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ABSTRACT

We present Decentralized Distributed Proximal Policy Optimization (DD-PPO), a
method for distributed reinforcement learning in resource-intensive simulated en-
vironments. DD-PPO is distributed (uses multiple machines), decentralized (lacks
a centralized server), and synchronous (no computation is ever ‘stale’), making
it conceptually simple and easy to implement. In our experiments on training
virtual robots to navigate in Habitat-Sim (Savva et al., 2019), DD-PPO exhibits
near-linear scaling – achieving a speedup of 107x on 128 GPUs over a serial im-
plementation. We leverage this scaling to train an agent for 2.5 Billion steps of
experience (the equivalent of 80 years of human experience) – over 6 months of
GPU-time training in under 3 days of wall-clock time with 64 GPUs.
This massive-scale training not only sets the state of art on Habitat Autonomous
Navigation Challenge 2019, but essentially ‘solves’ the task – near-perfect au-
tonomous navigation in an unseen environment without access to a map, directly
from an RGB-D camera and a GPS+Compass sensor. Fortuitously, error vs com-
putation exhibits a power-law-like distribution; thus, 90% of peak performance is
obtained relatively early (at 100 million steps) and relatively cheaply (under 1 day
with 8 GPUs). Finally, we show that the scene understanding and navigation poli-
cies learned can be transferred to other navigation tasks – the analog of ‘ImageNet
pre-training + task-specific fine-tuning’ for embodied AI. Our model outperforms
ImageNet pre-trained CNNs on these transfer tasks and can serve as a universal
resource (all models and code are publicly available).
Code: https://github.com/facebookresearch/habitat-api
Video: https://www.youtube.com/watch?v=5PBp V5i1v4

1 INTRODUCTION

Recent advances in deep reinforcement learning (RL) have given rise to systems that can outperform
human experts at variety of games (Silver et al., 2017; Tian et al., 2019; OpenAI, 2018). These
advances, even more-so than those from supervised learning, rely on significant numbers of training
samples, making them impractical without large-scale, distributed parallelization. Thus, scaling RL
via multi-node distribution is of importance to AI – that is the focus of this work.

Several works have proposed systems for distributed RL (Heess et al., 2017; Liang et al., 2018a;
Tian et al., 2019; Silver et al., 2016; OpenAI, 2018; Espeholt et al., 2018). These works utilize two
core components: 1) workers that collect experience (‘rollout workers’), and 2) a parameter server
that optimizes the model. The rollout workers are then distributed across, potentially, thousands of
CPUs1. However, synchronizing thousands of workers introduces significant overhead (the parame-
ter server must wait for the slowest worker, which can be costly as the number of workers grows). To
combat this, they wait for only a few rollout workers, and then asynchronously optimize the model.

However, this paradigm – of a single parameter server and thousands of (typically CPU) workers –
appears to be fundamentally incompatible with the needs of modern computer vision and robotics
communities. Over the last few years, a large number of works have proposed training virtual robots
(or ‘embodied agents’) in rich 3D simulators before transferring the learned skills to reality (Beattie

∗Work done while an intern at Facebook AI Research. Correspondence to etw@gatech.edu.
1Environments in OpenAI Gym (Brockman et al., 2016) and Atari games can be simulated on solely CPUs.
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Figure 1: Left: In PointGoal Navigation, an agent must navigate from a random starting location
(blue) to a target location (red) specified relative to the agent (“Go 5m north, 10m east of you”) in a
previously unseen environment without access to a map. Right: Performance (SPL; higher is better)
of an agent equipped with RGB-D and GPS+Compass sensors on the Habitat Challenge 2019 (Savva
et al., 2019) train & val sets. Using DD-PPO, we train agents for over 180 days of GPU-time in
under 3 days of wall-clock time with 64 GPUs, achieving state-of-art results and ‘solving’ the task.

et al., 2016; Chaplot et al., 2017; Das et al., 2018; Gordon et al., 2018; Anderson et al., 2018b; Wij-
mans et al., 2019; Savva et al., 2019). Unlike Gym or Atari, 3D simulators require GPU acceleration,
and, consequently, the number of workers is greatly limited (25 to 8 vs. 212 to 15). The desired agents
operate from high dimensional inputs (pixels) and, consequentially, use deep networks (ResNet50)
that strain the parameter server. Thus, there is a need to develop a new distributed architecture.

Contributions. We propose a simple, synchronous, distributed RL method that scales well. We call
this method Decentralized Distributed Proximal Policy Optimization (DD-PPO) as it is decentralized
(has no parameter server), distributed (runs across many different machines), and we use it to scale
Proximal Policy Optimization (Schulman et al., 2017).

In DD-PPO, each worker alternates between collecting experience in a resource-intensive and GPU
accelerated simulated environment and optimizing the model. This distribution is synchronous –
there is an explicit communication stage where workers synchronize their updates to the model
(the gradients). To avoid delays due to stragglers, we propose a preemption threshold where the
experience collection of stragglers is forced to end early once a pre-specified percentage of the other
workers finish collecting experience. All workers then begin optimizing the model.

We characterize the scaling of DD-PPO by the steps of experience per second with N workers rela-
tive to 1 worker. We consider two different workloads, 1) simulation time is roughly equivalent for
all environments, and 2) simulation time can vary dramatically due to large differences in environ-
ment complexity. Under both workloads, we find that DD-PPO scales near-linearly. While we only
examined our method with PPO, other on-policy RL algorithms can easily be used and we believe
the method is general enough to be adapted to off -policy RL algorithms.

We leverage these large-scale engineering contributions to answer a key scientific question aris-
ing in embodied navigation. Mishkin et al. (2019) benchmarked classical (mapping + planning)
and learning-based methods for agents with RGB-D and GPS+Compass sensors on PointGoal Nav-
igation (Anderson et al., 2018a) (PointGoalNav), see Fig. 1, and showed that classical methods
outperform learning-based. However, they trained for ‘only’ 5 million steps of experience. Savva
et al. (2019) then scaled this training to 75 million steps and found that this trend reverses – learning-
based outperforms classical, even in unseen environments! However, even with an order of magni-
tude more experience (75M vs 5M), they found that learning had not yet saturated. This begs the
question – what are the fundamental limits of learnability in PointGoalNav? Is this task entirely
learnable? We answer this question affirmatively via an ‘existence proof’.

Utilizing DD-PPO, we find that agents continue to improve for a long time (Fig. 1) – not only setting
the state of art in Habitat Autonomous Navigation Challenge 2019 (Savva et al., 2019), but essen-
tially ‘solving’ PointGoalNav (for agents with GPS+Compass). Specifically, these agents 1) almost
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Figure 2: Comparison of asynchronous distribution (left) and synchronous distribution via dis-
tributed data parallelism (right) for RL. Left: rollout workers collect experience and asynchronously
send it to the parameter-server. Right: a worker alternates between collecting experience, synchro-
nizing gradients, and optimization. We find this highly effective in resource-intensive environments.

always reach the goal (failing on 1/1000 val episodes on average), and 2) reach it nearly as effi-
ciently as possible – nearly matching (within 3% of) the performance of a shortest-path oracle! It
is worth stressing how uncompromising that comparison is – in a new environment, an agent nav-
igating without a map traverses a path nearly matching the shortest path on the map. This means
there is no scope for mistakes of any kind – no wrong turn at a crossroad, no back-tracking from a
dead-end, no exploration or deviation of any kind from the shortest-path. Our hypothesis is that the
model learns to exploit the statistical regularities in the floor-plans of indoor environments (apart-
ments, offices) in our datasets. The more challenging task of navigating purely from an RGB camera
without GPS+Compass demonstrates progress but remains an open frontier.

Finally, we show that the scene understanding and navigation policies learned on PointGoalNav
can be transferred to other tasks (Flee and Explore (Gordon et al., 2019)) – the analog of ‘ImageNet
pre-training + task-specific fine-tuning’ for Embodied AI. Our models are able to rapidly learn these
new tasks (outperforming ImageNet pre-trained CNNs) and can be utilized as near-perfect neural
PointGoal controllers, a universal resource for other high-level navigation tasks (Anderson et al.,
2018b; Das et al., 2018). We make code and trained models publicly available.

2 PRELIMINARIES: RL AND PPO

Reinforcement learning (RL) is concerned with decision making in Markov decision processes. In
a partially observable MDP (POMDP), the agent receives an observation that does not fully specify
the state (st) of the environment, ot (e.g. an egocentric RGB image), takes an action at, and is given
a reward rt. The objective is to maximize cumulative reward over an episode, Formally, let τ be a
sequence of (ot, at, rt) where at ∼ π(· | ot), and st+1 ∼ T (st, at). For a discount factor γ, which
balances the trade-off between exploration and exploitation, the optimal policy, π∗, is specified by

π∗ = argmax
π

Eτ∼π [RT ] , where, RT =

T∑
t=1

γt−1rt. (1)

One technique to find π∗ is Proximal Policy Optimization (PPO) (Schulman et al., 2017), an
on-policy algorithm in the policy-gradient family. Given a θ-parameterized policy πθ and a set of
trajectories collected with it (commonly referred to as a ‘rollout’), PPO updates πθ as follows. Let
Ât = Rt − V̂t, be the estimate of the advantage, where Rt =

∑T
i=t γ

i−tri, and V̂t is the expected
value of Rt, and rt(θ) = πθ(at|ot)

πθt (at|ot)
be the ratio of the probability of the action at under the cur-

rent policy and the policy used to collect the rollout. The parameters are then updated by maximizing

J PPO(θ) = Et

[
min

(
rt(θ)Ât︸ ︷︷ ︸

importance-weighted advantage

, clip(rt(θ), 1− ε, 1 + ε)Ât︸ ︷︷ ︸
proximity clipping term

)]
(2)

This clipped objective keeps this ratio within ε and functions as a trust-region optimization method;
allowing for the multiple gradient updates using the rollout, thereby improving sample efficiency.
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Figure 3: Our agent for PointGoalNav. At very time-step, the agent receives an egocentric Depth
or RGB (shown here) observation, utilizes its GPS+Compass sensor to update the target position to
be relative to its current position, and outputs the next action and an estimate of the value function.

3 DECENTRALIZED DISTRIBUTED PROXIMAL POLICY OPTIMIZATION

In reinforcement learning, the dominant paradigm for distribution is asynchronous (see Fig. 2).
Asynchronous distribution is notoriously difficult – even minor errors can result in opaque crashes
– and the parameter server and rollout workers necessitate separate programs.

In supervised learning, however, synchronous distributed training via data parallelism (Hillis &
Steele Jr, 1986) dominates. As a general abstraction, this method implements the following: at step
k, worker n has a copy of the parameters, θkn, calculates the gradient, ∂θkn, and updates θ via

θk+1
n = ParamUpdate

(
θkn, AllReduce

(
∂θk1 , . . . , ∂θ

k
N

))
= ParamUpdate

(
θkn,

1

N

N∑
i=1

∂θki

)
, (3)

where ParamUpdate is any first-order optimization technique (e.g. gradient descent) and AllReduce
performs a reduction (e.g. mean) over all copies of a variable and returns the result to all work-
ers. Distributed DataParallel scales very well (near-linear scaling up to 32,000 GPUs (Kurth et al.,
2018)), and is reasonably simple to implement (all workers synchronously running identical code).

We adapt this to on-policy RL as follows: At step k, a worker n has a copy of the parameters θkn; it
gathers experience (rollout) using πθkn , calculates the parameter-gradients∇θ via any policy-gradient
method (e.g. PPO), synchronizes these gradients with other workers, and updates the model:

θk+1
n = ParamUpdate

(
θkn, AllReduce

(
∇θJ PPO(θk1 ), . . . ,∇θJ PPO(θkN )

))
. (4)

A key challenge to using this method in RL is variability in experience collection run-time. In super-
vised learning, all gradient computations take approximately the same time. In RL, some resource-
intensive environments can take significantly longer to simulate. This introduces significant syn-
chronization overhead as every worker must wait for the slowest to finish collecting experience. To
combat this, we introduce a preemption threshold where the rollout collection stage of these strag-
glers is preempted (forced to end early) once some percentage, p%, (we find 60% to work well) of
the other workers are finished collecting their rollout; thereby dramatically improving scaling. We
weigh all worker’s contributions to the loss equally and limit the minimum number of steps before
preemption to one-fourth the maximum to ensure all environments contribute to learning.

While we only examined our method with PPO, other on-policy RL algorithms can easily be used
and we believe the method can be adapted to off -policy RL algorithms. Off-policy RL algorithms
also alternate between experience collection and optimization, but differ in how experience is col-
lected/used and the parameter update rule. Our adaptations simply add synchronization to the opti-
mization stage and a preemption to the experience collection stage.

Implementation. We leverage PyTorch’s (Paszke et al., 2017) DistributedDataParallel to syn-
chronize gradients, and TCPStore – a simple distributed key-value storage – to track how many
workers have finished collecting experience. See Apx. E for a detailed description with code.

4 EXPERIMENTAL SETUP: POINTGOAL NAVIGATION, AGENTS, SIMULATOR

PointGoal Navigation (PointGoalNav). An agent is initialized at a random starting position and
orientation in a new environment and asked to navigate to target coordinates specified relative to the

4



Published as a conference paper at ICLR 2020

agents position; no map is available and the agent must navigate using only its sensors – in our case
RGB-D (or RGB) and GPS+Compass (providing current position and orientation relative to start).

The evaluation criteria for an episode is as follows (Anderson et al., 2018a): Let S indicate ‘success’
(did the agent stop within 0.2 meters of the target?), l be the length of the shortest path between start
and target, and p be the length of the agent’s path, then Success weighted by (normalized inverse)
Path Length SPL = S l

max(l,p) . It is worth stressing that SPL is a highly punitive metric – to achieve
SPL = 1, the agent (navigating without the map) must match the performance of the shortest-path
oracle that has access to the map! There is no scope for any mistake – no wrong turn at a crossroad,
no back-tracking from a dead-end, no exploration or deviation from the shortest path. In general,
this may not even be possible in a new environment (certainly not if an adversary designs the map).

Agent. As in Savva et al. (2019), the agent has 4 actions, stop, which indicates the agent has reached
the goal, move forward (0.25m), turn left (10◦), and turn right (10◦). It receives 256x256 sized
images and uses the GPS+Compass to compute target coordinates relative to its current state. The
RGB-D agent is limited to only Depth as Savva et al. (2019) found this to perform best.

Our agent architecture (Fig. 3) has two main components – a visual encoder and a policy network.

The visual encoder is based on either ResNet (He et al., 2016) or SE (Hu et al., 2018)-ResNeXt (Xie
et al., 2017) with the number of output channels at every layer reduced by half. We use a first layer
of 2x2-AvgPool to reduce resolution (essentially performing low-pass filtering + down-sampling)
– we find this to have no impact on performance while allowing faster training. From our initial
experiments, we found it necessary to replace every BatchNorm layer (Ioffe & Szegedy, 2015) with
GroupNorm (Wu & He, 2018) to account for highly correlated inputs seen in on-policy RL.

The policy is parameterized by a 2-layer LSTM with a 512-dimensional hidden state. It takes three
inputs: the previous action, the target relative to the current state, and the output of the visual
encoder. The LSTM’s output is used to produce a softmax distribution over the action space and an
estimate of the value function. See Appendix C for full details.

Training. We use PPO with Generalized Advantage Estimation (Schulman et al., 2015). We set the
discount factor γ to 0.99 and the GAE parameter τ to 0.95. Each worker collects (up to) 128 frames
of experience from 4 agents running in parallel (all in different environments) and then performs 2
epochs of PPO with 2 mini-batches per epoch. We use Adam (Kingma & Ba, 2014) with a learning
rate of 2.5× 10−4. Unlike popular implementations of PPO, we do not normalize advantages as we
find this leads to instabilities. We use DD-PPO to train with 64 workers on 64 GPUs.

The agent receives terminal reward rT = 2.5 SPL, and shaped reward rt(at, st) = −∆geo dist−0.01,
where ∆geo dist is the change in geodesic distance to the goal by performing action at in state st.

Simulator+Datasets. Our experiments are conducted using Habitat, a 3D simulation platform for
embodied AI research (Savva et al., 2019). Habitat is a modular framework with a highly performant
and stable simulator, making it an ideal framework for simulating billions of steps of experience.

We experiment with several different sources of data. First, we utilize the training data released
as part of the Habitat Challenge 2019, consisting of 72 scenes from the Gibson dataset (Xia et al.,
2018). We then augment this with all 90 scenes in the Matterport3D dataset (Chang et al., 2017) to
create a larger training set (note that Matterport3D meshes tend to be larger and of better quality).2
Furthermore, Savva et al. (2019) curated the Gibson dataset by rating every mesh reconstruction on
a quality scale of 0 to 5 and then filtered all splits such that each only contains scenes with a rating of
4 or above (Gibson-4+), leaving all scenes with a lower rating previously unexplored. We examine
training on the 332 scenes from the original train split with a rating of 2 or above (Gibson-2+).

5 BENCHMARKING: HOW DOES DD-PPO SCALE?

In this section, we examine how DD-PPO scales under two different workload regimes – homoge-
neous (every environment takes approximately the same amount of time to simulate) and heteroge-
neous (different environments can take orders of magnitude more/less time to simulate). We examine
the number of steps of experience per second with N workers relative to 1 worker. We compare dif-
ferent values of the preemption threshold p%. We benchmark training our ResNet50 PointGoalNav
agent with Depth on a cluster with Nvidia V100 GPUs and NCCL2.4.7 with Infiniband interconnect.

2We use all Matterport3D scenes (including test and val) as we only evaluate on Gibson validation and test.
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Figure 4: Scaling performance (in steps of experience per second relative to 1 GPU) of DD-PPO for
various preemption threshold, p%, values. Shading represents a 95% confidence interval.

Homogeneous. To create a homogeneous workload, we train on scenes from the Gibson dataset,
which require very similar times to simulate agent steps. As shown in Fig. 4 (left), DD-PPO exhibits
near-linear scaling (linear = ideal) for preemption thresholds larger than 50%, achieving a 196x
speed up with 256 GPUs relative to 1 GPU and an 7.3x speed up with 8 GPUs relative to 1.

Heterogeneous. To create a heterogeneous workload, we train on scenes from both Gibson and
Matterport3D. Unlike Gibson, MP3D scenes vary significantly in complexity and time to simulate
– the largest contains 8GB of data while the smallest is only 135MB. DD-PPO scales poorly at a
preemption threshold of 100% (no preemption) due to the substantial straggler effect (one rollout
taking substantially longer than the others); see Fig. 4 (right). However, with a preemption threshold
of 80% or 60%, we achieve near-identical scaling to the homogeneous workload! We found no
degradation in performance of models trained with any of these values for the preemption threshold
despite learning in large scenes occurring at a lower frequency.

6 MASTERING POINTGOAL NAVIGATION WITH GPS+COMPASS

In this section, we answer the following questions: 1) What are the fundamental limits of learnability
in PointGoalNav navigation? 2) Do more training scenes improve performance? 3) Do better visual
encoders improve performance? 4) Is PointGoalNav ‘solvable’ when navigating from RGB instead
of Depth? 5) What are the open/unsolved problems – specifically, how does navigation without
GPS+Compass perform? 6) Can agents trained for PointGoalNav be transferred to new tasks?

Agents continue to improve for a long time. Using DD-PPO, we train agents for 2.5 Billion steps
of experience with 64 Tesla V100 GPUs in 2.75 days – 180 GPU-days of training, the equivalent of
80 years of human experience (assuming 1 human second per step). As a comparison, Savva et al.
(2019) reached 75 million steps (an order of magnitude more than prior work) in 2.5 days using 2
GPUs – at that rate, it would take them over a month (wall-clock time) to achieve the scale of our
study. Fig. 1 shows the performance of an agent with RGB-D and GPS+Compass sensors, utilizing an
SE-ResNeXt50 visual encoder, trained on Gibson-2+ – it does not saturate before 1 billion steps3,
suggesting that previous studies were incomplete by 1-2 orders of magnitude. Fortuitously, error vs
computation exhibits a power-law-like distribution; 90% of peak performance is obtained relatively
early (100M steps) and relatively cheaply (in 0.1 day with 64 GPUs and in 1 day with 8 GPUs4). Also
noteworthy in Fig. 1 is the strong generalization (train to val) and corresponding lack of overfitting.

Increasing training data helps. Tab. 1 presents results with different training datasets and visual
encoders for agent with RGB-D and GPS+Compass. Our most basic setting (ResNet50, Gibson-4+
training) already achieves SPL of 0.922 (val), 0.917 (test), which nearly misses (by 0.003) the top
of the leaderboard for the Habitat Challenge 2019 RGB-D track5. Next, we increase the size of the
training data by adding in all Matterport3D scenes and see an improvement of∼0.03 SPL – to 0.956
(val), 0.941 (test). Next, we compare training on Gibson-4+ and Gibson-2+. Recall that Gibson-{2,
3} corresponds to poorly reconstructed scenes (see Fig. 11). A priori, it is unclear whether the net
effect of this addition would be positive or negative; adding them provides diverse experience to the

3These trends are consistent across sensors (RGB), training datasets (Gibson-4+), and visual encoders.
4The current on-demand price of an 8-GPU AWS instance (p2.8xlarge) is $7.2/hr, or $172.8 for 1 day.
5https://evalai.cloudcv.org/web/challenges/challenge-page/254/leaderboard/839
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Validation Test Standard
Training Dataset Agent Visual Encoder SPL Success SPL Success

Gibson-4+ ResNet50 0.922 ± 0.004 0.967 ± 0.003 0.917 0.970

Gibson-4+ and MP3D ResNet50 0.956 ± 0.002 0.996 ± 0.002 0.941 0.996

Gibson-2+ ResNet50 0.956 ± 0.003 0.994 ± 0.002 0.944 0.982
SE-ResNeXt50 0.959 ± 0.002 0.999 ± 0.001 0.943 0.988
SE-ResNeXt101 + 1024-d LSTM 0.969 ± 0.002 0.997 ± 0.001 0.948 0.980

Table 1: Performance (higher is better) of different architectures for agents with RGB-D and
GPS+Compass sensors on the Habitat Challenge 2019 (Savva et al., 2019) validation and test-std
splits (checkpoint selected on val). 10 samples taken for each episode on val. Gibson-4+ (2+) refers
to the subset of Gibson train scenes (Xia et al., 2018) with a quality rating of 4 (2) or higher. See
Tab. 2 for results of the best DD-PPO agent for Blind, RGB, and RGB-D and other baselines.

agent, however, it is poor quality data. We find a potentially counter-intuitive result – adding poor 3D
reconstructions to the train set improves performance on good reconstructions in val/test by ∼0.03
SPL – from 0.922 (val), 0.917 (test) to 0.956 (val), 0.944 (test). Our conjecture is that training on
poor (Gibson-{2,3}) and good (4+) reconstructions leads to robustness in representations learned.

Better visual encoders and more parameters help. Using a better visual encoder, SE (Hu et al.,
2018)-ResNeXt50 (Xie et al., 2017) instead of ResNet50, improves performance by 0.003 SPL
(Tab. 1). Adding capacity to the visual encoder (SE-ResNeXt101 vs SE-ResNeXt50) and navigation
policy (1024-d vs 512-d LSTM) further improves performance by 0.010 SPL.

PointGoalNav ‘solved’ with RGB-D and GPS+Compass. Our best agent – SE-ResNeXt101 +
1024-d LSTM trained on Gibson-2+ – achieves SPL of 0.969 (val), 0.948 (test), which not only sets
the state of art on the Habitat Challenge 2019 RGB-D track but is also within 3-5% of the shortest-path
oracle6. Given the challenges with achieving near-perfect SPL in new environments, it is important
to dig deeper. Fig. 13 shows (a) distribution of episode lengths in val and (b) SPL vs episode
length. We see that while the dataset is dominated by short episodes (2-12m), the performance of
the agent is remarkably stable over long distances and average SPL is not necessarily inflated. Our
hypothesis is the agent has learned to exploit the structural regularities in layouts of real indoor
environments. One (admittedly imperfect) way to test this is by training a Blind agent with only a
GPS+Compass sensor. Fig. 13 shows that this agent is able to handle short-range navigation (which
primarily involve turning to face the target and walking straight) but performs very poorly on longer
trajectories – SPL of 0.3 (Blind) vs 0.95 (RGB-D) at 20-25m navigation. Thus, structural regularities,
in part, explain performance for short-range navigation. For long-range navigation, the RGB-D agent
is extracting overwhelming signal from its Depth sensor. We repeat this analysis on two additional
navigation datasets proposed by Chaplot et al. (2019) – longer episodes and ‘harder’ episodes (more
navigation around obstacles) – and find similar trends (Fig. 14). This discussion continues in Apx. A.

Performance with RGB is also improved. So far we studied RGB-D as this performed best in Savva
et al. (2019). We now study RGB (with SE-ResNeXt50 encoder). We found it crucial to train on
Gibson-2+ and all of Matterport3D, ensuring diversity in both layouts (Gibson-2+) and appearance
(Matterport3D), and to channel-wise normalize RGB (subtract by mean and divide by standard devi-
ation) as our networks lack BatchNorm. Performance improves dramatically from 0.57 (val), 0.47
(test) SPL in Savva et al. (2019) to near-perfect success 0.991 (val), 0.977 (test) and high SPL 0.929
(val), 0.920 (test). While SPL is considerably lower than the Depth agent, (0.929 vs 0.959), inter-
estingly, the RGB agent still reaches the goal a similar percentage of the time (99.1% vs 99.9%). This
agent achieves state-of-art on the Habitat Challenge 2019 RGB track (rank 2 entry has 0.89 SPL).5

No GPS+Compass remains unsolved. Finally, we examine if we also achieve better performance
on the significantly more challenging task of navigation from RGB without GPS+Compass. At 100
million steps (an amount equivalent to Savva et al. (2019)), the agent achieves 0 SPL. By train-
ing to 2.5 billion steps, we make some progress and achieve 0.15 SPL. While this is a substantial
improvement, the task continues to remain an open frontier for research in embodied AI.

Transfer Learning. We examine transferring our agents to the following tasks (Gordon et al., 2019)

6Videos: https://www.youtube.com/watch?v=x3fk-Ylb 7s&list=UUKkMUbmP7atzznCo0LXynlA
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Figure 5: Performance (higher is better) on Flee (left) and Exploration (right) under five settings.

– Flee The agent maximizes its geodesic distance from its starting location. Let st be the agent’s
position at time t, and Max(s0) denote the maximum distance over all reachable points, then the
agent maximizes DT = Geo(sT , s0)/Max(s0). The reward is rt = 5(Dt −Dt−1).

– Exploration The agent maximizes the number of locations (specified by 1m cubes) visited. Let
|Visitedt| denote the number of location visited at time t, then the agent maximizes |VisitedT |.
The reward is rt = 0.25(|Visitedt| − |Visitedt−1|).

We use a PointGoalNav-trained agent with RGB and GPS+Compass, remove the GPS+Compass,
and transfer to these tasks under five different settings:
– Scratch. All parameters (visual encoder + policy) are trained from scratch for each new task.

Improvements over this baseline demonstrate benefits of transfer learning.
– ImageNetEncoder-ScratchPolicy. The visual encoder is initialized with ImageNet pre-trained

weights and frozen; the navigation policy is trained from scratch.
– PointGoalNavEncoder-ScratchPolicy. The visual encoder is initialized from PointGoalNav

and frozen; the navigation policy is trained from scratch.
– PointGoalNavEncoder-FinetunePolicy. Both visual encoder and policy parameters are initial-

ized from PointGoalNav (critic layers are reinitialized). Encoder is frozen, policy is fine-tuned.7
– ∇ Neural Controller We treat our agent as a differentiable neural controller, a closed-loop low-

level controller than can navigate to a specified coordinate. We utilize this controller in a new task
by training a light-weight high-level planner that predicts a goal-coordinate (at each time-step) for
the controller to navigate to. Since the controller is fully differentiable, we can backprop through
it. We freeze the controller, train the planner+controller system with PPO for the new task. The
planner is a 2-layer LSTM and shares the (frozen) visual encoder with the controller.

Fig. 5 shows performance vs. experience results (higher is better). Nearly all methods outperform
learning from scratch, establishing the value of transfer learning. PointGoalNav pre-trained visual
encoders dramatically outperforms ImageNet pre-trained ones, indicating that the agent has learned
generally useful scene understanding. For both tasks, fine-tuning an existing policy allows it to
rapidly learn the new task, indicating that the agent has learned general navigation skills. ∇Neural
Controller outperforms PointGoalNavEncoder-ScratchPolicy on Flee and is competitive on Explo-
ration, indicating that the agent can indeed be ‘controlled’ or directed to target locations by a planner.
Overall, these results demonstrate that our trained model is useful for more than just PointGoalNav.

7 RELATED WORK

Visual Navigation. Visual navigation in indoor environments has been the subject of many recent
works (Gupta et al., 2017; Das et al., 2018; Anderson et al., 2018b; Savva et al., 2019; Mishkin et al.,
2019). Our primary contribution is DD-PPO, thus we discuss other distributed works.

In the general case, computation in reinforcement learning (RL) in simulators can be broken down
into 4 roles: 1) Simulation: Takes actions performed by the agent as input, simulates the new state,
returns observations, reward, etc. 2) Inference: Takes observations as input and utilizes the agent
policy to return actions, value estimate, etc. 3) Learner: Takes rollouts as input and computes
gradients to update the policy’s parameters. 4) Parameter server/master: Holds the source of truth
for the policy’s parameters and coordinates workers.

7Since a PointGoalNav policy expects a goal-coordinate, we input a ‘dummy’ arbitrarily-chosen vector for
the transfer tasks, which the agent quickly learns to ignore.
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Synchronous RL. Synchronous RL systems utilize a single processes to perform all four roles;
this design is found in RL libraries like OpenAI Baselines (Dhariwal et al., 2017) and Py-
torchRL (Kostrikov, 2018). This method is limited to a single nodes worth of GPUs.

Synchronous Distributed RL. The works most closely related to DD-PPO also propose to scale
synchronous RL by replicating this simulation/inference/learner process across multiple GPUs and
then synchronize gradients with AllReduce. Stooke & Abbeel (2018) experiment with Atari and
find it not effective however. We hypothesize that this is due to a subtle difference – this distribu-
tion design relies on a single worker collecting experience from multiple environments, stepping
through them in lock step. This introduces significant synchronization and communication costs as
every step in the rollout must be synchronized across as many as 64 processes (possible because each
environment is resource-light, e.g. Atari). For instance, taking 1 step in 8 parallel pong environments
takes approximately the same wall-clock time as 1 pong environment, but it takes 10 times longer
to take 64 steps in lock-step; thus gains from parallelization are washed out due to the lock-step
synchronization. In contrast, we study resource-intensive environments, where only 2 or 4 environ-
ments per worker is possible, and find this technique to be effective. Liang et al. (2018b) mirror
our findings (this distribution method can be effective for resource intensive simulation) in GPU-
accelerated physics simulation, specifically MuJoCo (Todorov et al., 2012) with NVIDIA Flex. In
contrast to our work, they examine scaling up to only 32 GPUs and only for homogeneous work-
loads. In contrast to both, we propose an adaption to mitigate the straggler effect – preempting the
experience collection (rollout) of stragglers and then beginning optimization. This improves scaling
for homogeneous workloads and dramatically improves scaling for heterogeneous workloads.

Asynchronous Distributed RL. Existing public frameworks for asynchronous distributed reinforce-
ment learning (Heess et al., 2017; Liang et al., 2018a; Espeholt et al., 2018) use a single (CPU-only)
process to perform the simulation and inference roles (and then replicate this process to scale). A
separate process asynchronously performs the learner and parameter server roles (note its not clear
how to use more than one these processes as it holds the source of truth for the parameters). Adapt-
ing these methods to the resource-intensive environments studied in this work (e.g. Habtiat (Savva
et al., 2019)) encounters the following issues: 1) Limiting the inference/simulation processes to
CPU-only is untenable (deep networks and need for GPU-accelerated simulation). While the infer-
ence/simulation processes could be moved to the GPU, this would be ineffective for the following:
GPUs operate most efficiently with large batch sizes (each inference/simulation process would have
a batch size of 1), CUDA runtime requires ∼600MB of GPU memory per process, and only one
CUDA kernel (function that runs on the GPU) can executed by the GPU at a time. These issue
contribute and lead to low GPU utilization. In contrast, DD-PPO utilizes a single process per GPU
and batches observations from multiple environments for inference. 2) The single process learner/-
parameter server is limited to a single node’s worth of GPUs. While this not a limitation for small
networks and low dimensional inputs, our agents take high dimensional inputs (e.g. a Depth sensor)
and utilize large neural networks (ResNet50), thereby requiring considerable computation to com-
pute gradients. In contrast, DD-PPO has no parameter server and every GPU computes gradients,
supporting even very large networks (SE-ResNeXt101).

Straggler Effect Mitigation. In supervised learning, the straggler effect is commonly caused by
heterogeneous hardware or hardware failures. Chen et al. (2016) propose a pool of b “back-up”
workers (there are N + b workers total) and perform the parameter update once N workers finish.
In comparison, their method a) requires a parameter server, and b) discards all work done by the
stragglers. Chen et al. (2018) propose to dynamically adjust the batch size of each worker such that
all workers perform their forward and backward pass in the same amount of time. Our method aims
to reduce variance in experience collection times. DD-PPO dynamically adjusts a worker’s batch
size as a necessary side-effect of preempting experience collection in on-policy RL.

Distributed Synchronous SGD. Data parallelism is a common paradigm in high performance com-
puting (Hillis & Steele Jr, 1986). In this paradigm, parallelism is achieved by workers performing
the same work on different data. This paradigm can be naturally adapted to supervised deep learn-
ing (Chen et al., 2016). Works have used this to achieve state-of-the-art results in tasks ranging from
computer vision (Goyal et al., 2017; He et al., 2017) to natural language processing (Peters et al.,
2018; Devlin et al., 2018; Ott et al., 2019). Furthermore, multiple deep learning frameworks provide
simple-to-use wrappers supporting this parallelism model (Paszke et al., 2017; Abadi et al., 2015;
Sergeev & Balso, 2018). We adapt this framework to reinforcement learning.
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Figure 6: Example episodes broken down by geodesic distance between agent’s spawn location and
target (on rows) vs SPL achieved by the agent (on cols). Gray represents navigable regions on the
map while white is non-navigable. The agent begins at the blue square and navigates to the red
square. The green line shows the shortest path on the map (or oracle navigation). The blue line
shows the agent’s trajectory. The color of the agent’s trajectory changes changes from dark to light
over time. Navigation dataset from the longer validation episodes proposed in Chaplot et al. (2019).

A ADDITIONAL ANALYSIS AND DISCUSSION

In this section, we continue the analysis of our agent and examine differences in its behavior from a
classical, hand-designed agent – the map-and-plan baseline agent proposed in Gupta et al. (2017).
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Figure 7: Histogram of SPL for
non-perfect (SPL<0.99) episodes.

Intricacies of SPL. Given an agent that always reaches the
goal (≈100% success), SPL can be seen as measuring the effi-
ciency of an agent vs. an oracle – i.e. an SPL of 0.95 means the
agent is 5% less efficient than an oracle. Given the challenges
of near-perfect autonomous navigation without a map in novel
environments we outlined, being 5% less efficient than an or-
acle seems near-impossible. However, this comparison/view
is potentially miss-leading. Percentage errors are potentially
miss-leading for long paths. Over a 10 meter episode, the agent
can deviate from the oracle path by up-to a meter and still be
within 10%. As a consequence, significant qualitative errors
can result in an insignificant quantitative error (see Fig. 6).

Error recovery. Given the near-perfect performance of our
agent (on average), we explicitly examine if it is able to recover
from its own navigation errors. Fig. 6 column 3 shows several examples of error recovery, including
several well executed backtracks (video: https://www.youtube.com/watch?v=a8AugVLSJ50), in-
dicating that the agent is effective at recovering from its own navigation errors. Next, we look at the
statistics of non-perfect (SPL<0.99) episodes on the longer validation episodes proposed in Chaplot
et al. (2019). Non-perfect episodes make up the majority of episodes (54%, see Fig. 7) with an
average SPL of 0.85 (99.0% success) – compared to 0.92 SPL (99.5% success) over all episodes.
Thus there are many episodes where the agent makes significant deviation from the shortest path
and reaches the goal (a 15% deviation on long trajectories (>10m) is significant).
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When does the agent fail? Column 2 in Fig. 6 shows that the agent performs poorly when the
ratio of the geodesic distance to goal and euclidean distance to goal. However, the agent is able to
eventually overcome this failure mode and reach the goal in most cases.

Row 1 column 1 in Fig. 6 shows that the agent fails or performs poorly when it needs to go slightly
up/down stairs. The data-set generation process used in Savva et al. (2019) only guarantees a start
and goal pair won’t be on different floors, but there remains a possibility that the agent will need to
traverse the stairs slightly. However, these situations are rare, and, in general, the stairs should be
avoided. Furthermore, the GPS sensor provides location in 2D, not 3D.

The remaining failure cases of column 1 in Fig. 6 show that a singular location in one environment
acts as a sink for the agent (once it enters this location, it is almost never able to leave it). At this
location, there is a large hole in the mesh (an entire wall is missing). Utilizing visual encoders that
explicitly handle missing values may allow the agent to overcome this failure mode.

Differences from a classical agent. We compare the behavior of our agent with the classical map-
and-plan baseline agent proposed in Gupta et al. (2017). This agent achieves 0.92 val (0.89 test)
SPL with 0.976 success.8 By comparing and contrasting qualitative behaviors, we can determine
what behaviors learning-based methods enable. We make the following observation.

The learned agent is able to recover from unexpected collisions without hurting SPL. The map-
and-plan baseline agent incorporates a specific collision recovery behavior where, after repeated
collisions, the agent turns around and backs up 1.25m. This behavior brings the obstacle into view,
maps it, and then allows the agent to create a plan to avoid it. In contrast, our agent is able to
navigate around unseen obstacles without such a large impact on SPL. Determining the set of action
sequences and heuristics necessary to do this is what learning enables.

B RELATED WORK CONTINUED

Straggler Effect Mitigation. In supervised learning, the straggler effect is commonly caused by
heterogeneous hardware or hardware failures. Chen et al. (2016) propose a pool of b “back-up”
workers (there are N + b workers total) and perform the parameter update once N workers finish.
In comparison, their method a) requires a parameter server, and b) discards all work done by the
stragglers. Chen et al. (2018) propose to dynamically adjust the batch size of each worker such that
all workers perform their forward and backward pass in the same amount of time. Our method aims
to reduce variance in experience collection times. DD-PPO dynamically adjusts a worker’s batch
size as a necessary side-effect of preempting experience collection in on-policy RL.

Distributed Synchronous SGD. Data parallelism is a common paradigm in high performance com-
puting (Hillis & Steele Jr, 1986). In this paradigm, parallelism is achieved by workers performing
the same work on different data. This paradigm can be naturally adapted to supervised deep learn-
ing (Chen et al., 2016). Works have used this to achieve state-of-the-art results in tasks ranging from
computer vision (Goyal et al., 2017; He et al., 2017) to natural language processing (Peters et al.,
2018; Devlin et al., 2018; Ott et al., 2019). Furthermore, multiple deep learning frameworks provide
simple-to-use wrappers supporting this parallelism model (Paszke et al., 2017; Abadi et al., 2015;
Sergeev & Balso, 2018). We adapt this framework to reinforcement learning.

C AGENT DESIGN

In this section, we outline the exact agent design we use. We break the agent into three components:
a visual encoder, a goal encoder, and a navigation policy.

Visual Encoder. Out visual encoder uses one of three different backbones, ResNet50 (He et al.,
2016), Squeeze-Excite(SE) (Hu et al., 2018)-ResNeXt50 (Xie et al., 2017), and SE-ResNeXt101.
For all backbones, we reduce the number of output channels at each layer by half. We also add a
2x2-AvgPool before each backbone so that the effective resolution is 128x128. Given these modifi-
cations, each backbone produces a 1024x4x4 feature map. We then convert this to a 128x4x4 feature
map with a 3x3-Conv.

We replace every BatchNorm layer with GroupNorm (Wu & He, 2018) to account for the highly
correlated trajectories seen in on-policy RL and massively distributed training.

8https://github.com/s-gupta/map-plan-baseline#results
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Figure 8: Scaling of DD-PPO under homogeneous and heterogeneous workloads for various differ-
ent values of the percentage of rollouts that are fully completed by optimizing the model. Shading
represents a bootstrapped 95% confidence interval.

Goal encoder. Habitat (Savva et al., 2019) provides the vector pointing to the goal in ego-centric
polar coordinates. We convert this to magnitude and a unit vector, i.e. [d, θ] to [d, cos(θ),
sin(θ)], to account for the discontinuity at the x-axis in polar coordinates. We pass the goal vector
to a fully connected layer, resulting in a 32-dimensional representation.

Navigation Policy. Our navigation policy takes the 64x4x4 feature map from the visual encoder, flat-
tens it, and then converts the 2048-d vector to the same size as the hidden size via a fully-connected
layer. It then concatenates this vector with output of the goal encoder, and a 32-dimensional embed-
ding of the previous action taken (or the start-token in the case of the first action) and then passes
this to a 2-layer LSTM with either a 512-dimensional or 1024-dimensional hidden dimension. The
output of the LSTM is used as input to a fully connected layer, resulting in a soft-max distribution
of the action space and an estimate of the value function.

D ADDITIONAL SCALING DETAILS

We use the following procedure for benchmarking the throughput of our proposed DD-PPO: Each
optimizer selects 4 scenes at random and then performs the process of collecting experience and
optimizing the model based on that experience 10 times. We calculate throughput as the total number
of steps of experience collected over the last 5 rollout/optimizing steps divided by the amount of time
taken. We repeat this procedure over 10 different random seeds (we use the same random seeds for
all variations of number of GPUs and sync-fraction values).

E DD-PPO IMPLEMENTATION

Utilizing Distributed Data Parallel in supervised learning is straightforward as frameworks
such as PyTorch (Paszke et al., 2017) provide a simple wrapper. The recommended way to use
these wrappers is to first write training code that runs on a single GPU and then enable dis-
tributed training via the wrapper. We follow a similar approach. Given an implementation of
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Validation Test Standard
Perception Method SPL Success SPL Success

Blind

Random 0.02 0.03 0.02 –
Forward-only 0.00 0.00 0.00 –
Goal-follower 0.23 0.23 0.23 –
DD-PPO (RL) 0.729 ± 0.005 0.973 ± 0.003 0.676 0.947

RGB DD-PPO (RL) 0.929 ± 0.003 0.991 ± 0.002 0.920 0.977

RGB-D (Depth) DD-PPO (RL) 0.969 ± 0.002 0.997 ± 0.001 0.948 0.980

Table 2: Performance (higher is better) of various sensors and agent methods on the Habitat Chal-
lenge 2019 (Savva et al., 2019) validation and test splits (checkpoint selected on val). Random,
Forward-only, and Goal-follower taken from Savva et al. (2019). Best visual encoder reported for
DD-PPO.

PPO that runs on one GPU we create a decentralized distributed variant by adding gradient syn-
chronization, leveraging highly performant code written for this purpose in popular deep-learning
frameworks, e.g. tf.distribute.MirroredStrategy in TensorFlow (Abadi et al., 2015) and
torch.nn.parallel.DistributedDataParallel in PyTorch. Note that care must be taken to
synchronize any training or rollout statistics between workers – in most cases these can also be
synchronized via AllReduce.

We track how many workers have finished the experience collection stage with a distributed key-
value storage – we use PyTorch’s torch.distributed.TCPStore, however almost any distributed
key-value storage would be sufficient.

See Fig. 9 for an example implementation which adds 1) gradient synchronization via
torch.nn.parallel.DistributedDataParallel, and 2) preempts stragglers by tracking the num-
ber of workers have finished the experience collection stage with a torch.distributed.TCPStore.

See Fig. 10 for a visual depiction of DD-PPO.

F TRANSFER EXPERIMENTS ADDITIONAL DETAILS

For the transfer learning experiments, we utilize the same PPO hyper-parameters as the
PointGoalNav experiments. We use DD-PPO to train with 8 workers on 8 GPUs. We train our
agents on Gibson-4+ and evaluate on the Habitat Challenge 2019 Validation scene and starting lo-
cations (the goal location is simply discarded).

The ImageNet encoder is trained using the same hyper-parameters and training procedure as Xie
et al. (2017) with no data-augmentation.

G NEURAL CONTROLLER ADDITIONAL DETAILS

The planner for neural controller used in Sec. 6 shares the same architecture as our agent’s policy,
but utilizes a 512-d hidden state. It takes as input the previous action of the controller (or the start
token), and the output of the visual encoder (which is shared with the controller). The output of
the LSTM is then used to produced an estimate of the value function and a 3-dimensional vector
specifying the PointGoal in magnitude and unit direction vector format. The magnitude competent
is passed through an ELU activation and offset by 0.75. Each component of the unit direction vector
is passed through a tanh activation – note that we do not re-normalize this vector have a length of 1
as we find doing so both unnecessary and harder to optimize.
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master_addr = # <hostname of world rank 0’s machine >
master_port = # <free TCP port on world rank 0’s machine >
world_rank = # <worker ’s unique ID>
world_size = # <number of workers >
local_rank = # <the ID of the GPU to use >

# Setup the group of workers
store = torch.distributed.TCPStore(

master_addr ,
master_port ,
world_size ,
world_rank == 0,

)

torch.distributed.init_process_group(
backend="NCCL",
world_size=world_size ,
rank=world_rank ,
store=store ,

)

# Tracks how many workers have finished their rollout
num_workers_done = torch.distributed.PrefixStore(

"num_workers_done", store
)

device = torch.device("cuda", local_rank)
model = PolicyNetwork (...)
model.to(device)
# Add gradient synchronization to the model
model = torch.nn.parallel.DistributedDataParallel(

model , [device], device
)

while not_converged ():
num_workers_done.set("done", "0")
for step in range(max_experience_steps):

collect_step(model)
# Preempt stragglers
if (

int(num_workers_done.get("done"))
> preemption_threshold * world_size
and step >= max_experience_steps / 4

):
break

# Mark that a worker is done collecting experience
num_workers_done.add("done", 1)

# Update the model using PPO
for _ in range(n_ppo_epochs):

for _ in range(n_ppo_batch):
batch = get_batch ()
loss = evaluate(model , batch)
loss.backward ()
# DistributedDataParallel automatically
# performs an AllReduce on all gradients
# during the backward call.
# If this wasn’t being used , here is where
# calls to AllReduce on the gradients would
# be made.
step_optimizer(model)

Figure 9: Implementation of DD-PPO using PyTorch (Paszke et al., 2017) v1.1 and the NCCL
backend. We use SLURM to populate the world rank, world size, and local rank fields.
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Process #1 Step Optimize ModelStep Step Step

Process #N Step Optimize ModelStep

Percent processes finished collecting experience
Preemption 
threshold

Gradient
Synchronization

Monitor

Process #2 Step Optimize ModelStep Step Done

Done

Preempted

Step

Figure 10: Illustration of DD-PPO. Processes collecting experience in environments that are more
costly to simulate (stragglers) have their experience collection stage preempted such that other pro-
cesses do not have to wait for them. Note that we implement the monitor with a simple key-value
storage and have processes preempt themselves. Note that the order of processes is irrelevant and
done solely for aesthetic purposes.

2: big holes or significant texture issues, but good
reconstruction

3: small holes, some texture issues, good
reconstruction

4: no holes, some texture issues, good reconstruction 5: no holes, uniform textures, good reconstruction

Figure 11: Examples of Gibson meshes for a given quality rating from Savva et al. (2019)
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Figure 12: Training and validation performance (in SPL; higher is better) of different architectures
for Depth agents with GPS+Compass on the Habitat Challenge 2019 (Savva et al., 2019). Gib-
son (Xia et al., 2018)-4+ refers to the subset of Gibson train scenes with a quality rating of 4 or
better. Gibson-4+ and MP3D refers to training on both Gibson-4+ and all of Matterport3D. Gibson-
2+ refers to training on the subset of Gibson train scenes with a quality rating of 2 or better.
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Figure 13: Performance vs. Geodesic Distance from start to goal for Blind, RGB, and RGB-D (us-
ing Depth only) models trained with DD-PPO on the Habitat Challenge 2019 (Savva et al., 2019)
validation split. Bars at the bottom represent the fraction of episodes within each geodesic distance
bin.
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Figure 14: Performance vs. Geodesic Distance from start to goal for Blind, RGB, and RGB-D (using
Depth only) models trained with DD-PPO on the longer and harder validation episodes proposed
in Chaplot et al. (2019). Bars at the bottom represent the fraction of episodes within each geodesic
distance bin.
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