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ABSTRACT

Despite considerable advances in neural language modeling, it remains an open
question what the best decoding strategy is for text generation from a language
model (e.g. to generate a story). The counter-intuitive empirical observation is
that even though the use of likelihood as training objective leads to high quality
models for a broad range of language understanding tasks, maximization-based
decoding methods such as beam search lead to degeneration — output text that is
bland, incoherent, or gets stuck in repetitive loops.
To address this we propose Nucleus Sampling, a simple but effective method to
draw considerably higher quality text out of neural language models than previ-
ous decoding strategies. Our approach avoids text degeneration by truncating the
unreliable tail of the probability distribution, sampling from the dynamic nucleus
of tokens containing the vast majority of the probability mass.
To properly examine current maximization-based and stochastic decoding meth-
ods, we compare generations from each of these methods to the distribution of
human text along several axes such as likelihood, diversity, and repetition. Our re-
sults show that (1) maximization is an inappropriate decoding objective for open-
ended text generation, (2) the probability distributions of the best current language
models have an unreliable tail which needs to be truncated during generation and
(3) Nucleus Sampling is the best available decoding strategy for generating long-
form text that is both high-quality — as measured by human evaluation — and as
diverse as human-written text.

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Beam Search, b=100:
"The unicorns were very intelligent, and they were
very intelligent," said Dr. David S. Siegel, a
professor of anthropology at the University of
California, Berkeley."They were very intelligent,
and they were very intelligent, and they were very
intelligent.”

Pure Sampling:
The researchers credited these Mages with building Fabian
leather armor. Representing an increasing global problem
for consumers, the Fabians encouraged different types of
leather to be made by various models of the m animal. A
bearded, 350-pound maurice was engaged in strenuous
natural exercise, which was covered by waterproof clothing.

Figure 1: Even with significant human context and the powerful GPT-2-117M model, BeamSearch
leads to degenerate repetition (highlighted in blue) and pure sampling (sampling directly from the
softmax distribution) leads to incoherent gibberish (highlighted in red). This stands in stark contrast
with the admirable quality of the text decoded using top-k sampling in Radford et al. (2019).

1 INTRODUCTION

On February 14th 2019, OpenAI surprised the scientific community with an impressively high-
quality article about Ovid’s Unicorn, written by GPT-2.1 Notably, the top-quality generations ob-
tained from the model rely on randomness in the decoding method, in particular through top-k sam-
pling that samples the next word from the top k most probable choices (Fan et al., 2018a; Holtzman
et al., 2018; Radford et al., 2019), instead of aiming to decode text that maximizes likelihood.

1https://openai.com/blog/better-language-models/
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In fact, decoding strategies that optimize for output with high probability, such as beam search, lead
to text that is incredibly degenerate, even when using state-of-the-art models such as GPT-2-117M,
as shown in Figure 1. This may seem counter-intuitive, as one would expect that good models
would assign higher probability to more human-like, grammatical text. Indeed, language models
do generally assign high scores to well-formed text, yet the highest scores for longer texts are often
generic, repetitive, and awkward.

Perhaps equally surprising is the right side of Figure 1, which shows that pure sampling — sampling
directly from the probabilities predicted by the model — results in text that is incoherent and almost
unrelated to the context. Why is text produced by pure sampling so degenerate? In this work we
show that the “unreliable tail” is to blame. This unreliable tail is composed of tens of thousands of
candidate tokens with relatively low probability that are over-represented in the aggregate.

To overcome these shortcomings we introduce Nucleus Sampling (§3.1). The key intuition of Nu-
cleus Sampling is that the vast majority of probability mass at each time step is concentrated in the
nucleus, a small subset of the vocabulary that tends to range between one and a thousand candidates.
Instead of relying on a fixed top-k, or using a temperature parameter to control the shape of the dis-
tribution without sufficiently suppressing the unreliable tail distribution, we propose sampling from
the top-p portion of the probability mass, expanding and contracting the candidate pool dynamically.

In order to compare current methods to Nucleus Sampling, we compare various distributional prop-
erties of generated text to the reference distribution, such as the likelihood of veering into repetition
and the perplexity of generated text. The latter reveals that text generated by maximization or top-k
sampling is too probable, indicating a lack of diversity and divergence in vocabulary usage from the
human distribution. On the other hand, pure sampling produces text that is significantly less likely
than the gold, corresponding to lower generation quality.

Vocabulary usage and Self-BLEU (Zhu et al., 2018) statistics reveal that high values of k are needed
to make top-k sampling match human statistics. Yet, generations based on high values of k are also
found to have incredibly high variance in likelihood, hinting at qualitatively observable incoherency
issues. Nucleus Sampling can easily match reference perplexity through a proper value of p, without
facing the resulting incoherence caused by setting k high enough to match distributional statistics.

Finally, we perform Human Unified with Statistical Evaluation (HUSE; Hashimoto et al., 2019) to
jointly assess the overall quality and diversity of the decoding strategies, which cannot be captured
using either human or automatics evaluation alone. The HUSE evaluation demonstrates that Nu-
cleus sampling is the best overall decoding strategy. We include generated examples for qualitative
analysis – see Figure 9 for a representative example, and further examples in the appendix.

2 BACKGROUND

2.1 TEXT GENERATION DECODING STRATEGIES

A number of recent works have alluded to the disadvantages of generation by maximization, which
tend to generate output with high grammaticality but low diversity (Kulikov et al., 2018; Holtzman
et al., 2018; Fan et al., 2018a). Generative Adversarial Networks (GANs) have been a prominent
research direction (Yu et al., 2017; Xu et al., 2018), but recent work has shown that when quality and
diversity are considered jointly, GAN-generated text fails to outperform generations from language
models (Caccia et al., 2018; Tevet et al., 2018; Semeniuta et al., 2018). Work on neural dialog
systems have proposed methods for diverse beam search, using a task-specific diversity scoring
function or constraining beam hypotheses to be sufficiently different (Li et al., 2016a; Vijayakumar
et al., 2018; Kulikov et al., 2018; Pal et al., 2006). While such utility functions encourage desirable
properties in generations, they do not remove the need to choose an appropriate decoding strategy,
and we believe that Nucleus Sampling will have complementary advantages in such approaches.

2.2 OPEN-ENDED VS DIRECTED GENERATION

Many text generation tasks are defined through (input, output) pairs, such that the output is a con-
strained transformation of the input. Example applications include machine translation (Bahdanau
et al., 2015), data-to-text generation (Wiseman et al., 2017), and summarization (Nallapati et al.,
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An unprecedented number of mostly young whales have become stranded on
the West Australian coast since 2008.

Poor nutrition has led to a rise in the number of stranded humpback whales on the
West Australian coast, veterinary researchers have said. Carly Holyoake, from Murdoch
University, at the Australian Veterinary Association's annual conference in Perth on
Wednesday, said an unprecedented number of mostly young whales had become
stranded on the coast since 2008.

There has been an unprecedented number of calves caught in the nets of whaling
stations that operate in WA. Pilot whales continue to migrate to feeding grounds to
feed their calves. They are now vulnerable due to the decline of wild populations;
they are restricted to one breeding site each year. Image copyright Yoon Bo Kim But,
with sharp decline in wild populations the size of the Petrels are shrinking and dwindling
population means there will only be room for a few new fowl.

Pumping Station #3 shut down due to construction damage Find more at:
www.abc.net.au/environment/species-worry/
in-the-top-10-killer-whale-catastrophes-in-history.html
“In the top 10 killer whale catastrophes in history:
1) 1986: Up to 12 orcas struck by lightning; many drowned and many more badly injured.

Last week's intense storms and a series of powerful cyclones have been officially blamed
for the deaths of at least nine large fin whales near Whitsundays - the largest loss of any
species globally. The fin whales: packed in the belly of one killer whale thrashing madly
in fear as another tries to bring it to safety. When the colossal animal breached the
waters of Whitsundays, he'd been seen tagged for a decade.

The Australian Food Safety Authority has warned Australia's beaches may be revitalised
this year because healthy seabirds and seals have been on the move. More than 50,000
seabirds, sea mammals and seahorses have been swept into the sea by the Holden
CS118 and Adelaide Airport CS300 from 2013. A major white-bat and umidauda
migration across Australia is under way in Australia for the first time, with numbers
reaching an estimated 50,000.

The number of stranded whales has increased by more than 50 per cent in the past year,
with the number of stranded whales on the West Australian coast increasing by more
than 50 per cent in the past year. The number of whales stranded on the West Australian
coast has increased by more than 50 per cent in the past year, with the number of
stranded whales on the West Australian coast increasing by more than 50 per cent in the
past year.

Sampling, t=0.9

WebText

WebText

BeamSearch, b=16

Pure Sampling

Top-k, k=640

Top-k, k=640, t=0.7

The whale's fate was confirmed late last week when the animal was found by fishermen
off the coast of Bundaberg. Experts believe the whale was struck by a fishing vessel off
the coast of Bundaberg, and died after being sucked into the ocean. The whale's fate
was confirmed late last week when the animal was found by fishermen off the coast of
Bundaberg.

Nucleus, p=0.95

Figure 2: Example generations from an initial sentence. Maximization and top-k truncation meth-
ods lead to copious repetition (highlighted in blue), while sampling with and without temperature
tends to lead to incoherence (highlighted in red). Nucleus Sampling largely avoids both issues. All
generations for all hyperparameters will be made publicly available, along with our codebase.

2016). We refer to these tasks as directed generation. Typically encoder-decoder architectures
are used, often with an attention mechanisms (Bahdanau et al., 2015; Luong et al., 2015) or using
attention-based architectures such as the Transformer (Vaswani et al., 2017). Generation is usually
performed using beam search; since output is tightly scoped by the input, repetition and genericness
are not as problematic. Still, similar issues have been reported when using large beam sizes (Koehn
& Knowles, 2017), a counter-intuitive observation since large beam sizes help maximize probability.

Open-ended generation, which includes conditional story generation and contextual text continua-
tion (as in Figure 1), has recently become a promising research direction due to significant advances
in neural language models (Clark et al., 2018; Holtzman et al., 2018; Fan et al., 2018b; Peng et al.,
2018; Radford et al., 2019). While the input context restricts the space of acceptable output genera-
tions, there is a considerable degree of freedom in what can plausibly come next, unlike in directed
generation settings. Our work addresses the challenges faced by neural text generation with this
increased level of freedom, but we note that some tasks, such as goal-oriented dialog, may fall
somewhere in between open-ended and directed generation.

3



Under review as a conference paper at ICLR 2020

pr
ob

ab
ili
ty

0.4

0.5

0.6

0.7

0.8

0.9

1

I do n’t know .

Figure 3: The probability of a repeated phrase increases with each repetition, creating a positive
feedback loop. We found this effect to hold for the vast majority of phrases we tested, regardless of
phrase length or if the phrases were sampled randomly rather than taken from human text.

3 LANGUAGE MODEL DECODING

Given an input text passage as context, the task of open-ended generation is to generate text that
forms a coherent continuation from the given context. More formally, given a sequence of m tokens
x1 . . . xm as context, the task is to generate the next n continuation tokens to obtain the completed
sequence x1 . . . xm+n. We assume that models compute P (x1:m+n) using the common left-to-right
decomposition of the text probability,

P (x1:m+n) =

m+n∏
i=1

P (xi|x1 . . . xi−1), (1)

which is used to generate the generation token-by-token using a particular decoding strategy.

Maximization-based decoding The most commonly used decoding objective, in particular for
directed generation, is maximization-based decoding. Assuming that the model assigns higher prob-
ability to higher quality text, these decoding strategies search for the continuation with the highest
likelihood. Since finding the optimum argmax sequence from recurrent neural language models or
Transformers is not tractable (Chen et al., 2018), common practice is to use beam search (Li et al.,
2016b; Shen et al., 2017; Wiseman et al., 2017). However, several recent studies on open-ended
generation have reported that maximization-based decoding does not lead to high quality text (Fan
et al., 2018a; Holtzman et al., 2018).

3.1 NUCLEUS SAMPLING

We propose a new stochastic decoding method: Nucleus Sampling. The key idea is to use the shape
of the probability distribution to determine the set of tokens to be sampled from. Given a distribution
P (x|x1:i−1), we define its top-p vocabulary V (p) ⊂ V as the smallest set such that∑

x∈V (p)

P (x|x1:i−1) >= p. (2)

Let p′ =
∑

x∈V (k) P (x|x1:i−1). The original distribution is re-scaled to a new distribution, from
which the next word is sampled:

P ′(x|x1:i−1) =

{
P (x|x1:i−1)/p

′ if x ∈ V (k)

0 otherwise. (3)

In practice this means selecting the highest probability tokens whose cumulative probability mass
exceeds the pre-chosen threshold p. The size of the sampling set will adjust dynamically based on
the shape of the probability distribution at each time step. For high values of p, it is a small subset
of vocabulary that takes up most of the probability mass — the nucleus.
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Figure 4: The probability mass assigned to partial human sentences. Flat distributions lead to many
moderately probable tokens, while peaked distributions concentrate most probability mass into just
a few tokens. The presence of flat distributions makes the use of a small k in top-k sampling
problematic, while the presence of peaked distributions makes large k problematic.

3.2 TOP-k SAMPLING

Top-k Sampling has recently become a popular alternative sampling procedure (Fan et al., 2018a;
Holtzman et al., 2018; Radford et al., 2019). Nucleus Sampling and top-k both sample from trun-
cated Neural LM distributions, differing only in the strategy of where to truncate. Choosing where
to truncate can be interpreted as determining the generative model’s trustworthy prediction zone.

At each time step, the top k possible next tokens are sampled from according to their relative prob-
abilities. Formally, given a distribution P (x|x1:i−1), we define its top-k vocabulary V (k) ⊂ V as
the set of size k which maximizes

∑
x∈V (k) P (x|x1:i−1). Let p′ =

∑
x∈V (k) P (x|x1:i−1). The

distribution is then re-scaled as in equation 3, and sampling is performed based on that distribution.
Note that the scaling factor p′ will be different at each time-step, in contrast to Nucleus Sampling.

Difficulty in choosing a suitable value of k While top-k sampling leads to considerably higher
quality text than either beam search or sampling from the full distribution, the use of a constant
k is sub-optimal across varying contexts. As illustrated on the left of Figure 4, in some contexts
the head of the next word distribution can be flat across tens or hundreds of reasonable options
(e.g. nouns or verbs in generic contexts), while in other contexts most of the probability mass
is concentrated in one or a small number of tokens, as on the right of the figure. Therefore if k is
small, in some contexts there is a risk of generating bland or generic text, while if k is large the top-k
vocabulary will include inappropriate candidates which will have their probability of being sampled
increased through the truncation. Under Nucleus Sampling, the number of candidates considered
rises and falls dynamically, corresponding to the changes in the model’s confidence region over the
vocabulary which top-k sampling fails to capture for any one choice of k.

3.3 SAMPLING WITH TEMPERATURE

Another common approach to sampling-based generation is to shape a probability distribution
through temperature (Ackley et al., 1985). Temperature sampling has been applied widely to text
generation (Ficler & Goldberg, 2017; Fan et al., 2018a; Caccia et al., 2018). Given the logits u1:|V |
and temperature t, the softmax is re-estimated as

p(x = Vl|x1:i−1) =
exp(ul/t)∑
l′ exp(ul/t)

. (4)

Setting t ∈ [0, 1) shapes the distribution to be more skewed towards high probability events, which
implicitly lowers the mass in the tail distribution. Low temperature sampling has also been used
to partially alleviate the issues of top-k sampling discussed above, by shaping the distribution be-
fore top-k sampling (Radford et al., 2018; Fan et al., 2018a). However, recent analysis has shown
that, while lowering the temperature improves generation quality, it comes at the cost of decreasing
diversity (Caccia et al., 2018; Hashimoto et al., 2019).
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Method Perplexity Self-BLEU4 Zipf Coefficient Repetition % HUSE
Human 13.08 0.30 0.93 0.18 -
Greedy 1.50 0.50 1.00 73.20 -

Beam, b=16 1.49 0.50 1.00 73.26 -
Pure Sampling 22.73 0.28 0.93 0.14 0.81

Sampling, t=0.9 10.25 0.35 0.96 0.54 0.88
Top-k=640 13.82 0.32 0.96 0.14 0.98

Top-k=40, t=0.7 3.48 0.44 1.00 8.50 0.96
Nucleus p=0.95 13.13 0.32 0.95 0.20 1.00

Table 1: Main results for comparing all decoding methods with selected parameters of each method.
The numbers closest to human scores are in bold except for HUSE (Hashimoto et al., 2019), a com-
bined human and statistical evaluation, where the highest (best) value is bolded Nucleus Sampling
performs the same or better (compared to the human text for distributional metrics) than all other
methods on all metrics, except for pure sampling’s Zipf coefficient, which is expected since trunca-
tion curtails the distribution. Note that both pure sampling and top-k underestimate the amount of
repetition, whereas Nucleus Sampling closely matches human levels.

4 LIKELIHOOD EVALUATION

4.1 EXPERIMENTAL SETUP

While many neural network architectures have been proposed for language modeling, including
LSTMs (Sundermeyer et al., 2012) and convolutional networks (Dauphin et al., 2017), the Trans-
former architecture (Vaswani et al., 2017) has been the most successful in the extremely large-scale
training setups in recent literature (Radford et al., 2018; 2019). In this study we use the Generative
Pre-trained Transformer, version 2 (Radford et al., 2019), which was trained on WebText, a 40GB
collection of text scraped from the web. We perform experiments using the Large model (762M
parameters). Our analysis is based on generating 5,000 text passages, which end upon reaching
an end-of-document token or a maximum length of 200 tokens. We consider a conditional gener-
ation setting, in which texts are conditioned on the initial paragraph (restricted to 1-40 tokens) of
documents in the validation portion of WebText.

4.2 PERPLEXITY

Our first evaluation is to compute the perplexity of generated text using various decoding strategies,
according to the model that is being generated from. We compare these perplexities against that of
the gold text (Figure 5). Importantly, we argue that the optimal generation strategy should produce
text which has a perplexity close to that of the gold text: Even though the model has the ability to
generate text that has lower perplexity (higher probability), such text tends to be low-diverstiy and
get stuck in repetition loops, as shown in §5 and illustrated in Figure 3.

We see that perplexity of text obtained from pure sampling (sampling with t = 1) is actually worse
than the perplexity of the gold. This indicates that the model is actually confusing itself: sampling
too many unlikely tokens and creating context that makes it difficult to recover the human distribu-
tion of text, as happens in Figure 1. Yet setting the temperature lower creates diversity repetition
issues, as we shall see in §5. Interestingly, even with the relatively fine-grained parameter sweep
conducted, Nucleus Sampling gets closer perplexity in both the conditional and under conditional
case, than any other method, as shown in Table 1.

4.3 NATURAL LANGUAGE DOES NOT MAXIMIZE PROBABILITY

One might wonder if the issue with maximization search error is a, i.e., there are higher quality
sentences to which the model assigns higher probability than to the decoded ones, beam search
has just failed to find them. Yet Figure 5 shows that the per-token probability of natural text is,
on average, much lower than text generated by beam search. Natural language rarely remains in a
high probability zone for multiple consecutive time steps, instead veering into lower-probability but
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Figure 5: Perplexities of generations from various decoding methods. Note that beam search has
unnaturally low perplexities. A similar effect is seen using a temperature of 0.7 with top-k as in both
Radford et al. (2019) and Fan et al. (2018a). Sampling, Top-k, and Nucleus can all be calibrated to
human perplexities, but we shall see the first two face coherency issues when their parameters are
set this high.

more informative tokens. Nor does natural language tend to fall into repetition loops, even though
the model tends to assign high probability to this, as seen in Figure 3.

Why is naturally existing human text not the most probable text? We conjecture that this is an
intrinsic property of human language. Language models that assign probabilities one word at a time
without context for the underlying document will have trouble capturing this effect. Grice’s Maxims
of Communication (Grice, 1975) show that people optimize against stating the obvious. Thus, it is
natural that making every word as predictable as possible will be disfavored. This makes solving the
problem simply by training larger models or improving neural architectures using standard per-word
learning objectives unlikely: models that are blindly predicting the future will be forced to predict
the lowest common denominator, rather than information rich language.

5 DISTRIBUTIONAL STATISTICAL EVALUATION

5.1 ZIPF DISTRIBUTION ANALYSIS

In order to compare generations to the reference text, we begin by analyzing their use of vocabu-
lary. Zipf’s law suggests that there is an exponential relationship between the rank of a word and its
frequency in text. The Zipfian coefficient s can be used to compare the distribution in a given text
to a theoretically perfect exponential curve, where s = 1 (Piantadosi, 2014). Figure 6 shows the
vocabulary distributions along with estimated Zipf coefficients for selected parameters of different
decoding methods. As expected, pure sampling is the closest to the human distribution, followed by

Figure 6: A chart describing the distributional differences between n-gram frequencies of human and
machine text. Sampling and Nucleus Sampling are by far the closest, with maximization methods
greedy and Beam Search clearly in a very different distribution than natural language.
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Nucleus Sampling. The visualization of the distribution shows that pure sampling slightly overes-
timates the use of rare words, likely one reason why pure sampling also has higher perplexity than
human text. Furthermore, lower temperature sampling avoids sampling these rare words from the
tail, which is why it has been used in some recent work (Fan et al., 2018a; Radford et al., 2019).

5.2 SELF-BLEU

We follow previous work and compute Self-BLEU (Zhu et al., 2018) as a metric of diversity. Self-
BLEU is calculated by computing the BLEU score of each generated document using all other
generations in the evaluation set as references. Thus a lower Self-BLEU score implies higher diver-
sity. Figure 7 shows that Self-BLEU results largely follow that of the Zipfian distribution analysis
as a diversity measure. It is worth noting that very high values of k and t are needed to get close to
the reference distribution, though these result in unnaturally high perplexity (§4).

5.3 REPETITION

One attribute of text quality that we can quantify is repetition. Figure 8 shows that Nucleus Sam-
pling and top-k sampling have the least repetition for reasonable parameter ranges. Generations
from temperature sampling have more repetition unless very high temperatures are used, which we
have shown negatively affects coherence (as measured by high perplexity). Further, all stochastic
methods face repetition issues when their tuning parameters are set too low, which tends to over-
truncate, mimicking greedy search. Therefore we conclude that only Nucleus Sampling satisfies all
the distributional criteria for desirable generations.

6 HUMAN EVALUATION

6.1 HUMAN UNIFIED WITH STATISTICAL EVALUATION (HUSE)

Statistical evaluations are unable to measure the coherence of generated text properly. While the
metrics in previous sections gave us vital insights into the different decoding methods we compare,
human evaluation is still required to get a full measure of the quality of the generated text. However,
pure human evaluation does not take into account the diversity of the generated text; therefore we use
HUSE (Hashimoto et al., 2019) to combine human and statistical evaluation. HUSE is computed by
training a discriminator to distinguish between text drawn from the human and model distributions,
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Figure 7: Self-BLEU calculated on the unconditional generations produced by stochastic decoding
methods; lower Self-BLEU scores imply higher diversity. Horizontal blue and orange lines represent
human self-BLEU scores. Note how common values of t ∈ [0.5, 1] and k ∈ [1, 100] result in high
self-similarity, whereas “normal” values of p ∈ [0.9, 1) closely match the human distribution of text.
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Figure 8: We visualize how often different decoding methods get “stuck” in loops within the first 200
tokens. Concretely, a phrase (sequence of words with minimum length 2) must repeat at least three
times at the end of the generation to be considered a repetition. Since all the methods described used
different parameter ranges, we label points with the appropriate parameter value except for t and p.
Since values of k greater than 100 are rarely used in practice and values of p are usually in [0.9, 1),
it becomes clear that Nucleus sampling is far closer to the human distribution in its usual parameter
range. Finally, temperatures lower than 0.9 severely effect repetition, making it problematic for use
in long-form generation.

based on only two features: The probability assigned by the language model, and human judgements
of typicality of generations. Text that is close to the human distribution in terms of quality and
diversity should perform well on both likelihood evaluation and human judgements. The results
in Table 1 shows that Nucleus Sampling obtains the highest HUSE score, with Top-k sampling
performing next best.

6.2 QUALITATIVE ANALYSIS

Figure 9 shows representative example generations. Unsurprisingly, Beam Search gets stuck in a
repetition loop it cannot escape. Of the stochastic decoding schemes, the output of full sampling
is clearly the hardest to understand, even inventing a new word “umidauda”, apparently a species
of bird. The generation produced by Nucleus Sampling isn’t perfect – the model appears to get
get confused that it was talking about whales, and begins talking about birds instead. Yet, Top-k
Sampling immediately veers off into an unrelated event. When top-k sampling is combine with
a temperature of 0.7, as is commonly done (Radford et al., 2019; Fan et al., 2018a), the output
devolves into repetition.

7 CONCLUSION

This paper provided a deep analysis into the properties of the most common decoding methods for
open-ended language generation. We have shown that likelihood maximizing decoding causes repe-
tition and overly generic language usage, while sampling methods without truncation risk sampling
from the low-confidence tail of a model’s predicted distribution. Further, we proposed Nucleus Sam-
plingas a solution that captures the region of confidence of language models effectively. In future
work, we wish to dynamically characterize this region of confidence and include a more semantic
utility function to guide the decoding process.
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A EXAMPLE GENERATIONS

We include another set of examples for further qualitative comparison.

dsfsadfd

Top Customer Questions

Sampling, t=0.9

WebText

WebText

BeamSearch, b=16

Pure Sampling

Top-k, k=640

Top-k, k=640, t=0.7

Nucleus, p=0.95

Q: I have a question about the new "S" series. I have a question about the new \"S\"
series .A: The new "S" series is a new line of high-performance, high-performance, high-
performance, high-performance, high-performance, high-performance, high-
performance, high-performance, high-performance, high-performance, high-
performance, high-performance, high-performance, high-performance, high-
performance, high-performance, high-performance, high-performance,

When will you start sending this stuff for register until someone else orders? If anyone
wants to order, we would like to keep the next batch of binders as being a vaiible
sample. It ASKED for the logistics and cost of shipping. I wish for a refund if actions like
this are to set us back another beat. Are there any instructions for understanding the CDI
CAL 0519-019? If there are, I'd be very keen to find them.

What's the best way to read this one? The blog post from the authors discusses the
differences between how the marketing mix plays out in terms of visibility,
trustworthiness, and engagement, among other things. In my experience, this difference
isn't necessarily obvious; it's hard to explain to a layperson, but in all honesty it's
probably the most important point to consider when reviewing social media.

8 questions Asked By: Bizzabo - 28th February 2016 Product: Jaybo Comfort: Durability I
have a small pad for the calf and on the off chance it all breaks i would like to know that
how do you square up the circumference of the pad with something as comfortable as a
new t shirts. Thanks. Has the compression system at all moved????? Asked By: Kiran R -
28th February 2016 Product: Jaybo Comfort: Durability

How can I change the wallpaper for my computer screen? If you have the latest (current
version) of your operating system, then you can change the background wallpaper for
your screen. How can I change the wallpaper for my computer screen? Open the settings
app. Tap on your user name and tap on Settings. Click on the Background. The
wallpaper change will apply. How can I change the background wallpaper for my screen?

Where can I purchase my prototypes and printed books in the USA? Currently we have a
sign for purchase available in the guide. Since we are based in the States we will be
shipping to you by FedEx. Do you make books in America? We do! We love our folks in
the US. We haven't had a chance to make a documentary so we love to share our love
for our culture. How does the book publisher pay for the book and art?

Why are your caustics superior? Purest Grades Available. All US Manufactured. No Asian
Imports. Quality Control on all incoming and outgoing shipments. Most suppliers only
supply tech grade product. What is difference between Food and Tech Grade Lye? Food
grade has a lower parts per million of heavy metal impurities. 80% of our soap makers
prefer our food grade product.

Figure 9: More example generations from an initial tag line. All generations for all hyperparameters
will be made publicly available, along with our codebase.
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