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ABSTRACT

Capsule networks are constrained by the parameter-expensive nature of their layers,
and the general lack of provable equivariance guarantees. We present a variation
of capsule networks that aims to remedy this. We identify that learning all pair-
wise part-whole relationships between capsules of successive layers is inefficient.
Further, we also realise that the choice of prediction networks and the routing
mechanism are both key to equivariance. Based on these, we propose an alternative
framework for capsule networks that learns to projectively encode the manifold
of pose-variations, termed the space-of-variation (SOV), for every capsule-type
of each layer. This is done using a trainable, equivariant function defined over
a grid of group-transformations. Thus, the prediction-phase of routing involves
projection into the SOV of a deeper capsule using the corresponding function. As a
specific instantiation of this idea, and also in order to reap the benefits of increased
parameter-sharing, we use type-homogeneous group-equivariant convolutions of
shallower capsules in this phase. We also introduce an equivariant routing mech-
anism based on degree-centrality. We show that this particular instance of our
general model is equivariant, and hence preserves the compositional representation
of an input under transformations. We conduct several experiments on standard
object-classification datasets that showcase the increased transformation-robustness,
as well as general performance, of our model to several capsule baselines.

1 INTRODUCTION

The hierarchical component-structure of visual objects motivates their description as instances of
class-dependent spatial grammars. The production-rules of such grammars specify this structure
by laying out valid type-combinations for components of an object, their inter-geometry, as well
as the behaviour of these with respect to transformations on the input. A system that aims to truly
understand a visual scene must accurately learn such grammars for all constituent objects - in effect,
learning their aggregational structures. One means of doing so is to have the internal representation
of a model serve as a component-parsing of an input across several semantic resolutions. Further,
in order to mimic latent compositionalities in objects, such a representation must be reflective of
detected strengths of possible spatial relationships. A natural structure for such a representation is
a parse-tree whose nodes denote components, and whose weighted parent-child edges denote the
strengths of detected aggregational relationships.

Capsule networks (Hinton et al., 2011), (Sabour et al., 2017) are a family of deep neural networks
that aim to build such distributed, spatially-aware representations in a multi-class setting. Each
layer of a capsule network represents and detects instances of a set of components (of a visual
scene) at a particular semantic resolution. It does this by using vector-valued activations, termed
’capsules’. Each capsule is meant to be interpreted as being representative of a set of generalised
pose-coordinates for a visual object. Each layer consists of capsules of several types that may be
instantiated at all spatial locations depending on the nature of the image. Thus, given an image,
a capsule network provides a description of its components at various ’levels’ of semantics. In
order that this distributed representation across layers be an accurate component-parsing of a visual
scene, and capture meaningful and inherent spatial relationships, deeper capsules are constructed
from shallower capsules using a mechanism that combines backpropagation-based learning, and
consensus-based heuristics.
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Briefly, the mechanism of creating deeper capsules from a set of shallower capsules is as follows.
Each deeper capsule of a particular type receives a set of predictions for its pose from a local pool
of shallower capsules. This happens by using a set of trainable neural networks that the shallower
capsules are given as input into. These networks can be interpreted as aiming to capture possible
part-whole relationships between the corresponding deeper and shallower capsules. The predictions
thus obtained are then combined in a manner that ensures that the result reflects agreement among
them. This is so that capsules are activated only when their component-capsules are in the right spatial
relationship to form an instance of the object-type it represents. The agreement-based aggregation
described just now is termed ’routing’. Multiple routing algorithms exist, for example dynamic
routing (Sabour et al., 2017), EM-routing (Hinton et al., 2018), SVD-based routing (Bahadori, 2018),
and routing based on a clustering-like objective function (Wang & Liu, 2018).

Based on their explicit learning of compositional structures, capsule networks can be seen as
an alternative (to CNNs) for better learning of compositional representations. Indeed, CNN-based
models do not have an inherent mechanism to explicitly learn or use spatial relationships in a visual
scene. Further, the common use of layers that enforce local transformation-invariance, such as
pooling, further limit their ability to accurately detect compositional structures by allowing for
relaxations in otherwise strict spatial relations (Hinton et al., 2011). Thus, despite some manner
of hierarchical learning - as seen in their layers capturing simpler to more complex features as a
function of depth - CNNs do not form the ideal representational model we seek. It is our belief that
capsule-based models may serve us better in this regard.

This much said, research in capsule networks is still in its infancy, and several issues have to be
overcome before capsule networks can become universally applicable like CNNs. We focus on two
of these that we consider as fundamental to building better capsule network models. First, most
capsule-network models, in their current form, do not scale well to deep architectures. A significant
factor is the fact that all pair-wise relationships between capsules of two layers (upto a local pool) are
explicitly modelled by a unique neural network. Thus, for a ’convolutional capsule’ layer - the number
of trainable neural networks depends on the product of the spatial extent of the windowing and the
product of the number of capsule-types of each the two layers. We argue that this design is not only
expensive, but also inefficient. Given two successive capsule-layers, not all pairs of capsule-types
have significant relationships. This is due to them either representing object-components that are part
of different classes, or being just incompatible in compositional structures. The consequences of this
inefficiency go beyond poor scalability. For example, due to the large number of prediction-networks
in this design, only simple functions - often just matrices - are used to model part-whole relationships.
While building deep capsule networks, such a linear inductive bias can be inaccurate in layers where
complex objects are represented. Thus, for the purpose of building deeper architectures, as well as
more expressive layers, this inefficiency in the prediction phase must be handled.

The second issue with capsule networks is more theoretical, but nonetheless has implications in
practice. This is the lack, in general, of theoretical guarantees on equivariance. Most capsule networks
only use intuitive heuristics to learn transformation-robust spatial relations among components. This
is acceptable, but not ideal. A capsule network model that can detect compositionalities in a provably-
invariant manner are more useful, and more in line with the basic motivations for capsules.

Both of the above issues are remedied in the following description of our model. First, instead
of learning pair-wise relationships among capsules, we learn to projectively encode a description of
each capsule-type for every layer. This we do by associating each capsule-type with a vector-valued
function, given by a trainable neural network. This network assumes the role of the prediction
mechanism in capsule networks. We interpret the role of this network as a means of encoding the
manifold of legal pose-variations for its associated capsule-type. It is expected that, given proper
training, shallower capsules that have no relationship with a particular capsule-type will project
themselves to a vector of low activation (for example, 2-norm), when input to the corresponding
network. As an aside, it is this mechanism that gives the name to our model. We term this manifold
the ’space-of-variation’ of a capsule-type. Since, we attempt to learn such spaces at each layer, we
name our model ’space-of-variation’ networks (SOVNET). In this design, the number of trainable
networks for a given layer depend on the number of capsule-types of that layer.
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As mentioned earlier, the choice of prediction networks and routing algorithm is important to
having guarantees on learning transformation-invariant compositional relationships. Thus, in order to
ensure equivariance, which we show is sufficient for the above, we use group-equivariant convolutions
(GCNN) (Cohen & Welling, 2016) in the prediction phase. Thus, shallower capsules of a fixed type
are input to a GCNN associated with a deeper capsule-type to obtain predictions for it. Apart from
ensuring equivariance to transformations, GCNNs also allow for greater parameter-sharing (across a
set of transformations), resulting in greater awareness of local object-structures. We argue that this
could potentially improve the quality of predictions when compared to isolated predictions made by
convolutional capsule layers, such as those of (Hinton et al., 2018).

The last contribution of this paper is an equivariant degree-centrality based routing algorithm.
The main idea of this method is to treat each prediction for a capsule as a vertex of a graph, whose
weighted edges are given by a similarity measure on the predictions themselves. Our method uses
the softmaxed values of the degree scores of the affinity matrix of this graph as a set of weights
for aggregating predictions. The key idea being that predictions that agree with a majority of other
predictions for the same capsule get a larger weight - following the principle of routing-by-agreement.
While this method is only heuristic in the sense of optimality, it is provably equivariant and preserves
the capsule-decomposition of an input. We summarise the contributions of this paper in the following:

1. A general framework for a scalable capsule-network model.

2. A particular instantiation of this model that uses equivariant convolutions, and an equivariant,
degree-centrality-based routing algorithm.

3. A graph-based framework for studying the representation of a capsule network, and the
proof of the sufficiency of equivariance for the (qualified) preservation of this representation
under transformations of the input.

4. A set of proof-of-concept, evaluative experiments on affinely transformed variations of
MNIST, FASHIONMNIST, and CIFAR10, as well as separate experiments on KMNIST
and SVHN that showcase the superior adapatability of SOVNET architectures to train and
test-time geometric perturbations of the data, as well as their general performance.

2 SOVNET, EQUIVARIANCE, AND COMPOSITIONALITY

We begin with essential definitions for a layer of SOVNET, and the properties we wish to guarantee.
Given a group (G, ◦), we formally describe the lth layer of a SOVNET architecture as the set of
function-tuples {(f l

i , a
l
i) : 0 ≤ i ≤ Nl − 1; f l

i : G → Rdl

; ali : G → [0, 1]}. Here, Nl denotes the
number of capsule-types at the lth layer, f l

i is a functional description of the dl-dimensional pose-
vectors of instances of the ith capsule-type, and ali is a functional description of the corresponding
activations.

We model each capsule-type as a function over a group of transformations so as to allow for formal
guarantees on transformation-equivariance. Thus, we also model images as function from a group
to a representation-space. The main assumption being that the translation-group is a subgroup of
the group in question. This is similar in approach to (Cohen & Welling, 2016). We wish for each
capsule-type, both pose and activation-wise, to display equivariance. We present a formal definition
of this notion.

Consider a group (G, ◦) and vector spaces V , W . Let T and T ′ be two group-representations for
elements of G over V and W , respectively. Φ: V → W is said to be equivariant with respect to T
and T ′ if ∀g ∈ G, ∀x ∈ V , Φ(Tgx) = T ′gΦ(x).

This definition translates to a preservation on transformations in the input-space to the output-space
- something that allows no loss of information in compositional structures. As in (Cohen & Welling,
2016), we restrict the notion of equivariance in our model by using the operator Lg in place of the
group-representation. Lg is given by [Lgf ](x) = f(g−1x). Thus, if ⊗ denotes an operation between
two functions, we require ([Lgf ] ⊗Ψ)(x) = [Lg(f ⊗Ψ)](x). The operator ⊗ describes the change
in representation space, and is dependent on the nature of the deep learning model. In the case of
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capsule networks (and SOVNET), this change is given by routing among capsules as described in
subsection 2.1.

2.1 SOVNET LAYER

We define the capsule-types of a particular layer as an output of an agreement-based aggregation of
predictions made by the preceding layer. A recursive application of this definition is enough to define
a SOVNET architecture, given an initial set of capsules. A means of obtaining this initial set is given
in section 3. We provide a general framework for the summation-based family of routing procedures
in Algorithm 1.

Algorithm 1 A general summation-based routing algorithm for SOVNET.

Input: {(f l
i , a

l
i)|i ∈ {0, ..., Nl − 1}, f l

i : G→ Rdl

, ali : G→ [0, 1]}
Output: {(f l+1

j , al+1
j )|j ∈ {0, ..., Nl+1 − 1}, f l+1

j : G→ Rdl+1

, al+1
j : G→ [0, 1]}

Trainable Functions: (Ψl+1
j , ·) - projection networks that use operator ·

Sl+1
ij (g) = ((f l

i , a
l
i) ·Ψ

l+1
j )(g) ∀ i, j, ∀g ∈ G

(cl+1
0j (g), ..., cl+1

Nl−1j(g)) = GetWeights(Sl+1
0j (g), ..., Sl+1

Nl−1j(g)) ∀ j, ∀g ∈ G

f l+1
j (g) =

∑Nl−1
i=1 cl+1

i,j (g)Sl+1
ij (g) ∀ j, ∀g ∈ G

al+1
j (g) = Agreement(f l+1

j (g), Sl+1
0j (g), ..., Sl+1

NI−1j(g)) ∀ j

The weighted-sum family of routing algorithms builds deeper capsules using a weighted sum of
predictions made for them by shallower capsules. To ensure that the predictions are combined in a
meaningful manner, different methods can be used to obtain the weights. The role of the function
GetWeights is to represent any such mechanism. The activation of a capsule, representative of
the probability of existence of the object it represents, is determined by the extent of the consensus
among its predictions. This is based on the routing-by-agreement principle of capsule networks. The
Agreement function represents any means of evaluating such consensus.

We instantiate the above algorithm to a specific model, as given in Algorithm 2. In this model,
the Ψl

j are group-equivariant convolutional filters, and the operator · is the corresponding group-
equivariant correlation operator ?. The weights cl+1

ij (g) are, in this routing method, the softmaxed
degree-scores of the affinities among predictions for the same deeper capsule. Further, like in dynamic
routing (Sabour et al., 2017), we also assume that the activation of a capsule is given by its 2-norm.
To ensure that this value is in [0, 1], we use the ’squash’ function of dynamic routing. Thus, we
do not mention it explicitly. Note that we have used the subscript notation to also denote that a
variable is part of a vector, for example Sl+1

ijp (g) denotes the pth element of the dl+1-dimensional
vector Sl+1

ij (g). This new routing algorithm is meant to serve as an alternative to existing iterative
routing strategies such as dynamic routing. An important strength of our method being that there is
no hyperparameter, like that of the number of iterations in dynamic routing or EM routing.

2.2 EQUIVARIANCE, COMPOSITIONALITY AND SOVNET

The SOVNET layer we introduced in Algorithm 2 is group-equivariant with respect to the group
action Lg , where g ∈ G - the set of transformations over which the group-convolution is defined. For
notational convenience, we define ⊗ to be an operator that encapsulates the degree-routing procedure
with prediction networks Ψl+1

j . Thus, the jth capsule-type of the l+1th layer is functionally depicted
as f l+1

j = (F l ⊗ Ψl+1
j ), where F l = (f l

0, ..., f
l
Nl−1). The formal statement of this result is given

below; the proof is presented in the appendix.

Theorem 2.1. The SOVNET layer defined in Algorithm 2, and denoted by the operator ⊗ as given
above, satisfies ([LgF

l]⊗Ψl+1
j ) = (Lg[F l ⊗Ψl+1

j ]), where g belongs to the underlying group of the
equivariant convolution.

Proof. The proof is given in the appendix.
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Algorithm 2 The degree-centrality based routing algorithm for SOVNET.

Input: {f l
i |i ∈ {0, ..., Nl − 1}, f l

i : G→ Rdl}
Output: {f l+1

j |j ∈ {0, ..., Nl+1 − 1}, f l+1
j : G→ Rdl+1}

Trainable Functions: (Ψl+1
j , ?), 0 ≤ j ≤ Nl+1 − 1, - a set of dl+1 group-equivariant convolutional

filters (per capsule-type) that use the group-equivariant correlation operator ?
Sl+1
ijp (g) = (f l

i ? Ψl+1,p
j )(g) =

∑
h∈G

∑dl−1
k=0 f l

ik(h)Ψl+1,p
k (g−1 ◦ h); p ∈ {0, ..., dl+1 − 1}

(cl+1
0j (g), ..., cl+1

Nl−1j(g)) = DegreeScore(Sl+1
0j (g), ..., Sl+1

Nl−1j(g));∀0 ≤ j ≤ Nl+1 − 1, ∀ g
f l+1
j (g) =

∑Nl−1
i=0 cl+1

ij (g)Sl+1
ij (g) ∀ 0 ≤ j ≤ Nl+1 − 1, ∀g ∈ G

f l+1
j (g) = Squash(f l+1

j (g)) =
‖f l+1

j (g)‖2
1+‖f l+1

j (g)‖22
f l+1
j (g); ∀ 0 ≤ j ≤ Nl − 1, ∀ g ∈ G

procedure DEGREESCORE(Sl+1
0j (g), ..., Sl+1

Nl−1j(g))

Aj
ik(g) =

Sl+1
ij (g).Sl+1

kj (g)

‖Sl+1
ij (g)‖2.‖Sl+1

kj (g)‖2
; 0 ≤ i, k ≤ Nl − 1

Degreeji (g) =
∑Nl−1

k=0 (Aj
ik(g)); 0 ≤ i ≤ Nl − 1

cij(g) = exp(Degreeji (g))∑Nl−1

k=0 exp(Degreejk(g))
; 0 ≤ i ≤ Nl − 1

return cij(g) ∀0 ≤ i ≤ Nl − 1

Equivariance is widely considered a desirable inductive bias for a variety of reasons. First,
equivariance mirrors natural label-invariance under transformations. Second, it lends predictability to
the output of a network under (fixed) transformations of the input. These, of course, lead to a greater
robustness in handling transformations of the data. We aim at adding to this list by showing that
equivariance guarantees the preservation of detected compositionalities in a SOVNET architecture.
This is of course quite unsurprising, and has been a significant undercurrent of the capsule-network
idea. Our work completes this intuition with a formal result.

We begin by first defining the notion of a capsule-decomposition graph. This graph is formed from
the activations and the routing weights of a SOVNET. Specifically, given an input to a SOVNET
model, each capsule of every type is a vertex in this graph. We construct an edge between capsules
that are connected by routing, with the direction from the shallower capsule to the deeper capsule.
Each of these edges are weighted by the corresponding routing coefficient. Capsules not related to
each other by routing are not connected by an edge. This graph is a direct formalisation of the various
detected compositionalities with their strengths.

What should the ideal behaviour of this graph be under the change-of-viewpoint of an input? The
answer to this lies in the expected behaviour of natural compositionalities. Thus, while the pose of
objects, and their components, is changed under transformations of the input, the relative geometry
is constant. Thus, it is desirable that the capsule-decomposition graphs of a particular input (and
its transformed variations) be isomorphic to each other. We show that a SOVNET model that is
equivariant with respect to a set of transformations satisfies the above property for that set. A more
formal description of the capsule-decomposition graph, and the statement for the above theorem are
given below.

Consider an L-layer SOVNET model, whose routing procedure belongs to the family of methods
given by Algorithm 1. Let us consider a fixed input x : G→ Rc. We define the capsule-decomposition
graph of such a model, for this input x, as G(x) = (V (x), E(x)). Here, V (x) and E(x) denote the
vertex-set and the edge-set, respectively. V (x) = {f̃ l

i (g) : 0 ≤ i ≤ Nl − 1, 0 ≤ l ≤ L− 1, g ∈ G},
where f̃ l

i (g) = (g, i, f l
i (g), ali(g)), g ∈ G, 0 ≤ i Nl − 1. E(x) = {(f̃ l

i (g1), f̃ l+1
j (g2), cl+1

ij (g2)) :

g1 ∈ Pooll+1
j (g2)}. Pooll+1

j (g2) denotes the pool of grid-positions at layer l that route to the deeper
capsule of type j of layer l + 1 at g2. A more formal definition is given the appendix. We also use the
notation Lhf̃

l
i (g) to denote (h−1 ◦ g, i, f l

i (h
−1 ◦ g), ali(h

−1 ◦ g)).

Theorem 2.2. Consider an L-layer SOVNET whose activations are routed according to a procedure
belonging to the family given by Algorithm 1. Further, assume that this routing procedure is
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equivariant with respect to the group G. Then, given an input x and ∀g ∈ G, G(x) and G([Lgx])
are isomorphic.

Proof. The proof is given in the appendix.

Based on above theorem, and the fact that degree-centrality based routing is equivariant, the above
result applies to SOVNET models that use Algorithm 2 .

3 EXPERIMENTS AND RESULTS

This section presents a description of the experiments we performed. We conducted two sets of
experiments; the first to compare SOVNET architectures to other capsule network baselines with
respect to transformation robustness on classification, and the second to compare SOVNET to certain
capsule as well as convolutional baselines based on classification performance. Before we present the
details of these experiments, we briefly describe some details of the SOVNET architecture we used.
We only present an outline - the complete details, both architecture-wise and about the training, can be
found in the anonymised github repository https://github.com/sairaamVenkatraman/
SOVNET.

The first detail of the architecture pertains to the construction of the first layer of capsules. While
many approaches are possible, we used the following methodology that is similar in spirit to other
capsule network models. The first layer of the SOVNET architectures we constructed use a modified
residual block that uses the SELU activation, along with group-equivariant convolutions. This is
so as to allow a meaningful set of equivariant feature maps to be used for the creation of the first
set of capsules. Intuition and some literature, for example Rosario et al. (2019), suggest that the
construction of primary capsules plays a significant role in the performance of the capsule network.
Thus, it is necessary to build a sufficiently expressive layer that yields the first set of meaningful
capsule-activations. To this end, each capsule-type in the primary capsule layer is associated with
a group-convolution layer followed by a modified residual block. The convolutional feature-maps
from the preceding layer passes through each of these sub-networks to yield the primary capsules.
No routing is performed in this layer.

We now describe the SOVNET blocks. Since the design of SOVNET significantly reduces the
number of prediction networks, and thereby the number of trainable parameters, we are able to build
architectures whose each layer uses more expressive prediction mechanisms than a simple matrix.
Specifically, each hidden layer of the SOVNET architectures we consider uses a (group-equivariant)
modified residual block as the prediction mechanism. We use a SOVNET architecture that uses 5
hidden layers for MNIST, FashionMNIST, KMNIST, and SVHN, and a model that uses 6 hidden
layers for CIFAR-10. Unlike DeepCaps - another capsule network whose predictions use (regular)
convolution, each of the hidden layers of our SOVNET models use degree-routing. The hidden layers
of DeepCaps (excepting the last), in contrast, are not strictly capsule-based - being just convolutions
whose outputs are reshaped to a capsule-form.

The output capsule-layer of SOVNET is designed similar to the hidden capsule-layers, with
the difference that the prediction-mechanism is a group-convolutional implementation of a fully-
connected layer. In order to make a prediction for the class of an input, the maximum across the
rotational (and reflectional) positions of the two-norm of the capsule-activations of this layer are
taken for each class-type. This is an equivariant operation, as it corresponds to the subgroup-pooling
of Cohen & Welling (2016). The predictions that this layer yields is the type of the capsule with the
maximum 2-norm.

In order to guarantee the robustness to translations and rotations, we used the p4-convolutions
(Cohen & Welling, 2016) for the prediction mechanism in all the networks used in the first set of
experiments. For the second set, we used the p4m-convolution (Cohen & Welling, 2016), that is
equivariant to rotations, translations and reflections - for greater ability to learn from augmentations.
The architectures, however are identical but for this difference.

6

https://github.com/sairaamVenkatraman/SOVNET
https://github.com/sairaamVenkatraman/SOVNET


Published as a conference paper at ICLR 2020

As in (Sabour et al., 2017), we used a margin loss and a regularising reconstruction loss to train
the networks. The positive and negative margins for half of the training epochs were set to 0.9 and
0.1, respectively. Further, the negative margin-loss was weighted by 0.5, as in (Sabour et al., 2017).
These values were used for the first half of the training epochs. In order to facilitate better predictions,
these values were changed to 0.95, 0.05, and 0.8, respectively for the second half of the training. We
adopt this from (Rajasegaran et al., 2019). The reconstruction loss was computed by masking the
incorrect classes, and by feeding the ’true’ class-capsule to a series of transposed convolutions to
reconstruct the image. The mean square loss was computed for the reconstruction and original image.
The main idea being that this loss guides the capsule network to build meaningful capsules. This loss
was weighed by 0.0005 as in (Sabour et al., 2017). We used the Adam optimiser and an exponential
learning rate scheduler that reduced the learning rate by a factor of 0.9 each epoch.

With this outline of the architecture and details of the training, we now describe the first set
of experiments we conducted on SOVNET. The preservation of detected compositionalities under
transformations in SOVNET leads us to the expectation that SOVNET models, when properly trained,
will display greater robustness to changes in viewpoint of the input. Apart from handling test-time
transformations, as is the commonly held notion of transformation robustness, a robust model must
also effectively learn from train-time perturbations of the data. Based on these ideas, we designed a
set of experiments that compare SOVNET architectures to other capsule networks on their ability to
handle train and test-time affine transformations of the data.

Specifically, we perform experiments on MNIST (LeCun & Cortes, 2010), FashionMNIST (Xiao
et al., 2017), and CIFAR-10 (Krizhevsky & Hinton, 2009). For each of these datasets, we created
5 variations of the train and test-splits by randomly transforming data according to the extents of
the transformations given in Table 1. We train a given model on each transformed version of the
training-split, and test each model on each of the versions of the test-split. Thus we obtain, for a
single model, 25 accuracies per dataset - each corresponding to a pair of train and test-splits. There
is a single modification to these transformations for the case of CIFAR-10. In order to compare
SOVNET against the closest competitor DeepCaps, we use their strategy of first resizing CIFAR-10
images to 64×64, followed by translations and rotations.

We tested SOVNET against four capsule network baselines, namely Capsnet (Sabour et al., 2017),
EMcaps (Hinton et al., 2018), DeepCaps Rajasegaran et al. (2019), and GCaps (Lenssen et al., 2018).
The results of these experiments are given in Tables 2 to 4. In the majority of the cases, SOVNET
obtains the highest accuracy - showing that it is more robust to transformations of the data. Note
that we had to conduct these experiments as such a robustness study was not done in the original
papers for the baselines. We used, and modified, code from the following github sources for the
implementation of the baselines: (Li, 2019) for CAPSNET; (Yang, 2019) for EMCAPS; (Rajasegaran,
2019) and (HopefulRational, 2019) for DeepCaps, and (Lenssen, 2019) for GCaps. We also tested
against a group-equivariant convolution network (GCNN).

The second set of experiments we conducted, tested SOVNET against several capsule as well as
convolutional baselines. We trained and tested SOVNET on KMNIST (Clanuwat et al., 2018) and
SVHN (Netzer et al., 2011). With fairly standard augmentation - mild translations (and resizing for
SVHN to 64×64) - the SOVNET architecture with p4m-convolutions was able to achieve on-par, or
above, comparative performance. The results of this experiment are in Table 5. In order to compare
the performance of SOVNET architectures against more sophisticated CNN-baselines, we also trained
ResNet-18, ResNet-34 on the most extreme transformation - translation by up to ± 2 pixels, and
rotation by up to ± 180°. The results of these experiments are presented in the appendix.

4 DISCUSSION AND RELATED WORK

A number of insights can be drawn from an observation of the accuracies obtained from the experi-
ments. First, the most obvious, is that SOVNET is significantly more robust to train and test-time
geometric transformations of the input. Indeed, SOVNET learns to use even extreme transformations
of the training data and generalises better to test-time transformations in a majority of the cases.
However, in certain splits, some baselines perform better than SOVNET. These cases are briefly
discussed below.
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Table 1: List of the extents for the affine transformations.
S.no. Translational extent Rotational extent
1 0 pixels 0°
2 2 pixels 30°
3 2 pixels 60°
4 2 pixels 90°
5 2 pixels 180°

Table 2: Experiments on MNIST.
Results on Training on Untransformed MNIST

Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 99.35% 91.57% 72.10% 55.27% 42.58%
EMcaps 99.09% 92.23% 72.83% 56.66% 42.95%
G-Caps 97.83% 82.59% 66.27% 56.63% 54.52%
DeepCaps 99.56% 94.61% 74.44% 57.24% 45.43%
GCNN 99.61% 93.96% 75.53% 58.91% 46.07&
SOVNET 99.68% 96.15% 80.53% 64.55% 51.02%

Results on Training on MNIST Transformed by (2,30°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 99.60% 99.39% 95.65% 79.53% 59.58%
EMcaps 99.36% 99.03% 94.91% 79.12% 59.03%
G-Caps 98.12% 96.17% 90.87% 81.34% 77.13%
DeepCaps 99.62% 99.57% 97.50% 84.16% 62.75%
GCNN 99.67% 99.46% 97.11% 84.5% 63.74%
SOVNET 99.77% 99.70% 98.86% 90.63% 69.26%

Results on Training on MNIST Transformed by (2,60°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 99.39% 99.12% 98.99% 95.53% 72.06%
EMcaps 98.84% 98.79% 98.55% 94.03% 70.03%
G-Caps 97.44% 96.31% 96.01% 93.18% 81.70%
DeepCaps 99.54% 99.49% 99.42% 97.27% 73.61%
GCNN 99.52% 99.38% 99.37% 97.02% 74.98%
SOVNET 99.70% 99.65% 99.63% 98.56% 79.59%

Results on Training on MNIST Transformed by (2,90°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 99.17% 98.77% 98.73% 98.29% 79.18%
EMcaps 98.83% 98.38% 98.42% 97.86% 77.47%
G-Caps 97.67% 96.53% 96.33% 95.52% 83.76%
DeepCaps 99.44% 99.16% 99.03% 98.64% 77.54%
GCNN 89.34% 89.16% 89.13% 88.86% 75.53%
SOVNET 99.68% 99.60% 99.59% 99.5% 87.76%

Results on Training on MNIST Transformed by (2,180°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 97.52% 96.65% 96.64% 96.50% 96.09%
EMcaps 95.89% 95.22% 95.42% 95.42% 95.09%
G-Caps 95.24% 93.67% 93.83% 93.79% 93.76%
DeepCaps 98.17% 97.84% 97.89% 98.11% 98.01%
GCNN 87.8% 87.51% 87.47% 87.41% 87.45%
SOVNET 98.34% 98.10% 98.11% 98.08% 98.06%

On the CIFAR-10 experiments, DeepCaps performs significantly better than SOVNET on the
untransformed case - generalising to test-time transformations better. However, SOVNET learns
from train-time transformations better than DeepCaps - outperforming it in a large majority of the
other cases. We hypothesize that the first observation is due to the increased (almost double) number
of parameters of DeepCaps that allows it to learn features that generalise better to transformations.
Further, as p4-convolutions (the prediction-mechanisms used) are equivariant only to rotations in
multiples of 90°, its performance is significantly lower for test-time transformations of 30°and
60°for the untransformed case. However, the equivariance of SOVNET allows it to learn better from
train-time geometric transforms than DeepCaps, explaining the second observation.

The second case is that GCaps outperforms SOVNET on generalising to extreme transformations
on (mainly) MNIST, and once on FashionMNIST, under mild train-time conditions. However, it
is unable to sustain this under more extreme train-time perturbations. We infer that this is caused
largely by the explicit geometric parameterisation of capsules in G-Caps. While under mild-to-
moderate train-time conditions, and on simple datasets, this approach could yield better results, this
parameterisation, especially with very simple prediction-mechanisms, can prove detrimental. Thus,
the convolutional nature of the prediction-mechanisms, which can capture more complex features,
and also the greater depth of SOVNET allows it to learn better from more complex training scenarios.
This makes the case for deeper models with more expressive and equivariant prediction-mechanisms.

A related point of interest is that G-Caps performs very poorly on the CIFAR-10 dataset - achieving
the least accuracy on most cases on this dataset - despite provable guarantees on equivariance. We
argue that this is significantly due to the nature of the capsules of this model itself. In GCaps, each
capsule is explicitly modelled as an element of a Lie group. Thus, capsules capture exclusively
geometric information, and use only this information for routing. In contrast, other capsule models
have no such parameterisation. In the case of CIFAR-10, where non-geometric features such as
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Table 3: Experiments on FashionMNIST.
Results on Training on Untransformed FashionMNIST

Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 91.23% 57.15% 37.98% 28.33% 22.38%
EMcaps 90.05% 59.75% 40.26% 30.17% 23.82%
G-Caps 86.56% 50.05% 35.05% 29.93% 27.10%
DeepCaps 93.27% 57.85% 37.06% 27.63% 21.86%
GCNN 84.63%56.23%37.31% 0.2862% 21.58%
SOVNET 94.72% 61.58% 41.01% 34.07% 27.63%

Results on Training on FashionMNIST Transformed by (2,30°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 91.22% 89.57% 69.58% 50.17% 35.16%
EMcaps 90.17% 89.47% 68.39% 49.23% 37.02%
G-Caps 83.28% 80.12% 64.86% 53.71% 52.54%
DeepCaps 93.71% 93.40% 75.32% 53.35% 36.30%
GCNN 92.25% 90.95% 72.17% 51.93% 37.12%
SOVNET 94.99% 94.36% 77.19% 58.59% 43.84%

Results on Training on FashionMNIST Transformed by (2,60°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 89.98% 88.55% 88.15% 72.81% 46.89%
EMcaps 88.24% 87.30% 87.04% 71.72% 48.14%
G-Caps 82.04% 80.12% 78.94% 68.05% 59.25%
DeepCaps 93.36% 93.06% 92.84% 80.76% 49.90%
GCNN 90.78% 89.82% 89.67% 76.69% 49.97&
SOVNET 94.49% 94.08% 94.20% 90.23% 73.48%

Results on Training on FashionMNIST Transformed by (2,90°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 88.78% 87.18% 87.13% 86.19% 59.59%
EMcaps 86.43% 85.85% 85.82% 85.63% 61.15%
G-Caps 80.71% 79.55% 79.17% 79.21% 72.11%
DeepCaps 93.07% 92.93% 92.75% 92.51% 62.50%
GCNN 90.31% 89.46% 89.42% 89.22% 64.44%
SOVNET 94.41% 94.03% 93.93% 93.98% 91.42%

Results on Training on FashionMNIST Transformed by (2,180°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 86.90% 84.94% 84.93% 84.75% 84.72%
EMcaps 82.99% 82.67% 82.18% 82.32% 82.18%
G-Caps 80.65% 79.66% 79.46% 79.47% 79.37%
DeepCaps 92.07% 91.71% 91.70% 91.76% 91.66%
GCNN 89.7% 88.65% 88.61% 88.62% 88.6%
SOVNET 94.11% 93.77% 93.56% 93.57% 93.60%

Table 4: Experiments on Cifar-10.
Results on Training on Untransformed Cifar-10

Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 68.28% 55.57% 43.55% 37.48% 30.89%
EMcaps 62.85% 49.28% 41.37% 34.73% 29.90%
G-Caps 49.54% 38.45% 31.89% 30.88% 27.70%
DeepCaps 76.76% 67.97% 53.56% 45.22% 35.67%
GCNN 80.26% 60.94% 47.93% 40.85% 34.02%
SOVNET 88.34% 47.57% 42.24% 43.75% 43.52%

Results on Training on Cifar-10 Transformed by (2,30°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 73.45 69.87% 61.17% 52.29% 42.58%
EMcaps 70.24% 66.63% 59.10% 50.93% 42.26%
G-Caps 49.50% 48.88% 45.78% 42.93% 38.74%
DeepCaps 84.24% 82.54% 74.63% 63.54% 48.63%
GCNN 82.13% 78.94% 70.51% 59.80% 47.81%
SOVNET 86.58% 85.35% 82.51% 79.14% 69.64%

Results on Training on Cifar-10 Transformed by (2,60°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 70.26% 67.69% 66.62% 60.04% 47.99%
EMcaps 66.53% 65.09% 63.21% 58.04% 47.61%
G-Caps 49.63% 50.31% 48.84% 47.43% 43.11%
DeepCaps 83.92% 83.63% 82.79% 78.09% 60.02%
GCNN 82.13% 78.94% 70.51% 59.80% 47.81%
SOVNET 83.86% 83.63% 83.57% 83.06% 80.89%

Results on Training on Cifar-10 Transformed by (2,90°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 67.81% 65.64% 65.46% 64.35% 52.79%
EMcaps 64.33% 63.00% 62.70% 61.42% 52.08%
G-Caps 49.98% 51.24% 50.63% 49.95% 46.59%
DeepCaps 82.91% 82.78% 82.66% 82.62% 68.34%
GCNN 77.56% 75.79% 75.57% 75.14% 64.23%
SOVNET 83.33% 82.76% 82.58% 82.79% 82.22%

Results on Training on Cifar-10 Transformed by (2,180°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
Capsnet 61.08% 59.53% 60.04% 59.85% 59.90%
EMcaps 57.57% 55.89% 56.85% 56.35% 55.20%
G-Caps 39.09% 41.03% 41.43% 41.25% 41.08%
DeepCaps 81.12% 80.81% 80.64% 81.05% 80.92%
GCNN 73.61% 72.50% 72.12% 72.24% 72.25%
SOVNET 82.50% 81.80% 81.78% 81.95% 81.82%

texture are important, we see that purely spatio-geometric based routing is not effective. This
observation allows us to make a more general hypothesis that could deal with the fundamentals of
capsule networks. We propose a trade-off in capsule networks, based on the notion of equivariance.
To appreciate this, some background is necessary on both equivariance and capsule networks.

As the body of literature concerning equivariance is quite vast, we only mention a relevant
selection of papers. Equivariance can be seen as a desirable, if not fundamental, inductive bias
for neural networks used in computer vision. Indeed, the fact that AlexNet (Krizhevsky et al.,
2012) automatically learns representation that are equivariant to flips, rotation and scaling shows the
importance of equivariance as well as its natural necessity (Lenc & Vedaldi, 2015). Thus, a neural
network model that can formally guarantee this property is essential. An early work in this regard is
the group-equivariant convolution proposed in (Cohen & Welling, 2016). There, the authors proposed
a generalisation of the 2-D spatial convolution operation to act on a general group of symmetry
transforms - increasing the parameter-sharing and, thereby, improving performance. Since then,
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Table 5: Results on augmented SVHN and KMNIST.
Method SVHN KMNIST
Sabour et al. (2017) 95.7% -
Deliège et al. (2018) 94.50% -
Rajasegaran et al.
(2019)

97.16% 89.18%

Phaye et al. (2018) 96.90% -
Clanuwat et al.
(2018)

- 98.83%

Tissera et al. (2019) 96.8% 99.05%
SOVNET 97.03% 99.03%

several other models exhibiting equivariance to certain groups of transformations have been proposed,
for example (Cohen et al., 2018b), where a spherical correlation operator that exhibits rotation-
equivariance was introduced; (Carlos Esteves & Daniilidis, 2017), where a network equivariant to
rotation and scale, but invariant to translations was presented, and Worrall & Brostow (2018), where
a model equivariant to translations and 3D right-angled rotations was developed. A general theory of
equivariant CNNs was developed in (Cohen et al., 2018a). In their paper, they show that convolutions
with equivariant kernels are the most general class of equivariant maps between feature spaces.

A fundamental issue with group-equivariant convolutional networks is the fact that the grid the
convolution works with increases exponentially with the type of the transformations considered. This
was pointed out in (Sabour et al., 2017); capsules were proposed as an efficient alternative. In a
general capsule network model, each capsule is supposed to represent the pose-coordinates of an
object-component. Thus, to increase the scope of equivariance, only a linear increase in the dimension
of each capsule is necessary. This was however not formalised in most capsule architectures, which
focused on other aspects such as routing (Hinton et al., 2018), (Bahadori, 2018), (Wang & Liu, 2018);
general architecture (Rajasegaran et al., 2019), (Deliège et al., 2018), (Rawlinson et al., 2018), Jeong
et al. (2019), (Phaye et al., 2018), Rosario et al. (2019); or application Afshar et al. (2018).

It was only in group-equivariant capsules (Lenssen et al., 2018) that this idea of efficient equivari-
ance was formalised. Indeed, in that paper, equivariance changed from preserving the action of a
group on a vector space to preserving the group-transformation on an element. While such models
scale well to larger transformation groups in the sense of preserving equivariance guarantees, we
argue that they cannot efficiently handle compositionalities that involve more than spatial geometry.
The direct use of capsules as geometric pose-coordinates could lead to exponential representational
inefficiencies in the number of capsules. This is the tradeoff we referred to. We do not attempt a
formalisation of this, and instead make the observation given next. While SOVNET (using GCNNs)
lacks in transformational efficiency, the use of convolutions allows it to capture non-geometric
structures well. Further, SOVNET still retains the advantage of learning compositional structures
better than CNN models due to the use of routing, placing it in a favourable position between two
extremes.

5 CONCLUSION

We presented a scalable, equivariant model for capsule networks that uses group-equivariant convolu-
tions and degree-centrality routing. We proved that the model preserves detected compositionalities
under transformations. We presented the results of experiments on affine variations of various
classification datasets, and showed that our model performs better than several capsule network
baselines. A second set of experiments showed that our model performs comparably to convolutional
baselines on two other datasets. We also discussed a possible tradeoff between efficiency in the
transformational sense and efficiency in the representation of non-geometric compositional relations.
As future work, we aim at understanding the role of the routing algorithm in the optimality of the
capsule-decomposition graph, and various other properties of interest based on it. We also note that
SOVNET allows other equivariant prediction mechanisms - each of which could result in a wider
application of SOVNET to different domains.
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A.1 GROUP

A tuple (G, ◦), where G is a non-empty set and ◦ defines a binary operation on G, is said to form a
group if the following properties are satisfied:

Closure: ∀ g1, g2 ∈ G, g1 ◦ g2 ∈ G.

Associativity: ∀ g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

Existence of the identity element: ∃ e ∈ G 3 ∀ g ∈ G, e ◦ g = g ◦ e = g.

Existence of an inverse: ∀ g ∈ G, ∃ g−1 ∈ G 3 g ◦ g−1 = g−1 ◦ g = e.

A.2 GROUP ACTION AND GROUP REPRESENTATION

Given a group (G, ◦) and a vector space V , a group action is a function f : G× V → V satisfying
the following properties.

1: ∀ a ∈ V , f(e, a) = a.

2: ∀ g, h ∈ G and ∀ a ∈ V , f(h, f(g, a)) = f(h ◦ g, a).

A group representation is a group action by invertible linear maps. More formally, a group
representation of a group (G, ◦) with respect to a vector space V is a homomorphism from G to
GL(V ) - the set of linear, invertible maps from V to V .

A.3 POOL

Consider a one-layer GCNN-convolutional prediction network Ψl+1
j for a SOVNET layer l + 1, and

for the dl+1- dimensional jth capsule-type. Intuitively, Pooll+1
j (g) is defined by the extent of the

support of the g-transformed filter Ψl+1
j . More formally,

Pooll+1
j (g) = {h ∈ G : Ψl+1

j (g−1 ◦ h) 6= 0}. (1)

For a general L-layer GCNN prediction- network, Pooll+1
j (g) is defined by recursively applying

the above definition through all the layers of the prediction network.

A.4 2-NORM

The 2-norm of a vector x = (x0, ..., xn−1)T ∈ Rn, and denoted by ‖x‖2, is defined as ‖x‖2 =
(
∑n−1

i=0 x2
i )

1
2 .

B PROOFS OF THEOREMS

We present proofs for the theorems mentioned in the main body.

Theorem B.1. The SOVNET layer defined in Algorithm 2, and denoted by the operator ⊗ as given
above, satisfies ([LgF

l]⊗Ψl+1
j ) = (Lg[F l ⊗Ψl+1

j ]), where g belongs to the underlying group of the
equivariant convolution.

Proof. For the theorem to be true, we must show that each step of Algorithm 2 is equivariant. We do
this step-wise.

The predictions Sl+1
ij made in the first step are group-equivariant. This follows from the fact that

Sl+1
ijp (g) = (f l

i ? Ψl+1,p
j )(g), and that ([Lhf

l
i ] ? Ψl+1,p

j ) = Lh(f l
i ? Ψl+1,p

j ) - proved in (Cohen &
Welling, 2016).
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We now show that the DegreeScore procedure is equivariant. We see that Degreeji (g)

=
∑Nl−1

k=0 (
Sl+1
ij (g).Sl+1

kj (g)

‖Sl+1
ij (g)‖2.‖Sl+1

kj (g)‖2
); 0 ≤ i ≤ Nl − 1. Each Sl+1

ij (g).Sl+1
kj (g) =

∑dl+1−1
p=0 (f l

i ?

Ψl+1,p
j )(g)(f l

k ? Ψl+1,p
j )(g). From the equivariance of ?,

∑dl+1−1
p=0 ([Lhf

l
i ] ? Ψl+1,p

j )(g)([Lhf
l
k] ?

Ψl+1,p
j )(g) =

∑dl+1−1
p=0 Lh(f l

i ?Ψl+1,p
j )(g)Lh(f l

k?Ψl+1,p
j )(g) =

∑dl+1−1
p=0 (f l

i ?Ψl+1,p
j )(h−1◦g)(f l

k?

Ψl+1,p
j )(h−1 ◦ g) = [

∑dl+1−1
p=0 (f l

i ?Ψl+1,p
j )(f l

k ?Ψl+1,p
j )](h−1 ◦ g) = Lh[

∑dl+1−1
p=0 (f l

i ?Ψl+1,p
j )(f l

k ?

Ψl+1,p
j )](g).

Moreover, the 2-norm of an equivariant map is also equivariant - from the equivariance of the
post-composition of non-linearities over equivariant maps (Cohen & Welling, 2016). Also, the
division of two (non-zero) equivariant maps is also equivariant. Thus, obtaining the degree-scores is
equivariant. Again, the softmax function preserves the equivariance as it is a point-wise non-linearity.

The proof is concluded by pointing out that the product and sum of equivariant maps is also
equivariant.

Theorem B.2. Consider an L-layer SOVNET whose activations are routed according to a procedure
belonging to the family given by Algorithm 1. Further, assume that this routing procedure is
equivariant with respect to the group G. Then, given an input x and ∀g ∈ G, G(x) and G([Lgx])
are isomorphic.

Proof. Consider a fixed L-layer SOVNET that is equivariant to transformations from a group G,
and an input x : G→ Rc. Let G(x) be the capsule-decomposition graph corresponding to x. Then
G(Lhx) denotes the the capsule-decomposition graph of the transformed input Lhx.

We show that the map f̃ l
i (g)→ f̃ l

i (h
−1 ◦ g) is an isomorphism from G(x) to G(Lhx). First, we

note that f̃ l
i (g)→ f̃ l

i (h
−1 ◦ g) is a bijection from V (x) to V (Lhx). This is from the definition of the

vertex set of a capsule-decomposition graph and the fact that the map g→ h−1 ◦ g is a bijection.

We now show that (f̃ l
i (g1), f̃ l+1

j (g2), cij(g2)) ∈ E(x) if and only if (f̃ l+1
i (h−1 ◦ g1), f̃ l+1

j (h−1 ◦
g2), cij(h

−1 ◦ g2)) ∈ E(Lhx).

First, let us assume (f̃ l
i (g1), f̃ l+1

j (g2), cij(g2)) ∈ E(x). Thus, f̃ l
i (g1) is routed to f̃ l

j(g2) with
routing-coefficient cij(g2). However, due to the assumed equivariance of the model, f̃ l+1

i (h−1 ◦
g1) is routed to f̃ l+1

j (h−1 ◦ g2) with routing-coefficient cij(h−1 ◦ g2). This, of course, implies
(f̃ l+1

i (h−1 ◦ g1), f̃ l+1
j (h−1 ◦ g2), cij(h

−1 ◦ g2)) ∈ E(Lhx).

The converse of this result is proved in the same way by considering E(Lhx), noting that
E(Lh−1Lhx) = E(x), and applying the above result to E(Lhx) and E(Lh−1Lhx).

C FURTHER EXPERIMENTS

C.1 EMPIRICAL VALIDATION OF CAPSULE DECOMPOSITION ISOMORPHISM

We performed two experiments to verify that the capsule decomposition-graphs of the transformed
and untransformed images are isomorphic.

For the first of these, we trained a p4-convolution based SOVNET architecture on untransformed
images of MNIST and FashionMNIST. We then considered four variations of the two test-datasets -
untransformed, and three versions rotated exactly by multiples of 90 degrees: 90, 180, and 270. Our
experiment verifies that the mapping defined in the proof of Theorem 2.2 is indeed an isomorphism.
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To this end, we considered the capsule-activations as well as the degree-scores, obtained across
all the capsule-layers, for each image of all the variations of the test split of the corresponding
dataset. We then mapped the activations and the degree-scores for the untransformed images by the
aforesaid mapping for each of the transformations. This corresponds to ’rotating’ the activations and
degree-scores by each transformation. We then computed the squared error of these with each of the
activations and degree-scores obtained from the correspondingly transformed image, respectively. A
successful verification would result in zero error (up to machine precision). The results in Table 6
show that this happens.

The second of our experiments is an empirical verification that the test-accuracies remain unchanged
under transformations for which SOVNET exhibits equivariance. We use the same trained architecture
as above, and verify that the accuracy remains unchanged under exact transformations of the images.
The results are presented in Table 7. The accuracies presented below are only for the purpose of
veryfying the isomorphism of the of the graph.

Table 6: Empirical validation of isomorphism: mean squared error of capsule activations and degree-
scores.

MNIST
Rotation Mean squared-error

for capsules
Mean squared-error
for degree-scores

90 6.1900e-15 3.3087e-15
180 6.2821e-15 3.3606e-15
270 6.1911e-15 3.3138e-15

FashionMNIST
Rotation Mean squared-error

for capsules
Mean squared-error
for degree-scores

90 2.5678e-13 1.9576e-13
180 2.6306e-13 1.9981e-13
270 2.5869e-13 1.9662e-13

CIFAR10
Rotation Mean squared-error

for capsules
Mean squared-error
for degree-scores

90 6.4583e-13 2.1735e-13
180 6.3866e-13 2.1635e-13
270 6.4624e-13 2.1774e-13

Table 7: Empirical validation of isomorphism: accuracies under transformation.
Accuracies on MNIST

0° 90° 180° 270°
99.52% 99.52% 99.52% 99.52%

Accuracies on FashionMNIST
0° 90° 180° 270°
92.23% 92.23% 92.23% 92.23%

Accuracies on CIFAR10
0° 90° 180° 270°
77.19% 77.19% 77.19% 77.19%

C.2 RESULTS ON TESTING ON UNSEEN TRANSFORMS: AFFNIST

We trained a SOVNET architecture on MNIST images that are padded to size 40x40 - the size of
AFFNIST images. We augment these images by translation, as is the standard approach. Note that
the changed size of the images necessitates a different architecture. The result of this experiment is
given in Table 8. We see that our SOVNET architecture obtains the highest accuracy when compared
to other recent capsule network models.
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Table 8: Accuracy on AFFNIST.
Method Accuracy
(Sabour
et al., 2017)

79.0%

(Hinton
et al., 2018)

93.1%

(Lenssen
et al., 2018)

89.10%

(Jeong et al.,
2019)

87.8%

(Choi et al.,
2019)

91.6%

SOVNET 97.01%

We also trained the above SOVNET architecture on MNIST with translations in the range of
[-6,6] pixels and rotations from [-30 ,30] degrees. While this increases the extent of train-time
augmentation, there are several test-time transformations that are unseen. With this scheme, we
achieve state-of-the-art accuracy of 99.20%. This improves over the best, to our knowledge, accuracy
of 98.3% obtained by (Tai et al., 2019).

C.3 CAPSNET WITH SHARED PARAMETERS

We considered an implementation of the CAPSNET model (Sabour et al., 2017). Unlike (Sabour
et al., 2017), that uses one prediction-network per connection between capsules, this model uses one
prediction-network per class-capsule. The result of this model on augmented versions of MNIST and
FashionMNIST are presented in Table 9, with corresponding accuracies of capsnet.

Table 9: Results on MNIST and FashionMNIST.
Method MNIST FashionMNIST
Capsnet 99.75%(Sabour et al.,

2017)
93.62%(Rajasegaran
et al., 2019)

Shared Capsnet 99.47% 91.57%

C.4 RESULTS OF SOVNET ON CIFAR-100

We have trained a SOVNET architecture on CIFAR100. Our model has achieved an accuracy of
71.55%, an almost 4 percentage improvement over a recent capsule network model - STARCAPS
(Karim Ahmed, 2019) which achieved 67.66%.

C.5 COMPARISON AGAINST RESNET ARCHITECTURES

In order to compare SOVNET with more sophisticated CNN models, we performed a limited set
of experiments on MNIST and FashionMNIST. We trained ResNet18 and ResNet34 on the train
split of MNIST and FashionMNIST transformed by random translations of up to ± 2 pixels, and
random rotations of up to ± 180°. The models were tested on various transformed versions of the
test-splits. The results of these experiments are given in Table 10. As can be seen in the table,
SOVNET compares with the two much deeper CNN models. More testing on more complex datasets,
as well as deeper SOVNET models must be done, however, to obtain a better understanding of the
relative performance of these two kinds of models.

D DISCUSSION ON GENERAL WEIGHTED-SUMMATION ROUTING

Consider Algorithm 1, which is given below for convenience. The role of the GetWeights and
Agreement procedures is to evaluate the relative importances of predictions for a deeper capsule,
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Table 10: Results on ResNet18 and ResNet34.
Results on Training on MNIST Transformed by (2,180°)

Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
ResNet18 98.60% 98.30% 98.21% 98.15% 98.02%
ResNet34 98.53% 98.26% 98.21% 98.12% 98.01%
SOVNET 98.34% 98.10% 98.11% 98.08% 98.06%

Results on Training on FashionMNIST Transformed by (2,180°)
Method (0,0°) (2,30°) (2,60°) (2,90°) (2,180°)
ResNet18 94.21% 93.55% 93.24% 93.30% 93.45%
ResNet34 94.38% 93.75% 93.78% 93.78% 93.73%
SOVNET 94.11% 93.77% 93.56% 93.57% 93.60%

and the extent of consensus among them, respectively. The second of these is interpreted as a measure
of the activation of the corresponding deeper capsule.

A formalisation of these concepts to a general framework for even summation-based routing so as
to cover all possible notions of relative importance, and consensus is not within the scope of this paper.
Indeed, to the best of our knowledge, such a formalisation has not been successfully completed.

Thus, instead of a formal description of a general routing procedure, we provide examples to better
understand the role of these two functions. We first explain GetWeights, and then Agreement.

Algorithm A general weighted-summation routing algorithm for SOVNET.

Input: {(f l
i , a

l
i)|i ∈ {0, ..., Nl − 1}, f l

i : G→ Rdl

, ali : G→ [0, 1]}
Output: {(f l+1

j , al+1
j )|j ∈ {0, ..., Nl+1 − 1}, f l+1

j : G→ Rdl+1

, al+1
j : G→ [0, 1]}

Trainable Functions: (Ψl+1
j , ·) - projection networks that use operator ·

Sl+1
ij (g) = ((f l

i , a
l
i) ·Ψ

l+1
j )(g) ∀ i, j, ∀g ∈ G

(cl+1
0j (g), ..., cl+1

Nl−1j(g)) = GetWeights(Sl+1
0j (g), ..., Sl+1

Nl−1j(g)) ∀ j, ∀g ∈ G

f l+1
j (g) =

∑Nl−1
i=1 cl+1

i,j (g)Sl+1
ij (g) ∀ j, ∀g ∈ G

al+1
j (g) = Agreement(f l+1

j (g), Sl+1
0j (g), ..., Sl+1

NI−1j(g)) ∀ j

The first example of GetWeights we provide is from the proposed degree-centrality based routing.
The algorithm is given below, again. In this case, GetWeights is instantiated by the DegreeScore
procedure, which assigns weights to predictions based on their normalised degree centrality scores.
Thus, a prediction that agrees with a significant number of its peers obtains a higher importance than
one that does not. This scheme follows the principle of routing-by-agreement, that aims to activate a
deeper capsule only when its predicting shallower, component-capsules are in an acceptable spatial
configuration (Hinton et al., 2011).

The above form for the summation-based routing procedure generalises for several existing routing
algorithms. As an example, we present the dynamic routing algorithm of (Sabour et al., 2017). This
differs with our proposed algorithm in that it is a "attention-based", rather than "agreement-based"
routing algorithm. That is, the relative importance of a prediction with respect to a fixed deeper
capsule is not a direct measure of the extent of its consensus with its peers, but rather a measure of
the relative attention it offers to the deeper capsule.

Thus, the weight associated with a prediction for a fixed deeper capsule by a fixed shallower
capsule depends on other deeper capsules. In order to accomodate such methods into a general
procedure, we modify our formalism by having GetWeights take all the predictions as parameters,
and return all the routing weights. This modified general procedure is given in Algorithm 5.

Consider the dynamic routing algorithm of (Sabour et al., 2017), given in Algorithm 6 - modified to
our notation and also the use of group-equivariant convolutions. The procedure DynamicRouting
is the instantiation for GetWeights. Note that the weights cij(g) depend on the routing weights for
the deeper capsules.

Due to the formulation of capsules in our paper, as in (Sabour et al., 2017), we use the 2-norm of
a capsule to denote its activation. Thus, our degree-centrality based procedure, and also dynamic
routing, do not use a separate value for this. However, examples of algorithms that use a separate
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Algorithm The degree-centrality based routing algorithm for SOVNET.

Input: {f l
i |i ∈ {0, ..., Nl − 1}, f l

i : G→ Rdl}
Output: {f l+1

j |j ∈ {0, ..., Nl+1 − 1}, f l+1
j : G→ Rdl+1}

Trainable Functions: (Ψl+1
j , ?), 0 ≤ j ≤ Nl+1 − 1, - a set of dl+1 group-equivariant convolutional

filters (per capsule-type) that use the group-equivariant correlation operator ?
Sl+1
ijp (g) = (f l

i ? Ψl+1,p
j )(g) =

∑
h∈G

∑dl−1
k=0 f l

ik(h)Ψl+1,p
k (g−1 ◦ h); p ∈ {0, ..., dl+1 − 1}

(cl+1
0j (g), ..., cl+1

Nl−1j(g)) = DegreeScore(Sl+1
0j (g), ..., Sl+1

Nl−1j(g));∀0 ≤ j ≤ Nl+1 − 1, ∀ g
f l+1
j (g) =

∑Nl−1
i=0 cl+1

ij (g)Sl+1
ij (g) ∀ 0 ≤ j ≤ Nl+1 − 1, ∀g ∈ G

f l+1
j (g) = Squash(f l+1

j (g)) =
‖f l+1

j (g)‖2
1+‖f l+1

j (g)‖22
f l+1
j (g); ∀ 0 ≤ j ≤ Nl − 1, ∀ g ∈ G

procedure DEGREESCORE(Sl+1
0j (g), ..., Sl+1

Nl−1j(g))

Aj
ik(g) =

Sl+1
ij (g).Sl+1

kj (g)

‖Sl+1
ij (g)‖2.‖Sl+1

kj (g)‖2
; 0 ≤ i, k ≤ Nl − 1

Degreeji (g) =
∑Nl−1

k=0 (Aj
ik(g)); 0 ≤ i ≤ Nl − 1

cij(g) = exp(Degreeji (g))∑Nl−1

k=0 exp(Degreejk(g))
; 0 ≤ i ≤ Nl − 1

return cij(g) ∀0 ≤ i ≤ Nl − 1

Algorithm 5 A general weighted-summation routing algorithm for SOVNET.

Input: {(f l
i , a

l
i)|i ∈ {0, ..., Nl − 1}, f l

i : G→ Rdl

, ali : G→ [0, 1]}
Output: {(f l+1

j , al+1
j )|j ∈ {0, ..., Nl+1 − 1}, f l+1

j : G→ Rdl+1

, al+1
j : G→ [0, 1]}

Trainable Functions: (Ψl+1
j , ·) - projection networks that use operator ·

Sl+1
ij (g) = ((f l

i , a
l
i) ·Ψ

l+1
j )(g) ∀ i, j, ∀g ∈ G

(cl+1
00 (g), ..., cl+1

Nl−1Nl+1−1(g)) = GetWeights(Sl+1
00 (g), ..., Sl+1

Nl−1Nl+1−1(g)) ∀g ∈ G

f l+1
j (g) =

∑Nl−1
i=1 cl+1

i,j (g)Sl+1
ij (g) ∀ j, ∀g ∈ G

al+1
j (g) = Agreement(f l+1

j (g), Sl+1
0j (g), ..., Sl+1

NI−1j(g)) ∀ j

Algorithm 6 The dynamic routing algorithm

Input: {f l
i |i ∈ {0, ..., Nl − 1}, f l

i : G→ Rdl}
Output: {f l+1

j |j ∈ {0, ..., Nl+1 − 1}, f l+1
j : G→ Rdl+1}

Trainable Functions: (Ψl+1
j , ?), 0 ≤ j ≤ Nl+1 − 1, a set of dl+1 group-equivariant convolutional

filters (per capsule-type) that use the group-equivariant correlation operator ?
Sl+1
ijp (g) = (f l

i ? Ψl+1,p
j )(g) =

∑
h∈G

∑dl−1
k=0 f l

ik(h)Ψl+1,p
k (g−1 ◦ h); p ∈ {0, ..., dl+1 − 1}

(cl+1
00 (g), ..., cl+1

Nl−1Nl+1−1(g)) = DynamicRouting(Sl+1
00 (g), ..., Sl+1

Nl−1Nl+1−1(g)); ∀ g
f l+1
j (g) =

∑Nl−1
i=0 cl+1

ij (g)Sl+1
ij (g) ∀ 0 ≤ j ≤ Nl+1 − 1, ∀g ∈ G

f l+1
j (g) = Squash(f l+1

j (g)) =
‖f l+1

j (g)‖2
1+‖f l+1

j (g)‖22
f l+1
j (g); ∀ 0 ≤ j ≤ Nl+1 − 1, ∀ g ∈ G

procedure DYNAMICROUTING(Sl+1
00 (g), ..., Sl+1

Nl−1Nl+1−1(g))
bij(g)← 0; ∀0 ≤ i ≤ Nl − 1, ∀0 ≤ j ≤ Nl+1 − 1
for r iterations do:

cij(g) = exp(bij(g))∑Nl+1−1

k=0 exp(bik(g))
; 0 ≤ i ≤ Nl − 1, ∀ 0 ≤ j ≤ Nl+1 − 1

f l+1
j (g) =

∑Nl−1
i=0 cl+1

ij (g)Sl+1
ij (g) ∀ 0 ≤ j ≤ Nl+1 − 1

f l+1
j (g) = Squash(f l+1

j (g)) =
‖f l+1

j (g)‖2
1+‖f l+1

j (g)‖22
f l+1
j (g); ∀ 0 ≤ j ≤ Nl+1 − 1

bij(g) = bij(g) + 〈Sl+1
ij (g),f l+1

j (g)〉; 0 ≤ i ≤ Nl − 1 , ∀ 0 ≤ j ≤ Nl+1 − 1

return cij(g) ∀ 0 ≤ i ≤ Nl − 1, ∀ 0 ≤ j ≤ Nl+1 − 1
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activation value exist; for example, spectral routing (Bahadori, 2018) computes the activation score
from the sigmoid of the first singular value of the matrix of stacked predictions.

E GENERALISATION TO OTHER GROUPS

Our theoretical results and algorithms admit a generalisation to other groups - as long as an appropriate
group-convolution is defined. The equivariance and the preservation of detected compositionality is
preserved under the condition that the group-convolution is equivariant.

As an example, consider the discrete translation group Z2 and the regular correlation operation
defined for an input with d channels by (f ? Ψ)(x) =

∑
t∈Z2

∑d−1
k=0 fk(t)Ψk(x− t). The translation-

equivariance of this operation is proved in (Cohen & Welling, 2016).

The general n-dimensional correlation defined on Zn is given by (f ? Ψ)(x) =∑
t∈Zn

∑d−1
k=0 fk(t)Ψk(x − t). This operation is equivariant to translations in n-dimensions. The

proof for this is given below.
Theorem E.1. The n-dimensional correlation operator is equivariant with respect to Zn and the
group representation L.

Proof. Consider x, y, t ∈ Zn, and f : Zn → Rd. Then, ([Lyf ] ? Ψ)(x) =
∑

t∈Zn

∑d−1
k=0 fk(t −

y)Ψk(x− t) =
∑

t∈Zn

∑d−1
k=0 fk(t)Ψk(x− t + y) =

∑
t∈Zn

∑d−1
k=0 fk(t)Ψk(x− (t− y)) = [Ly(f ?

Ψ)](x). Thus, ([Lyf ] ? Ψ)(x) = [Ly(f ? Ψ)](x).

Our degree-centrality based algorithm, with its use of discrete convolutions, can be used in
its current form with the above convolution. The proof of equivariance and the preservation of
compositionality holds from a direct application of the above result to Theorem 2.1 and Theorem 2.2,
using the underlying group as Zn.

For continuous groups such as SO(n), the degree-centrality based algorithm must use equivariant
convolutions defined over it to remain equivariant. We consider the specific case of SO(3) below.

The correlation of two functions f,Ψ : SO(3)→ Rd is given by:

(f ? Ψ)(R) =

∫
SO(3)

d−1∑
k=0

Ψk(R−1Q)fk(Q)dQ. (2)

This correlation is equivariant to transformations in SO(3), with respect to the group representation
LR defined by [Lrf(Q)] = f(R−1Q), as proved in (Cohen et al., 2018b). It is to be noted that due
to approximations introduced by the sampling of continuous functions in implementations, exact
equivariance is not preserved.

However, our routing algorithm can still be used with such convolutions and does not contribute to
any reduction of equivariance by itself. This is due to the equivariance of the dot-product and the
post-composition operators. The equivariance of the post-composition operator was proved in (Cohen
& Welling, 2016). We formally prove the equivariance of dot-product for the SO(3) group.
Theorem E.2. The dot-product between two equivariant functions f, g : SO(3)→ Rd is equivariant
with respect to the group representation L. That is, [LRf ].[LRg] = LR[f.g]

Proof. [LRf ].[LRg](Q) =
∑d−1

k=0 fk(R−1Q)gk(R−1Q) = [
∑d−1

k=0 fkgk](R−1Q) = f.g(R−1Q) =
LR[f.g].

The proof for the preservation of compositionality also holds by considering the infinite graph
G(x). The definition for this is the same as before. The proof follows by using the same mapping
between vertices, and from the equivariance of the routing procedure.
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