
Published as a conference paper at ICLR 2020

LEARNING TO SOLVE THE CREDIT ASSIGNMENT
PROBLEM

Benjamin James Lansdell
Department of Bioengineering
University of Pennsylvania
Pennsylvania, PA 19104
lansdell@seas.upenn.edu

Prashanth Ravi Prakash
Department of Bioengineering
University of Pennsylvania
Pennsylvania, PA 19104

Konrad Paul Kording
Department of Bioengineering
University of Pennsylvania
Pennsylvania, PA 19104

ABSTRACT

Backpropagation is driving today’s artificial neural networks (ANNs). However,
despite extensive research, it remains unclear if the brain implements this algo-
rithm. Among neuroscientists, reinforcement learning (RL) algorithms are often
seen as a realistic alternative: neurons can randomly introduce change, and use un-
specific feedback signals to observe their effect on the cost and thus approximate
their gradient. However, the convergence rate of such learning scales poorly with
the number of involved neurons. Here we propose a hybrid learning approach.
Each neuron uses an RL-type strategy to learn how to approximate the gradients
that backpropagation would provide. We provide proof that our approach con-
verges to the true gradient for certain classes of networks. In both feedforward
and convolutional networks, we empirically show that our approach learns to ap-
proximate the gradient, and can match or the performance of exact gradient-based
learning. Learning feedback weights provides a biologically plausible mechanism
of achieving good performance, without the need for precise, pre-specified learn-
ing rules.

1 INTRODUCTION

It is unknown how the brain solves the credit assignment problem when learning: how does each
neuron know its role in a positive (or negative) outcome, and thus know how to change its activity
to perform better next time? This is a challenge for models of learning in the brain.

Biologically plausible solutions to credit assignment include those based on reinforcement learn-
ing (RL) algorithms and reward-modulated STDP (Bouvier et al., 2016; Fiete et al., 2007; Fiete
& Seung, 2006; Legenstein et al., 2010; Miconi, 2017). In these approaches a globally distributed
reward signal provides feedback to all neurons in a network. Essentially, changes in rewards from
a baseline, or expected, level are correlated with noise in neural activity, allowing a stochastic ap-
proximation of the gradient to be computed. However these methods have not been demonstrated to
operate at scale. For instance, variance in the REINFORCE estimator (Williams, 1992) scales with
the number of units in the network (Rezende et al., 2014). This drives the hypothesis that learning
in the brain must rely on additional structures beyond a global reward signal.

In artificial neural networks (ANNs), credit assignment is performed with gradient-based methods
computed through backpropagation (Rumelhart et al., 1986; Werbos, 1982; Linnainmaa, 1976). This
is significantly more efficient than RL-based algorithms, with ANNs now matching or surpassing
human-level performance in a number of domains (Mnih et al., 2015; Silver et al., 2017; LeCun
et al., 2015; He et al., 2015; Haenssle et al., 2018; Russakovsky et al., 2015). However there are
well known problems with implementing backpropagation in biologically realistic neural networks.

1

Published as a conference paper at ICLR 2020

One problem is known as weight transport (Grossberg, 1987): an exact implementation of back-
propagation requires a feedback structure with the same weights as the feedforward network to
communicate gradients. Such a symmetric feedback structure has not been observed in biological
neural circuits. Despite such issues, backpropagation is the only method known to solve supervised
and reinforcement learning problems at scale. Thus modifications or approximations to backpropa-
gation that are more plausible have been the focus of significant recent attention (Scellier & Bengio,
2016; Lillicrap et al., 2016; Lee et al., 2015; Lansdell & Kording, 2018; Ororbia et al., 2018).

These efforts do show some ways forward. Synthetic gradients demonstrate that learning can be
based on approximate gradients, and need not be temporally locked (Jaderberg et al., 2016; Czar-
necki et al., 2017b). In small feedforward networks, somewhat surprisingly, fixed random feedback
matrices in fact suffice for learning (Lillicrap et al., 2016) (a phenomenon known as feedback align-
ment). But still issues remain: feedback alignment does not work in CNNs, very deep networks,
or networks with tight bottleneck layers. Regardless, these results show that rough approximations
of a gradient signal can be used to learn; even relatively inefficient methods of approximating the
gradient may be good enough.

On this basis, here we propose an RL algorithm to train a feedback system to enable learning. Recent
work has explored similar ideas, but not with the explicit goal of approximating backpropagation
(Miconi, 2017; Miconi et al., 2018; Song et al., 2017). RL-based methods like REINFORCE may
be inefficient when used as a base learner, but they may be sufficient when used to train a system
that itself instructs a base learner. We propose to use REINFORCE-style perturbation approach to
train feedback signals to approximate what would have been provided by backpropagation.

This sort of two-learner system, where one network helps the other learn more efficiently, may in fact
align well with cortical neuron physiology. For instance, the dendritic trees of pyramidal neurons
consist of an apical and basal component. Such a setup has been shown to support supervised
learning in feedforward networks (Guergiuev et al., 2017; Kording & Konig, 2001). Similarly,
climbing fibers and Purkinje cells may define a learner/teacher system in the cerebellum (Marr,
1969). These components allow for independent integration of two different signals, and may thus
provide a realistic solution to the credit assignment problem.

Thus we implement a network that learns to use feedback signals trained with reinforcement learn-
ing via a global reward signal. We mathematically analyze the model, and compare its capabilities
to other methods for learning in ANNs. We prove consistency of the estimator in particular cases,
extending the theory of synthetic gradient-like approaches (Jaderberg et al., 2016; Czarnecki et al.,
2017b; Werbos, 1992; Schmidhuber, 1990). We demonstrate that our model learns as well as reg-
ular backpropagation in small models, overcomes the limitations of feedback alignment on more
complicated feedforward networks, and can be used in convolutional networks. Thus, by combining
local and global feedback signals, this method points to more plausible ways the brain could solve
the credit assignment problem.

2 LEARNING FEEDBACK WEIGHTS THROUGH PERTURBATIONS

We use the following notation. Let x ∈ Rm represent an input vector. Let an N hidden-layer
network be given by ŷ = f(x) ∈ Rp. This is composed of a set of layer-wise summation and
non-linear activations

hi = f i(hi−1) = σ
(
W ihi−1

)
,

for hidden layer states hi ∈ Rni , non-linearity σ, weight matrices W i ∈ Rni×ni−1 and denoting
h0 = x and hN+1 = ŷ. Some loss function L is defined in terms of the network output: L(y, ŷ).
Let L denote the loss as a function of (x,y): L(x,y) = L(y, f(x)). Let data (x,y) ∈ D be drawn
from a distribution ρ. We aim to minimize: Eρ [L(x,y)] .

Backpropagation relies on the error signal ei, computed in a top-down fashion:

ei =

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;(
(W i+1)Tei+1

)
◦ σ′(W ihi−1), 1 ≤ i ≤ N ,

where ◦ denotes element-wise multiplication.

2

Published as a conference paper at ICLR 2020

x y

+

+
x B2

B1x

2

1

x y

W2

W1

h1

h2

h1

h2

o o

A) B)

Figure 1: Learning feedback weights through perturbations. (A) Backpropagation sends error infor-
mation from an output loss function, L, through each layer from top to bottom via the same matrices
W i used in the feedforward network. (B) Node perturbation introduces noise in each layer, ξi, that
perturbs that layer’s output and resulting loss function. The perturbed loss function, L̃, is correlated
with the noise to give an estimate of the error current. This estimate is used to update feedback
matrices Bi to better approximate the error signal.

2.1 BASIC SETUP

Let the loss gradient term be denoted as

λi =
∂L
∂hi

= (W i+1)Tei+1.

In this work we replace λi with an approximation with its own parameters to be learned (known as a
synthetic gradient, or conspiring network, (Jaderberg et al., 2016; Czarnecki et al., 2017b), or error
critic (Werbos, 1992)):

λi ≈ g(hi, ẽi+1; θ),

for parameters θ. Note that we must distinguish the true loss gradients from their synthetic estimates.
Let ẽi be loss gradients computed by backpropagating the synthetic gradients

ẽi =

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;

g(hi, ẽi+1; θ) ◦ σ′(W ihi−1), 1 ≤ i ≤ N .

For the final layer the synthetic gradient matches the true gradient: eN+1 = ẽN+1. This setup can
accommodate both top-down and bottom-up information, and encompasses a number of published
models (Jaderberg et al., 2016; Czarnecki et al., 2017b; Lillicrap et al., 2016; Nøkland, 2016; Liao
et al., 2016; Xiao et al., 2018).

2.2 STOCHASTIC NETWORKS AND GRADIENT DESCENT

To learn a synthetic gradient we utilze the stochasticity inherent to biological neural networks. A
number of biologically plausible learning rules exploit random perturbations in neural activity (Xie
& Seung, 2004; Seung, 2003; Fiete & Seung, 2006; Fiete et al., 2007; Song et al., 2017). Here, at
each time each unit produces a noisy response:

hit = σ

(∑
k

W i
·kh

i−1
t

)
+ chξ

i
t,

for independent Gaussian noise ξi ∼ ν = N (0, I) and standard deviation ch > 0. This generates
a noisy loss L̃(x,y, ξ) and a baseline loss L(x,y) = L̃(x,y, 0). We will use the noisy response
to estimate gradients that then allow us to optimize the baseline L – the gradients used for weight
updates are computed using the deterministic baseline.

3

Published as a conference paper at ICLR 2020

2.3 SYNTHETIC GRADIENTS VIA PERTURBATION

For Gaussian white noise, the well-known REINFORCE algorithm (Williams, 1992) coincides with
the node perturbation method (Fiete & Seung, 2006; Fiete et al., 2007). Node perturbation works by
linearizing the loss:

L̃ ≈ L+
∂L
∂hij

chξ
i
j , (1)

such that

E
(

(L̃ − L)chξ
i
j |x,y

)
≈ c2h

∂L
∂hij

∣∣∣∣
x,y

,

with expectation taken over the noise distribution ν(ξ). This provides an estimator of the loss gradi-
ent

λ̂i := (L̃(x,y, ξ)− L(x,y))
ξi

ch
. (2)

This approximation is made more precise in Theorem 1 (Supplementary material).

2.4 TRAINING A FEEDBACK NETWORK

There are many possible sensible choices of g(·). For example, taking g as simply a function of
each layer’s activations: λi = g(hi) is in fact sufficient parameterization to express the true gradient
function (Jaderberg et al., 2016). We may expect, however, that the gradient estimation problem be
simpler if each layer is provided with some error information obtained from the loss function and
propagated in a top-down fashion. Symmetric feedback weights may not be biologically plausible,
and random fixed weights may only solve certain problems of limited size or complexity (Lillicrap
et al., 2016). However, a system that can learn to appropriate feedback weights B may be able to
align the feedforward and feedback weights as much as is needed to successfully learn.

We investigate various choices of g(hi, ẽi+1;Bi+1) outlined in the applications below. Parameters
Bi+1 are estimated by solving the least squares problem:

B̂i+1 = arg min
B

E
∥∥∥g(hi, ẽi+1;B)− λ̂i

∥∥∥2
2
. (3)

Unless otherwise noted this was solved by gradient-descent, updating parameters once with each
minibatch. Refer to the supplementary material for additional experimental descriptions and param-
eters.

3 THEORETICAL RESULTS

We can prove the estimator (3) is consistent as the noise variance ch → 0, in some particular
cases. We state the results informally here, and give the exact details in the supplementary materials.
Consider first convergence of the final layer feedback matrix, BN+1.

Theorem 1. (Informal) For gFA(hi, ẽi+1;Bi+1) = Bi+1ẽi+1, then the least squares estimator

(B̂N+1)T := λ̂N (eN+1)T
(
eN+1(eN+1)T

)−1
, (4)

solves (3) and converges to the true feedback matrix, in the sense that: limch→0 plimT→∞ B̂N+1 =
WN+1, where plim indicates convergence in probability.

Theorem 1 thus establishes convergence of B in a shallow (1 hidden layer) non-linear network. In a
deep, linear network we can also use Theorem 1 to establish convergence over the rest of the layers.

Theorem 2. (Informal) For gFA(hi, ẽi+1;Bi+1) = Bi+1ẽi+1 and σ(x) = x, the least squares
estimator

(B̂i)T := λ̂i−1(ẽi)T
(
ẽi(ẽi)T

)−1
1 ≤ i ≤ N + 1, (5)

solves (3) and converges to the true feedback matrix, in the sense that: limch→0 plimT→∞ B̂i =
W i, 1 ≤ i ≤ N + 1.

4

Published as a conference paper at ICLR 2020

10 1

10 0

10 1

0

20

40

60

80

50

75

100

10 1

10 0

10 1

0

20

40

60

80

50

75

100

10 0

10 1

10 2

la
ye

r
1

la
ye

r
2 node perturbation

sign congruencealignment with true gradientrelative error test error

%
%

%

an
gl

e

ch=10-4

ch=10
ch=10
ch=10

2.6%
3.5%

4.3%

an
gl

e
back prop

feedback alignment

-1
-2
-3

|W
-B

|/|
W

|
|W

-B
|/|

W
|

0 20001000
iteration (x103)

0 20001000
iteration (x103)

0 20001000
iteration (x103)

0 20001000
iteration (x103)

A) D)C)B)

Figure 2: Node perturbation in small 4-layer network (784-50-20-10 neurons), for varying noise
levels c, compared to feedback alignment and backpropagation. (A) Relative error between feedfor-
ward and feedback matrix. (B) Angle between true gradient and synthetic gradient estimate for each
layer. (C) Percentage of signs in W i and Bi that are in agreement. (D) Test error for node perturba-
tion, backpropagation and feedback alignment. Curves show mean plus/minus standard error over 5
runs.

Given these results we can establish consistency for the ‘direct feedback alignment’ (DFA;
Nøkland (2016)) estimator: gDFA(hi, ẽN+1;Bi+1) = (Bi+1)TẽN+1. Theorem 1 applies triv-
ially since for the final layer, the two approximations have the same form: gFA(hN , ẽN+1; θN) =
gDFA(hN , ẽN+1; θN). Theorem 2 can be easily extended according to the following:

Corollary 1. (Informal) For gDFA(hi, ẽN+1;Bi+1) = Bi+1ẽN+1 and σ(x) = x, the least squares
estimator

(B̂i)T := λ̂i−1(ẽN+1)T
(
ẽN+1(ẽN+1)T

)−1
1 ≤ n ≤ N + 1, (6)

solves (3) and converges to the true feedback matrix, in the sense that: limch→0 plimT→∞ B̂i =∏i
j=N+1W

j , 1 ≤ i ≤ N + 1.

Thus for a non-linear shallow network or a deep linear network, for both gFA and gDFA, we have
the result that, for sufficiently small ch, if we fix the network weights W and train B through node
perturbation then we converge to W . Validation that the method learns to approximate W , for fixed
W , is provided in the supplementary material. In practice, we update B and W simultaneously.
Some convergence theory is established for this case in (Jaderberg et al., 2016; Czarnecki et al.,
2017b).

4 APPLICATIONS

4.1 FULLY CONNECTED NETWORKS SOLVING MNIST

First we investigate g(hi, ẽi+1;Bi+1) = (Bi+1)Tẽi+1, which describes a non-symmetric feedback
network (Figure 1). To demonstrate the method can be used to solve simple supervised learning
problems we use node perturbation with a four-layer network and MSE loss to solve MNIST (Figure
2). Updates to W i are made using the synthetic gradients ∆W i = ηẽihi−1, for learning rate η. The
feedback network needs to co-adapt with the feedforward network in order to continue to provide a
useful error signal. We observed that the system is able to adjust to provide a close correspondence
between the feedforward and feedback matrices in both layers of the network (Figure 2A). The
relative error betweenBi andW i is lower than what is observed for feedback alignment, suggesting
that this co-adaptation of both W i and Bi is indeed beneficial. The relative error depends on the
amount of noise used in node perturbation – lower variance doesn’t necessarily imply the lowest

5

Published as a conference paper at ICLR 2020

0 1 2 3 4 5 6 7 8 9
0 200 400 600 800 1000

500

600

700

800

900

1000

lo
ss

backpropagation
feedback alignment
node perturbation
backprop (ADAM)
matched

iteration (x103)

ADAM backpropagation

feedback
alignment

node
perturbation

ADAM backpropagation

feedback
alignment

node
perturbation

A) B) C)

output

input

output

input

DAE

Figure 3: Results with five-layer MNIST autoencoder network. (A) Mean loss plus/minus standard
error over 10 runs. Dashed lines represent training loss, solid lines represent test loss. (B) Latent
space activations, colored by input label for each method. (C) Sample outputs for each method.

error between W and B, suggesting there is an optimal noise level that balances bias in the estimate
and the ability to co-adapt to the changing feedforward weights.1

Consistent with the low relative error in both layers, we observe that the alignment (the angle be-
tween the estimated gradient and the true gradient – proportional to eTWBTẽ) is low in each layer
– much lower for node perturbation than for feedback alignment, again suggesting that the method
is much better at communicating error signals between layers (Figure 2B). In fact, recent studies
have shown that sign congruence of the feedforward and feedback matrices is all that is required to
achieve good performance (Liao et al., 2016; Xiao et al., 2018). Here the sign congruence is also
higher in node perturbation, again depending somewhat the variance. The amount of congruence is
comparable between layers (Figure 2C). Finally, the learning performance of node perturbation is
comparable to backpropagation (Figure 2D), and better than feedback alignment in this case, though
not by much. Note that by setting the feedback learning rate to zero, we recover the feedback
alignment algorithm. So we should expect to be always able to do at least as well as feedback align-
ment. These results instead highlight the qualitative differences between the methods, and suggest
that node perturbation for learning feedback weights can be used to approximate gradients in deep
networks.

4.2 AUTO-ENCODING MNIST

The above results demonstrate node perturbation provides error signals closely aligned with the
true gradients. However, performance-wise they do not demonstrate any clear advantage over feed-
back alignment or backpropagation. A known shortcoming of feedback alignment is in very deep
networks and in autoencoding networks with tight bottleneck layers (Lillicrap et al., 2016). To
see if node perturbation has the same shortcoming, we test performance of a g(hi, ẽi+1;Bi+1) =
(Bi+1)Tẽi+1 model on a simple auto-encoding network with MNIST input data (size 784-200-2-
200-784). In this more challenging case we also compare the method to the ‘matching’ learning
rule (Rombouts et al., 2015; Martinolli et al., 2018), in which updates to B match updates to W
and weight decay is added, a denoising autoencoder (DAE) (Vincent et al., 2008), and the ADAM
(Kingma & Ba, 2015) optimizer (with backprop gradients).

As expected, feedback alignment performs poorly, while node perturbation performs better than
backpropagation (Figure 3A). The increased performance relative to backpropagation may seem
surprising. A possible reason is the addition of noise in our method encourages learning of more
robust latent factors (Alain & Bengio, 2015). The DAE also improves the loss over vanilla back-
propagation (Figure 3A). And, in line with these ideas, the latent space learnt by node perturbation
shows a more uniform separation between the digits, compared to the networks trained by backprop-
agation. Feedback alignment, in contrast, does not learn to separate digits in the bottleneck layer
at all (Figure 3B), resulting in scrambled output (Figure 3C). The matched learning rule performs
similarly to backpropagation. These possible explanations are investigated more below. Regardless,

1Code to reproduce these results can be found at: https://github.com/benlansdell/
synthfeedback

6

https://github.com/benlansdell/synthfeedback
https://github.com/benlansdell/synthfeedback

Published as a conference paper at ICLR 2020

these results show that node perturbation is able to successfully communicate error signals through
thin layers of a network as needed.

4.3 CONVOLUTIONAL NEURAL NETWORKS SOLVING CIFAR

Convolutional networks are another known shortcoming of feedback alignment. Here we test the
method on a convolutional neural network (CNN) solving CIFAR (Krizhevsky, 2009). Refer to the
supplementary material for architecture and parameter details. For this network we learn feedback
weights direct from the output layer to each earlier layer: g(hi, ẽi+1;Bi+1) = (Bi+1)TẽN+1 (sim-
ilar to ‘direct feedback alignment’ (Nøkland, 2016)). Here this was solved by gradient-descent.
On CIFAR10 we obtain a test accuracy of 75%. When compared with fixed feedback weights and
backpropagation, we see it is advantageous to learn feedback weights on CIFAR10 and marginally
advantageous on CIFAR100 (Table 1). This shows the method can be used in a CNN, and can solve
challenging computer vision problems without weight transport.

Table 1: Mean test accuracy of CNN over 5 runs trained with backpropagation, node perturbation
and direct feedback alignment (DFA) (Nøkland, 2016; Crafton et al., 2019).

dataset backpropagation node perturbation DFA
CIFAR10 76.9±0.1 74.8±0.2 72.4±0.2
CIFAR100 51.2±0.1 48.1±0.2 47.3±0.1

4.4 WHAT IS HELPING, NOISY ACTIVATIONS OR APPROXIMATING THE GRADIENT?

To solve the credit assignment problem, our method utilizes two well-explored strategies in deep
learning: adding noise (generally used to regularize (Bengio et al., 2013; Gulcehre et al., 2016;
Neelakantan et al., 2015; Bishop, 1995)), and approximating the true gradients (Jaderberg et al.,
2016). To determine which of these features are responsible for the improvement in performance
over fixed weights, in the autoencoding and CIFAR10 cases, we study the performance while varying
where noise is added to the models (Table 2). Noise can be added to the activations (BP and FA w.
noise, Table 2), or to the inputs, as in a denoising autoencoder (DAE, Table 2). Or, noise can be used
only in obtaining an estimator of the true gradients (as in our method; NP, Table 2). For comparison,
a noiseless version of our method must instead assume access to the true gradients, and use this
to learn feedback weights (i.e. synthetic gradients (Jaderberg et al., 2016); SG, Table 2). Each of
these models is tested on the autoencoding and CIFAR10 tasks, allowing us to better understand the
performance of the node perturbation method.

Table 2: Mean loss (plus/minus standard error) on autoencoding MNIST task (left) and mean accu-
racy on CIFAR10 task (right). Shaded cells indicate methods which do not use weight transport or
exact gradient supervision. Best performance indicated in boldface. Implementation details of each
method is provided in the supplementary material.

(a) MNIST autoencoder

method noise no noise
BP(SGD) 536.8±2.1 609.8±14.4

BP(ADAM) 522.3±0.4 533.3±2.2
FA 768.2±2.7 759.1±3.3

DAE 539.8±4.9 –
NP (ours) 515.3±4.1 –

SG – 521.6±2.3
Matched 629.9±1.1 615.0±0.4

(b) CIFAR10 classification

method noise no noise
BP 76.8±0.2 76.9±0.1

DFA 72.4±0.2 72.3±0.1
NP (ours) 74.8±0.2 –

SG – 75.3±0.3

In the autoencoding task, both noise (either in the inputs or the activations) and using an approxima-
tor to the gradient improve performance (Table 2, left). Noise benefits performance for both SGD
optimization and ADAM (Kingma & Ba, 2015). In fact in this task, the combination of both of

7

Published as a conference paper at ICLR 2020

these factors (i.e. our method) results in better performance over either alone. Yet, the addition of
noise to the activations does not help feedback alignment. This suggests that our method is indeed
learning useful approximations of the error signals, and is not merely improving due to the addition
of noise to the system. In the CIFAR10 task (Table 2, right), the addition of noise to the activations
has minimal effect on performance, while having access to the true gradients (SG) does result in
improved performance over fixed feedback weights. Thus in these tasks it appears that noise does
not always help, but using a less-based gradient estimator does, and noisy activations are one way of
obtaining an unbiased gradient estimator. Our method also is the best performing method that does
not require either weight transport or access to the true gradients as a supervisory signal.

5 DISCUSSION

Here we implement a perturbation-based synthetic gradient method to train neural networks. We
show that this hybrid approach can be used in both fully connected and convolutional networks. By
removing the symmetric feedforward/feedback weight requirement imposed by backpropagation,
this approach is a step towards more biologically-plausible deep learning. By reaching compara-
ble performance to backpropagation on MNIST, the method is able to solve larger problems than
perturbation-only methods (Xie & Seung, 2004; Fiete et al., 2007; Werfel et al., 2005). By working
in cases that feedback alignment fails, the method can provide learning without weight transport in
a more diverse set of network architectures. We thus believe the idea of integrating both local and
global feedback signals is a promising direction towards biologically plausible learning algorithms.

Of course, the method does not solve all issues with implementing gradient-based learning in a
biologically plausible manner. For instance, in the current implementation, the forward and the
backwards passes are locked. Here we just focus on the weight transport problem. A current draw-
back is that the method does not reach state-of-the-art performance on more challenging datasets
like CIFAR. We focused on demonstrating that it is advantageous to learn feedback weights, when
compared with fixed weights, and successfully did so in a number of cases. However, we did not
use any additional data augmentation and regularization methods often employed to reach state-of-
the-art performance. Thus fully characterizing the performance of this method remains important
future work. The method also does not tackle the temporal credit assignment problem, which has
also seen recent progress in biologically plausible implementation Ororbia et al. (2019b;a).

However the method does has a number of computational advantages. First, without weight trans-
port the method has better data-movement performance (Crafton et al., 2019; Akrout et al., 2019),
meaning it may be more efficiently implemented than backpropagation on specialized hardware.
Second, by relying on random perturbations to measure gradients, the method does not rely on the
environment to provide gradients (compared with e.g. Czarnecki et al. (2017a); Jaderberg et al.
(2016)). Our theoretical results are somewhat similar to that of Alain & Bengio (2015), who demon-
strate that a denoising autoencoder converges to the unperturbed solution as Gaussian noise goes to
zero. However our results apply to subgaussian noise more generally.

While previous research has provided some insight and theory for how feedback alignment works
(Lillicrap et al., 2016; Ororbia et al., 2018; Moskovitz et al., 2018; Bartunov et al., 2018; Baldi et al.,
2018) the effect remains somewhat mysterious, and not applicable in some network architectures.
Recent studies have shown that some of these weaknesses can be addressed by instead imposing sign
congruent feedforward and feedback matrices (Xiao et al., 2018). Yet what mechanism may produce
congruence in biological networks is unknown. Here we show that the shortcomings of feedback
alignment can be addressed in another way: the system can learn to adjust weights as needed to
provide a useful error signal. Our work is closely related to Akrout et al. (2019), which also uses
perturbations to learn feedback weights. However our approach does not divide learning into two
phases, and training of the feedback weights does not occur in a layer-wise fashion, assuming only
one layer is noisy at a time, which is a strong assumption. Here instead we focus on combining
global and local learning signals.

Here we tested our method in an idealized setting. However the method is consistent with neuro-
biology in two important ways. First, it involves separate learning of feedforward and feedback
weights. This is possible in cortical networks, where complex feedback connections exist between
layers (Lacefield et al., 2019; Richards & Lillicrap, 2019) and pyramidal cells have apical and basal
compartments that allow for separate integration of feedback and feedforward signals (Guerguiev

8

Published as a conference paper at ICLR 2020

et al., 2017; Körding & König, 2001). A recent finding that apical dendrites receive reward informa-
tion is particularly interesting (Lacefield et al., 2019). Models like Guerguiev et al. (2017) show how
the ideas in this paper may be implemented in spiking neural networks. We believe such models can
be augmented with a perturbation-based rule like ours to provide a better learning system.

The second feature is that perturbations are used to learn the feedback weights. How can a neu-
ron measure these perturbations? There are many plausible mechanisms (Seung, 2003; Xie & Se-
ung, 2004; Fiete & Seung, 2006; Fiete et al., 2007). For instance, birdsong learning uses empiric
synapses from area LMAN (Fiete et al., 2007), others proposed it is approximated (Legenstein et al.,
2010; Hoerzer et al., 2014), or neurons could use a learning rule that does not require knowing the
noise (Lansdell & Kording, 2018). Further, our model involves the subtraction of a baseline loss
to reduce the variance of the estimator. This does not affect the expected value of the estimator
– technically the baseline could be removed or replaced with an approximation (Legenstein et al.,
2010; Loewenstein & Seung, 2006). Thus both separation of feedforward and feedback systems and
perturbation-based estimators can be implemented by neurons.

As RL-based methods do not scale by themselves, and exact gradient signals are infeasible, the
brain may well use a feedback system trained through reinforcement signals to usefully approximate
gradients. There is a large space of plausible learning rules that can learn to use feedback signals in
order to more efficiently learn, and these promise to inform both models of learning in the brain and
learning algorithms in artificial networks. Here we take an early step in this direction.

REFERENCES

Mohamed Akrout, Collin Wilson, Peter C Humphreys, Timothy Lillicrap, and Douglas Tweed. Deep
Learning without Weight Transport. ArXiv e-prints, 2019.

Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data-generating
distribution. Journal of Machine Learning Research, 15:3563–3593, 2015. ISSN 15337928.

Pierre Baldi, Peter Sadowski, and Zhiqin Lu. Learning in the Machine: Random Backpropagation
and the Deep Learning Channel. Artificial Intelligence, 260:1–35, 2018. ISSN 00043702. doi:
10.1016/j.artint.2018.03.003. URL http://arxiv.org/abs/1612.02734.

Sergey Bartunov, Adam Santoro, Blake Richard, Geoffrey Hinton, and Timothy Lillicrap. Assessing
the scalability of biologically-motivated deep learning algorithms and architectures. ArXiv e-
prints, 2018. ISSN 18979483. doi: 10.20452/pamw.3281.

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising auto-encoders
as generative models. Advances in Neural Information Processing Systems, pp. 1–9, 2013. ISSN
10495258.

Chris M. Bishop. Training with Noise is Equivalent to Tikhonov Regularization. Neural Computa-
tion, 7(1):108–116, 1995. ISSN 0899-7667. doi: 10.1162/neco.1995.7.1.108.

Guy Bouvier, Claudia Clopath, Célian Bimbard, Jean-Pierre Nadal, Nicolas Brunel, Vincent Hakim,
and Boris Barbour. Cerebellar learning using perturbations. bioRxiv, pp. 053785, 2016. doi:
10.1101/053785. URL http://biorxiv.org/lookup/doi/10.1101/053785.

Brian Crafton, Abhinav Parihar, Evan Gebhardt, and Arijit Raychowdhury. Direct Feedback Align-
ment with Sparse Connections for Local Learning. ArXiv e-prints, pp. 1–13, 2019.

Wojciech M. Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pas-
canu. Sobolev training for neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 30, pp. 4278–4287. Curran Associates, Inc., 2017a. URL http://papers.nips.
cc/paper/7015-sobolev-training-for-neural-networks.pdf.

Wojciech Marian Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals,
and Koray Kavukcuoglu. Understanding Synthetic Gradients and Decoupled Neural Interfaces.
ArXiv e-prints, 2017b. ISSN 1938-7228. URL http://arxiv.org/abs/1703.00522.

9

http://arxiv.org/abs/1612.02734
http://biorxiv.org/lookup/doi/10.1101/053785
http://papers.nips.cc/paper/7015-sobolev-training-for-neural-networks.pdf
http://papers.nips.cc/paper/7015-sobolev-training-for-neural-networks.pdf
http://arxiv.org/abs/1703.00522

Published as a conference paper at ICLR 2020

Ila R Fiete and H Sebastian Seung. Gradient learning in spiking neural networks by dynamic pertur-
bation of conductances. Physical Review Letters, 97, 2006. doi: 10.1103/PhysRevLett.97.048104.

Ila R Fiete, Michale S Fee, and H Sebastian Seung. Model of Birdsong Learning Based on Gradient
Estimation by Dynamic Perturbation of Neural Conductances. Journal of neurophysiology, 98:
2038–2057, 2007. doi: 10.1152/jn.01311.2006.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive reso-
nance. Cognitive Science, 11(1):23 – 63, 1987. ISSN 0364-0213. doi: https://doi.org/
10.1016/S0364-0213(87)80025-3. URL http://www.sciencedirect.com/science/
article/pii/S0364021387800253.

Jordan Guergiuev, Timothy P. Lillicrap, and Blake A. Richards. Towards deep learning with seg-
regated dendrites. eLife, 6:1–37, 2017. ISSN 2050-084X. doi: 10.7554/eLife.22901. URL
http://arxiv.org/abs/1610.00161.

Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with segre-
gated dendrites. Elife, 6, December 2017.

Caglar Gulcehre, Marcin Moczulski, Misha Denil, and Yoshua Bengio. Noisy activation functions.
33rd International Conference on Machine Learning, ICML 2016, 6:4457–4466, 2016.

H A Haenssle, C Fink, R Schneiderbauer, F Toberer, T Buhl, A Blum, A Kalloo, A Ben Hadj
Hassen, L Thomas, A Enk, L Uhlmann, and Reader study level-I and level-II Groups. Man
against machine: diagnostic performance of a deep learning convolutional neural network for
dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol., 29(8):
1836–1842, August 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
Human-Level performance on ImageNet classification. In 2015 IEEE International Conference
on Computer Vision (ICCV), 2015.

Gregor M. Hoerzer, Robert Legenstein, and Wolfgang Maass. Emergence of complex computational
structures from chaotic neural networks through reward-modulated hebbian learning. Cerebral
Cortex, 24(3):677–690, 2014. ISSN 10473211. doi: 10.1093/cercor/bhs348.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients. ArXiv
e-prints, 1, 2016. ISSN 1938-7228. URL http://arxiv.org/abs/1608.05343.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. ICLR 2015,
pp. 1–15, 2015. ISSN 09252312. doi: http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.
1830503. URL http://arxiv.org/abs/1412.6980.

Konrad Kording and Peter Konig. Supervised and Unsupervised Learning with Two Sites of Synap-
tic Integration. Journal of Computational Neuroscience, 11:207–215, 2001.

Konrad P Körding and Peter König. Supervised and unsupervised learning with two sites of synaptic
integration. Journal of computational neuroscience, 11(3):207–215, 2001.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. ISSN 00012475.

Clay O Lacefield, Eftychios A Pnevmatikakis, Liam Paninski, and Randy M Bruno. Reinforcement
Learning Recruits Somata and Apical Dendrites across Layers of Primary Sensory Cortex. Cell
Reports, 26(8):2000–2008.e2, 2019. ISSN 2211-1247. doi: 10.1016/j.celrep.2019.01.093. URL
https://doi.org/10.1016/j.celrep.2019.01.093.

Benjamin James Lansdell and Konrad Paul Kording. Spiking allows neurons to estimate their causal
effect. bioRxiv, pp. 1–19, 2018.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
May 2015.

10

http://www.sciencedirect.com/science/article/pii/S0364021387800253
http://www.sciencedirect.com/science/article/pii/S0364021387800253
http://arxiv.org/abs/1610.00161
http://arxiv.org/abs/1608.05343
http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.celrep.2019.01.093

Published as a conference paper at ICLR 2020

Dong Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 9284:498–515, 2015. ISSN 16113349. doi: 10.1007/
978-3-319-23528-8 31.

Robert Legenstein, Steven M. Chase, Andrew B. Schwartz, Wolfgang Maas, and W. Maass. A
Reward-Modulated Hebbian Learning Rule Can Explain Experimentally Observed Network Re-
organization in a Brain Control Task. Journal of Neuroscience, 30(25):8400–8410, 2010. ISSN
0270-6474. doi: 10.1523/JNEUROSCI.4284-09.2010. URL http://www.jneurosci.
org/cgi/doi/10.1523/JNEUROSCI.4284-09.2010.

Qianli Liao, Joel Z. Leibo, and Tomaso Poggio. How Important is Weight Symmetry in Backprop-
agation? AAAI, 1, 2016. URL http://arxiv.org/abs/1510.05067.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random feed-
back weights support learning in deep neural networks. Nature Communications, 7:13276, 2016.
ISSN 2041-1723. doi: 10.1038/ncomms13276. URL http://dx.doi.org/10.1038/
ncomms13276http://www.nature.com/doifinder/10.1038/ncomms13276.

Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT., 16(2):146,160, 1976.
ISSN 0006-3835.

Y. Loewenstein and H. S. Seung. Operant matching is a generic outcome of synaptic plasticity based
on the covariance between reward and neural activity. Proceedings of the National Academy of
Sciences, 103(41):15224–15229, 2006. ISSN 0027-8424. doi: 10.1073/pnas.0505220103. URL
http://www.pnas.org/cgi/doi/10.1073/pnas.0505220103.

David Marr. A theory of cerebellar cortex. J. Physiol, 202:437–470, 1969. ISSN 0022-3751. doi:
10.2307/1776957.

Marco Martinolli, Wulfram Gerstner, and Aditya Gilra. Multi-Timescale Memory Dynamics Extend
Task Repertoire in a Reinforcement Learning Network With Attention-Gated Memory. Front.
Comput. Neurosci. . . . , 12(July):1–15, 2018. doi: 10.3389/fncom.2018.00050.

Thomas Miconi. Biologically plausible learning in recurrent neural networks reproduces neural
dynamics observed during cognitive tasks. eLife, 6:1–24, 2017. ISSN 2050084X. doi: 10.7554/
eLife.20899.

Thomas Miconi, Jeff Clune, and Kenneth O. Stanley. Differentiable plasticity: training plastic
neural networks with backpropagation. ArXiv e-prints, 2018. ISSN 1938-7228. doi: arXiv:
1804.02464v2. URL http://arxiv.org/abs/1804.02464.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015.

Theodore H. Moskovitz, Ashok Litwin-kumar, and L.f. Abbott. Feedback alignment in deep
convolutional networks. arXiv Neural and Evolutionary Computing, pp. 1–10, 2018. doi:
arXiv:1812.06488v1. URL http://arxiv.org/abs/1812.06488.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding Gradient Noise Improves Learning for Very Deep Networks. pp. 1–11,
2015. URL http://arxiv.org/abs/1511.06807.

Arild Nøkland. Direct Feedback Alignment Provides Learning in Deep Neural Networks. Advances
in neural information processing systems, 2016.

Alexander Ororbia, Ankur Mali, C. Lee Giles, and Daniel Kifer. Continual Learning of Recurrent
Neural Networks by Locally Aligning Distributed Representations. IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–13, 2019a. URL http://arxiv.org/abs/1810.
07411.

11

http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4284-09.2010
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4284-09.2010
http://arxiv.org/abs/1510.05067
http://dx.doi.org/10.1038/ncomms13276 http://www.nature.com/doifinder/10.1038/ncomms13276
http://dx.doi.org/10.1038/ncomms13276 http://www.nature.com/doifinder/10.1038/ncomms13276
http://www.pnas.org/cgi/doi/10.1073/pnas.0505220103
http://arxiv.org/abs/1804.02464
http://arxiv.org/abs/1812.06488
http://arxiv.org/abs/1511.06807
http://arxiv.org/abs/1810.07411
http://arxiv.org/abs/1810.07411

Published as a conference paper at ICLR 2020

Alexander Ororbia, Ankur Mali, Daniel Kifer, and C. Lee Giles. Lifelong Neural Predictive Coding:
Sparsity Yields Less Forgetting when Learning Cumulatively. Arxiv e-prints, pp. 1–11, 2019b.
URL http://arxiv.org/abs/1905.10696.

Alexander G. Ororbia, Ankur Mali, Daniel Kifer, and C. Lee Giles. Conducting Credit Assignment
by Aligning Local Representations. ArXiv e-prints, pp. 1–27, 2018. URL http://arxiv.
org/abs/1803.01834.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation and
Approximate Inference in Deep Generative Models. Proceedings of the 31st International
Conference on Machine Learning, PMLR, 32(2):1278–1286, 2014. ISSN 10495258. doi:
10.1051/0004-6361/201527329. URL http://arxiv.org/abs/1401.4082.

Blake A Richards and Timothy P Lillicrap. Dendritic solutions to the credit assignment problem.
Current Opinion in Neurobiology, 54:28–36, 2019. ISSN 0959-4388. doi: 10.1016/j.conb.2018.
08.003. URL https://doi.org/10.1016/j.conb.2018.08.003.

Jaldert O Rombouts, Sander M Bohte, and Pieter R Roelfsema. How Attention Can Create Synaptic
Tags for the Learning of Working Memories in Sequential Tasks. PLoS Computational Biology,
11(3):1–34, 2015. ISSN 15537358. doi: 10.1371/journal.pcbi.1004060.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. Nature, 323(9):533–536, 1986. URL http://books.google.com/
books?hl=en{&}lr={&}id=FJblV{_}iOPjIC{&}oi=fnd{&}pg=PA213{&}dq=
Learning+representations+by+back-propagating+errors{&}ots=
zYGs8pD1WO{&}sig=VeKSS{_}{_}6gXxof0BSZeCJhRDIdwg.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li Fei-Fei.
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252, 2015.

Benjamin Scellier and Yoshua Bengio. Equilibrium Propagation: Bridging the Gap Between
Energy-Based Models and Backpropagation. arXiv, 11(1987):1–13, 2016. ISSN 1662-5188.
doi: 10.3389/fncom.2017.00024. URL http://arxiv.org/abs/1602.05179.

Jürgen Schmidhuber. Networks Adjusting Networks. In Proceedings of ‘Distributed Adaptive Neu-
ral Information Processing’, St.Augustin, pp. 24–25. Oldenbourg, 1990.

Sebastian Seung. Learning in Spiking Neural Networks by Reinforcement of Stochastics
Transmission. Neuron, 40:1063–1073, 2003. URL papers2://publication/uuid/
5D6B29BF-1380-4D78-A152-AF8F233DE7F9.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550(7676):354–359, October 2017.

H Francis Song, Guangyu R Yang, and Xiao Jing Wang. Reward-based training of recurrent neural
networks for cognitive and value-based tasks. eLife, 6:1–24, 2017. ISSN 2050084X. doi: 10.
7554/eLife.21492.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Mazagol. Extracting and
composing robust features with denoising autoencoders. ICML 2008, 2008.

Paul Werbos. Applications of advances in nonlinear sensitivity analysis. Springer, Berlin, 1982.

Paul Werbos. Approximate dynamic programming for real-time control and neural modeling. In
Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches, chapter 13. Multi-
science Press, Inc., New York, 1992.

Justin Werfel, Xiaohui Xie, and H. Sebastian Seung. Learning Curves for Stochastic Gradient De-
scent in Linear Feedforward Networks. Neural Computation, 17(12):2699–2718, 2005. ISSN
0899-7667. doi: 10.1162/089976605774320539. URL http://www.mitpressjournals.
org/doi/10.1162/089976605774320539.

12

http://arxiv.org/abs/1905.10696
http://arxiv.org/abs/1803.01834
http://arxiv.org/abs/1803.01834
http://arxiv.org/abs/1401.4082
https://doi.org/10.1016/j.conb.2018.08.003
http://books.google.com/books?hl=en{&}lr={&}id=FJblV{_}iOPjIC{&}oi=fnd{&}pg=PA213{&}dq=Learning+representations+by+back-propagating+errors{&}ots=zYGs8pD1WO{&}sig=VeKSS{_}{_}6gXxof0BSZeCJhRDIdwg
http://books.google.com/books?hl=en{&}lr={&}id=FJblV{_}iOPjIC{&}oi=fnd{&}pg=PA213{&}dq=Learning+representations+by+back-propagating+errors{&}ots=zYGs8pD1WO{&}sig=VeKSS{_}{_}6gXxof0BSZeCJhRDIdwg
http://books.google.com/books?hl=en{&}lr={&}id=FJblV{_}iOPjIC{&}oi=fnd{&}pg=PA213{&}dq=Learning+representations+by+back-propagating+errors{&}ots=zYGs8pD1WO{&}sig=VeKSS{_}{_}6gXxof0BSZeCJhRDIdwg
http://books.google.com/books?hl=en{&}lr={&}id=FJblV{_}iOPjIC{&}oi=fnd{&}pg=PA213{&}dq=Learning+representations+by+back-propagating+errors{&}ots=zYGs8pD1WO{&}sig=VeKSS{_}{_}6gXxof0BSZeCJhRDIdwg
http://arxiv.org/abs/1602.05179
papers2://publication/uuid/5D6B29BF-1380-4D78-A152-AF8F233DE7F9
papers2://publication/uuid/5D6B29BF-1380-4D78-A152-AF8F233DE7F9
http://www.mitpressjournals.org/doi/10.1162/089976605774320539
http://www.mitpressjournals.org/doi/10.1162/089976605774320539

Published as a conference paper at ICLR 2020

Ronald Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8:299–256, 1992.

Will Xiao, Honglin Chen, Qianli Liao, and Tomaso Poggio. Biologically-Plausible Learning Algo-
rithms Can Scale to Large Datasets. ArXiv e-prints, 92, 2018.

Xiaohui Xie and H. Sebastian Seung. Learning in neural networks by reinforcement of irregular
spiking. Physical Review E, 69, 2004. ISSN 08966273. doi: 10.1016/S0896-6273(03)00761-X.

13

Published as a conference paper at ICLR 2020

A PROOFS

We review the key components of the model. Data (x,y) ∈ D are drawn from a distribution ρ. The
loss function is linearized:

L̃ ≈ L+
∂L
∂hij

chξ
i
j , (7)

such that

E
(

(L̃ − L)chξ
i
j |x,y

)
≈ c2h

∂L
∂hij

∣∣∣∣
x,y

,

with expectation taken over the noise distribution ν(ξ). This suggests a good estimator of the loss
gradient is

λ̂i := (L̃(x,y, ξ)− L(x,y))
ξi

ch
. (8)

Let ẽi be the error signal computed by backpropagating the synthetic gradients:

ẽi =

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;(

(B̂i+1)Tẽi+1
)
◦ σ′(W ihi−1), 1 ≤ i ≤ N.

Then parameters Bi+1 are estimated by solving the least squares problem:

B̂i+1 = arg min
B

E
∥∥∥BTẽi+1 − λ̂i

∥∥∥2
2
. (9)

Note that the matrix-vector form of backpropagation given here is setup so that we can think of each
term as either a vector for a single input, or as matrices corresponding to a set of T inputs. Here we
focus on the question, under what conditions can we show that B̂i+1 →W i+1, as T →∞?

One way to find an answer is to define the synthetic gradient in terms of the system without noise
added. Then BTẽ is deterministic with respect to x,y and, assuming L̃ has a convergent power
series around ξ = 0, we can write

E(λ̂i|x,y) = E

(
1

c2h

[
∂L
∂hi

(chξ
i
j)

2 +

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)
m+1

]
|x,y

)

= (W i+1)Tei+1 + E

(
1

c2h

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)
m+1|x,y

)
.

Taken together these suggest we can prove B̂i+1 →W i+1 in the same way we prove consistency of
the linear least squares estimator.

For this to work we must show the expectation of the Taylor series approximation (1) is well behaved.
That is, we must show the expected remainder term of the expansion:

E ij(ch) = E

[
1

c2h

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)
m+1|x,y

]
,

is finite and goes to zero as ch → 0. This requires some additional assumptions on the problem.

We make the following assumptions:

• A1: the noise ξ is subgaussian,
• A2: the loss function L(x,y) is analytic on D,
• A3: the error matrices ẽi(ẽi)T are full rank, for 1 ≤ i ≤ N + 1, with probability 1,
• A4: the mean of the remainder and error terms is bounded:

E
[
E i(ch)(ẽi+1)T

]
<∞,

for 1 ≤ i ≤ N .

14

Published as a conference paper at ICLR 2020

Consider first convergence of the final layer feedback matrix, BN+1. In the final layer it is true that
eN+1 = ẽN+1.
Theorem 1. Assume A1-4. For gFA(hi, ẽi+1;Bi+1) = Bi+1ẽi+1, then the least squares estimator

(B̂N+1)T := λ̂N (eN+1)T
(
eN+1(eN+1)T

)−1
, (10)

solves (3) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂N+1 = WN+1.

Proof. Let L(m)
ij := ∂mL

∂him
j

. We first show that, under A1-2, the conditional expectation of the esti-

mator (2) converges to the gradient L(1)
Nj as ch → 0. For each λ̂Nj , by A2, we have the following

series expanded around ξ = 0:

λ̂Nj =
1

c2h

∞∑
m=1

L(m)
ij

m!
(chξ

N
j)m+1.

Taking a conditional expectation gives:

E(λ̂Nj |x,y) =(WN+1)TeN+1 + E

[
1

c2h

∞∑
m=2

L(m)
Nj

m!
(chξ

N
j)m+1|x,y

]
.

We must show the remainder term

EN (ch) = E

[
1

c2h

∞∑
m=2

L(m)
Nj

m!
(chξ

N
j)m+1|x,y

]
,

goes to zero as ch → 0. This is true provided each moment E((ξNj)m|x,y) is sufficiently well-
behaved. Using Jensen’s inequality and the triangle inequality in the first line, we have that

∣∣EN (ch)
∣∣ ≤ E

[
1

c2h

∞∑
m=2

∣∣∣∣∣L
(m)
Nj

m!

∣∣∣∣∣ |chξNj |m+1|x,y

]
, ∀(x,y) ∈ D

[monotone convergence] =

∞∑
m=2

∣∣∣∣∣L
(m)
Nj

m!

∣∣∣∣∣ (ch)m−1E
[
|ξNj |m+1

]
[subgaussian] ≤ K

∞∑
m=2

∣∣∣∣∣L
(m)
Nj

m!

∣∣∣∣∣ (ch)m−1(
√
m+ 1)m+1

= O(ch) as ch → 0. (11)

With this in place, we have that the problem (9) is close to a linear least squares problem, since

λ̂N = (WN+1)TeN+1 + EN (ch) + ηN , (12)

with residual ηN = λ̂N − E(λ̂N |x,y). The residual satisfies

E
(
eN+1(ηN)T

)
= E(eN+1(λ̂N)T − eN+1E((λ̂N)T|x,y))

= E
(
eN+1(λ̂N)T − E

(
eN+1(λ̂N)T|x,y

))
= 0. (13)

This follows since eN+1 is defined in relation to the baseline loss, not the stochastic loss, meaning
it is measurable with respect to (x,y) and can be moved into the conditional expectation.

From (12) and A3, we have that the least squares estimator (10) satisfies

(B̂N+1)T = (WN+1)T + (EN (ch) + ηN)(eN+1)T(eN+1(eN+1)T)−1.

15

Published as a conference paper at ICLR 2020

Thus, using the continuous mapping theorem

plim
T→∞

(B̂N+1)T = (WN+1)T +

[
plim
T→∞

1

T
(EN (ch) + ηN)(eN+1)T

] [
plim
T→∞

1

T
eN+1(eN+1)T

]−1
[WLLN] = (WN+1)T + E

[
(E(ch) + ηN)(eN+1)T

] [
E(eN+1(eN+1)T)

]−1
[Eq. (13)] = (WN+1)T + E

[
E(ch)(eN+1)T

] [
E(eN+1(eN+1)T)

]−1
[A4 and Eq. (11)] = (WN+1)T +O(ch).

Then we have:
lim
ch→0

plim
T→∞

B̂N+1 = WN+1.

We can use Theorem 1 to establish convergence over the rest of the layers of the network when the
activation function is the identity.
Theorem 2. Assume A1-4. For gFA(hi, ẽi+1;Bi+1) = Bi+1ẽi+1 and σ(x) = x, the least squares
estimator

(B̂i)T := λ̂i−1(ẽi)T
(
ẽi(ẽi)T

)−1
1 ≤ i ≤ N + 1, (14)

solves (9) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂i = W i, 1 ≤ i ≤ N + 1.

Proof. Define
W̃ i(c) := plim

T→∞
B̂i,

assuming this limit exists. From Theorem 1 the top layer estimate B̂N+1 converges in probability
to W̃N+1(c).

We can then use induction to establish that B̂j in the remaining layers also converges in probability
to W̃ j(c). That is, assume that B̂j converge in probability to W̃ j(c) in higher layersN +1 ≥ j > i.
Then we must establish that B̂i also converges in probability.

To proceed it is useful to also define

˜̃e(c)i :=

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;(

(W̃ i+1(c))T˜̃ei+1
)
◦ σ′(W ihi−1), 1 ≤ i ≤ N,

as the error signal backpropagated through the converged (but biased) weight matrices W̃ (c). Again
it is true that ˜̃eN+1 = eN+1.

As in Theorem 1, the least squares estimator has the form:

(B̂i)T = λ̂i−1(ẽi)T
(
ẽi(ẽi)T

)−1
.

Thus, again by the continuous mapping theorem:

plim
T→∞

(B̂i)T =

[
plim
T→∞

1

T
λ̂i−1(ẽi)T

] [
plim
T→∞

1

T
ẽi(ẽi)T

]−1
=

[
plim
T→∞

1

T
λ̂i−1(eN+1)TB̂N+1 · · · B̂i+1

] [
plim
T→∞

1

T
ẽi(ẽi)T

]−1
In this case continuity again allows us to separate convergence of each term in the product:

plim
T→∞

1

T
λ̂i−1(eN+1)TB̂N+1 · · · B̂i+1 =

[
plim
T→∞

1

T
λ̂i−1(eN+1)T

] [
plim
T→∞

B̂N+1

]
· · ·
[

plim
T→∞

B̂i+1

]
(15)

= E(λ̂i−1(eN+1)T)WN+1(c) · · ·W i+1(c),

= E(λ̂i−1(˜̃ei(c))T)

16

Published as a conference paper at ICLR 2020

using the weak law of large numbers in the first term, and the induction assumption for the remaining
terms. In the same way

plim
T→∞

1

T
ẽi(ẽi)T = E(˜̃ei(c)(˜̃ei(c))T).

Note that the induction assumption also implies limc→0
˜̃ei(c) = ei. Thus, putting it together, by

A3, A4 and the same reasoning as in Theorem 1 we have the result:

lim
ch→0

plim
T→∞

(B̂i)T = lim
c→0

[
(W i)TE(ei(˜̃ei(c))T) + E(E i−1(c)(˜̃ei(c))T

] [
E(˜̃ei(c)(˜̃ei(c))T)

]−1
= (W i)T.

Corollary 1. Assume A1-4. For gDFA(hi, ẽN+1;Bi+1) = Bi+1ẽN+1 and σ(x) = x, the least
squares estimator

(B̂i)T := λ̂i−1(ẽN+1)T
(
ẽN+1(ẽN+1)T

)−1
1 ≤ i ≤ N + 1, (16)

solves (3) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂i =

i∏
j=N+1

W j , 1 ≤ i ≤ N + 1.

Proof. For a deep linear network notice that the node perturbation estimator can be expressed as:

λ̂i = (W i+1 · · ·WN+1)TeN+1 + E i(ch) + ηi, (17)

where the first term represents the true gradient, given by the simple linear backpropagation, the
second and third terms are the remainder and a noise term, as in Theorem 1. Define

V i :=

i∏
j=N+1

Wj .

Then following the same reasoning as the proof of Theorem 1, we have:

plim
T→∞

(B̂i+1)T = (V i+1)T +

[
plim
T→∞

1

T
(E i(ch) + ηi)(eN+1)T

] [
plim
T→∞

1

T
eN+1(eN+1)T

]−1
= (V i+1)T + E

[
(E(ch) + ηi)(eN+1)T

] [
E(eN+1(eN+1)T)

]−1
= (V i+1)T + E

[
E(ch)(eN+1)T

] [
E(eN+1(eN+1)T)

]−1
= (V i+1)T +O(ch).

Then we have:
lim
ch→0

plim
T→∞

B̂i+1 = V i+1.

A.1 DISCUSSION OF ASSUMPTIONS

It is worth making the following points on each of the assumptions:

• A1. In the paper we assume ξ is Gaussian. Here we prove the more general result of
convergence for any subgaussian random variable.

• A2. In practice this may be a fairly restrictive assumption, since it precludes using relu non-
linearities. Other common choices, such as hyperbolic tangent and sigmoid non-linearities
with an analytic cost function do satisfy this assumption, however.

• A3. It is hard to establish general conditions under which ẽi(ẽi)T will be full rank. While
it may be a reasonable assumption in some cases.

17

Published as a conference paper at ICLR 2020

10 2

10 1

100

101

re
la

tiv
e

 e
rr

or

10 2

10 1

100

101

40

50

60

70

80

90

100

si
gn

 c
on

gr
ue

nc
e

(%
)

10 2

10 1

100

101

N = 30

N = 100

N = 300

N = 1000

10 2

10 1

100

101

0 250 500 7501000

10 2

10 1

100

101

10 2

10 1

100

101

10 2

10 1

100

101

10 2

10 1

100

101

Noise variance Num ber of neurons

Layer 1

Layer 2

ch =0.1

ch =0.01

ch =0.001

re
la

tiv
e

 e
rr

or

re
la

tiv
e

 e
rr

or
re

la
tiv

e
 e

rr
or

de
gr

e
es

de
gr

e
es

de
gr

e
es

de
gr

e
es

0 250 500 7501000 0 250 500 7501000 0 250 500 7501000 0 250 500 7501000

iteration (x103) iteration (x103)iteration (x103)iteration (x103)iteration (x103)

A) E)D)C)B)

40

50

60

70

80

90

100

si
gn

 c
on

gr
ue

nc
e

(%
)

Figure 4: Convergence of node perturbation method in a two hidden layer neural network (784-50-
20-10) with MSE loss, for varying noise levels c. Node perturbation is used to estimate feedback
matrices that provide gradient estimates for fixed W . (A) Relative error (‖W i − Bi‖F /‖W i‖F)
for each layer. (B) Angle between true gradient and synthetic gradient estimate at each layer. (C)
Percentage of signs in W i and Bi that are in agreement. (D) Relative error when number of neurons
is varied (784-N-50-10). (E) Angle between true gradient and synthetic gradient estimate at each
layer.

Extensions of Theorem 2 to a non-linear network may be possible. However, the method of proof
used here is not immediately applicable because the continuous mapping theorem can not be applied
in such a straightforward fashion as in Equation (15). In the non-linear case the resulting sums over
all observations are neither independent or identically distributed, which makes applying any law of
large numbers complicated.

B VALIDATION WITH FIXED W

We demonstrate the method’s convergence in a small non-linear network solving MNIST for dif-
ferent noise levels, ch, and layer widths (Figure 4). As basic validation of the method, in this
experiment the feedback matrices are updated while the feedforward weights W i are held fixed. We
should expect the feedback matrices Bi to converge to the feedforward matrices W i. Here different
noise variance does results equally accurate estimators (Figure 4A). The estimator correctly esti-
mates the true feedback matrix W 2 to a relative error of 0.8%. The convergence is layer dependent,
with the second hidden layer matrix, W 2, being accurately estimated, and the convergence of the
first hidden layer matrix, W 1, being less accurately estimated. Despite this, the angles between the
estimated gradient and the true gradient (proportional to eTWBTẽ) are very close to zero for both
layers (Figure 4B) (less than 90 degrees corresponds to a descent direction). Thus the estimated
gradients strongly align with true gradients in both layers. Recent studies have shown that sign con-
gruence of the feedforward and feedback matrices is all that is required to achieve good performance
Liao et al. (2016); Xiao et al. (2018). Here significant sign congruence is achieved in both layers
(Figure 4C), despite the matrices themselves being quite different in the first layer. The number of
neurons has an effect on both the relative error in each layer and the extent of alignment between
true and synthetic gradient (Figure 4D,E). The method provides useful error signals for a variety of
sized networks, and can provide useful error information to layers through a deep network.

C EXPERIMENT DETAILS

Details of each task and parameters are provided here. All code is implemented in TensorFlow.

18

Published as a conference paper at ICLR 2020

C.1 FIGURE 2

Networks are 784-50-20-10 with an MSE loss function. A sigmoid non-linearity is used. A batch
size of 32 is used. B is updated using synthetic gradient updates with learning rate η = 0.0005,
W is updated with learning rate 0.0004, standard deviation of noise is 0.01. Same step size is used
for feedback alignment, backpropagation and node perturbation. An initial warm-up period of 1000
iterations is used, in which the feedforward weights are frozen but the feedback weights are adjusted.

C.2 FIGURE 3

Network has dimensions 784-200-2-200-784. Activation functions are, in order: tanh, identity, tanh,
relu. MNIST input data with MSE reconstruction loss is used. A batch size of 32 was used. In this
case stochastic gradient descent was used to updateB. Values forW step size, noise variance andB
step size were found by random hyperparameter search for each method. The denoising autoencoder
used Gaussian noise with zero mean and standard deviation σ = 0.3 added to the input training data.

C.3 FIGURE 4

Networks are 784-50-20-10 (noise variance) or 784-N-50-10 (number of neurons) solving MNIST
with an MSE loss function. A sigmoid non-linearity is used. A batch size of 32 is used. Here
W is fixed, and B is updated according to an online ridge regression least-squares solution. This
was used becase it converges faster than the gradient-descent based optimization used for learning
B throughout the rest of the text, so is a better test of consistency. A regularization parameter of
γ = 0.1 was used for the ridge regression. That is, for each update, Bi was set to the exact solution
of the following:

B̂i+1 = arg min
B

E
∥∥∥g(hi, ẽi+1;B)− λ̂i

∥∥∥2
2

+ γ‖B‖2F . (18)

C.4 CNN ARCHITECTURE AND IMPLEMENTATION

Code and CNN architecture are based on the direct feedback alignment implementation of Crafton
et al. (2019). Specifically, for both CIFAR10 and CIFAR100, the CNN has the architecture
Conv(3x3, 1x1, 32), MaxPool(3x3, 2x2), Conv(5x5, 1x1, 128), MaxPool(3x3, 2x2), Conv(5x5,
1x1, 256), MaxPool(3x3, 2x2), FC 2048, FC 2048, Softmax(10). Hyperparameters (learning rate,
feedback learning rate, and perturbation noise level) were found through random search. All other
parameters are the same as Crafton et al. (2019). In particular, ADAM optimizer was used, and
dropout with probability 0.5 was used.

C.5 NOISE ABLATION STUDY

The methods listed in Table 2 are implemented as follows. For the autoencoding task: Through
hyperparameter search, a noise standard deviation of c∗h = 0.02 was found to give optimal perfor-
mance for our method. For BP(SGD), BP(ADAM), FA, the ‘noise’ results in the Table are obtained
by adding zero-mean Gaussian noise to the activations with the same standard deviation, c∗h. For the
DAE, a noise standard deviation of ci = 0.3 was added to the inputs of the network. Implementa-
tion of the synthetic gradient method here takes the same form as our method: g(h, e,y;B) = Be
(this contrasts with the form used in Jaderberg et al. (2016): g(h, e,y;B, c) = BTh + c). But the
matrices B are trained by providing true gradients λ, instead of noisy estimators based on node per-
turbation. This is not biologically plausible, but provides a useful baseline to determine the source
of good performance. The other co-adapting baseline we investigate is the ‘matching’ rule (similar
to (Akrout et al., 2019; Rombouts et al., 2015; Martinolli et al., 2018)): the updates to B match
those of W , and weight decay is used to drive the feedforward and feedback matrices to be similar.

For the CIFAR10 results, our hyperparameter search identified a noise standard deviation of ch =
0.067 to be optimal. This was added to the activations . The synthetic gradients took the same form
as above.

19

	Introduction
	Learning feedback weights through perturbations
	Basic setup
	Stochastic networks and gradient descent
	Synthetic gradients via perturbation
	Training a feedback network

	Theoretical results
	Applications
	Fully connected networks solving MNIST
	Auto-encoding MNIST
	Convolutional neural networks solving CIFAR
	What is helping, noisy activations or approximating the gradient?

	Discussion
	Proofs
	Discussion of assumptions

	Validation with fixed W
	Experiment details
	Figure 2
	Figure 3
	Figure 4
	CNN architecture and implementation
	Noise ablation study

