨AX̄
‰J
.

Then by Lemma B.3, we have

}Gl}
2
F ď

n2

B2
σ2
max

`

pI`WLq ¨ pI`Wl`1q
˘

¨ σ2
max

`

pI`Wl´1q ¨ ¨ ¨ pI`W1q
˘

¨ }BJpUX̄´ ȲqX̄JAJ}2F

ď
n2

B2
¨ p1` 0.5{Lq2L´2 ¨ }B}22}A}

2
2}X̄}

2
2 ¨ }UX̄´ Ȳ}2F

ď
en2

B2
}B}22}A}

2
2}X̄}

2
2 ¨ }UX̄´ Ȳ}2F .

where the second inequality is by the assumptions that maxlPrLs }Wl}F ď 0.5{L, and the last
inequality follows from the the fact that p1 ` 0.5{Lq2L´2 ď p1 ` 0.5{Lq2L ď e. Note that X̄ and
Ȳ are constructed by stacking B columns from X and Y respectively, thus we have }X̄}22 ď }X}

2
2

and }UX̄´ Ȳ}2F ď }UX´Y}2F “ 2LpWq. Then it follows that

}Gl}
2
F ď

2en2

B2
}B}22}A}

2
2}X}

2
2 ¨ LpWq.

This completes the proof of the upper bound of stochastic gradient.
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B.2 PROOF OF LEMMA A.2

Proof of Lemma A.2. Let U “ BpI`WLq ¨ ¨ ¨ pI`W1qA and rU “ BpI` ĂWLq ¨ ¨ ¨ pI` ĂW1qA

and ∆ “ rU´U. We have

LpĂWq ´ LpWq “
1

2

`

}rUX´Y}2F ´ }UX´Y}2F
˘

“
1

2

`

}pU`∆qX´Y}2F ´ }UX´Y}2F
˘

“
1

2

`

}UX´Y `∆X}2F ´ }UX´Y}2F
˘

“
1

2

`

}2xUX´Y,∆Xy ` }∆X}2F
˘

“
@

UX´Y,
`

rU´U
˘

X
D

`
1

2

›

›

`

rU´U
˘

X}2F . (B.4)

We begin by working on the first term. Let V “ pI`WLq ¨ ¨ ¨ pI`W1q and rV “ pI`ĂWLq ¨ ¨ ¨ pI`
ĂW1q, so that rU´U “ BprV´VqA. Breaking down the effect of transforming V “

ś1
j“LpI`Wjq

into rV “
ś1
j“LpI`

ĂWjq into the effects of replacing one layer at a time, we get

rV ´V “

L
ÿ

l“1

«˜

l`1
ź

j“L

pI`Wjq

¸˜

1
ź

j“l

pI` ĂWjq

¸

´

˜

l
ź

j“L

pI`Wjq

¸˜

1
ź

j“l´1

pI` ĂWjq

¸ff

and, for each l, pulling out a common factor of
´

śl`1
j“LpI`Wjq

¯´

ś1´l
j“lpI`

ĂWjq

¯

gives

rV ´V “

L
ÿ

l“1

pI`WLq ¨ ¨ ¨ pI`Wl`1qpĂWl ´WlqpI` ĂWl´1q ¨ ¨ ¨ pI` ĂW1q

“

L
ÿ

l“1

pI`WLq ¨ ¨ ¨ pI`Wl`1qpĂWl ´WlqpI`Wl´1q ¨ ¨ ¨ pI`W1q

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

V1

`

L
ÿ

l“1

pI`WLq ¨ ¨ ¨ pI`Wl`1qpĂWl ´Wlq

looooooooooooooooooooooooomooooooooooooooooooooooooon

V2

¨
“

pI` ĂWl´1q ¨ ¨ ¨ pI` ĂW1q ´ pI`Wl´1q ¨ ¨ ¨ pI`W1q
‰

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

V2

. (B.5)
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The first term V1 satisfies

xUX´Y,BV1AXy

“

C

UX´Y,B

˜

L
ÿ

l“1

pI`WLq ¨ ¨ ¨ pI`Wl`1qpĂWl ´WlqpI`Wl´1q ¨ ¨ ¨ pI`W1q

¸

AX

G

“

L
ÿ

l“1

A

UX´Y,BpI`WLq ¨ ¨ ¨ pI`Wl`1qpĂWl ´WlqpI`Wl´1q ¨ ¨ ¨ pI`W1qAX
E

“

L
ÿ

l“1

TrppUX´YqJBpI`WLq ¨ ¨ ¨ pI`Wl`1qpĂWl ´WlqpI`Wl´1q ¨ ¨ ¨ pI`W1qAXq

“

L
ÿ

l“1

TrppI`Wl´1q ¨ ¨ ¨ pI`W1qAXpUX´YqJBpI`WLq ¨ ¨ ¨ pI`Wl`1qpĂWl ´Wlqq

“

L
ÿ

l“1

@

rBpI`WLq ¨ ¨ ¨ pI`Wl`1qs
JpUX´YqrpI`Wl´1q ¨ ¨ ¨AXsJ,ĂWl ´Wl

D

“

L
ÿ

l“1

x∇Wl
LpWq,ĂWl ´Wly, (B.6)

where the first equality is by the definition of V1. Now we focus on the second term V2 of (B.5),

V2 “

L
ÿ

l“1

pI`WLq ¨ ¨ ¨ pI`Wl`1qpĂWl ´Wlq

¨

l´1
ÿ

s“1

pI`Wl´1q ¨ ¨ ¨ pI`Ws`1qpĂWs ´WsqpI` ĂWs´1q ¨ ¨ ¨ pI` ĂW1q.

Recalling that }Wl}F , }ĂWl}F ď 0.5{L for all l P rLs, by triangle inequality we have

}V2}F ď p1` 0.5{LqL ¨
ÿ

l,sPrLs : ląs

}ĂWl ´Wl}F ¨ }ĂWs ´Ws}F

ď p1` 0.5{LqL ¨

ˆ L
ÿ

l“1

}ĂWl ´Wl}F

˙2

,

where we use the fact that
ř

l,sPrLs : ląs alas ď
ř

l,sPrLs alas “
`
ř

l al
˘2

holds for all a1, . . . , aL ě
0. Therefore, the following holds regarding V2:

xUX´Y,BV2AXy ď }UX´Y}F }BV2AX}F

ď
a

2LpWq}B}2}A}2}X}2}V2}F

ď
?

2e
a

LpWq}B}2}A}2}X}2

ˆ L
ÿ

l“1

}ĂWl ´Wl}F

˙2

(B.7)

where the third inequality follows from the fact that p1 ` 0.5{LqL “ p1 ` 0.5{LqL ď
?
e. Next,

we are going to upper bound the second term of (B.4): 1
2}p

rU ´UqX}2F . Note that, since }prU ´

UqX}2F “ }Bp
rV ´VqAX}2F ď }A}

2
2}B}

2
2}X}

2
2}
rV ´V}2F , it suffices to bound the norm }rV ´

V}F . By (B.5), we have

}rV ´V}F “

›

›

›

›

L
ÿ

l“1

pI`WLq ¨ ¨ ¨ pI`Wl`1qpĂWl ´WlqpI` ĂWl´1q ¨ ¨ ¨ pI` ĂW1q

›

›

›

›

F

ď p1` 0.5{LqL
L
ÿ

l“1

}ĂWl ´Wl}F . (B.8)
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Plugging (B.6), (B.7) and (B.8) into (B.4), we have

LpĂWq ´ LpWq

“
@

UX´Y,BpV1 `V2qX
D

`
1

2

›

›B
`

rV ´V
˘

AX}2F

ď

L
ÿ

l“1

x∇Wl
LpWq,ĂWl ´Wly

` }A}2}B}2}X}2
`

a

2eLpWq ` 0.5e}A}2}B}2}X}2
˘

˜

L
ÿ

l“1

}ĂWl ´Wl}F

¸2

ď

L
ÿ

l“1

x∇Wl
LpWq,ĂWl ´Wly

` L}A}2}B}2}X}2
`

a

2eLpWq ` 0.5e}A}2}B}2}X}2
˘

L
ÿ

l“1

}ĂWl ´Wl}
2
F , (B.9)

where the last inequality is by Jesen’s inequality. This completes the proof.

B.3 PROOF OF LEMMA B.3

Proof of Lemma B.3. Note that we have

}UV}2F “ TrpUVVJUJq “ TrpUJUVVJq.

By Lemma B.2, it is clear that

λminpU
JUqTrpVVJq ď TrpUJUVVJq ď λmaxpU

JUqTrpVVJq.

Since U P Rdˆr is of r-rank, thus we have λminpU
JUq “ σ2

minpUq. Then applying the facts that
λmaxpU

JUq “ σ2
maxpUq and TrpVVJq “ }V}2F , we are able to complete the proof.
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