
Published as a conference paper at ICLR 2020

EXPLORING MODEL-BASED PLANNING WITH POLICY
NETWORKS

Tingwu Wang1,2& Jimmy Ba1,2
1 Department of Computer Science, University of Toronto 2 Vector Institute
{tingwuwang,jba}@cs.toronto.edu

ABSTRACT

Model-based reinforcement learning (MBRL) with model-predictive control or
online planning has shown great potential for locomotion control tasks in both
sample efficiency and asymptotic performance. Despite the successes, the existing
planning methods search from candidate sequences randomly generated in the
action space, which is inefficient in complex high-dimensional environments. In
this paper, we propose a novel MBRL algorithm, model-based policy planning
(POPLIN), that combines policy networks with online planning. More specifically,
we formulate action planning at each time-step as an optimization problem using
neural networks. We experiment with both optimization w.r.t. the action sequences
initialized from the policy network, and also online optimization directly w.r.t. the
parameters of the policy network. We show that in the MuJoCo benchmarking
environments, POPLIN is about 3x more sample efficient than the previously state-
of-the-art algorithms, such as PETS, TD3 and SAC. To explain the effectiveness
of our algorithm, we show that the optimization surface in parameter space is
smoother than in action space. Further more, we found the distilled policy network
can be effectively applied without the expansive model predictive control during
test time for some environments such as Cheetah. Code is released here1.

1 INTRODUCTION

A model-based reinforcement learning (MBRL) agent learns its internal model of the world, i.e. the
dynamics, from repeated interactions with the environment. With the learnt dynamics, a MBRL agent
can for example perform online planning, interact with imaginary data, or optimize the controller
through dynamics, which provides significantly better sample efficiency (Deisenroth & Rasmussen,
2011; Sutton, 1990; Levine & Abbeel, 2014; Levine & Koltun, 2013). However, MBRL algorithms
generally do not scale well with the increasing complexity of the reinforcement learning (RL) tasks
in practice. And modelling errors in dynamics that accumulate with time-steps greatly limit the
applications of MBRL algorithms. As a result, many latest progresses in RL has been made with
model-free reinforcement learning (MFRL) algorithms that are capable of solving complex tasks at
the cost of large number of samples (Schulman et al., 2017; Heess et al., 2017; Schulman et al., 2015;
Mnih et al., 2013; Lillicrap et al., 2015; Haarnoja et al., 2018).

With the success of deep learning, a few recent works have proposed to learn neural network-based
dynamics models for MBRL. Among them, random shooting algorithms (RS), which uses model-
predictive control (MPC), is shown to have good robustness and scalability (Richards, 2005). In
shooting algorithms, the agent randomly generates action sequences, use the dynamics to predict the
future states, and choose the first action from the sequence with the best expected reward. However,
RS usually has worse asymptotic performance than model-free controllers (Nagabandi et al., 2017),
and the authors of the the PETS algorithm (Chua et al., 2018) suggest that the performance of RS
is directly affected by the quality of the learnt dynamics. They propose a probabilistic ensemble to
capture model uncertainty, which enables PETS algorithm to achieve both better sample efficiency
and better asymptotic performance than state-of-the-art model-free controllers in environments such
as Cheetah. However, PETS is not as effective on environments with higher dimensionality.

1https://github.com/WilsonWangTHU/POPLIN.

1

Published as a conference paper at ICLR 2020

-200.000

-200.000

-200.000

-190.000

-190.000

-190.000

-190.000

-190.000

-190.000

-190.000

-190.000

-190.000

-180.000

-180.000 -180.000

-180.000

-180.000

-180.000

-170.000

-170.000
-170.000

-170.000

-160.000

(a1) Reward Surface (a2) PETS Iter 1 (a3) PETS Iter 2 (a4) PETS Iter 3

-525.000

-525.000

-500.000

-500.000

-500.000

-500.000

-475.000

-475.000

-47
5.0

00

-475.000

-475.000

-450.000

-450.000

-425.000

-425.000

-425.000

-400.000

(b1) Reward Surface (b2) POPLIN Iter 1 (b3) POPLIN Iter 2 (b4) POPLIN Iter 3

Figure 1: We transform each planned candidate action trajectory with PCA into a 2D blue scatter.
The top and bottom figures are respectively the visualization of PETS (Chua et al., 2018) and our
algorithm. The red area has higher reward. From left to right, we show how candidate trajectories are
updated, across different planning iterations within one time-step. As we can see, while both reward
surface is not smooth with respect to action trajectory. POPLIN, using policy networks, has much
better search efficiency, while PETS is stuck around its initialization. The details are in section 5.3.

In this paper, we explore MBRL algorithms from a different perspective, where we treat the planning
at each time-step as an optimization problem. Random search in action space, as what is being done
in state-of-the-art MBRL algorithms such as PETS, is insufficient for more complex environments.
On the one hand, we are inspired by the success of AlphaGo (Silver et al., 2016; 2017), where a
policy network is used to generate proposals for the Monte-Carlo tree search. On the other hand, we
are inspired by the recent research into understanding deep neural networks (Nguyen & Hein, 2017;
Li et al., 2018; Soudry & Hoffer, 2017). Deep neural networks, frequently observed in practices,
is much less likely to get stuck in sub-optimal points. In Figure 1, we apply principal component
analysis (PCA) on the action sequences generated in each planning iteration within one time-step.
The reward surface of the action space is not smooth and prone to local-minimas. We argue that
optimization in the policy network’s parameter space will be more efficient. Furthermore, we note that
the state-of-the-art MBRL algorithm with MPC cannot be applied real-time. We therefore experiment
with different policy network distillation schemes for fast control without MPC. To sum up, the
contribution of this paper is three-fold:

• We apply policy networks to generate proposals for MPC in high dimensional locomotion control
problems with unknown dynamics.

• We formulate planning as optimization with neural networks, and propose policy planning in
parameter space, which obtain state-of-the-art performance on current bench-marking environ-
ments, being about 3x more sample efficient than the previous state-of-the-art algorithm, such as
PETS (Chua et al., 2018), TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018).

• We also explore policy network distillation from the planned trajectories. We found the distilled pol-
icy network alone achieves high performance on environments like Cheetah without the expansive
online planning.

2 RELATED WORK

Model-based reinforcement learning (MBRL) has been long studied. Dyna (Sutton, 1990; 1991)
algorithm alternately performs sampling in the real environments and optimize the controllers on
the learned model of the environments. Other pioneering work includes PILCO (Deisenroth &
Rasmussen, 2011), where the authors model the dynamics using Gaussian Process and directly
optimize the surrogate expected reward. Effective as it is to solve simple environments, PILCO

2

Published as a conference paper at ICLR 2020

heavily suffers the curse of dimensionality. In (Levine & Abbeel, 2014; Levine & Koltun, 2013;
Levine et al., 2016; Chebotar et al., 2017; Zhang et al., 2018), the authors propose guided policy
search (GPS). GPS uses iLQG (Li & Todorov, 2004; Todorov & Li, 2005; Tassa et al., 2012) as the
local controller, and distill the knowledge into a policy neural network. In SVG (Heess et al., 2015),
the authors uses stochastic value gradient so that the stochastic policy network can be optimized by
back-propagation with off-policy data. Recently with the progress of model-free algorithms such
as TRPO and PPO (Schulman et al., 2015; 2017), Kurutach et al. (2018); Luo et al. (2019) propose
modern variants of Dyna, where TRPO (Schulman et al., 2015) is used to optimize the policy network
using data generated by the learnt dynamics. Concurrent to this work, Janner et al. (2019) further
use SAC (Haarnoja et al., 2018) to train the policy network, and gets state-of-the-art performance
on many tasks. At the same time, random shooting methods proposed by Nagabandi et al. (2017);
Chua et al. (2018) have shown its robustness and effectiveness on benchmarking environments. PETS
algorithm (Chua et al., 2018) is considered by many to be the state-of-the-art shooting algorithm,
which we discuss in detail in section 3. Dynamics is also used to obtain better value estimation to
speed up training (Gu et al., 2016; Feinberg et al., 2018; Buckman et al., 2018). Latent dynamics
models using VAE (Kingma & Welling, 2013) are commonly used to solve problems with image
input (Ha & Schmidhuber, 2018a;b; Hafner et al., 2018; Kaiser et al., 2019).

3 BACKGROUND

3.1 REINFORCEMENT LEARNING

In reinforcement learning, the problem of solving the given task is formulated as a infinite-horizon
discounted Markov decision process. For the agent, we denote the action space and state space
respectively as A and S. We also denote the reward function and transition function as r(st, at)
and f(st+1|st, at), where st ∈ S and at ∈ A are the state and action at time-step t. The reward
function is assumed known to the agent in this work. The agent maximizes its expected total reward
J(π) = Eπ[

∑∞
t=0 r(st, at)] with respect to the agent’s controller π.

3.2 RANDOM SHOOTING ALGORITHM AND PETS

Our proposed algorithm is based on the random shooting algorithm (Richards, 2005). In random
shooting algorithms (Nagabandi et al., 2017; Chua et al., 2018), a data-set of D = {(st, at, st+1)}
is collected from previously generated real trajectories. The agent learns an ensemble of neural
networks denoted as fφ(st+1|st, at), with the parameters of the neural networks denoted as φ. In
planning, the agent randomly generates a population of K candidate action sequences. Each action
sequence, denoted as a = {a0, ..., aτ}, contains the control signals at every time-steps within the
planning horizon τ . The action sequence with the best expected reward given the current dynamics
network fφ(st+1|st, at) is chosen. RS, as a model-predictive control algorithm, only executes the
first action signal and re-plan at time-step. In PETS (Chua et al., 2018), the authors further use cross
entropy method (CEM) (De Boer et al., 2005; Botev et al., 2013) to re-samples sequences near the
best sequences from the last CEM iteration.

4 MODEL-BASED POLICY PLANNING Algorithm 1 General POPLIN Framework
1: while Training iterations not Finished do
2: for ith time-step of the agent do
3: CEM planning as in section 4.1, 4.2
4: Execute the first action from CEM.
5: end for
6: Dynamics update and policy distillation.
7: end while

In this section, we describe two variants of
POPLIN: model-based policy planning in action
space (POPLIN-A) and model-based policy plan-
ning in parameter space (POPLIN-P). Following
the notations in section 3.2, we define the expected
planning reward function at time-step i as follows:

R(si,ai) = E

[
i+τ∑
t=i

r(st, at)

]
, where st+1 ∼ fφ(st+1|st, at). (1)

The action sequence ai = {ai, ai+1, ..., ai+τ} is generated by the policy search module, as later
described in Section 4.1 and 4.2. The expectation of predicted trajectories {si, si+1, ..., si+τ} is

3

Published as a conference paper at ICLR 2020

estimated by creating P particles from the current state. The dynamics model fk,tφ (st+1|st, at) used
by kth particle at time-step t is sampled from deterministic or probabilistic ensemble models. To
better illustrate, throughout the paper we denote this dynamics as a fixed deterministic model, i.e.
fk,tφ ≡ fφ. In practice the dynamics uses probabilistic ensemble models, which requires some trivial
modifications to the math and we refer readers to PETS Chua et al. (2018) for details.

4.1 MODEL-BASED POLICY PLANNING IN ACTION SPACE

In model-based policy planning in action space (POPLIN-A), we use a policy network to generate
good initial action distribution. We denote the policy network as π(st). Once the policy network
proposes sequences of actions on the expected trajectories, we add Gaussian noise to the candidate
actions and use CEM to fine-tune the mean and standard deviation of the noise distribution.

Similar to defining ai = {ai, ai+1, ..., ai+τ}, we denote the noise sequence at time-step t with
horizon τ as δi = {δi, δi+1, ..., δi+τ}. We initialize the noise distribution as a Gaussian distribution
with mean µ0 = 0 and covariance Σ0 = σ2

0I , where σ2
0 is the initial noise variance. In each

CEM iteration, we first sort out the sequences with the top ξ + 1 expected planning reward, whose
noise sequences are denoted as {δ0i , δ1i , ..., δ

ξ
i }. Then we estimate the noise distribution of the elite

candidates, i. e.,

Σ′ ← Cov({δ0i , δ1i , ..., δ
ξ
i }), µ

′ ← Mean({δ0i , δ1i , ..., δ
ξ
i }). (2)

The elite distribution (µ′,Σ′) in CEM algorithm is used to update the candidate noise distribution
as µ = (1 − α)µ + αµ′, Σ = (1 − α)Σ + αΣ′. For every time-step, several CEM iterations are
performed by candidate re-sampling and noise distribution updating. We provide detailed algorithm
boxes in appendix A.1. We consider the following two schemes to add action noise.

POPLIN-A-Init: In this planning schemes, we use the policy network only to propose the initial-
ization of the action sequences. When planning at time-step i with observed state si, we first obtain
the initial reference action sequences, denoted as âi = {âi, âi+1, ..., âi+τ}, by running the initial
forward pass with policy network. At each planning time-step t, where i ≤ t ≤ i + τ , we have
ât = π(ŝt), where ŝt = fφ(ŝt−1, at−1), ŝi = si The expected reward given search noise δi will be:

R(si, δi) = E

[
i+τ∑
t=i

r(st, ât + δt)

]
, where st+1 = fφ(st+1|st, ât + δt). (3)

POPLIN-A-Replan: POPLIN-A-Replan is a more aggressive planning schemes, which always
re-plans the controller according the changed trajectory given the current noise distribution. If we had
the perfect dynamics network and the policy network, then we expect re-planning to achieve faster
convergence the optimal action distribution. But it increases the risk of divergent behaviors. In this
case, the expected reward for each trajectory is

R(si, δi) = E

[
i+τ∑
t=i

r(st, π(st) + δt)

]
, where st+1 = fφ(st+1|st, π(st) + δt). (4)

4.2 MODEL-BASED POLICY PLANNING IN PARAMETER SPACE

While planning in the action space is a natural extension of the original PETS algorithm, we found
it provides little performance improvement in complex environments. One potential reason is
that POPLIN-A still performs CEM searching in action sequence space, where the conditions of
convergence for CEM is usually not met. Let’s assume that a robot arm needs to either go left or right
to get past the obstacle in the middle. In CEM planning in the action space, the theoretic distribution
mean is always going straight, which fails to model the bi-modal action distribution.

Indeed, planning in action space is a non-convex optimization whose surface has lots of holes and
peaks. Recently, much research progress has been made in understanding why deep neural networks
are much less likely to get stuck in sub-optimal points Nguyen & Hein (2017); Li et al. (2018); Soudry
& Hoffer (2017). And we believe that planning in parameter space is essentially using deeper neural
networks. Therefore, we propose model-based policy planning in parameter space (POPLIN-P).

4

Published as a conference paper at ICLR 2020

Instead of adding noise in the action space, POPLIN-P adds noise in the parameter space of the policy
network. We denote the parameter vector of policy network as θ, and the parameter noise sequence
starting from time-step i as ωi = {ωi, ωi+1, ..., ωi+τ}. The expected reward function is now

R(si,ωi) = E

[
i+τ∑
t=i

r (st, πθ+ωt(st))

]
, where st+1 = fφ(st+1|st, πθ+ωt(st)). (5)

Similarly, we update the CEM distribution towards the following elite distribution:

Σ′ ← Cov({ω0
i ,ω

1
i , ...,ω

ξ
i }), µ

′ ← Mean({ω0
i ,ω

1
i , ...,ω

ξ
i }). (6)

We can force the policy network noise within the sequence to be consistent, i.e. ωi = ωi+1 = ... =
ωi+τ , which we name as POPLIN-P-Uni. This reduces the size of the flattened noise vector from
(τ + 1)|θ| to |θ|, and is more consistent in policy behaviors. The noise can also be separate for each
time-step, which we name as POPLIN-P-Sep. We benchmark both schemes in section 5.4.

Equivalence to re-parameterized stochastic policy: Stochastic policy network encourages explo-
ration, and increases the robustness against the impact of compounded model errors. POPLIN-P,
which inserts exogenous noise into the parameter space, can be regarded as a re-parameterized
stochastic policy network, which natural combines stochastic policy network with planning.

4.3 MODEL-PREDICTIVE CONTROL AND POLICY CONTROL

MBRL with online re-planning or model-predictive control (MPC) is effective, but at the same time
time-consuming. Many previous attempts have tried to distill the planned trajectories into a policy
network Levine & Abbeel (2014); Levine & Koltun (2013); Chebotar et al. (2017); Zhang et al.
(2018), and control only with policy network. In this paper, we define two settings of using POPLIN:
MPC Control and Policy Control. In MPC control, the agent uses policy network during the online
planning and only execute the first action. In policy control, the agent directly executes the signal
produced by the policy network given current observation, just like how policy network is used in
MFRL algorithms. We show both performance of POPLIN in this paper.

4.4 POLICY DISTILLATION SCHEMES

The agents iterate between interacting with the environments, and distilling the knowledge from
planning trajectory into a policy network. We consider several policy distillation schemes here, and
discuss their effectiveness in the later experimental section.

Behavior cloning (BC): BC can be applied to POPLIN-A and POPLIN-P, by minimizing the squared
L2 loss as Equation 7. D is the collection of observation and planned action from real environment.
When applying BC to POPLIN-P, we fix parameter noise of the network to be zeros.

min
θ

Es, a∈D||πθ(s)− a||2. (7)

Generative adversarial network training (GAN) Goodfellow et al. (2014): GAN can be applied
to POPLIN-P. We consider the following fact. During MPC control, the agent only needs to cover
the best action sequence in its action sequence distribution. Therefore, instead of point-to-point
supervised training such as BC, we can train the policy network using GAN:

min
πθ

max
ψ

Es, a∈D log(Dψ(s, a)) + Es∈D, z∼N (0,σ0I) log(1−Dψ(s, πθ+z(s))), (8)

where a discriminator D parameterized by ψ is used, and we sample the random noise z from the
initial CEM distribution N (0, σ0I).

Setting parameter average (AVG): AVG is also applicable to POPLIN-P. During interaction with
real environment, we also record the optimized parameter noise in to the data-set, i. e. D = {(s, ω)}.
And we sacrifice the effectiveness of the policy control and only use policy network as a good search
initialization. The new parameter is updated as θ = θ + 1/|D|

∑
ω∈D ω.

5

Published as a conference paper at ICLR 2020

0 10000 20000 30000 40000 50000
timesteps

0

2500

5000

7500

10000

12500

re
w

ar
d

(a) Cheetah

0 50000 100000 150000 200000
timesteps

0

500

1000

1500

2000

2500

re
w

ar
d

(b) Ant

0 10000 20000 30000 40000 50000
timesteps

0

100

200

300

re
w

ar
d

(c) Swimmer

0 10000 20000 30000 40000 50000
timesteps

−300

−250

−200

−150

−100

−50

0

50

re
w

ar
d

(d) Acrobot

PPO
SAC

TD3
METRPOPOPLIN-P

RS
POPLIN-A

PETS

Figure 2: Performance curves on different bench-marking environments. 4 random seeds are run for
each environment. The full figures of all 12 MuJoCo environments are summarized in appendix 8.

Cheetah Ant Hopper Swimmer Cheetah-v0 Walker2d

POPLIN-P (ours) 12227.9 ± 5652.8 2330.1 ± 320.9 2055.2 ± 613.8 334.4 ± 34.2 4235.0 ± 1133.0 597.0 ± 478.8
POPLIN-A (ours) 4651.1 ± 1088.5 1148.4 ± 438.3 202.5 ± 962.5 344.9 ± 7.1 1562.8 ± 1136.7 -105.0 ± 249.8
PETS (Chua et al., 2018) 4204.5 ± 789.0 1165.5 ± 226.9 114.9 ± 621.0 326.2 ± 12.6 2288.4 ± 1019.0 282.5 ± 501.6
METRPO (Kurutach et al., 2018) -744.8 ± 707.1 282.2 ± 18.0 1272.5 ± 500.9 225.5 ± 104.6 2283.7 ± 900.4 -1609.3 ± 657.5
TD3 (Fujimoto et al., 2018) 218.9 ± 593.3 870.1 ± 283.8 1816.6 ± 994.8 72.1 ± 130.9 3015.7 ± 969.8 -516.4 ± 812.2
SAC (Haarnoja et al., 2018) 1745.9 ± 839.2 548.1 ± 146.6 788.3 ± 738.2 204.6 ± 69.3 3459.8 ± 1326.6 164.5 ± 1318.6

Training Time-step 50000 200000 200000 50000 200000 200000

Reacher3D Pusher Pendulum InvertedPendulum Acrobot Cartpole

POPLIN-P (ours) -29.0 ± 25.2 -55.8 ± 23.1 167.9 ± 45.9 -0.0 ± 0.0 23.2 ± 27.2 200.8 ± 0.3
POPLIN-A (ours) -27.7 ± 25.2 -56.0 ± 24.3 178.3 ± 19.3 -0.0 ± 0.0 20.5 ± 20.1 200.6 ± 1.3
PETS (Chua et al., 2018) -47.7 ± 43.6 -52.7 ± 23.5 155.7 ± 79.3 -29.5 ± 37.8 -18.4 ± 46.3 199.6 ± 4.6
METRPO (Kurutach et al., 2018) -43.5 ± 3.7 -98.5 ± 12.6 174.8 ± 6.2 -29.3 ± 29.5 -78.7 ± 5.0 138.5 ± 63.2
TD3 (Fujimoto et al., 2018) -331.6 ± 134.6 -216.4 ± 39.6 168.6 ± 12.7 -102.9 ± 101.0 -76.5 ± 10.2 -409.2 ± 928.8
SAC (Haarnoja et al., 2018) -161.6 ± 43.7 -227.6 ± 42.2 159.5 ± 12.1 -0.2 ± 0.1 -69.4 ± 7.0 195.5 ± 8.7

Training Time-step 50000 50000 50000 50000 50000 50000

Table 1: The training time-step varies from 50,000 to 200,000 depending on the difficulty of the tasks.
The performance is averaged across four random seeds with the last 3 episodes.

5 EXPERIMENTS

In section 5.1, we compare POPLIN with existing algorithms. We also show the policy control
performance of POPLIN with different training methods in section 5.2. In section 5.3, we provide
explanations and analysis for the effectiveness of our proposed algorithms by exploring and visualizing
the planner’s reward optimization surface. In section 5.4, we study the sensitivity of our algorithms
with respect to hyper-parameters, and show the performance of different algorithm variants.

5.1 MUJOCO BENCHMARKING PERFORMANCE

In this section, we compare POPLIN with existing reinforcement learning algorithms including
PETS (Chua et al., 2018), GPS (Levine et al., 2016), RS (Richards, 2005), MBMF (Nagabandi et al.,
2017), TD3 (Fujimoto et al., 2018) METRPO (Kurutach et al., 2018), PPO (Schulman et al., 2017;
Heess et al., 2017), TRPO (Schulman et al., 2015) and SAC (Haarnoja et al., 2018), which includes
the most recent progress of both model-free and model-based algorithms. We examine the algorithms
with 12 environments, which is a wide collection of environments from OpenAI Gym (Brockman
et al., 2016) and the environments proposed in PETS (Chua et al., 2018), which are summarized in
appendix A.2. Due to the page limit and to better visualize the results, we put the complete figures
and tables in appendix A.3. And in Figure 2 and Table 1, we show the performance of our algorithms
and the best performing baselines. The hyper-parameter search is summarized in appendix A.3.1.

As shown in Table 1, POPLIN achieves state-of-the-art performance in almost all environments,
solving most of the them with 200,000 or 50,000 time-steps, instead of 1 million time-steps commonly
used in MFRL algorithms. POPLIN-A (POPLIN-A-BC-Replan) has the best performance in simpler
environments such as Pendulum, Cart-pole, Swimmer. But on complex environments such as Ant,
Cheetah or Hopper, POPLIN-A does not have obvious performance gain compared with PETS.
POPLIN-P (POPLIN-P-Sep-AVG) on the other hand, has consistent and stable performance among
different environments. POPLIN-P is significantly better than all other algorithms in complex
environments such as Ant and Cheetah. However, like other model-based algorithms, POPLIN
cannot solve environments such as Walker and Humanoid. the performance of POPLIN plateaus

6

Published as a conference paper at ICLR 2020

0 10000 20000 30000 40000 50000
timesteps

−500

0

500

1000

1500

2000

re
w

ar
d

(a) Cheetah

0 2000 4000 6000 8000 10000
timesteps

−200

−100

0

100

200

re
w

ar
d

(b) Pendulum

0 10000 20000 30000 40000 50000
timesteps

−200

−175

−150

−125

−100

−75

−50

re
w

ar
d

(c) Pusher

0 10000 20000 30000 40000 50000
timesteps

−160

−140

−120

−100

−80

−60

−40

re
w

ar
d

(e) Reacher3D

Policy Control
MPC Control

POPLIN-A-BC POPLIN-P-GAN POPLIN-P-AVG POPLIN-P-BC
POPLIN-A-BC POPLIN-P-GAN POPLIN-P-AVG POPLIN-P-BC

Figure 3: The MPC control and policy control performance of the proposed POPLIN-A, and POPLIN-
P with its three training schemes, which are namely behavior cloning (BC), generative adversarial
network training (GAN) and setting parameter average (Avg).

0 10000 20000 30000 40000 50000

timesteps

0

2500

5000

7500

10000

12500

15000

17500

20000

re
w

ar
d

algorithm

Popsize-100

Popsize-200

Popsize-400

Popsize-600

Popsize-800

Popsize-1000

Popsize-1200

Popsize-1400

Popsize-1600

Popsize-1800

Popsize-2000

(a) PETS

0 10000 20000 30000 40000 50000

timesteps

0

2500

5000

7500

10000

12500

15000

17500

20000

re
w

ar
d

algorithm

Popsize-100

Popsize-200

Popsize-400

Popsize-600

Popsize-800

Popsize-1000

Popsize-1200

Popsize-1400

Popsize-1600

Popsize-1800

Popsize-2000

(b) POPLIN-A

0 10000 20000 30000 40000 50000

timesteps

0

2500

5000

7500

10000

12500

15000

17500

20000

re
w

ar
d

algorithm

Popsize-100

Popsize-200

Popsize-400

Popsize-600

Popsize-800

Popsize-1000

Popsize-1200

Popsize-1400

Popsize-1600

Popsize-1800

Popsize-2000

(c) POPLIN-P

Figure 4: The performance of PETS, POPLIN-A, POPLIN-P using different population size of
candidates on Cheetah. The variance of the candidates trajectory σ in POPLIN-P is set to 0.1.

quickly. Gradually model-free algorithms will have better asymptotic performance. We view this as a
bottleneck of our algorithms and leave it to future research.

5.2 POLICY CONTROL PERFORMANCE

In this section, we show the performance of POPLIN without MPC. To be more specific, we show
the performance with the Cheetah, Pendulum, Pusher and Reacher3D, as shown in Figure 3, and we
refer readers to appendix A.4 for the full results.

We note that policy control is not always successful, and in environments such as Ant and Walker2D,
the performance is almost random. In simple environments such as Pusher and Reacher3D, POPLIN-A
has the best MPC performance, but has worse policy control performance compared with POPLIN-P-
BC and POPLIN-P-GAN. At the same time, both POPLIN-P-BC and POPLIN-P-GAN are able to
efficiently distill the knowledge from planned trajectory. Which one of POPLIN-P-BC and POPLIN-P-
GAN is better depends on the environment tested, and they can be used interchangeably. This indicates
that POPLIN-A, which uses a deterministic policy network, is more prone to distillation collapse than
POPLIN-P, which can be interpreted as using a stochastic policy network with reparameterization
trick. POPLIN-P-Avg, which only use policy network as optimization initialization has good MPC
performance, but sacrifices the policy control performance. In general, the performance of policy
control lags behind MPC control.

5.3 SEARCH EFFECTIVENESS AND REWARD SURFACE

In this section, we explore the reasons for the effectiveness of POPLIN. In Figure 4, we show
the performance of PETS, POPLIN-A and POPLIN-P with different population sizes. As we can
see, PETS and POPLIN-A, which are the two algorithms that add search noise in the action space,
cannot increase their performance by having bigger population size. However, POPLIN-P is able to
efficiently increase performance with bigger population size. We then visualize the candidates in their
reward or optimization surface in Figure 1. We use PCA (principal component analysis) to transform
the action sequences into 2D features. As we can see, the reward surface is not smooth, with lots of
local-minima and local-maxima islands. The CEM distribution of PETS algorithm is almost fixed
across iterations on this surface, even if there are potentially higher reward regions. POPLIN is able

7

Published as a conference paper at ICLR 2020

(a) PETS
Surface

Iteration
Iter-1
Iter-2
Iter-3
Iter-4
Iter-5

(b) PETS
Population

-200.000-190.000
-190.000

-190.000

-180.000

-170.000

-170.000

-160.000

-160.000

-160.000

-16
0.0

00

-150.000-140.000

(c) POPLIN-A
Surface

Iteration
Iter-1
Iter-2
Iter-3
Iter-4
Iter-5

(d) POPLIN-A
Population

-560.000-540.000 -540.000

-540.000

-5
20

.0
00

-520.000

-520.000
-520.000

-500.000

-5
00

.0
00

-50
0.0

00

(e) POPLIN-P
Surface

Iteration
Iter-1
Iter-2
Iter-3
Iter-4
Iter-5

(f) POPLIN-P
Population

Figure 5: The reward optimization surface in the solution space. The expected reward is higher from
color blue to color red. We visualize candidates using different colors as defined in the legend. The
full results can be seen in appendix A.7.

0 10000 20000 30000 40000 50000

timesteps

−1000

0

1000

2000

3000

4000

5000

re
w

ar
d

algorithm

Init-Hallucination

Init-Hallucination-Test

Init-Real

Init-Real-Test

Replan-Hallucination

Replan-Hallucination-Test

Replan-Real

Replan-Real-Test

style

MPC Control

Policy Control

(a) POPLIN-A

0 10000 20000 30000 40000 50000

timesteps

−2000

0

2000

4000

6000

8000

10000

12000

14000

re
w

ar
d

algorithm

Sep-sigma-0.1

Sep-sigma-0.1-Test

Sep-sigma-0.03

Sep-sigma-0.03-Test

Sep-sigma-0.01

Sep-sigma-0.01-Test

Sep-sigma-0.001

Sep-sigma-0.001-Test

Uni-sigma-0.1

Uni-sigma-0.1-Test

Uni-sigma-0.03

Uni-sigma-0.03-Test

style

MPC Control

Policy Control

(b) POPLIN-P-Avg
0 10000 20000 30000 40000 50000

timesteps

−1000

0

1000

2000

3000

4000

5000

re
w

ar
d

algorithm

Sep-Hyper1

Sep-Hyper1-Test

Sep-Hyper2

Sep-Hyper2-Test

Sep-Hyper3

Sep-Hyper3-Test

Uni-Hyper4

Uni-Hyper4-Test

style

MPC Control

Policy Control

(c) POPLIN-P-GAN
0 10000 20000 30000 40000 50000

timesteps

0

1000

2000

3000

4000

re
w

ar
d

algorithm

PETS-sigma-0.01

PETS-sigma-0.03

PETS-sigma-0.1

PETS-sigma-0.25

PETS-sigma-0.5

style

MPC Control

Policy Control

(d) PETS

Figure 7: The ablation study of of POPLIN-A, POPLIN-P-BC, POPLIN-P-Avg, POPLIN-P-GAN.

to efficiently search through the jagged reward surface, from the low-reward center to the high reward
left-down corner. To further understand why POPLIN is much better at searching through the reward
surface, we then plot the figures in the solution space in Figure 5. More specifically, we now perform
PCA on the policy parameters for POPLIN-P. As we can see in Figure 5 (c), the reward surface
in parameter space is much smoother than the reward surface in action space, which are shown in
Figure 5 (a), (b). POPLIN-P can efficiently search through the smoother reward surface in parameter
space.

2 0 2
x

3
2
1
0
1
2
3

y

PETS

2 0 2
x

3
2
1
0
1
2
3

y

POPLIN-P
0Layer

0.00

0.04

0.08

0.12

0.16

0.20

0.00

0.04

0.08

0.12

0.16

0.20

2 0 2
x

3
2
1
0
1
2
3

y
POPLIN-A

0.000

0.012

0.024

0.036

0.048

0.060

2 0 2
x

3
2
1
0
1
2
3

y

POPLIN-P

0.00

0.04

0.08

0.12

0.16

0.20

Figure 6: Projected action distribution.

In Figure 6, we also visualize the actions distribution in
one episode taken by PETS, POPLIN-A and POPLIN-
P using policy networks of different number of hidden
layers. We again use PCA to project the actions into 2D
feature space. As we can see, POPLIN-P shows a clear
pattern of being more multi-modal with the use of deeper
the network.

5.4 ABLATION STUDY

In this section, we study how sensitive our algorithms are with respect to some of the crucial hyper-
parameters, for example, the initial variance of the CEM noise distribution. We also show the
performance of different algorithm variants. The full ablation study and performance against different
random seeds are included in appendix A.5. In Figure 7 (a), we show the performance of POPLIN-A
using different training schemes. We try both training with only the real data samples, which we
denote as "Real", and training also with imaginary data the agent plans into the future, which we
denote as "Hallucination". In practice, POPLIN-A-Init performs better than POPLIN-A-Replan,
which suggests that there can be divergent or overconfident update in POPLIN-A-Replan. And
training with or without imaginary does not have big impact on the performance. In Figure7 (b)
and (c), we also compare the performance of POPLIN-P-Uni with POPLIN-P-Sep, where we show
that POPLIN-P-Sep has much better performance than POPLIN-P-Uni, indicating the search is not
efficient enough in the constrained parameter space. For POPLIN-P-Avg, with bigger initial variance
of the noise distribution, the agent gets better at planning. However, increasing initial noise variance
does not increase the performance of PETS algorithm, as shown in 7 (b), (d). It is worth mentioning
that POPLIN-P-GAN is highly sensitive to the entropy penalty we add to the discriminator, with the
3 curves in Figure7 (c) using entropy penalty of 0.003, 0.001 and 0.0001 respectively,

8

Published as a conference paper at ICLR 2020

6 CONCLUSIONS

In this paper, we explore efficient ways to combine policy networks with model-based planning.
We propose POPLIN, which obtains state-of-the-art performance on the MuJoCo benchmarking
environments. We study different distillation schemes to provide fast controllers during testing. More
importantly, we formulate online planning as optimization using deep neural networks. We believe
POPLIN will scale to more complex environments in the future.

REFERENCES

Zdravko I Botev, Dirk P Kroese, Reuven Y Rubinstein, and Pierre L’Ecuyer. The cross-entropy
method for optimization. In Handbook of statistics, volume 31, pp. 35–59. Elsevier, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems, pp. 8224–8234, 2018.

Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and Sergey
Levine. Combining model-based and model-free updates for trajectory-centric reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 703–711. JMLR. org, 2017.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114,
2018.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In International Conference on Machine Learning, pp. 2829–2838,
2016.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems, pp. 2450–2462, 2018a.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018b.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

9

Published as a conference paper at ICLR 2020

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, pp. 2944–2952, 2015.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence of locomotion behaviours in rich
environments. arXiv preprint arXiv:1707.02286, 2017.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. arXiv preprint arXiv:1906.08253, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, pp. 1071–1079, 2014.

Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on Machine
Learning, pp. 1–9, 2013.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In Advances in Neural Information Processing Systems, pp. 6389–6399, 2018.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In ICINCO (1), pp. 222–229, 2004.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. ICLR, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning. arXiv preprint
arXiv:1708.02596, 2017.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 2603–2612. JMLR. org,
2017.

Arthur George Richards. Robust constrained model predictive control. PhD thesis, Massachusetts
Institute of Technology, 2005.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems, pp.
2234–2242, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pp. 1889–1897, 2015.

10

Published as a conference paper at ICLR 2020

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Daniel Soudry and Elad Hoffer. Exponentially vanishing sub-optimal local minima in multilayer
neural networks. arXiv preprint arXiv:1702.05777, 2017.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Machine Learning Proceedings 1990, pp. 216–224. Elsevier, 1990.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM SIGART
Bulletin, 2(4):160–163, 1991.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pp. 4906–4913. IEEE, 2012.

Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In Proceedings of the 2005, American Control
Conference, 2005., pp. 300–306. IEEE, 2005.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J Johnson, and Sergey Levine.
Solar: Deep structured latent representations for model-based reinforcement learning. arXiv
preprint arXiv:1808.09105, 2018.

11

Published as a conference paper at ICLR 2020

A APPENDIX

A.1 ALGORITHM DIAGRAMS

To better illustrate the algorithm variants of our proposed methods, we summarize them in Algo-
rithm 2, 3, 4.

Algorithm 2 POPLIN-A-Init
1: Initialize policy network parameters θ, dynamics network parameters φ, data-set D
2: while Training iterations not Finished do
3: for ith time-step of the agent do . Sampling Data
4: Initialize reference action sequence {âi, âi+1, ..., âi+τ}. . Using Equation 3
5: Initialize action-sequence noise distribution. µ = µ0, Σ = σ2

0I
6: for jth CEM Update do . CEM Planning
7: Sample action noise sequences {δi} from N (µ,Σ).
8: for Every candidate δi do . Trajectory Predicting
9: for t = i to i+ τ , st+1 = fφ(st+1|st, at = ât + δt)

10: Evaluate expected reward of this candidate.
11: end for
12: Fit distribution of the elite candidates as µ′,Σ′.
13: Update noise distribution µ = (1− α)µ+ αµ′, Σ = (1− α)Σ + αΣ′

14: end for
15: Execute the first action from the optimal candidate action sequence.
16: end for
17: Update φ using data-set D . Dynamics Update
18: Update θ using data-set D . Policy Distillation
19: end while

Algorithm 3 POPLIN-A-Replan
1: Initialize policy network parameters θ, dynamics network parameters φ, data-set D
2: while Training iterations not Finished do
3: for ith time-step of the agent do . Sampling Data
4: Initialize action-sequence noise distribution. µ = µ0, Σ = σ2

0I
5: for jth CEM Update do . CEM Planning
6: Sample action noise sequences {δi} from N (µ,Σ).
7: for Every candidate δi do . Trajectory Predicting
8: for t = i to i+ τ , st+1 = fφ(st+1|st, at = πθ(st) + δt)
9: Evaluate expected reward of this candidate.

10: end for
11: Fit distribution of the elite candidates as µ′,Σ′.
12: Update noise distribution µ = (1− α)µ+ αµ′, Σ = (1− α)Σ + αΣ′

13: end for
14: Execute the first action from the optimal candidate action sequence.
15: end for
16: Update φ using data-set D . Dynamics Update
17: Update θ using data-set D . Policy Distillation
18: end while

A.2 BENCH-MARKING ENVIRONMENTS

In the original PETS paper Chua et al. (2018), the authors only experiment with 4 environments,
which are namely Reacher3D, Pusher, Cartpole and Cheetah. In this paper, we experiment with the 9
more environments based on the standard bench-marking environments from OpenAI Gym Brockman
et al. (2016). More specifically, we experiment with InvertedPendulum, Acrobot, Pendulum, Ant,
Hopper, Swimmer, Walker2d. We also note that the Cheetah environment in PETS Chua et al. (2018)
is different from the standard HalfCheetah-v1 in OpenAI Gym. Therefore we experiment with both
versions in our paper, where the Cheetah from PETS is named as "Cheetah", and the HalfCHeetah

12

Published as a conference paper at ICLR 2020

Algorithm 4 POPLIN-P
1: Initialize policy network parameters θ, dynamics network parameters φ, data-set D
2: while Training iterations not Finished do
3: for ith time-step of the agent do . Sampling Data
4: Initialize parameter-sequence noise distribution. µ = µ0, Σ = σ2

0I
5: for jth CEM Update do . CEM Planning
6: Sample parameter noise sequences {ωi} from N (µ,Σ).
7: for Every candidate ωi do . Trajectory Predicting
8: for t = i to i+ τ , st+1 = fφ(st+1|st, at = πθ+ωt(st))
9: Evaluate expected reward of this candidate.

10: end for
11: Fit distribution of the elite candidates as µ′,Σ′.
12: Update noise distribution µ = (1− α)µ+ αµ′, Σ = (1− α)Σ + αΣ′

13: end for
14: Execute the first action from the optimal candidate action sequence.
15: end for
16: Update φ using data-set D . Dynamics Update
17: Update θ using data-set D . Policy Distillation
18: end while

Cheetah Ant Hopper Swimmer Cheetah-v0 Walker2d Swimmer-v0

POPLIN-P 12227.9 ± 5652.8 2330.1 ± 320.9 2055.2 ± 613.8 334.4 ± 34.2 4235.0 ± 1133.0 597.0 ± 478.8 37.1 ± 4.6
POPLIN-A 4651.1 ± 1088.5 1148.4 ± 438.3 202.5 ± 962.5 344.9 ± 7.1 1562.8 ± 1136.7 -105.0 ± 249.8 26.7 ± 13.2

PETS 4204.5 ± 789.0 1165.5 ± 226.9 114.9 ± 621.0 326.2 ± 12.6 2288.4 ± 1019.0 282.5 ± 501.6 29.7 ± 13.5
RS 191.1 ± 21.2 535.5 ± 37.0 -2491.5 ± 35.1 22.4 ± 9.7 421.0 ± 55.2 -2060.3 ± 228.0 26.8 ± 2.3

MBMF -459.5 ± 62.5 134.2 ± 50.4 -1047.4 ± 1098.7 110.7 ± 45.6 126.9 ± 72.7 -2218.1 ± 437.7 30.6 ± 4.9
TRPO -412.4 ± 33.3 323.3 ± 24.9 -2100.1 ± 640.6 47.8 ± 11.1 -12.0 ± 85.5 -2286.3 ± 373.3 26.3 ± 2.6
PPO -483.0 ± 46.1 321.0 ± 51.2 -103.8 ± 1028.0 155.5 ± 14.9 17.2 ± 84.4 -1893.6 ± 234.1 24.7 ± 4.0
GPS 129.4 ± 140.4 445.5 ± 212.9 -768.5 ± 200.9 -30.9 ± 6.3 52.3 ± 41.7 -1730.8 ± 441.7 8.2 ± 10.2

METRPO -744.8 ± 707.1 282.2 ± 18.0 1272.5 ± 500.9 225.5 ± 104.6 2283.7 ± 900.4 -1609.3 ± 657.5 35.4 ± 2.2
TD3 218.9 ± 593.3 870.1 ± 283.8 1816.6 ± 994.8 72.1 ± 130.9 3015.7 ± 969.8 -516.4 ± 812.2 17.0 ± 12.9
SAC 1745.9 ± 839.2 548.1 ± 146.6 788.3 ± 738.2 204.6 ± 69.3 3459.8 ± 1326.6 164.5 ± 1318.6 23.0 ± 17.3

Random -284.2 ± 83.3 478.0 ± 47.8 -2768.0 ± 571.6 -12.4 ± 12.8 -312.4 ± 44.2 -2450.1 ± 406.5 2.4 ± 12.0

Time-step 50000 200000 200000 50000 200000 200000 200000

Table 2: Performance of each algorithm on environments based on OpenAI Gym Brockman et al.
(2016) MuJoCoTodorov et al. (2012) environments. In the table, we record the performance at
200,000 time-step.

Cheetah Ant Hopper Swimmer Cheetah-v0 Walker2d Swimmer-v0

POPLIN-P 0.944 ± 0.079 0.932 ± 0.128 0.919 ± 0.112 0.936 ± 0.086 0.927 ± 0.227 0.968 ± 0.15 0.928 ± 0.115
POPLIN-A 0.395 ± 0.057 0.459 ± 0.175 0.582 ± 0.175 0.962 ± 0.018 0.393 ± 0.227 0.748 ± 0.078 0.668 ± 0.33

PETS 0.363 ± 0.002 0.466 ± 0.091 0.566 ± 0.113 0.916 ± 0.032 0.538 ± 0.204 0.87 ± 0.157 0.743 ± 0.338
RS 0.072 ± 0.005 0.214 ± 0.015 0.092 ± 0.006 0.156 ± 0.024 0.164 ± 0.011 0.137 ± 0.071 0.67 ± 0.058

MBMF 0.025 ± 0.002 0.054 ± 0.02 0.355 ± 0.2 0.377 ± 0.114 0.105 ± 0.015 0.088 ± 0.137 0.765 ± 0.123
TRPO 0.028 ± 0.003 0.129 ± 0.01 0.164 ± 0.116 0.22 ± 0.028 0.078 ± 0.017 0.067 ± 0.117 0.658 ± 0.065
PPO 0.023 ± 0.01 0.128 ± 0.02 0.527 ± 0.187 0.489 ± 0.037 0.083 ± 0.017 0.19 ± 0.073 0.618 ± 0.1
GPS 0.067 ± 0.051 0.178 ± 0.085 0.406 ± 0.037 0.023 ± 0.016 0.09 ± 0.008 0.24 ± 0.138 0.205 ± 0.255

METRPO 0.004 ± 0.043 0.113 ± 0.007 0.777 ± 0.091 0.664 ± 0.262 0.537 ± 0.18 0.278 ± 0.205 0.885 ± 0.055
TD3 0.074 ± 0.061 0.348 ± 0.114 0.876 ± 0.181 0.28 ± 0.327 0.683 ± 0.194 0.62 ± 0.254 0.425 ± 0.323
SAC 0.184 ± 0.006 0.219 ± 0.059 0.689 ± 0.134 0.612 ± 0.173 0.772 ± 0.265 0.833 ± 0.412 0.575 ± 0.433

Random 0.037 ± 0 0.191 ± 0.019 0.042 ± 0.104 0.069 ± 0.032 0.018 ± 0.009 0.016 ± 0.127 0.06 ± 0.3

max, min 13000, -800 2500, 0 2500, -3000 360, -40 -400, 4600 700, -2500 40, 0

Table 3: The normalized performance of Table 2.

from OpenAI Gym is named as "Cheetah-v0". Empirically, Cheetah is much easier to solve than
Cheetah-v0, as show in Table 2 and Table 4. We also include two swimmer, which we name as
Swimmer and Swimmer-v0, which we explain in section A.2.1.

13

Published as a conference paper at ICLR 2020

0 25000 50000 75000 100000 125000 150000 175000 200000

timesteps

0

500

1000

1500

2000

2500

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(a) Ant

0 10000 20000 30000 40000 50000

timesteps

−300

−250

−200

−150

−100

−50

0

50

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(b) Acrobot

0 10000 20000 30000 40000 50000

timesteps

0

25

50

75

100

125

150

175

200

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(c) Cartpole

0 10000 20000 30000 40000 50000

timesteps

0

50

100

150

200

250

300

350

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(d) Swimmer

0 10000 20000 30000 40000 50000

timesteps

−2000

0

2000

4000

6000

8000

10000

12000

14000

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(e) Cheetah

0 25000 50000 75000 100000 125000 150000 175000 200000

timesteps

−3000

−2000

−1000

0

1000

2000

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(f) Hopper

0 10000 20000 30000 40000 50000

timesteps

−200

−150

−100

−50

0

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(g) InvertedPendulum
0 25000 50000 75000 100000 125000 150000 175000 200000

timesteps

−10

0

10

20

30

40

50

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(h) Swimmer-v0

0 10000 20000 30000 40000 50000

timesteps

−600

−500

−400

−300

−200

−100

0

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(i) Reacher3D

0 25000 50000 75000 100000 125000 150000 175000 200000

timesteps

−4000

−3000

−2000

−1000

0

1000

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(j) Walker2d

0 10000 20000 30000 40000 50000

timesteps

−300

−250

−200

−150

−100

−50

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(k) Pusher

0 25000 50000 75000 100000 125000 150000 175000 200000

timesteps

−1000

0

1000

2000

3000

4000

5000

re
w

a
rd

algorithm

TD3

SAC

PPO

METRPO

PETS

RS

POPLIN-A

POPLIN-P

(l) Cheetah-v0

Figure 8: Full Performance of POPLIN-P, POPLIN-A and other state-of-the-art algorithms on 12
different bench-marking environments. In the figure, we include baselines such as TD3, SAC, PPO,
METRPO, PETS, RS and our proposed algorithm.

A.2.1 FIXING THE SWIMMER ENVIRONMENTS

We also notice that after an update in the Gym environments, the swimmer became unsolvable for
almost all algorithms. The reward threshold for solving is around 340 for the original swimmer, but
almost all algorithms, including the results shown in many published papers Schulman et al. (2017),
will be stuck at the 130 reward local-minima. We note that this is due the fact that the velocity sensor
is on the neck of the swimmer, making swimmer extremely prone to this performance local-minimum.
We provide a fixed swimmer, which we name as Swimmer, by moving the sensor from the neck to
the head. We believe this modification is necessary to test the effectiveness of the algorithms.

14

Published as a conference paper at ICLR 2020

Reacher3D Pusher Pendulum InvertedPendulum Acrobot Cartpole

POPLIN-P -29.0 ± 25.2 -55.8 ± 23.1 167.9 ± 45.9 -0.0 ± 0.0 23.2 ± 27.2 200.8 ± 0.3
POPLIN-A -27.7 ± 25.2 -56.0 ± 24.3 178.3 ± 19.3 -0.0 ± 0.0 20.5 ± 20.1 200.6 ± 1.3

PETS -47.7 ± 43.6 -52.7 ± 23.5 155.7 ± 79.3 -29.5 ± 37.8 -18.4 ± 46.3 199.6 ± 4.6
RS -107.6 ± 5.2 -146.4 ± 3.2 161.2 ± 11.5 -0.0 ± 0.0 -12.5 ± 14.3 201.0 ± 0.0

MBMF -168.6 ± 23.2 -285.8 ± 15.2 163.7 ± 15.2 -202.3 ± 17.0 -146.8 ± 29.9 22.5 ± 67.7
TRPO -176.5 ± 24.3 -235.5 ± 6.2 158.7 ± 9.1 -134.6 ± 6.9 -291.2 ± 6.7 46.3 ± 6.0
PPO -162.2 ± 15.7 -243.2 ± 6.9 160.9 ± 12.5 -137.3 ± 12.4 -205.4 ± 51.5 68.8 ± 4.9
GPS -552.8 ± 577.7 -151.2 ± 1.3 164.3 ± 4.1 -14.7 ± 20.7 -214.3 ± 15.3 -18.7 ± 101.1

METRPO -43.5 ± 3.7 -98.5 ± 12.6 174.8 ± 6.2 -29.3 ± 29.5 -78.7 ± 5.0 138.5 ± 63.2
TD3 -331.6 ± 134.6 -216.4 ± 39.6 168.6 ± 12.7 -102.9 ± 101.0 -76.5 ± 10.2 -409.2 ± 928.8
SAC -161.6 ± 43.7 -227.6 ± 42.2 159.5 ± 12.1 -0.2 ± 0.1 -69.4 ± 7.0 195.5 ± 8.7

Random -183.1 ± 41.5 -199.0 ± 10.0 -249.5 ± 228.4 -205.9 ± 12.1 -374.1 ± 15.6 31.3 ± 36.3

Time-step 50000 50000 50000 50000 50000 50000

Table 4: Performance of each algorithm on environments based on OpenAI Gym Brockman et al.
(2016) classic control environments. In the table, we record the performance at 50000 time-step.

A.3 FULL RESULTS OF BENCH-MARKING PERFORMANCE

In this section, we show the figures of all the environments in Figure 8. We also include the final
performance in the Table 2 and 4. As we can see, POPLIN has consistently the best performance
among almost all the environments. We also include the time-steps we use on each environment for
all the algorithms in Table 2 and 4.

A.3.1 HYPER-PARAMETERS

In this section, we introduce the hyper-parameters we search during the experiments. One thing to
notice is that, for all of the experiments on PETS, POPLIN, we use the model type PE (probabilistic
ensembles) and propagation method of E (expectation). While other combinations of model type and
propagation methods might result in better performance, they are usually prohibitively computation-
ally expensive. For example, the combination of PE-DS requires a training time of about 68 hours for
one random seed, for PETS to train with 200 iteration, which is 200,000 time-step. As a matter of
fact, PE-E is actually one of the best combination in many environments. Since POPLIN is based on
PETS, we believe this is a fair comparison for all the algorithms.

We show the hyper-parameter search we perform for PETS in the paper in Table 5. For the hyper-
parameters specific to POPLIN, we summarize them in 6 and 7.

Hyper-parameter Value Tried

Population Size 100, 200, ..., 2000
Planning Horizon 30, 50, 100
Initial Distribution Sigma 0.01, 0.03, 0.1, 0.25, 0.3, 0.5
CEM Iterations 5, 8, 10, 20
ELite Size ξ 50, 100, 200

Table 5: Hyper-parameter grid search options for PETS.

Hyper-parameter Value Tried

Training Data real data, hallucination data
Variant Replan, Init
Initial Distribution Sigma 0.001, 0.003, 0.01, 0.03, 0.1

Table 6: Hyper-parameter grid search options for POPLIN-A.

15

Published as a conference paper at ICLR 2020

Hyper-parameter Value Tried

Training Data real data, hallucination data
Training Variant BC, GAN, Avg
Noise Variant Uni, Sep
Initial Distribution Sigma 0.001, 0.003, 0.01, 0.03, 0.1

Table 7: Hyper-parameter grid search options for POPLIN-P. We also experiment with using WGAN
in Salimans et al. (2016) to train the policy network, which does not results in good performance and
is not put into the article.

A.4 FULL RESULTS OF POLICY CONTROL

Due to the space limit, we are not able to put all of the results of policy control in the main article.
More specifically, we add the figure for the original Cheetah-v0 compared to the figures shown in the
main article, as can be seen in 9 (b). Again, we note that POPLIN-P-BC and POPLIN-P-GAN are
comparable to each other, as mentioned in the main article. POPLIN-P-BC and POPLIN-P-GAN
are the better algorithms respectively in Cheetah and Cheetah-v0, which are essentially the same
environment with different observation functions.

0 10000 20000 30000 40000 50000

timesteps

−500

0

500

1000

1500

2000

re
w

ar
d

algorithm

POPLIN-P-BC

POPLIN-P-BC-Test

POPLIN-P-Avg

POPLIN-P-Avg-Test

POPLIN-P-GAN

POPLIN-P-GAN-Test

POPLIN-A-BC

POPLIN-A-BC-Test

style

MPC Control

Policy Control

(a) Cheetah

0 10000 20000 30000 40000 50000

timesteps

−1000

−500

0

500

1000

1500

2000

2500

3000

re
w

ar
d

algorithm

POPLIN-P-BC

POPLIN-P-BC-Test

POPLIN-P-Avg

POPLIN-P-Avg-Test

POPLIN-P-GAN

POPLIN-P-GAN-Test

POPLIN-A-BC

POPLIN-A-BC-Test

style

MPC Control

Policy Control

(b) Cheetah-v0

0 2000 4000 6000 8000 10000

timesteps

−200

−150

−100

−50

0

50

100

150

200

re
w

ar
d

algorithm

POPLIN-P-BC

POPLIN-P-BC-Test

POPLIN-P-Avg

POPLIN-P-Avg-Test

POPLIN-P-GAN

POPLIN-P-GAN-Test

POPLIN-A-BC

POPLIN-A-BC-Test

style

MPC Control

Policy Control

(c) Pendulum

0 10000 20000 30000 40000 50000

timesteps

−200

−180

−160

−140

−120

−100

−80

−60

−40

re
w

ar
d

algorithm

POPLIN-P-BC

POPLIN-P-BC-Test

POPLIN-P-Avg

POPLIN-P-Avg-Test

POPLIN-P-GAN

POPLIN-P-GAN-Test

POPLIN-A-BC

POPLIN-A-BC-Test

style

MPC Control

Policy Control

(e) Pusher

0 10000 20000 30000 40000 50000

timesteps

−160

−140

−120

−100

−80

−60

−40

re
w

ar
d

algorithm

POPLIN-P-BC

POPLIN-P-BC-Test

POPLIN-P-Avg

POPLIN-P-Avg-Test

POPLIN-P-GAN

POPLIN-P-GAN-Test

POPLIN-A-BC

POPLIN-A-BC-Test

style

MPC Control

Policy Control

(f) Reacher3D

Figure 9: The planning performance and the testing performance of the proposed POPLIN-A, and
POPLIN-P with its three training schemes, which are namely behavior cloning (BC), generative
adversarial network training (GAN) and setting parameter average (Avg).

A.5 ABLATION STUDY FOR DIFFERENT VARIANT OF POPLIN

In this section, we show the results of different variant of our algorithm. In Figure 11, the performances
of different random seeds are visualized, where we show that POPLIN has similar randomness in
performance to PETS. Additionally, we visualize POPLIN-P-BC in Figure 10 (b), whose best
distribution variance for policy planning is 0.01, while the best setting for testing is 0.03.

A.6 POPULATION SIZE

In Figure 12, we include more detailed figures of the performance of different algorithms with
different population size. One interesting finding is that even with fixed parameters of zeros, POPLIN-
P can still performance very efficient search. This is indicating that the efficiency in optimization of

16

Published as a conference paper at ICLR 2020

0 10000 20000 30000 40000 50000

timesteps

−1000

0

1000

2000

3000

4000

5000

re
w

ar
d

algorithm

Init-Hallucination

Init-Hallucination-Test

Init-Real

Init-Real-Test

Replan-Hallucination

Replan-Hallucination-Test

Replan-Real

Replan-Real-Test

style

MPC Control

Policy Control

(a) POPLIN-A

0 10000 20000 30000 40000 50000

timesteps

−1000

0

1000

2000

3000

4000

re
w

ar
d

algorithm

Sep-sigma-0.1

Sep-sigma-0.1-Test

Sep-sigma-0.03

Sep-sigma-0.03-Test

Sep-sigma-0.01

Sep-sigma-0.01-Test

Sep-sigma-0.001

Sep-sigma-0.001-Test

Uni-sigma-0.01

Uni-sigma-0.01-Test

style

MPC Control

Policy Control

(b) POPLIN-P-BC

0 10000 20000 30000 40000 50000

timesteps

−2000

0

2000

4000

6000

8000

10000

12000

14000

re
w

ar
d

algorithm

Sep-sigma-0.1

Sep-sigma-0.1-Test

Sep-sigma-0.03

Sep-sigma-0.03-Test

Sep-sigma-0.01

Sep-sigma-0.01-Test

Sep-sigma-0.001

Sep-sigma-0.001-Test

Uni-sigma-0.1

Uni-sigma-0.1-Test

Uni-sigma-0.03

Uni-sigma-0.03-Test

style

MPC Control

Policy Control

(c) POPLIN-P-Avg

0 10000 20000 30000 40000 50000

timesteps

0

1000

2000

3000

4000

re
w

ar
d

algorithm

PETS-sigma-0.01

PETS-sigma-0.03

PETS-sigma-0.1

PETS-sigma-0.25

PETS-sigma-0.5

style

MPC Control

Policy Control

(d) PETS

0 10000 20000 30000 40000 50000

timesteps

−1000

0

1000

2000

3000

4000

5000

re
w

ar
d

algorithm

Sep-Hyper1

Sep-Hyper1-Test

Sep-Hyper2

Sep-Hyper2-Test

Sep-Hyper3

Sep-Hyper3-Test

Uni-Hyper4

Uni-Hyper4-Test

style

MPC Control

Policy Control

(d) POPLIN-P-GAN

Figure 10: The performance of POPLIN-A, POPLIN-P-BC, POPLIN-P-Avg, POPLIN-P-GAN using
different hyper-parameters. The tested environment is Cheetah.

0 10000 20000 30000 40000 50000

timesteps

−1000

0

1000

2000

3000

4000

5000

6000

re
w

ar
d

algorithm

POPLIN-P-seed-1234

POPLIN-P-seed-2345

POPLIN-P-seed-3456

POPLIN-P-seed-4567

POPLIN-A-seed-1234

POPLIN-A-seed-2345

POPLIN-A-seed-3456

POPLIN-A-seed-4567

PETS-seed-1234

PETS-seed-2345

PETS-seed-3456

PETS-seed-4567

(e) Random seeds

Figure 11: The performance of POPLIN-A, POPLIN-P, and PETS of different random seeds on
Cheetah environment.

POPLIN-P, especially of POPLIN-P-AVG, is the key reasons for successful planning. However, this
scheme naturally sacrifices the policy distillation and thus cannot be applied without planning.

A.7 THE REWARD SURFACE OF DIFFERENT ALGORITHM

In this section, we provide a more detailed description of the reward surface with respect the the
solution space (action space for PETS and POPLIN-A, and parameter space for POPLIN-P) in
Figure 13, 14, 15, 16, 17. As we can see, variants of POPLIN-A are better at searching, but the reward
surface is still not smooth. POPLIN-A-Replan is more efficient in searching than POPLIN-A-Init,
but the errors in dynamics limit its performance. We also include the results for POPLIN-P using a
1-layer neural network in solution space in Figure 16 (g), (h). The results indicate that the deeper the
network, the better the search efficiency.

We also provide more detailed version of Figure 1 in Figure 18. We respectively show the surface for
PETS, POPLIN-P-P using 1 and 0 hidden layers. Their planned trajectories across different CEM
updates are visualized in Figure 19, 20, 21. Originally in Figure 1, we use the trajectories in iteration

17

Published as a conference paper at ICLR 2020

0 10000 20000 30000 40000 50000

timesteps

0

2500

5000

7500

10000

12500

15000

17500

20000

re
w

ar
d

algorithm

Popsize-100

Popsize-200

Popsize-400

Popsize-600

Popsize-800

Popsize-1000

Popsize-1200

Popsize-1400

Popsize-1600

Popsize-1800

Popsize-2000

(a) CEM

0 10000 20000 30000 40000 50000

timesteps

0

2500

5000

7500

10000

12500

15000

17500

20000

re
w

ar
d

algorithm

Popsize-100

Popsize-200

Popsize-400

Popsize-600

Popsize-800

Popsize-1000

Popsize-1200

Popsize-1400

Popsize-1600

Popsize-1800

Popsize-2000

(b) POPLIN-A

0 10000 20000 30000 40000 50000

timesteps

0

2500

5000

7500

10000

12500

15000

17500

20000

re
w

ar
d

algorithm

Popsize-100

Popsize-200

Popsize-400

Popsize-600

Popsize-800

Popsize-1000

Popsize-1200

Popsize-1400

Popsize-1600

Popsize-1800

Popsize-2000

(c) POPLIN-P-AVG

0 10000 20000 30000 40000 50000

timesteps

0

2500

5000

7500

10000

12500

15000

17500

20000

re
w

ar
d

algorithm

Popsize-100

Popsize-200

Popsize-400

Popsize-600

Popsize-800

Popsize-1000

Popsize-1200

Popsize-1400

Popsize-1600

Popsize-1800

Popsize-2000

(d) POPLIN-P-BC

0 10000 20000 30000 40000 50000

timesteps

0

2500

5000

7500

10000

12500

15000

17500

20000

re
w

ar
d

algorithm

Popsize-100

Popsize-200

Popsize-400

Popsize-600

Popsize-800

Popsize-1000

Popsize-1200

Popsize-1400

Popsize-1600

Popsize-1800

Popsize-2000

(e) POPLIN-P-ZeroWeight

Figure 12: The performance of PETS, POPLIN-A, POPLIN-P-Avg, POPLIN-P-BC and POPLIN-
P whose network has fixed parameters of zeros. The variance of the candidates trajectory σ in
POPLIN-P is set to 0.1. The tested environment is Cheetah.

(a) PETS reward surface

Iteration
Iter-1
Iter-2
Iter-3
Iter-4
Iter-5

(b) PETS candidates

Figure 13: Reward surface in solution space (action space) for PETS algorithm.

1, 3, 5 for better illustration. In the appendix, we also provide all the iteration data. Again, the color
indicates the expected cost (negative of expected reward). From left to right, we show the updated the
trajectories in each iteration with blue scatters.

18

Published as a conference paper at ICLR 2020

-200.000-190.000
-190.000

-190.000

-180.000

-170.000

-170.000

-160.000

-160.000

-160.000

-16
0.0

00

-150.000-140.000

(c) POPLIN-A-Replan reward surface

Iteration
Iter-1
Iter-2
Iter-3
Iter-4
Iter-5

(d) POPLIN-A-Replan candidates

Figure 14: Reward surface in solution space (action space) for POPLIN-A-Replan.

-28.000
-28.000

-28.000
-28.000 -28.000

-24.000

-24.000

-24.000

-24.000

-24.000

-24
.00

0-24
.00

0

-20.000

-20.000

-20.000

-20
.00

0

-20.000

-16.000

-16.000

-16.000

-16.000-12.000

-12.000

(e) POPLIN-A-Init reward surface

Iteration
Iter-1
Iter-2
Iter-3
Iter-4
Iter-5

(f) POPLIN-A-Init candidates

Figure 15: Reward surface in solution space (action space) for POPLIN-A-Init.

-3
15

.0
00

-300.000

-300.000

-300.000

-285.000

-28
5.0

00

-2
85

.0
00

-285.000 -285.000

-270.000

-270.000

-270.000

-270.000

-270.000

-270.000

-255.000

-240.000

(g) POPLIN-P-Layer0 reward surface

Iteration
Iter-1
Iter-2
Iter-3
Iter-4
Iter-5

(h) POPLIN-P-Layer0 candidates

Figure 16: Reward surface in solution space (parameter space) for POPLIN-P with 0 hidden layer.

19

Published as a conference paper at ICLR 2020

-560.000-540.000 -540.000

-540.000

-5
20

.0
00

-520.000

-520.000
-520.000

-500.000

-5
00

.0
00

-50
0.0

00

(i) POPLIN-P reward surface

Iteration
Iter-1
Iter-2
Iter-3
Iter-4
Iter-5

(j) POPLIN-P candidates

Figure 17: Reward surface in solution space (parameter space) for POPLIN-P using 1 hidden layer.

-200.000

-200.000

-200.000

-190.000

-190.000

-190.000

-190.000

-190.000

-190.000

-190.000

-190.000

-190.000

-180.000

-180.000 -180.000

-180.000

-180.000

-180.000

-170.000

-170.000
-170.000

-170.000

-160.000

(a) PETS Surface

-525.000

-525.000

-500.000

-500.000

-500.000

-500.000

-475.000

-475.000

-47
5.0

00

-475.000

-475.000

-450.000

-450.000

-425.000

-425.000

-425.000

-400.000

(b) POLINA Surface

-1
84

.0
00

-176.000

-1
76

.0
00

-176.000

-168.000

-168.000

-168.000

-168.000

-1
68

.0
00

-168.000

-168.000

-1
60

.0
00

-160.000

-160.000

-160.000

-1
52

.0
00

(c) POLINA-L0 Surface

Figure 18: The color indicates the expected cost (negative of expected reward). We emphasis that all
these figures are visualized in the action space. And all of them are very unsmooth. For the figures
visualized in solution space, we refer to Figure 13.

(a1) PETS
Iteration 1

(a2) PETS
Iteration 2

(a3) PETS
Iteration 3

(a4) PETS
Iteration 4

(a5) PETS
Iteration 5

Figure 19: The figures are the planned trajectories of PETS.

(b1) POPLIN
Iteration 1

(b2) POPLIN
Iteration 2

(b3) POPLIN
Iteration 3

(b4) POPLIN
Iteration 4

(b5) POPLIN
Iteration 5

Figure 20: The figures are the planned trajectories of POPLIN-P using 1 hidden layer MLP.

20

Published as a conference paper at ICLR 2020

(b2) POPLIN-L0
Iteration 1

(b2) POPLIN-L0
Iteration 2

(b3) POPLIN-L0
Iteration 3

(b4) POPLIN-L0
Iteration 4

(b4) POPLIN-L0
Iteration 5

Figure 21: The figures are the planned trajectories of POPLIN-P using 0 hidden layer MLP.

21

	Introduction
	Related Work
	Background
	Reinforcement Learning
	Random Shooting Algorithm and PETS

	Model-Based Policy Planning
	Model-based Policy Planning in Action Space
	Model-based Policy Planning in Parameter Space
	Model-predictive Control and Policy Control
	Policy Distillation Schemes

	Experiments
	MuJoCo Benchmarking Performance
	Policy Control Performance
	Search Effectiveness and Reward Surface
	Ablation Study

	Conclusions
	Appendix
	Algorithm Diagrams
	Bench-marking Environments
	Fixing the Swimmer Environments

	Full Results of Bench-marking Performance
	Hyper-parameters

	Full Results of Policy Control
	Ablation Study for Different Variant of POPLIN
	Population Size
	The Reward Surface of Different Algorithm

