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ABSTRACT

Machine learning has shown growing success in recent years. However, current
machine learning systems are highly specialized, trained for particular problems or
domains, and typically on a single narrow dataset. Human learning, on the other
hand, is highly general and adaptable. Never-ending learning is a machine learning
paradigm that aims to bridge this gap, with the goal of encouraging researchers
to design machine learning systems that can learn to perform a wider variety of
inter-related tasks in more complex environments. To date, there is no environment
or testbed to facilitate the development and evaluation of never-ending learning
systems. To this end, we propose the Jelly Bean World testbed. The Jelly Bean
World allows experimentation over two-dimensional grid worlds which are filled
with items and in which agents can navigate. This testbed provides environments
that are sufficiently complex and where more generally intelligent algorithms ought
to perform better than current state-of-the-art reinforcement learning approaches. It
does so by producing non-stationary environments and facilitating experimentation
with multi-task, multi-agent, multi-modal, and curriculum learning settings. We
hope that the Jelly Bean World will prompt new interest in the development of
never-ending learning, and more broadly general intelligence.

1 INTRODUCTION

Machine learning has witnessed growing success across a multitude of applications over the past
years. However, despite these successes, current machine learning systems are each highly specialized
to solve one or a small handful of problems. They have much narrower learning capabilities as
compared to humans, often learning just a single function or model based on statistical analysis
of a single dataset. One reason for this is that current machine learning paradigms are restricted
and specialized to a particular problem and/or dataset. An alternative learning paradigm that more
closely resembles the generality, diversity, competence, and cumulative nature of human learning
is never-ending learning (Mitchell et al., 2018). The thesis of never-ending learning is that we will
never truly understand machine learning until we can build computer programs that, like people:
(i) learn many different types of knowledge or functions, (ii) from years of diverse, mostly self-
supervised experience, (iii) in a staged curricular fashion, where previously learned knowledge
enables learning further types of knowledge, and (iv) where self-reflection and the ability to formulate
new representations and new learning tasks enable the learner to avoid stagnation and performance
plateaus. Building computer programs with these properties necessitates well-defined and robust
ways to evaluate whether a system is indeed capable of never-ending learning. However, there are
currently no ways to achieve that. There only exists one large-scale case study on never-ending
learning with the Never-Ending Language Learning (NELL) system by Mitchell et al. (2018), which
uses the internet as the environment with which the system interacts. While the internet does have
significant complexity, it is unwieldy to use as a testbed. It is very difficult to focus on a particular
aspect of the system or the environment, or to tweak the algorithm and restart experiments to observe
the effects of changes. Furthermore, oftentimes tasks require manual annotation which can be very
expensive. Thus, a good testbed for never-ending learning (and machine learning more generally)
needs to provide the experimenter with a high degree of control. To this end, we propose a novel
evaluation framework—the Jelly Bean World (JBW)—that can enable and facilitate research towards
the goal never-ending learning. We have designed the JBW to be highly versatile, enabling evaluation
of systems that have any number of the aforementioned abilities.

We consider never-ending learning in the context of reinforcement learning. Let st ∈ S denote the
state of the environment at time t, at ∈ A denote the action performed by the learning agent at
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time t, ωt ∈ Ω denote the observation of the world that the learning agent receives at time t, and
rt ∈ R denote the reward provided to the learning agent at time t. The distribution of the next state
of the world st ∼ T (st−1, at−1) has the Markov property (i.e., it depends only on the previous state
and action) and the initial state of the world is given by a distribution s0 ∼ W . The observation
ωt ∼ O(st) depends only on the current state of the world (perhaps deterministically). The reward
rt is given by a function R(st−1, at−1, st) of the current state, the previous state, and the previous
action taken. The environment is a tuple containing all these elements E , (W,T,O,R). Then, the
goal of reinforcement learning is to find a learning algorithm π that, given the history of previous
observations, actions, and rewards, outputs the next action so that the obtained reward is maximized.
We deliberately blur the distinction between the policy and the algorithm that learns the policy, which
is why we call π a “learning algorithm.”

This formalism does not distinguish between learning algorithms that are highly specialized to a
single task and learning algorithms that are capable of learning a wide variety of tasks and adapting
to richer and more complex environments, which are hallmarks of general intelligence. In order
to more formally describe general intelligence, we posit that there is an underlying measure of
complexity of the environment E such that: (i) highly specialized and non-general learning algorithms
can perform well in environments with low complexity, but (ii) environments with high complexity
require successful learning agents to possess more general learning capabilities. It is in these more
complex environments where we can characterize never-ending learning. We can formalize this
notion of complexity by letting π∗ be the (computable) learning algorithm that maximizes expected
reward in an environment E . Then we define the complexity of E to be the length of the shortest
program (Turing machine) that implements π∗:

complexity(E) = min{|T | : T is a Turing machine that implements π∗}

complexity(E)
0
π∗ exhibits specialized intelligence π∗ exhibits more general intelligence

We can equivalently define complexity(E) = K(π∗), where K(·) is the Kolmogorov complexity
and is related to the minimum description length and minimum message length (Nannen, 2010;
Kolmogorov, 1963). The Kolmogorov complexity of the environment K(E) is bounded below by
K(π∗) minus a constant. This bound is shown in Section A.1 of the appendix.

Never-ending learning is in many respects similar to lifelong learning, also called continual learning
(Chen & Liu, 2018). Like never-ending learning, lifelong learning is distinguished from multi-task
learning by the never-ending nature of the learning problem. However, in never-ending learning, and
unlike multi-task learning and lifelong learning (to the best of our understanding), a well-defined
set of tasks is not assumed a priori. Rather, never-ending learning is more similar to real-world
settings in this respect, where the notion of a task or subtask naturally emerges from the complexity
of the environment, and the distinction between tasks is not always so sharp. Regardless, due to their
similarities, a good testbed for never-ending learning will also be a good testbed for lifelong learning.

In contrast to most popular reinforcement learning settings, never-ending learning focuses on envi-
ronments with high complexity. In never-ending learning, agents can only exist in a single reset-free
environment (i.e., we explicitly disallow the agent π from learning across multiple episodes or in
multiple environments, which is closer to human learning). We require π to only have access to a
single episode. During its lifetime, π can only use the information provided by its past observations
{ωt} and actions {at} in a single world. Thus, never-ending learning explicitly removes the distinc-
tion between training and testing that is common to many other classical machine learning paradigms.
Additionally, note that in the general reinforcement learning formalism, st can contain information
about t, and the reward functionR can be time-varying, thus rendering the environment non-stationary.
In never-ending learning, we are interested in the full generality of non-stationary environments, as
the assumption of stationarity is not realistic in even simple adversarial and multi-agent settings. We
thus argue that a testbed for never-ending learning should have the following properties:

1. Non-Episodic: It should disallow agents from resetting the environment and “retrying”. The
testbed should also force them to only learn within a single environment (i.e., not transfer
information across environments). This is in contrast with most popular reinforcement learning
environments and, as we show in Section 4, poses significant challenges to existing algorithms.

2. Non-Stationary: The testbed should allow for easy experimentation with non-stationary envi-
ronments, where the reward R can depend on time.
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Table 1: Existing reinforcement learning environments positioned based on our desired properties.

Environment Non-Episodic Non-Stationary Multi-Task Multi-Modal Controllable Efficient

Atari and Retro Games
(Bellemare et al., 2013),
(Pfau et al., 2018)

7 7 7 7 7 ∼
Games end
when the

player wins or
loses

The game
mechanics are
stationary

Each game has
a single fixed

reward
function

Agents only
observe the
game video
frames

Modifying the
task complex-
ity/richness is
not possible

Can run on
small machines
but models are
slow to train

Continuous Control
(Duan et al., 2016),
(Todorov et al., 2012)

3 7 3 7 7 ∼
Some tasks are
non-episodic
(e.g., swimmer)

Stationary
rewards and
environments
(i.e., physics)

Some of the
tasks have
interesting
hierarchical
structures

Agents only
observe
positional
information

and joint angles

The tasks and
environments

are non-
configurable

Efficiency
varies widely
across tasks

Evolutionary Robotics
(Mouret & Doncieux, 2012)

7 7 7 3 3 3

Episodic in a
finite world

Stationary
environments
(i.e., physics)

Only navigation
goals are
supported

Multiple
different kinds
of sensors

Configurable
using XML

Fast 2D
simulation

written in C++

BabyAI
(Chevalier-Boisvert et al., 2018)

7 7 3 3 7 3

Episodic in a
finite world

Fixed set of
levels and
rewards

Handful of
tasks to
perform

Agents given
visual input and
instructions

Existing levels
are not

configurable

Built on fast
MiniGrid
simulator

Adversarial Games like
Go (Silver et al., 2017),
StarCraft (Vinyals et al., 2019),
and Dota (OpenAI, 2019)

7 3 7 3 ∼ 7

Games end
when the

player wins or
loses

Non-stationary
(without

assumptions
about the
adversaries)

Each game has
a single fixed

reward
function

Agents observe
the game video
frames and the
game state

There is limited
control over
things like the
adversary’s
competence

Experiments
are typically

extremely com-
putationally
expensive

DeepMind Lab
(Beattie et al., 2016)

7 ∼ ∼ 7 7 ∼
Levels have a
time limit

Levels have
different

rewards but
same physics

Levels have
predefined
rewards

Agents only
observe the
game video
frames

The complexity
of each level is

fixed

Requires
rendering of a
3D world

Malmö and MineRL
(Johnson et al., 2016),
(Guss et al., 2019)

∼ 7 3 3 7 7

Tasks have a
pre-specified
time limit but
that is typically

very long

Stationary
rewards and

map generation
is based on
Perlin noise

Supports 6
complex tasks
but also allows
for new ones

Agents observe
the game video
frames and the
game state

Modifying the
task complex-
ity/richness is
difficult and
expensive

Requires
rendering of a
3D world and
slow training of
large models

Jelly Bean World
(Proposed Environment)

3 3 3 3 3 3

Agents live
“forever” in an
infinite open

world

The rewards
and the world
can both be

non-stationary

Composable
and dynamic
tasks are
supported

Vision and
scent are

designed to be
complementary

Modifying the
task complex-
ity/richness is
very easy

Experiments
can run

efficiently on
small machines

3. Multi-Task: It should support settings in which reward is maximized not by learning how to
perform a single task repetitively, but by learning how to perform a general variety of tasks,
and learning how to switch between them and/or combine them to better perform other tasks
(e.g., by composing them). We posit that, at a sufficiently high level of task complexity, optimal
learning agents will be required—either explicitly or implicitly—to perform abstract reasoning
over concepts and make informed decisions about actions in the environment.

4. Multi-Modal: It should support multiple data modalities that agents receive as input. These
modalities should not contain the same information, but rather be complementary to each other
so that the agents are forced to learn from diverse types of experiences. Multi-modality provides
yet another way to increase the complexity of the world.

5. Controllable: It should be easy for experimenters to modify the complexity and richness of the
learning problems in the testbed, make changes to it, and restart it (e.g., as opposed to NELL).

6. Efficient: It should run on readily available hardware and allow for quick experimentation.
Ideally, we should not have to wait for days, weeks, or months (e.g., NELL) to obtain results.

7. Reproducible: It should make it easy to reproduce results and experiments, which would
facilitate scientific research. This also requires that it allows for seamlessly saving and loading
state and for reproducing results outside the environment in which they were first obtained. The
testbed should also not require access to specialized hardware, which can be expensive.

Many of the above properties are means to increase the complexity of the world. These properties are
in fact very closely related to the characteristics of “AGI Environments, Tasks, and Agents” outlined
by Laird & Wray III (2010) and later refined by Adams et al. (2012). The proposed JBW has all of
these properties. It aims to provide an easy way to create sufficiently complex environments allowing
researchers to experiment with never-ending learning, while remaining simple enough to control the
problem and enable rapid prototyping. The JBW is a two-dimensional grid world with simple physics,
but is extensible enough to admit a wide variety of complex and inter-related tasks. We present a
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MAP
Manages the infinite world map.

AGENTS
Manages agents and handles their
interaction with the simulator.

SCENT
Simulates the diffusion of scent
in the world.

Represented as a vector.

VISION
Simulates the visual field of all
managed agents.

Field of View

Occlusion
Represented
as a 3D tensor.

Advances time after all managed agents have acted, invoking modules as needed.

Simulator
Interface for reinforcement learning.

Environment

REWARD
Specifies the reward given to the agent
for each possible state transition.
Collect[JellyBean] ∧ Avoid[Onion]

REWARD SCHEDULE
Specifies the reward for each time step.

Fixed / Periodic / Random

Asynchronous
simulation
visualizer.

Visualizer

Distributed simulations are also supported using MPI.

Figure 1: Overview of the modules comprising the Jelly Bean World.

comparison with related work in Table 1, showcasing the ways in which the JBW is a novel and
highly versatile evaluation framework. The JBW is written in C++ and we provide C, Python, and
Swift APIs, and is available at https://github.com/eaplatanios/jelly-bean-world. It is
also worth noting that the JBW has already been used for the instruction of the “Deep Reinforcement
Learning” and “Never-Ending Learning” graduate courses at Carnegie Mellon University.

2 DESIGN

The Jelly Bean World (JBW) consists of the following main modules (illustrated in Figure 1): (i)
the simulator, which comprises the central component (the other modules only interact with the
simulator), (ii) the environment, which provides a simple interface for performing reinforcement
learning experiments in the never-ending learning setting as well as utilities for evaluating never-
ending learning systems, and (iii) the visualizer, which provides the ability to visualize and debug the
behavior of learning agents. Note that the visualizer is completely asynchronous and can be attached,
reattached, and detached to and from existing simulator instances, without affecting the simulations.

2.1 SIMULATOR

The simulator manages a map and a set of agents. At a high-level, the map is an infinite two-
dimensional grid where each grid cell can contain items (e.g., jelly beans and onions) and/or agents.
Each item has a color and a scent that agents can perceive. Each agent has a direction and a position,
and can navigate the world map and collect or drop items. The action space of each agent is: to
turn, move, collect items, drop items, or do nothing. The action space is configurable and can be
constrained by the user. These constraints are described later in this section. Time in the simulator is
discrete, and all agent-map interactions are turn-based, meaning that the simulator will first wait for
all managed agents to request an action and will then simultaneously execute all actions and advance
the current time. Thus, the simulator also controls the passage of time.

Map. In order to truly support never-ending learning, we have designed the JBW map to be infinite,
meaning that it has no boundaries and agents can keep exploring it forever. To achieve this, the map
is a procedurally-generated two-dimensional grid. We simulate it by dividing it into a collection
of disjoint (P × P )-sized patches and only generating patches when an agent moves sufficiently
close to them. The map also contains items of various types which are distributed according to a
pairwise-interaction point process over the two-dimensional grid (Baddeley & Turner, 2000). More
specifically, for a collection of items I , {I0, . . . , Im}, where Ii = (xi, ti), xi ∈ Z2 is the position
of the ith item, ti ∈ T is its type, and T is the set of all item types:

p(I) ∝ exp

{ m∑
i=0

f(Ii) +

m∑
j=0

g(Ii, Ij)

}
, (1)

where f(Ii) is the intensity of item Ii and g(Ii, Ij) is the interaction between Ii and Ij , which are
provided as part of the item’s type. The intensity function characterizes the (log) probability of the
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existence of an item Ii independent of other items in the world. The interaction function can be
understood as a description of the (log) probability of the existence of an item Ii given the existence of
all other items Ij . For example, the interaction function can be used to increase the log probability of
an item when it appears near other items, producing a clustering effect. Since the world is subdivided
into (P × P )-sized patches, the maximum distance of interaction between items is P .

New
patches
that need
to be
sampled

Non-final
patches that
need to be
sampled to
avoid boundary
effects

Figure 2: Illustration of the procedu-
ral generation algorithm for the infinite
world map. The 32× 32 patches shown
in white have already been sampled and
those in gray have been sampled but not
fixed in order to avoid boundary effects.
The red line corresponds to an exam-
ple path followed by an agent. Once
the agent enters a patch that is not fixed,
then that patch is sampled, along with its
non-fixed neighboring patches in order
to avoid boundary effects.

Occlusion

Field-of-View Mask

Agent

Visual Field

Scent Diffusion

Figure 3: Rendering of an agent’s per-
spective from the JBW visualizer.

Item Types. Each item type t ∈ T defines the following:

– Color: Fixed-size vector specifying the item color.
– Scent: Fixed-size vector specifying the item scent.
– Occlusion: Occlusion of an item (relevant to the vision

modality, described later in this section).
– Intensity Function: Maps from item locations to real values.
– Interaction Functions: Collection of functions that map

from pairs of item locations to real values. The collection
contains one function for each item type.

The number of item types and their properties are configurable.
The specific parametric forms for the intensity and interaction
functions that are supported are described in Section A.2 of the
appendix. Note that each item type also specifies additional
properties that are described later in this section.

Procedural Generation. When the simulator is instantiated
the map is empty (i.e., no patches have been generated). When-
ever a new agent is added to the simulator, a patch centered
at its location is generated. In addition, whenever an existing
agent moves sufficiently close to a region where no patch ex-
ists, a new patch is generated. The patch generation process
consists of two main steps: (i) add a new empty (P ×P )-sized
patch to the collection of map patches (note that the new patch
will be neighboring at least one existing patch and that all
patches are disjoint), and (ii) fill the new patch with items. The
second step is performed by using Metropolis-Hastings (MH)
(Robert & Casella, 2010) to sample the items that the new
patch contains, from the distribution defined in Equation 1.
The proposal density we use is defined as follows: (i) add a new
item Im+1 = (xm+1, tm+1) with probability 1/(2P 2 · |T |)
(i.e., uniform in position and type), and (ii) remove an existing
item Ii with probability 1/2m where m is the current number
of items in the patch. Before sampling, the patch is initialized
by first randomly selecting an existing patch and copying its
items into the new patch. This is intended to facilitate rapid
mixing of the Markov chain, and reduce the number of MH
iterations. Note that if we use small patches and only sample
new patches as the agents visit them, boundary effects may be
observed due to the missing neighboring patches further away
from the agent. For this reason, we actually also sample all
missing neighboring patches while sampling each new patch,
but do not finalize them (i.e., they are still considered missing and may be resampled later on). This
prevents boundary effects during the procedural generation process. An example is shown in Figure 2.

Each item has a color and a scent that is specified by its type and can be perceived by agents. The
JBW thus supports two perception modalities, vision and scent. These modalities are complementary
and agents can benefit by learning to combine them, as we explain at the end of this section.

Vision. Each agent has a visual range property that specifies how far they can see. Vision is
represented as a three-dimensional tensor, where the first two dimensions correspond to the width and
the height of the agent’s visual field, and the third dimension corresponds to the color dimensionality.
The visual field is always centered at the agent’s current position and the color observed at each cell
within the visual field is the sum of the color vectors of all items and agents located at that map
location. Agents also have a field of view property that specifies their field of view angle (i.e., 180◦

denotes that the agent can only see the forward-facing half of the visual field, whereas 360◦ denotes
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that the agent can see the whole visual field). The part of the visual field that is outside an agent’s
field of view is masked out and appears black to the agent. Another important aspect of vision is
that items also have an occlusion property as part of their type. This is used to simulate partial or
complete visual occlusion (details in Section A.3). If an item with occlusion 1 is in an agent’s visual
field, then the colors behind that item are not visible to the agent. An example is shown in Figure 3.

Scent. Scent is represented as a fixed-dimensional vector, where each dimension can be used to
model orthogonal/unrelated scents. Each agent and each item has a pre-specified scent vector that
is provided as part of the world configuration (similar to their colors). At each time step, agents
can perceive the scent at their current grid position. The physics of scent are described by a simple
diffusion difference equation on the world grid. We define the scent at location (x, y) at time t as:

Stx,y = Ctx,y︸︷︷︸
current items/agents scent

+ λSt−1x,y︸ ︷︷ ︸
previous scent

+ α
(
St−1x−1,y + St−1x+1,y + St−1x,y−1 + St−1x,y+1

)︸ ︷︷ ︸
neighboring cells diffused scent

, (2)

where λ is the rate of decay of the scent at each location, α is the rate of diffusion of the scent from
neighboring grid cells, and Ctx,y =

∑
I∈Itx,y

scent(I) +
∑
A∈At

x,y
scent(A), where Itx,y is the set

of all items at time t and location (x, y), and Atx,y is the set of all agents at time t and location (x, y).
Our simulator ensures that the scent (or lack thereof) diffuses correctly, even as items are created,
collected, dropped, and destroyed. It does so by keeping track of the creation, collection, drop, and
destruction times of each item in the world. Note also that, while simulating this diffusion, we also
take into account the non-fixed patches that have been sampled in order to avoid boundary effects.

Vision-Scent Complementarity. Vision and scent are complementary. Vision has high precision,
in the sense that the agent can see the actual color of each grid cell in its visual field and can thus
relatively accurately determine what items may exist in that cell. However, it has low recall—the
agent can only see as far as its visual range allows and it has no visual information about the rest
of the map. On the other hand, scent has low precision—the scent at the current cell is a linear
combination of the scents of all items in the world and it may be very difficult to learn to interpret and
use it effectively. However, scent has high recall—the scent at the current cell contains information
about items in a much larger range. Thus, learning to use both modalities will be beneficial to agents.
In Section 4, we also provide some experimental results supporting this argument.

Constraints. The simulator enforces multiple constraints on the actions that agents are allowed
to take. We have designed the following small set of constraints with the goal of providing a
computationally efficient way to support arbitrarily complex tasks and learning problems:

– Agent Collision: This occurs when multiple agents attempt to move to the same location at the
same time. This conflict can be resolved in one of three ways: (i) allow multiple agents to occupy
the same location, (ii) first-come-first-serve (only allow the first agent who made a move request
for that location to actually move—this is the current default), or (iii) randomly choose one of the
agents and satisfy their request (ignoring the requested action of the others).

– Item Blocking Movement: Item types may specify that they block agent movement (e.g., a Wall
item type). This means that agents are not allowed to move to locations with items of that type.

– Item Collection Requirements: Item types may specify that in order to collect items of that type,
an agent has to have first collected a specified number of other items (e.g., collecting Wood may
only be allowed if the agent has first collected an Axe).

– Item Collection Costs: Similar to the collection requirements, item types may specify that in
order to collect items of that type, an agent has to drop or destroy a specified number of other
items (e.g., collecting an Axe may require destroying a piece of Metal and a piece of Wood that
the agent has previously collected).

Interface. Users interact with the simulator programmatically. JBW provides functions to add or
remove agents from the world, query the current vision and scent perception of each agent, and to
direct agents to perform actions. Users can choose to add multiple agents to the world, thus enabling
experimentation with multi-agent settings. Multi-agent interactions provide another controllable
source of complexity in the JBW. Users can then request actions for each agent in the simulation (i.e.,
turn, move, do nothing, etc.). Once all agents have requested actions, the simulator executes these
actions and advances time, appropriately updating the state of the world.

Server/Client Support. The JBW also provides a TCP server-client interface where the simulator
can be setup to run as a server. Users (i.e., clients) can then connect to the server, and interact with
the simulator by sending messages to the server. This allows use cases such as a class setting where
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students can each control an agent in a common simulated world, or perhaps a hackathon where
participants can compete in a common world. It also allows debugging and visualization tools to be
attached and detached to and from running simulator instances, without affecting the simulations. In
fact, this is how our visualizer, which is described in Section 2.3, communicates with the simulator.

Persistence. Simulations in the JBW can be saved to and loaded from files, which can then be
distributed across platforms. This facilitates reproducibility. The simulator guarantees uniform
random number generation behavior across all platforms and machines (e.g., in distributed settings).
The state of the pseudorandom number generator is also saved and loaded along with the simulation.

2.2 ENVIRONMENT

Environments manage simulator instances and provide an interface for performing reinforcement
learning experiments using the JBW. We provide implementations of the JBW environments for
OpenAI Gym (Brockman et al., 2016) in Python and for Swift RL (Platanios, 2019) in Swift. JBW
environments support batching by design, with support for parallel execution of the multiple simulator
instances being managed (i.e., one simulator for each batch entry). Perhaps the most important aspect
of JBW environments is that they require the user to specify a reward schedule to use for each
experiment. This schedule effectively defines the tasks that the agents are learning to perform. A
reward schedule provides a function that, given a simulation time, returns a reward function to use at
that time. A reward function returns a scalar reward value, given the current and previous states of
the agent and the world (e.g., the world map).1 We provide a simple domain-specific language (DSL)
for composing and combining multiple reward functions in arbitrary ways, to allow for the design of
composable learning tasks. This enables endless possibilities in the realms of multi-task learning,
curriculum learning, and more generally never-ending learning. Currently environments are limited
to single agent reinforcement learning settings, but we plan to support multi-agent settings in the
future (this is easy because the JBW simulator already supports multiple agents for each simulation).

2.3 VISUALIZER

Visualization can be instrumental when developing, debugging, and evaluating never-ending learning
systems. To this end, we have implemented a real-time visualizer using Vulkan2 in which the user
can see any part of the simulated JBW, at any scale and simulation rate. The visualizer utilizes
the simulator server-client interface to visualize simulations running in different processes or on
remote servers, in a fully asynchronous manner. Rendering is multithreaded to provide a smooth and
responsive user interface. Finally, the visualizer can be attached, detached, and re-attached to existing
simulation server instances, without affecting the running simulations.

3 LEARNING TASKS

Learning tasks can be defined in terms of reward functions and reward schedules, which were
defined in Section 2.2. The JBW allows researchers to easily define their own reward func-
tions and schedules, but it also provides a few primitives and ways to compose them in or-
der to effortlessly allow for quick experimentation and prototyping. In fact, all learning tasks
used in Section 4 were defined using these primitives. The currently supported primitives are:

Reward Functions Reward Schedules

Action[v]
Give v to agents when they take
an action (i.e., not a no-op). Fixed[r]

The reward function is always fixed to r, and is
thus stationary.

Collect[i,v]
Give v to agents for each item of
type i that they collect. Curriculum[{ri, ti}Ri=1]

Use reward function r1 for the first t1 steps,
then r2 for t2 steps, ..., and keep using rR
after the list of reward functions is exhausted.

Explore[v]
Give v to agents each time they
move further away from their
starting position in the world map.

Cyclical[{ri, ti}Ri=1]
Use reward function r1 for the first t1 steps,
then r2 for t2 steps, ..., and then repeat
after the list of reward functions is exhausted.

Reward Function Compositions
Combined[r1,r2]
r1 ∧ r2

Applies both r1 and r2 and
returns the sum of their rewards.

We note that Collect is a sparse reward function,
whereas Action and Explore are not. For concise-
ness, we omit the v argument in reward functions
when it is set to 1 and we also define Avoid[i,v]=Collect[i,−v].

1A simple reward function could be one that gives the agent 1 reward point for each JellyBean it collects.
2Information on Vulkan can be found at https://www.khronos.org/vulkan/.
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4 EXPERIMENTS Table 2: Simulator configuration.

M
ap

Scent Dimensionality 3

Color Dimensionality 3

Patch Size 64× 64

MH Sampling Iterations 10, 000

Scent Decay (λ) 0.4

Scent Diffusion (α) 0.14

Ag
en

t

Color [0.00, 0.00, 0.00]

Scent [0.00, 0.00, 0.00]

Action Space
MoveForward,
TurnLeft,
and TurnRight

Visual Range 8

Field-of-View experiment-specific

The goal of this section is to show how the non-episodic,
non-stationary, multi-modal, and multi-task aspects of the
JBW make it a challenging environment for existing ma-
chine learning algorithms, through a few example case
studies. For all experiments we use the simulator config-
uration and item types shown in Tables 2 and 3.3 Due to
space, the case studies focus on the single-agent setting.
We use different agent models depending on which modal-
ities are used in each experiment. If vision is used, then
the visual field is passed through a convolution layer with
stride 2, 3 × 3 filters, and 16 channels, and another one
with stride 1, 2× 2 filters, and 16 chan- Table 3: Item types. See Section A.2 for details on the func-

tional forms of the intensity and interaction functions.
JellyBean: Jelly beans appear close to bananas.
Scent [1.64, 0.54, 0.40]

Color [0.82, 0.27, 0.20]

Occlusion 0.0
Blocks Agents False

Intensity Constant[1.5]

Interactions
JellyBean : PiecewiseBox[10,100,0,-6]
Banana : PiecewiseBox[10,100,2,-100]
Wall : PiecewiseBox[50,100,-100,-100]

Banana: Bananas appear close to jelly beans and away from walls.
Scent [1.92, 1.76, 0.40]

Color [0.96, 0.88, 0.20]

Occlusion 0.0
Blocks Agents False

Intensity Constant[1.5]

Interactions
JellyBean : PiecewiseBox[10,100,2,-100]
Banana : PiecewiseBox[10,100,0,-6]
Wall : PiecewiseBox[50,100,-100,-100]

Onion: Onions appear scattered all over the world.
Scent [0.68, 0.01, 0.99]

Color [0.68, 0.01, 0.99]

Occlusion 0.0
Blocks Agents False

Intensity Constant[1.5]

Interactions None
Wall: Walls tend to be contiguous and axis-aligned.
Scent [0.00, 0.00, 0.00]

Color [0.20, 0.47, 0.67]

Occlusion 1.0 in experiments with occlusion, 0.0 otherwise
Blocks Agents True

Intensity Constant[-12]

Interactions Wall : Cross[20,40,8,-1000,-1000,-1]
Tree: Trees cluster together in irregular shapes.
Scent [0.00, 0.47, 0.06]

Color [0.00, 0.47, 0.06]

Occlusion 0.1 in experiments with occlusion, 0.0 otherwise
Blocks Agents True

Intensity Constant[2]

Interactions Tree : PiecewiseBox[100,500,0,-0.1]
Truffle: Truffles appear in forests and are very rare.
Scent [8.40, 4.80, 2.60]

Color [0.42, 0.24, 0.13]

Occlusion 0.0
Blocks Agents False

Intensity Constant[0]

Interactions Truffle : PiecewiseBox[30,1000,-0.3,-1]
Tree : PiecewiseBox[4,200,2,0]

nels. The resulting tensor is flattened and
passed through a dense layer with size
512. If scent is used, then the scent vector
is passed through two dense layers: one
with size 32, and one with size 512. If
both modalities are being used, the two
hidden representations are concatenated.
Finally, the result is processed by a Long
Short-Term Memory (LSTM) network
(Hochreiter & Schmidhuber, 1997) which
outputs a value for the agent’s current
state, along with a distribution over ac-
tions. Learning is performed using Prox-
imal Policy Optimization (PPO); a popu-
lar on-policy reinforcement learning algo-
rithm proposed by Schulman et al. (2017).
The experiments are implemented using
Swift for TensorFlow.4

4.1 CASE STUDIES

For all experiments we evaluate per-
formance using the reward rate metric,
which is defined as the amount of re-
ward obtained per step, computed over
a moving window. The size of that win-
dow varies per experiment and is reported
together with the results. This is an ap-
propriate metric for this task as we want
to measure the improvement in the abil-
ity of an agent to learn (i.e., the gradi-
ent of the reward rate), while also mak-
ing sure the agent does not get stuck (i.e.,
the reward rate goes to zero). Whenever
possible, we also report the results ob-
tained by the greedy vision-based agent
described in Section A.7 of our appendix.
The greedy agent makes additional as-
sumptions about the world, and thus,
doesn’t generalize to more complex envi-
ronments, it provides a lower bound on
the optimal reward rate. Note that a per-
fect upper bound cannot be obtained as

3An example non-stationary world configuration is also presented in Section A.5 of our appendix.
4https://www.tensorflow.org/swift.
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that would require solving an NP-hard
discrete optimization problem.
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Figure 4: Non-episodic experiment result. The
reward rate is computed using a 100,000-step
window and the shaded bands correspond to stan-
dard error over 20 runs.

Case Study #1: Non-Episodic. The goal of this
case study is to show that the JBW allows for ex-
perimenting with never-ending learning agents and
to also show how current machine learning methods
(e.g., PPO used to train an LSTM-based agent) are
failing to effectively perform never-ending learning.
For this experiment we use the fixed reward func-
tion Collect[JellyBean]∧ Avoid[Onion] and
let agents interact with the JBW for 10 million steps.
Our results are shown in Figure 4. The agents seem
to be learning effectively for the first 1 million steps,
but start to underperform later on, eventually getting
stuck and being unable to collect any reward. This is
the case for multiple different learning agents that we
experimented with; both using different models and using different learning algorithms, such as Deep
Q-Networks (DQNs) proposed by Mnih et al. (2013). After connecting the visualizer to observe
what happens we see that all agents either: (i) get stuck in an area of the map that they have already
explored and exhausted of jelly beans, or (ii) get stuck constantly rotating and not moving to new grid
cells at all. This indicates that the JBW is indeed challenging for current machine learning methods
when it comes to never-ending learning. Perhaps some sort of reward shaping or curriculum learning
could help the agents. However, our goal with this paper is not to solve these hard problems but rather
point them out and show how the JBW provides a testbed with which to tackle them.

Case Study #2: Non-Stationary. The goal of this case study is to demonstrate that the JBW allows
for experimenting with non-stationary and multi-task learning problems. To this end, we perform
two experiments: (i) one using a cyclical/periodic reward function schedule where every 100,000
steps we alternate between the Collect[JellyBean]∧Avoid[Onion] and Avoid[JellyBean]
∧Collect[Onion] reward functions, and (ii) one testing a couple of curriculum reward schedules for
eventually learning to Collect[JellyBean]∧Avoid[Onion]. The results are shown in Figure 5
and we observe that current standard machine learning approaches are not able to efficiently alternate
between different learning problems and are effectively learning each problem from scratch whenever
they switch, eventually ending up unable to learn either one. We also observe that agents who first
learn to collect jelly beans and then switch to the full reward function are able to learn to collect jelly
beans and avoid onions faster than agents that first learn to avoid onions or face the final learning
problem directly from the beginning. Eventually all agents perform similarly, but this showcases how
the JBW enables research in curriculum learning.

Case Study #3: Multi-Modal. The goal of this case study is to: (i) show how computationally
efficient features, such as the field of view mask and visual occlusion, allow for increasing the
learning problem complexity in a controllable manner and, perhaps most importantly, (ii) show how
the perception modalities of the JBW are complementary. We thus perform three experiments. For
the first two we use the fixed reward function Collect[JellyBean] and for the last one we use
Collect[Onion]. We change the reward function in order to show how easy it is to experiment
with different tasks in the JBW. In the first experiment, we vary the field of view of the agents. The
results are shown in the left plot of Figure 6. We see that decreasing the field of view allows us to
make the learning task harder for agents, while maintaining the same computational cost for the
environment. Similarly, in the second experiment we measure the effect that visual occlusion has
on performance. The results are shown in the middle plot of Figure 6 and we observe that enabling
visual occlusion makes the learning task harder. Finally, with the third experiment our goal is to
show that vision and scent are complementary. The results are shown in the right plot of Figure 6.
We see that “vision” agents do better than “scent” agents, indicating that vision is perhaps an easier
perception modality to use in the context of this learning task. Surprisingly though, the “vision”
agents also do better than the “vision+scent” agents. This indicates a limitation of the model because,
even though scent contains useful information that vision does not, the agents seem to get confused
by it and do not seem able to use it properly. It also shows the need for better multi-modal algorithms
and the utility of the JBW in testing such algorithms. The relative utility of scent and vision depends
on the environment and the agent model. We demonstrate this in Section A.4 by providing a different
configuration where “scent” agents are able to outperform both “vision” and “vision+scent” agents.
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the reward function is set to
Collect[JellyBean]

Final Reward Function
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Figure 5: Non-stationary experiment results. The reward rate is computed using a 100,000-step window and the
shaded bands correspond to standard error over 20 runs.
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Figure 6: Multi-modal experiment results. The braces on top of the plots specify the reward function used
in each case. The reward rate is computed using a 100,000-step window and the shaded bands correspond to
standard error over 20 runs. “Greedy Visual” refers to the reward rate obtained by the greedy visual agent baseline
described in Section A.7 (which, as explained in that section, is not able to handle occlusion or avoidance).

5 CONCLUSION AND FUTURE EXTENSIONS

We presented a new testbed designed to facilitate experimentation with never-ending learning agents,
where the complexity of the learning problems is higher than that of existing testbeds and evaluations,
while maintaining controllability, performance, and reproducibility. In order to produce more complex
environments, the JBW supports non-stationary environments, with multiple distinct but inter-related
tasks and complementary perception modalities. The JBW also explicitly restricts learning to a single
never-ending episode. It is highly configurable and performant, and provides users with tools to easily
save, load, distribute environments, and reproduce and visualize results. We also showed how easily
we can define learning tasks in the JBW, for which current machine learning methods struggle.

The space of potential extensions to the JBW is large. Although the current intensity and interaction
functions are stationary with respect to space (i.e., they are independent of position x, y), it is not
difficult to define new non-stationary functions, in order to generate worlds with non-stationary item
distributions. The JBW supports multiple agents running asynchronously in the world, and so it would
also be interesting to experiment with multi-agent settings. However, agents currently don’t have an
easy way to communicate with each other, and so adding a mechanism for communication, perhaps
via new agent-item interactions (e.g., reading/writing note items), would be interesting. Another way
to add complexity is via items that can contain “strings” (e.g., notes) in an agent-specific language, or
even natural language. These notes could, for example, contain task specifications. Scent currently
does not interact with items in the world, meaning that it can pass through Wall items without
any hinderance. Thus, another possible extension would be to support more complex item-scent
interactions. It would be interesting to explore interactions between items and the properties of agents
(e.g., a Telescope could extend the visual range of an agent while narrowing its field of view).
Finally, another interesting way to add complexity is to generate richer relationships between item
types, perhaps even an ontology. We look forward to continue improving the JBW, and hope that a
standardized testbed for never-ending learning will motivate research into more generally-intelligent
learning algorithms.
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A APPENDIX

A.1 COMPLEXITY BOUND

We show that K(E) must be at least K(π∗) up to a constant. We can write an algorithm π̂ that
enumerates all possible sequences of environment states, observations, actions, and rewards from time
t up to time T : (st, ωt, at, rt), . . . , (sT , ωT , aT , rT ). Then π̂ computes the action that maximizes
the expected reward E[R({rk}Tk=t)]. Since the images im(π̂) ⊆ A and im(π∗) are discrete, and
limT→∞ arg maxat E[R({rk}Tk=t)] = arg maxat E[R({rk}∞k=t)], there is a sufficiently large finite
T such that the action computed by π̂ is the same as that computed by π∗. Note that π̂ relies on a
subroutine that simulates the environment E in order to first enumerate the environment states, and
the subroutine to perform the optimization is independent of E , and so K(π̂) = K(E) + c for a
constant c. Since K(π∗) ≤ K(π̂), we have that K(E) ≥ K(π∗)− c.

A.2 INTENSITY AND INTERACTION FUNCTIONS

The JBW currently only supports a small number of implemented intensity and interaction functions
to control the distribution of items in the world. However, it is very straightforward to implement
new customized intensity and interaction functions. Let (x, y) ∈ Z2 be a position and t ∈ T be an
item type. Intensity functions are indexed by item type, and so each item type is assigned its own
intensity function: f((x, y), t) , ft(x, y). The JBW currently supports three intensity functions:

1. Zero: ft(x, y) = 0.

2. Constant[v]: ft(x, y) = v.
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3. RadialHash[∆,s,c,k]:

ft(x, y) = c− k · M̂(
√
x2 + y2/s+ ∆),

where M̂ : R 7→ [0, 1] is the linear interpolation of M(btc)/(232 − 1) and M(bt + 1c)/(232 − 1), and
M : Z 7→ Z is the last mixing step of the 32-bit MurmurHash function (Appleby, 2008). This provides
pseudorandomness to the intensity function.

For interaction functions, let (x1, y1) be the input position of the first item, t1 be the type of the first
item, (x2, y2) be the position of the second item, and t2 be the type of the second item. Interaction
functions are indexed by pairs of item types, so each pair of item types can be given its own interaction
function: g(((x1, y1), t1), ((x2, y2), t2)) , gt1,t2((x1, y1), (x2, y2)). The JBW currently supports
four interaction functions:

1. Zero: gt1,t2((x1, y1), (x2, y2)) = 0.
2. PiecewiseBox[U,V ,u,v]:

gt1,t2((x1, y1), (x2, y2)) =


u, if d < U,

v, if U ≤ d < V,

0, otherwise,

where d = (x1 − x2)2 + (y1 − y2)2.
3. Cross[U,V ,u,v,α,β]:

gt1,t2((x1, y1), (x2, y2)) =


u, if d = 0, D ≤ U,
α, if d 6= 0, D ≤ U,
v, if d = 0, U < D ≤ V,
β, if d 6= 0, U < D ≤ V,
0, otherwise,

where d = min{|x1 − x2|, |y1 − y2|} and D = max{|x1 − x2|, |y1 − y2|}.
4. CrossHash[s,c,k,δ,u,v,α,β] is the same as Cross[U,V ,u,v,α,β] except for the fact that U

and V are given by:

U = c+ k · M̂(x1/s),

V = U + δ,

where M̂(·) is defined as above in the RadialHash intensity function.

Even though this is a small set of intensity and interaction functions it can allow for creating worlds
with many interesting features (e.g., we use the Cross interaction function to create contiguous wall
segments that are axis-aligned, and the PiecewiseBox interaction function to create irregularly
shaped clusters of trees forming forests). Note that the unspecified intensity and interaction functions
in Table 3 are set to Zero by default.

A.3 FIELD OF VIEW AND VISUAL OCCLUSION

To compute the color of a cell with respect to the agent’s field of view, let the cell position be (x, y)
and consider a circle of radius 1

2 centered at (x, y). Project this circle onto the circle of radius
1 centered at the agent position. Let θ denote this projection (an arc). Let θfov be the arc on the
agent’s circle centered on a point in the current agent direction. The length of θfov is specified by the
field-of-view parameter in the configuration. The color of cell cx,y is then computed as:

cx,y = ĉx,y ·
|θfov ∩ θ|
|θ|

, (3)

where ĉx,y is the original color of the cell. In order to compute how much a cell at position (x, y) is
occluded, we consider a circle of radius 1

2 centered at (x, y), and project this circle onto the circle of
radius 1 centered at the agent position. Let θ denote this projection (an arc). Each item in the agent’s
visual field is similarly projected onto the agent’s circle, each producing an arc θi. The color of the
cell cx,y is then computed as:

cx,y = ĉx,y ·max

{
1−

∑
i

oi
|θi ∩ θ|
|θ|

, 0

}
, (4)

where ĉx,y is the original color of the cell, and oi is the occlusion parameter of the ith item, as
specified by the item’s type. If a cell is affected by both the field of view and visual occlusion, the
above effects are composed (both multiplicative factors are applied to the original color).
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A.4 RELATIVE UTILITY OF SCENT AND VISION

Scent passes through
walls and so the agent
needs to learn that even
though it can smell an
item being close, that
does not mean the
shortest path is feasible
and needs to combine
the scent informa�on
with the visual
informa�on.

Figure 7: Example showing one of the challenges the
scent modality poses for agents.

The relative difficulty of utilizing scent or vision
to effectively navigate in the JBW environments
depends on the environment configuration as well
as the method used by the learning agent. For
example, if the learning agent does not possess
memory, it cannot remember the scent of any pre-
viously visited tile, and thus it will not be able to
determine the direction from which the scent is dif-
fusing. Therefore, such methods will not benefit
from the information provided by the scent modal-
ity. In addition, scent is not necessarily blocked
by items that block movement (e.g., walls). Thus,

Table 4: Simulator configuration.

M
ap

Scent Dimensionality 3

Color Dimensionality 3

Patch Size 32× 32

MH Sampling Iterations 4, 000

Scent Decay (λ) 0.4

Scent Diffusion (α) 0.14

Ag
en

t

Color [0.00, 0.00, 0.00]

Scent [0.00, 0.00, 0.00]

Action Space
MoveForward,
TurnLeft,
and TurnRight

Visual Range 5

Field-of-View 60◦

in environments with such items, scent is more difficult
to utilize, since the simple strategy of following paths of
monotonically increasing scent could lead to a wall. The
agent could be fooled to believe an item is nearby when,
in fact, it is behind a wall. This is illustrated in Figure 7
and is possibly one of the main reasons the “vision+scent”
agent underperforms the “vision” agent in Figure 6.

In order to showcase how scent can provide useful infor-
mation, we also designed a simpler environment configu-
ration that does not contain any walls. The configuration
for this world is shown in Tables 4 and 5. Given the task
of collecting JellyBeans, we expect the scent modality
to be very useful as long as the agent has some sort of
memory. The results of using an LSTM-

Table 5: Item types for the simple environment where the
scent modality dominates the vision modality. See Sec-
tion A.2 for details on the functional forms of the intensity
and interaction functions.

JellyBean: Jelly beans appear close to bananas.
Scent [0.0, 0.0, 1.0]

Color [0.0, 0.0, 1.0]

Occlusion 0.0
Blocks Agents False

Intensity Constant[-5.3]

Interactions
JellyBean : PiecewiseBox[10,200,0,-6]
Banana : PiecewiseBox[10,200,2,-100]
Onion : PiecewiseBox[200,0,-100,-100]

Banana: Bananas appear close to jelly beans.
Scent [0.0, 1.0, 0.0]

Color [0.0, 1.0, 0.0]

Occlusion 0.0
Blocks Agents False

Intensity Constant[-5.3]

Interactions
JellyBean : PiecewiseBox[10,100,2,-100]
Banana : PiecewiseBox[10,200,0,-6]
Onion : PiecewiseBox[200,0,-6,-6]

Onion: Onions appear scattered, away from jellybeans and bananas.
Scent [1.0, 0.0, 0.0]

Color [1.0, 0.0, 0.0]

Occlusion 0.0
Blocks Agents False

Intensity Constant[-5]

Interactions JellyBean : PiecewiseBox[200,0,-100,-100]
Banana : PiecewiseBox[200,0,-6,-6]

based agent are shown in Figure 8. We ob-
serve that the “scent” agent outperforms
both the “vision” and the “vision+scent”
agents. This is the opposite pattern of what
we observe in Figure 6.5 This can partly be
explained by the fact that, in this case, the
visual field of the agent is more restricted,
thereby limiting the agent’s reliance on vi-
sion in its learning. Ideally agents should be
able to use each perception modality opti-
mally and not be “confused” by the fact that
one of them may be harder to utilize than
the other. Thus, these experiments show-
case how the JBW can be used to evaluate
multi-modal machine learning algorithms.

Scent
Vision

Vision+Scent

Time Step
0 200k 400k 600k 800k 1M

0.00

0.01

0.02

Figure 8: Results of experiments on the configu-
ration shown in Tables 4 and 5.

5Note that since the configurations differ, the reward rates between the two figures are not directly comparable.
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Figure 9: Visualization of an example environment with spatial non-stationarity. Each tile is colored according
to its scent. JellyBeans are shown in blue, Bananas in green, and Onions in red. Walls are depicted as
grey squares. This environment was generated using the configuration shown in Tables 6 and 7.

A.5 EXAMPLE OF SPATIAL NON-STATIONARITY

To demonstrate the ability to generate spatially non-stationary worlds in JBW, we provide a configu-

Table 6: Item types for the non-stationary environment. See Sec-
tion A.2 for details on the functional forms of the intensity and
interaction functions.

JellyBean: Jelly beans appear close to bananas.
Scent [0.0, 0.0, 1.0]

Color [0.0, 0.0, 1.0]

Occlusion 0.0
Blocks Agents False

Intensity RadialHash[500,60,-3.0,14]

Interactions
JellyBean : PiecewiseBox[10,200,0,-6]
Banana : PiecewiseBox[10,200,2,-100]
Onion : PiecewiseBox[200,0,-100,-100]

Banana: Bananas appear close to jelly beans.
Scent [0.0, 1.0, 0.0]

Color [0.0, 1.0, 0.0]

Occlusion 0.0
Blocks Agents False

Intensity RadialHash[500,60,-3.0,14]

Interactions
JellyBean : PiecewiseBox[10,100,2,-100]
Banana : PiecewiseBox[10,200,0,-6]
Onion : PiecewiseBox[200,0,-6,-6]

Onion: Onions appear scattered, away from jellybeans and bananas.
Scent [1.0, 0.0, 0.0]

Color [1.0, 0.0, 0.0]

Occlusion 0.0
Blocks Agents False

Intensity Constant[-5]

Interactions JellyBean : PiecewiseBox[200,0,-100,-100]
Banana : PiecewiseBox[200,0,-6,-6]

Wall: Walls tend to be contiguous and axis-aligned.
Scent [0.0, 0.0, 0.0]

Color [0.5, 0.5, 0.5]

Occlusion 1.0 in experiments with occlusion, 0.0 otherwise
Blocks Agents True

Intensity Constant[0]

Interactions Wall : CrossHash[60,4,25,2,20,-200,-20,1]

ration that makes use of non-
stationary intensity and interaction
functions. The configuration is shown
in Tables 6 and 7, and a visu-
alization is provided in Figure 9.
JellyBeans and Onions appear to-
gether in clusters and, since this con-
figuration uses the non-stationary in-
tensity function RadialHash, these
clusters are arranged in concentric cir-
cles around the origin that are irreg-
ularly spaced. RadialHash uses a
hash function to induce a pseudoran-
dom relationship between the distance
to the origin and the likelihood of find-
ing such clusters. Walls in this en-
vironment also have a non-stationary
distribution. In some regions, they are
smaller and more frequent, whereas
in other regions they are longer and
appear more sporadically.

Table 7: Simulator configuration.

M
ap

Scent Dimensionality 3

Color Dimensionality 3

Patch Size 32× 32

MH Sampling Iterations 4, 000

Scent Decay (λ) 0.4

Scent Diffusion (α) 0.14

Ag
en

t

Color [0.00, 0.00, 0.00]

Scent [0.00, 0.00, 0.00]

Action Space
MoveForward,
TurnLeft,
and TurnRight

Visual Range 5

Field-of-View experiment-specific
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A.6 PERFORMANCE

The JBW is implemented in optimized C++, with performance being highly prioritized in both its
design and its implementation. This would allow less time and hardware resources to be spent
simulating the world and more time and resources to be allocated for the machine learning algorithms.
Additionally, the JBW is perceptually quite simple, being a two-dimensional grid world with limited
vision and scent inputs. This allows the machine learning algorithm to focus less on perceptual
information processing and more on abstract information processing, which we think is a hallmark of
never-ending learning. As a rough indication of performance, on a single core of an Intel Core i7
5820K (released in 2014) at 3.5GHz, the JBW can generate 8.56 patches per second, each of size
64× 64 (i.e., 35, 062 grid cells), using the configuration described in Section 4.

A.7 GREEDY ALGORITHM

As a benchmark and for the sake of comparison, we also implemented a simple greedy agent that
searches its visual field for cells of a particular color, and then computes the shortest path to those
cells. This algorithm makes the assumption that reward is maximized simply by collecting items of a
single color, ad infinitum. It also assumes that this color is known a priori. Additionally, it assumes
the color of obstacles (items that block agent movement or that should be avoided as part of the
reward function) is known a priori, and is distinct from the color of items that provide reward. The
shortest path it computes is such that it never goes through any such obstacles.

Algorithm 1: Pseudocode for the greedy vision-based algorithm.
Input: Color of rewarding items cr and color of obstacles cw.

1 Initialize best_path = null
2 Function GreedyVisionPolicy(visual field ωt)
3 shortest_path = ShortestPath(ωt, cr, cw)
4 if best_path = null or |shortest_path| < |best_path|
5 assign best_path = shortest_path

6 if best_path = null
7 if the cell immediately in front of the agent has color γcw for any γ > 0
8 return MoveForward

9 else
10 return TurnLeft or TurnRight uniformly at random

11 else
12 next_action = dequeue the next action from best_path
13 if best_path has no further actions
14 assign best_path = null

15 return next_action

The algorithm is shown in pseudocode in Algorithm 1. The function ShortestPath is simply
Dijkstra’s algorithm on a directed graph where each vertex corresponds to a unique agent position
and direction within its visual field ωt, and each edge corresponds to a possible action that transitions
between agent states (Dijkstra, 1959). Let cr be the color of items that provide reward, and cw be the
color of items that block agent movement. The algorithm returns a shortest path from the agent’s
current position and direction to a cell that has a color γcr for any γ > 0, while avoiding cells that
have color γcw for any γ > 0 (we match any color in the direction of the vectors cr and cw in order
to detect partially occluded items). If no such path exists, ShortestPath returns null. In the case
where the agent’s field of view is limited, ShortestPath only returns paths that pass through cells
within the agent’s field of view. Also, in the experiment where the agent must additionally avoid
Onion items, ShortestPath avoids them in the same way that it avoids obstacles: it avoids cells
that have color γco for any γ > 0 where co is the color of the Onion item type.

In environments with visual occlusion, if items with high occlusion are arranged in a line (such as a
wall), and the agent is adjacent to the wall and facing it, the portions of the wall further from the agent
will be occluded by the portion of the wall closer to the agent. Since we currently do not distinguish
between empty cells and completely occluded cells, ShortestPath will return paths that may pass
through the wall. If no other paths are returned, the agent will continuously try to move through the
wall and make no progress.
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Similarly, in environments containing items that provide negative reward, the above greedy algorithm
does not allow the agent to move over tiles with such items. Thus, given sufficient time, the agent
will find itself moving between two clusters of avoided items, where one cluster is shaped like a “∪”
and the other like a “∩”. And so when the agent moves downward into the “∪” of one cluster, it will
make a 180-degree turn, leaving the cluster, and moving upward toward the other cluster. The other
cluster is shaped symmetrically, and the agent will repeat the behavior deterministically: enter the
“∩”, make a 180-degree turn, leave the cluster, and move down toward the first cluster again. This
will repeat indefinitely.
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