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ABSTRACT

We propose a novel score-based approach to learning a directed acyclic graph
(DAG) from observational data. We adapt a recently proposed continuous con-
strained optimization formulation to allow for nonlinear relationships between
variables using neural networks. This extension allows to model complex in-
teractions while avoiding the combinatorial nature of the problem. In addition
to comparing our method to existing continuous optimization methods, we pro-
vide missing empirical comparisons to nonlinear greedy search methods. On both
synthetic and real-world data sets, this new method outperforms current continu-
ous methods on most tasks, while being competitive with existing greedy search
methods on important metrics for causal inference.

1 INTRODUCTION

Structure learning and causal inference have many important applications in different areas of sci-
ence such as genetics (Koller & Friedman, 2009; Peters et al., 2017), biology (Sachs et al., 2005) and
economics (Pearl, 2009). Bayesian networks (BN), which encode conditional independencies using
directed acyclic graphs (DAG), are powerful models which are both interpretable and computation-
ally tractable. Causal graphical models (CGM) (Peters et al., 2017) are BNs which support inter-
ventional queries like: What will happen if someone external to the system intervenes on variable X?
Recent work suggests that causality could partially solve challenges faced by current machine learn-
ing systems such as robustness to out-of-distribution samples, adaptability and explainability (Pearl,
2019; Magliacane et al., 2018). However, structure and causal learning are daunting tasks due to
both the combinatorial nature of the space of structures (the number of DAGs grows super expo-
nentially with the number of nodes) and the question of structure identifiability (see Section 2.2).
Nevertheless, these graphical models known qualities and promises of improvement for machine
intelligence renders the quest for structure/causal learning appealing.

In this work, we propose a score-based method (Koller & Friedman, 2009) for structure learning
named GraN-DAG which makes use of a recent reformulation of the original combinatorial prob-
lem of finding an optimal DAG into a continuous constrained optimization problem. In the original
method named NOTEARS (Zheng et al., 2018), the directed graph is encoded as a weighted adja-
cency matrix which represents coefficients in a linear structural equation model (SEM) (Pearl, 2009)
(see Section 2.3) and enforces acyclicity using a constraint which is both efficiently computable and
easily differentiable, thus allowing the use of numerical solvers. This continuous approach improved
upon popular methods while avoiding the design of greedy algorithms based on heuristics.

Our first contribution is to extend the framework of Zheng et al. (2018) to deal with nonlinear rela-
tionships between variables using neural networks (NN) (Goodfellow et al., 2016). GraN-DAG is
general enough to deal with a large variety of parametric families of conditional probability distri-
butions. To adapt the acyclicity constraint to our nonlinear model, we use an argument similar to
what is used in Zheng et al. (2018) and apply it first at the level of neural network paths and then at
the level of graph paths. On both synthetic and real-world tasks, we show GraN-DAG outperforms
other approaches which leverage the continuous paradigm, including DAG-GNN (Yu et al., 2019),
a recent nonlinear extension of Zheng et al. (2018) which uses an evidence lower bound as score.

Our second contribution is to provide a missing empirical comparison to existing methods that sup-
port nonlinear relationships but tackle the optimization problem in its discrete form using greedy
search procedures, namely CAM (Bühlmann et al., 2014) and GSF (Huang et al., 2018). We show

We provide an implementation of GraN-DAG here.
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that GraN-DAG is competitive on the wide range of tasks we considered, while using similar pre
and post-processing steps as CAM.

2 BACKGROUND

Before presenting GraN-DAG, we review concepts relevant to structure and causal learning.

2.1 CAUSAL GRAPHICAL MODELS

We suppose the natural phenomenon of interest can be described by a random vector X ∈ Rd
entailed by an underlying CGM (PX ,G) where PX is a probability distribution over X and G =
(V,E) is a DAG (Peters et al., 2017). Each node j ∈ V corresponds to exactly one variable in
the system. Let πGj denote the set of parents of node j in G and let XπGj

denote the random vector
containing the variables corresponding to the parents of j in G. Throughout the paper, we assume
there are no hidden variables. In a CGM, the distribution PX is said to be Markov to G, i.e. we can
write the probability density function (pdf) of PX as p(x) =

∏d
j=1 pj(xj |xπGj ) where pj(xj |xπGj )

is the conditional pdf of variable Xj given XπGj
. A CGM can be thought of as a BN in which

directed edges are given a causal meaning, allowing it to answer queries regarding interventional
distributions (Koller & Friedman, 2009).

2.2 STRUCTURE IDENTIFIABILITY

In general, it is impossible to recover G given samples from PX . It is, however, customary to rely
on a set of assumptions to render the structure fully or partially identifiable.

Definition 1 Given a set of assumptions A on a CGM M = (PX ,G), its graph G is said to be
identifiable from PX if there exists no other CGM M̃ = (P̃X , G̃) satisfying all assumptions in A
such that G̃ 6= G and P̃X = PX .

There are many examples of graph identifiability results for continuous variables (Peters et al., 2014;
Peters & Bühlman, 2014; Shimizu et al., 2006; Zhang & Hyvärinen, 2009) as well as for discrete
variables (Peters et al., 2011). These results are obtained by assuming that the conditional pdf pj ∀j
belongs to a specific parametric family P . For example, if one assumes that

Xj |XπGj
∼ N (fj(XπGj

), σ2
j ) ∀j (1)

where fj is a nonlinear function satisfying some mild regularity conditions, then G is identifiable
from PX (see Peters et al. (2014) for the complete theorem and its proof). We will make use of this
result in Section 4.

One can consider weaker assumptions such as faithfulness (Peters et al., 2017). This assumption
allows one to identify, not G itself, but the Markov equivalence class to which it belongs (Spirtes
et al., 2000). A Markov equivalence class is a set of DAGs which encodes exactly the same set
of conditional independence statements and can be characterized by a graphical object named a
completed partially directed acyclic graph (CPDAG) (Koller & Friedman, 2009; Peters et al., 2017).
Some algorithms we use as baselines in Section 4 output only a CPDAG.

2.3 NOTEARS: CONTINUOUS OPTIMIZATION FOR STRUCTURE LEARNING

Structure learning is the problem of learning G using a data set of n samples {x(1), ..., x(n)}
from PX . Score-based approaches cast this problem as an optimization problem, i.e.
Ĝ = arg maxG∈DAG S(G) where S(G) is a regularized maximum likelihood under graph G. Since
the number of DAGs is super exponential in the number of nodes, most methods rely on various
heuristic greedy search procedures to approximately solve the problem (see Section 5 for a review).
We now present the work of Zheng et al. (2018) which proposes to cast this combinatorial optimiza-
tion problem into a continuous constrained one.
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To do so, the authors propose to encode the graph G on d nodes as a weighted adjacency matrix
U = [u1| . . . |ud] ∈ Rd×d which represents (possibly negative) coefficients in a linear SEM of the
form Xj := u>j X + Ni ∀j where Nj is a noise variable. Let GU be the directed graph associated
with the SEM and let AU be the (binary) adjacency matrix associated with GU . One can see that the
following equivalence holds:

(AU )ij = 0 ⇐⇒ Uij = 0 (2)

To make sure GU is acyclic, the authors propose the following constraint on U :

Tr eU�U − d = 0 (3)

where eM ,
∑∞
k=0

Mk

k! is the matrix exponential and � is the Hadamard product.

To see why this constraint characterizes acyclicity, first note that (AU
k)jj is the number of cycles

of length k passing through node j in graph GU . Clearly, for GU to be acyclic, we must have
TrAU

k = 0 for k = 1, 2, ...,∞. By equivalence (2), this is true when Tr(U � U)k = 0 for
k = 1, 2, ...,∞ . From there, one can simply apply the definition of the matrix exponential to see
why constraint 3 characterizes acyclicity (see Zheng et al. (2018) for the full development).

The authors propose to use a regularized negative least square score (maximum likelihood for a
Gaussian noise model). The resulting continuous constrained problem is

max
U
S(U,X) , − 1

2n
‖X−XU‖2F − λ‖U‖1 s.t. Tr eU�U − d = 0 (4)

where X ∈ Rn×d is the design matrix containing all n samples. The nature of the problem has
been drastically changed: we went from a combinatorial to a continuous problem. The difficulties
of combinatorial optimization have been replaced by those of non-convex optimization, since the
feasible set is non-convex. Nevertheless, a standard numerical solver for constrained optimization
such has an augmented Lagrangian method (Bertsekas, 1999) can be applied to get an approximate
solution, hence there is no need to design a greedy search procedure. Moreover, this approach is
more global than greedy methods in the sense that the whole matrix U is updated at each itera-
tion. Continuous approaches to combinatorial optimization have sometimes demonstrated improved
performance over discrete approaches in the literature (see for example Alayrac et al. (2018, §5.2)
where they solve the multiple sequence alignment problem with a continuous optimization method).

3 GRAN-DAG: GRADIENT-BASED NEURAL DAG LEARNING

We propose a new nonlinear extension to the framework presented in Section 2.3. For each
variable Xj , we learn a fully connected neural network with L hidden layers parametrized by
φ(j) , {W

(1)
(j) , . . . ,W

(L+1)
(j) } where W (`)

(j) is the `th weight matrix of the jth NN (biases are omitted
for clarity). Each NN takes as input X−j ∈ Rd, i.e. the vector X with the jth component masked to
zero, and outputs θ(j) ∈ Rm, the m-dimensional parameter vector of the desired distribution family
for variable Xj .2 The fully connected NNs have the following form

θ(j) ,W
(L+1)
(j) g(. . . g(W

(2)
(j) g(W

(1)
(j)X−j)) . . . ) ∀j (5)

where g is a nonlinearity applied element-wise. Note that the evaluation of all NNs can be
parallelized on GPU. Distribution families need not be the same for each variable. Let φ ,
{φ(1), . . . , φ(d)} represents all parameters of all d NNs. Without any constraint on its param-
eter φ(j), neural network j models the conditional pdf pj(xj |x−j ;φ(j)). Note that the product∏d
j=1 pj(xj |x−j ;φ(j)) does not integrate to one (i.e. it is not a joint pdf), since it does not decom-

pose according to a DAG. We now show how one can constrain φ to make sure the product of all
conditionals outputted by the NNs is a joint pdf. The idea is to define a new weighted adjacency ma-
trixAφ similar to the one encountered in Section 2.3, which can be directly used inside the constraint
of Equation 3 to enforce acyclicity.

2Not all parameter vectors need to have the same dimensionality, but to simplify the notation, we suppose
mj = m ∀j
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3.1 NEURAL NETWORK CONNECTIVITY

Before defining the weighted adjacency matrix Aφ, we need to focus on how one can make some
NN outputs unaffected by some inputs. Since we will discuss properties of a single NN, we drop the
NN subscript (j) to improve readability.

We will use the term neural network path to refer to a computation path in a NN. For example, in a
NN with two hidden layers, the sequence of weights (W

(1)
h1i
,W

(2)
h2h1

,W
(3)
kh2

) is a NN path from input
i to output k. We say that a NN path is inactive if at least one weight along the path is zero. We can
loosely interpret the path product |W (1)

h1i
||W (2)

h2h1
||W (3)

kh2
| ≥ 0 as the strength of the NN path, where

a path product is equal to zero if and only if the path is inactive. Note that if all NN paths from input
i to output k are inactive (i.e. the sum of their path products is zero), then output k does not depend
on input i anymore since the information in input i will never reach output k. The sum of all path
products from input i to output k for all input i and output k can be easily computed by taking the
following matrix product.

C , |W (L+1)| . . . |W (2)||W (1)| ∈ Rm×d≥0 (6)

where |W | is the element-wise absolute value of W . Let us name C the neural network connectivity
matrix. It can be verified that Cki is the sum of all NN path products from input i to output k. This
means it is sufficient to have Cki = 0 to render output k independent of input i.

Remember that each NN in our model outputs a parameter vector θ for a conditional distribution and
that we want the product of all conditionals to be a valid joint pdf, i.e. we want its corresponding
directed graph to be acyclic. With this in mind, we see that it could be useful to make a certain
parameter θ not dependent on certain inputs of the NN. To have θ independent of variable Xi, it is
sufficient to have

∑m
k=1 Cki = 0.

3.2 A WEIGHTED ADJACENCY MATRIX

We now define a weighted adjacency matrix Aφ that can be used in constraint of Equation 3.

(Aφ)ij ,

{ ∑m
k=1

(
C(j)

)
ki
, if j 6= i

0, otherwise (7)

where C(j) denotes the connectivity matrix of the NN associated with variable Xj .

As the notation suggests,Aφ ∈ Rd×d≥0 depends on all weights of all NNs. Moreover, it can effectively
be interpreted as a weighted adjacency matrix similarly to what we presented in Section 2.3, since
we have that

(Aφ)ij = 0 =⇒ θ(j) does not depend on variable Xi (8)
We note Gφ to be the directed graph entailed by parameter φ. We can now write our adapted acyclic-
ity constraint:

h(φ) , Tr eAφ − d = 0 (9)
Note that we can compute the gradient of h(φ) w.r.t. φ (except at points of non-differentiability
arising from the absolute value function, similar to standard neural networks with ReLU activa-
tions (Glorot et al., 2011); these points did not appear problematic in our experiments using SGD).

3.3 A DIFFERENTIABLE SCORE AND ITS OPTIMIZATION

We propose solving the maximum likelihood optimization problem

max
φ

EX∼PX
d∑
j=1

log pj(Xj |Xπφj
;φ(j)) s.t. Tr eAφ − d = 0 (10)

where πφj denotes the set of parents of node j in graph Gφ. Note that
∑d
j=1 log pj(Xj |Xπφj

;φ(j)) is
a valid log-likelihood function when constraint (9) is satisfied.

As suggested in Zheng et al. (2018), we apply an augmented Lagrangian approach to get an approx-
imate solution to program (10). Augmented Lagrangian methods consist of optimizing a sequence
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of subproblems for which the exact solutions are known to converge to a stationary point of the con-
strained problem under some regularity conditions (Bertsekas, 1999). In our case, each subproblem
is

max
φ
L(φ, λt, µt) , EX∼PX

d∑
j=1

log pj(Xj |Xπφj
;φ(j))− λth(φ)− µt

2
h(φ)2 (11)

where λt and µt are the Lagrangian and penalty coefficients of the tth subproblem, respectively.
These coefficients are updated after each subproblem is solved. See Appendix A.1 for details re-
garding the optimization procedure.

3.4 THRESHOLDING TO ENSURE ACYCLICITY

The solution outputted by the augmented Lagrangian will satisfy the constraint only up to numerical
precision, thus several entries of Aφ might not be exactly zero and require thresholding. To do
so, we mask the inputs of each NN j using a binary matrix M(j) ∈ {0, 1}d×d initialized to have
(M(j))ii = 1 ∀i 6= j and zeros everywhere else. Having (M(j))ii = 0 means the input i of NN
j has been thresholded. This mask is integrated in the product of Equation 6 by doing C(j) ,

|W (L+1)
(j) | . . . |W (1)

(j) |M(j) without changing the interpretation of C(j). During optimization, if the
entry (Aφ)ij is smaller than the threshold ε = 10−4, the corresponding mask entry (M(j))ii is set to
zero, permanently. The masks M(j) are never updated via gradient descent. We also add an iterative
thresholding step at the end to ensure the estimated graph Gφ is acyclic (described in Appendix A.2).

3.5 OVERFITTING

In practice, we maximize an empirical estimate of the objective of problem (10). It is well known
that this maximum likelihood score is prone to overfitting in the sense that adding edges can never
reduce the maximal likelihood (Koller & Friedman, 2009). GraN-DAG gets around this issue in
three ways. First, as we optimize a subproblem, we evaluate its objective on a held-out data set
and declare convergence once it has stopped improving. This approach is known as early stop-
ping (Prechelt, 1997). Second, once we have thresholded our graph estimate to be a DAG, we apply
a final pruning step identical to what is done in CAM (Bühlmann et al., 2014) to remove spurious
edges. This step performs a regression of each node against its parents and uses a significance test
to decide which parents should be kept or not. Third, for graphs of 50 nodes or more, we apply a
preliminary neighbors selection (PNS) before running the optimization procedure as was also rec-
ommended in Bühlmann et al. (2014). This procedure selects a set of potential parents for each
variables. See Appendix A.3 for details on PNS and pruning. Many score-based approaches control
overfitting by penalizing the number of edges in their score. For example, NOTEARS includes the
L1 norm of its weighted adjacency matrix U in its objective. GraN-DAG regularizes using PNS and
pruning for ease of comparision to CAM, the most competitive approach in our experiments. The
importance of PNS and pruning and their ability to reduce overfitting is illustrated in an ablation
study presented in Appendix A.3. The study shows that PNS and pruning are both very important
for the performance of GraN-DAG in terms of SHD, but don’t have a significant effect in terms
of SID. In these experiments, we also present NOTEARS and DAG-GNN with PNS and pruning,
without noting a significant improvement.

4 EXPERIMENTS

In this section, we compare GraN-DAG to various baselines in the continuous paradigm, namely
DAG-GNN (Yu et al., 2019) and NOTEARS (Zheng et al., 2018), and also in the combinatorial
paradigm, namely CAM (Bühlmann et al., 2014), GSF (Huang et al., 2018), GES (Chickering, 2003)
and PC (Spirtes et al., 2000). These methods are discussed in Section 5. We also report the perfor-
mance of random graphs sampled using the Erdős-Rényi (ER) scheme described in Appendix A.4
(denoted by RANDOM). For each approach, we evaluate the estimated graph on two metrics: the
structural hamming distance (SHD) and the structural interventional distance (SID) (Peters &
Bühlmann, 2013). The former simply counts the number of missing, falsely detected or reversed
edges. The latter is especially well suited for causal inference since it counts the number of couples
(i, j) such that the interventional distribution p(xj |do(Xi = x̄)) would be miscalculated if we were

5



Under review as a conference paper at ICLR 2020

to use the estimated graph to form the parent adjustement set. Note that GSF, GES and PC output
only a CPDAG, hence the need to report a lower and an upper bound on the SID. See Appendix A.6
for more details on SHD and SID. All experiments were ran with publicly available code from the
authors website. See Appendix A.7 for the details of their hyperparameters.

4.1 SYNTHETIC DATA

We have generated different data set types which vary along three dimensions: number of nodes,
level of edge sparsity and graph type. We consider two graph sampling schemes: Erdős-Rényi (ER)
and scale-free (SF) (see Appendix A.4 for details). For each data set type, we sampled 10 data sets
of 1000 examples as follows: First, a ground truth DAG G is randomly sampled following either the
ER or the SF scheme. Then, the data is generated following Xj |XπGj

∼ N (fj(XπGj
), σ2

j ) ∀j with

the functions fj independently sampled from a Gaussian process with unit bandwidth and with σ2
j

sampled uniformly. As mentioned in Section 2.2, in this setup we know G to be identifiable from the
distribution (Peters et al., 2014). This ensures that finding the correct DAG via maximum likelihood
is not impossible.

In these experiments, each NN learned by GraN-DAG outputs a Gaussian mean µ̂(j), i.e.
θ(j) := µ̂(j) ∀j. The parameters σ̂2

(j) are learned as well, but do not depend on the parent vari-
ables XπGj

. Note that NOTEARS and CAM also make the correct Gaussian model assumption.

We considered graphs of 10, 20, 50 and 100 nodes. We only present results for 10 and 50 nodes in the
main paper since the conclusions do not change with graphs of 20 or 100 nodes (see Appendix A.5
for the additional experiments). We consider graphs of d and 4d edges (respectively denoted by
ER1 and ER4 in the case of ER graphs). We report the performance of the popular GES and PC in
Appendix A.5 since they are almost never on par with the best methods presented in this section.

Table 1: Results for ER and SF graphs of 10 nodes
ER1 ER4 SF1 SF4

SHD SID SHD SID SHD SID SHD SID

GraN-DAG 1.7±2.5 1.7±3.1 8.3±2.8 21.8±8.9 1.2±1.1 4.1±6.1 9.9±4.0 16.4±6.0
DAG-GNN 11.4±3.1 37.6±14.4 35.1±1.5 81.9±4.7 9.9±1.1 29.7±15.8 20.8±1.9 48.4±15.6
NOTEARS 12.2±2.9 36.6±13.1 32.6±3.2 79.0±4.1 10.7±2.2 32.0±15.3 20.8±2.7 49.8±15.6
CAM 1.1±1.1 1.1±2.4 12.2±2.7 30.9±13.2 1.4±1.6 5.4±6.1 9.8±4.3 19.3±7.5
GSF 6.5±2.6 [6.2±10.8 21.7±8.4 [37.2±19.2 1.8±1.7 [2.0±5.1 8.5±4.2 [13.2±6.8

17.7±12.3] 62.7±14.9] 6.9±6.2] 20.6±12.1]
RANDOM 26.3±9.8 25.8±10.4 31.8±5.0 76.6±7.0 25.1±10.2 24.5±10.5 28.5±4.0 47.2±12.2

Table 2: Results for ER and SF graphs of 50 nodes
ER1 ER4 SF1 SF4

SHD SID SHD SID SHD SID SHD SID

GraN-DAG 5.1±2.8 22.4±17.8 102.6±21.2 1060.1±109.4 25.5±6.2 90.0±18.9 111.3±12.3 271.2±65.4
DAG-GNN 49.2±7.9 304.4±105.1 191.9±15.2 2146.2±64 49.8±1.3 182.8±42.9 144.9±13.3 540.8±151.1
NOTEARS 62.8±9.2 327.3±119.9 202.3±14.3 2149.1±76.3 57.7±3.5 195.7±54.9 153.7±11.8 558.4±153.5
CAM 4.3±1.9 22.0±17.9 98.8±20.7 1197.2±125.9 24.1±6.2 85.7±31.9 111.2±13.3 320.7±152.6
GSF 25.6±5.1 [21.1±23.1 81.8±18.8 [906.6±214.7 31.6±6.7 [85.8±29.9 120.2±10.9 [284.7±80.2

79.2±33.5] 1030.2±172.6] 147.3±49.9] 379.9±98.3]
RANDOM 535.7±401.2 272.3±125.5 708.4±234.4 1921.3±203.5 514.0±360.0 381.3±190.3 660.6±194.9 1198.9±304.6

We now examine Tables 1 and 2 (the errors bars represent the standard deviation across datasets per
task). We can see that, across all settings, GraN-DAG and CAM are the best performing methods,
both in terms of SHD and SID, while GSF is not too far behind. The poor performance of NOTEARS
can be explained by its inability to model nonlinear functions. In terms of SHD, DAG-GNN per-
forms rarely better than NOTEARS while in terms of SID, it performs similarly to RANDOM in
almost all cases except in scale-free networks of 50 nodes or more. Its poor performance might be
due to its incorrect modelling assumptions and because its architecture uses a strong form of parame-
ter sharing between the fi functions, which is not justified in a setup like ours. GSF performs always
better than DAG-GNN and NOTEARS but performs as good as CAM and GraN-DAG only about
half the time. Among the continuous approaches considered, GraN-DAG is the best performing on
all our synthetic tasks.

We also considered synthetic data sets which do not satisfy the additive gaussian noise assumption
present in GraN-DAG, NOTEARS and CAM. We considered two kinds of post nonlinear causal
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models (Zhang & Hyvärinen, 2009), PNL-GP and PNL-MULT (see Appendix A.4 for details about
their generation). A post nonlinear model has the form Xj := gj(fj(XπGj

) + Nj) where Nj is a
noise variable. Note that GraN-DAG does not have the representational power to express these kinds
of relationship (at least with the gaussian model considered in this section). This is also true about
CAM and NOTEARS. However, these data sets differ from the previous additive noise setup only by
the nonlinearity gj , hence offering a case of mild model misspecification. The results are reported
in Table 10 of the appendix. GraN-DAG and CAM are outperforming DAG-GNN and NOTEARS
except in SID for certain data sets where all methods score similarly to RANDOM. GraN-DAG
and CAM have similar performance on all data sets except one where CAM is better. GSF performs
worst than GraN-DAG (in both SHD and SID) on PNL-GP but not on PNL-MULT where it performs
better in SID.

4.2 REAL AND PSEUDO-REAL DATA

We have tested all methods considered so far on a well known data set which measures the expression
level of different proteins and phospholipids in human cells (Sachs et al., 2005). We trained only on
the n = 853 observational samples. This dataset and its ground truth graph proposed in Sachs et al.
(2005) (11 nodes and 17 edges) are often used in the probabilistic graphical model literature (Koller
& Friedman, 2009). We also consider pseudo-real data sets sampled from the SynTReN generator
(Van den Bulcke, 2006). This generator was designed to create synthetic transcriptional regulatory
networks and produces simulated gene expression data that approximates experimental data. See
Appendix A.4 for details of the generation.

Note that in applications, it is not clear whether the DAG G is identifiable from the distribution.
Nevertheless, we apply procedures to estimate it. This departure from identifiable setups is an occa-
sion to explore different modelling assumptions for GraN-DAG. In addition to the model presented
in Section 4.1, we consider an alternative, denoted GraN-DAG++, which allows the variance param-
eters σ̂2

(i) to depend on the parent variables XπGi
through the NN, i.e. θ(i) := (µ̂(i), log σ̂2

(i)).

In addition to metrics used in Section 4.1, we also report SHD-C. To compute the SHD-C between
two DAGs, we first map each of them to their corresponding CPDAG and measure the SHD between
the two. This metric is useful to compare algorithms which only outputs a CPDAG like GSF, GES
and PC to other methods which outputs a DAG. Results are reported in Table 3.

Table 3: Results on real and pseudo-real data
Protein signaling data set SynTReN (20 nodes)
SHD SHD-C SID SHD SHD-C SID

GraN-DAG 13 11 47 34.0±8.5 36.4±8.3 161.7±53.4
GraN-DAG++ 13 10 48 33.7±3.7 39.4±4.9 127.5±52.8
DAG-GNN 16 21 44 93.6±9.2 97.6±10.3 157.5±74.6
NOTEARS 21 21 44 151.8±28.2 156.1±28.7 110.7±66.7
CAM 12 9 55 40.5±6.8 41.4±7.1 152.3±48
GSF 18 10 [44, 61] 61.8±9.6 63.3±11.4 [76.7±51.1, 109.9±39.9]
GES 26 28 [34, 45] 82.6±9.3 85.6±10 [157.2±48.3, 168.8±47.8]
PC 17 11 [47, 62] 41.2±5.1 42.4±4.6 [154.8±47.6, 179.3±55.6]
RANDOM 21 20 60 84.7±53.8 86.7±55.8 175.8±64.7

First, all methods perform worse than what was reported for graphs of similar size in Section 4.1,
both in terms of SID and SHD. This might be due to the lack of identifiability guarantees we face in
applications. On the protein data set, GraN-DAG outperforms CAM in terms of SID (which differs
from the general trend of Section 4.1) and arrive almost on par in terms of SHD and SHD-C. On
this data set, DAG-GNN has a reasonable performance, beating GraN-DAG in SID, but not in SHD.
On SynTReN, GraN-DAG obtains the best SHD but not the best SID. Overall, GraN-DAG is always
competitive with the best methods of each task.

5 RELATED WORK

Most methods for structure learning from observational data make use of some identifiability results
similar to the ones raised in Section 2.2. Roughly speaking, there are two classes of methods:
independence-based and score-based methods. GraN-DAG falls into the second class.
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Score-based methods (Koller & Friedman, 2009; Peters et al., 2017) cast the problem of structure
learning as an optimization problem over the space of structures (DAGs or CPDAGs). Many popular
algorithms tackle the combinatorial nature of the problem by performing a form of greedy search.
GES (Chickering, 2003) is a popular example. It usually assumes a linear parametric model with
Gaussian noise and greedily search the space of CPDAGs in order to optimize the Bayesian infor-
mation criterion. GSF (Huang et al., 2018), is based on the same search algorithm as GES, but uses
a generalized score function which can model nonlinear relationships. Other greedy approaches
rely on parametric assumptions which render G fully identifiable. For example, Peters & Bühlman
(2014) relies on a linear Gaussian model with equal variances to render the DAG identifiable. RE-
SIT (Peters et al., 2014), assumes nonlinear relationships with additive Gaussian noise and greedily
maximizes an independence-based score. However, RESIT do not scale well to graph of more than
20 nodes. CAM (Bühlmann et al., 2014) decouples the search for the optimal node ordering from
the parents selection for each node and assumes an additive noise model (ANM) (Peters et al., 2017)
in which the nonlinear functions are additive. As mentioned in Section 2.3, NOTEARS, proposed
in Zheng et al. (2018), tackles the problem of finding an optimal DAG as a continuous constrained
optimization program. This is a drastic departure from previous combinatorial approaches which en-
ables the application of well studied numerical solvers for continuous optimizations. Recently, Yu
et al. (2019) proposed DAG-GNN, a graph neural network architecture (GNN) which can be used
to learn DAGs via the maximization of an evidence lower bound. By design, a GNN makes use of
parameter sharing which we hypothesize is not well suited for most DAG learning tasks. To the best
of our knowledge, DAG-GNN is the first approach extending the NOTEARS algorithm for structure
learning to support nonlinear relationships. Although Yu et al. (2019) provides empirical compar-
isons to linear approaches, namely NOTEARS and FGS (a faster extension of GES) (Ramsey et al.,
2017), comparisons to greedy approaches supporting nonlinear relationships such as CAM and GSF
are missing. Moreover, GraN-DAG significantly outperforms DAG-GNN on our benchmarks. There
exists certain score-based approaches which uses integer linear programming (ILP) (Jaakkola et al.,
2010; Cussens, 2011) which internally solve continuous linear relaxations. Connections between
such methods and the continuous constrained approaches are yet to be explored.

Methods for causal discovery using NNs have already been proposed. SAM (Kalainathan et al.,
2018) learns conditional NN generators using adversarial losses but does not enforce acyclicity.
CGNN (Goudet et al., 2018), when used for multivariate data, requires an initial skeleton to learn
the different functional relationships.

GraN-DAG has strong connections with MADE (Germain et al., 2015), a method used to learn distri-
butions using a masked NN which enforce the so-called autoregressive property. The autoregressive
property and acyclicity are in fact equivalent. MADE does not learn the weight masking, it fixes it
at the beginning of the procedure. GraN-DAG could be used with a unique NN taking as input all
variables and outputting parameters for all conditional distributions. In this case, it would be similar
to MADE, except the variable ordering would be learned from data instead of fixed a priori.

6 CONCLUSION

The continuous constrained approach to structure learning has the advantage of being more global
than other approximate greedy methods (since it updates all edges at each step based on the gradient
of the score but also the acyclicity constraint) and allows to replace task-specific greedy algorithms
by appropriate off-the-shelf numerical solvers. In this work, we have introduced GraN-DAG, a
novel score-based approach for structure learning supporting nonlinear relationships while leverag-
ing a continuous optimization paradigm. The method rests on a novel characterization of acyclicity
for NNs based on the work of Zheng et al. (2018). We showed GraN-DAG outperforms other
gradient-based approaches, namely NOTEARS and its recent nonlinear extension DAG-GNN, on
the synthetic data sets considered in Section 4.1 while being competitive on real and pseudo-real
data sets of Section 4.2. Compared to greedy approaches, GraN-DAG is competitive across all
datasets considered. To the best of our knowledge, GraN-DAG is the first approach leveraging the
continuous paradigm introduced in Zheng et al. (2018) which has been shown to be competitive with
state of the art methods supporting nonlinear relationships.
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A APPENDIX

A.1 OPTIMIZATION

Let us recall the augmented Lagrangian:

max
φ
L(φ, λt, µt) , EX∼PX

d∑
i=1

log pi(Xi|Xπφi
;φ(i))− λth(φ)− µt

2
h(φ)2 (12)

where λt and µt are the Lagrangian and penalty coefficients of the tth subproblem, respectively. In
all our experiments, we initialize those coefficients using λ0 = 0 and µ0 = 10−3. We approxi-
mately solve each non-convex subproblem using RMSprop (Tieleman & Hinton, 2012), a stochastic
gradient descent variant popular for NNs. We use the following gradient estimate:

∇φL(φ, λt, µt) ≈ ∇φL̂B(φ, λt, µt)

with L̂B(φ, λt, µt) ,
1

|B|
∑
x∈B

d∑
i=1

log pi(xi|xπφi ;φ(i))− λth(φ)− µt
2
h(φ)2

(13)

where B is a minibatch sampled from the data set and |B| is the minibatch size. The gradient
estimate ∇φL̂B(φ, λt, µt) can be computed using standard deep learning libraries. We consider a
subproblem has converged when L̂H(φ, λt, µt) evaluated on a held-out data set H stops increasing.
Let φ∗t be the approximate solution to subproblem t. Then, λt and µt are updated according to the
following rule:

λt+1 ← λt + µth (φ∗t )

µt+1 ←
{
ηµt, if h (φ∗t ) > γh

(
φ∗t−1

)
µt, otherwise

(14)

with η = 10 and γ = 0.9. Each subproblem t is initialized using the previous subproblem solution
φ∗t−1. The augmented Lagrangian method stops when h(φ) ≤ 10−8.

A.2 THRESHOLDING TO ENSURE ACYCLICITY

The augmented Lagrangian outputs φ∗T where T is the number of subproblems solved before declar-
ing convergence. Note that the weighted adjacency matrix Aφ∗T will most likely not represent an
acyclic graph, even if we threshold as we learn, as explained in Section 3.4. We need to remove
additional edges to obtain a DAG (edges are removed using the mask presented in Section 3.4). One
option would be to remove edges one by one until a DAG is obtained, starting from the edge (i, j)
with the lowest (Aφ∗T )ij up to the edge with the highest (Aφ∗T )ij . This amounts to gradually increas-
ing the threshold ε untilAφ∗T is acyclic. However, this approach has the following flaw: It is possible
to have (Aφ∗T )ij significantly higher than zero while having θ(j) almost completely independent of
variable Xi. This can happen for at least two reasons. First, the NN paths from input i to output
k might end up cancelling each others, rendering the input i inactive. Second, some neurons of the
NNs might always be saturated for the observed range of inputs, rendering some NN paths effec-
tively inactive without being inactive in the sense described in Section 3.1. Those two observations
illustrate the fact that having (Aφ∗T )ij = 0 is only a sufficient condition to have θ(j) independent of
variable Xi and not a necessary one.

To avoid this issue, we consider the following alternative. Consider the functionL : Rd 7→ Rd which
maps all d variables to their respective conditional likelihoods, i.e. Li(X) , pi(Xi | X

π
φ∗
T
i

) ∀i.
We consider the following expected Jacobian matrix

J , EX∼PX

∣∣∣∣ ∂L∂X
∣∣∣∣> (15)

where
∣∣ ∂L
∂X

∣∣ is the Jacobian matrix of L evaluated at X , in absolute value (element-wise). Similarly
to (Aφ∗T )ij , the entry Jij can be loosely interpreted as the strength of edge (i, j). We propose
removing edges starting from the lowestJij to the highest, stopping as soon as acyclicity is achieved.
We believe J is better than Aφ∗T at capturing which NN inputs are effectively inactive since it takes
into account NN paths cancelling each others and saturated neurons. Empirically, we found that
using J instead of Aφ∗T yields better results, and thus we report the results with J in this paper.
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A.3 PRELIMINARY NEIGHBORHOOD SELECTION AND DAG PRUNING

PNS: For graphs of 50 nodes or more, GraN-DAG performs a preliminary neighborhood selec-
tion (PNS) similar to what has been proposed in Bühlmann et al. (2014). This procedure applies
a variable selection method to get a set of possible parents for each node. This is done by fit-
ting an extremely randomized trees (Geurts et al., 2006) (using ExtraTreesRegressor from
scikit-learn) for each variable against all the other variables. For each node a feature impor-
tance score based on the gain of purity is calculated. Only nodes that have a feature importance score
higher than 0.75 · mean are kept as potential parent, where mean is the mean of the feature impor-
tance scores of all nodes. Although the use of PNS in CAM was motivated by gains in computation
time, GraN-DAG uses it to avoid overfitting, without reducing the computation time.

Pruning: Once the thresholding is performed and a DAG is obtained as described in A.2, GraN-
DAG performs a pruning step identical to CAM (Bühlmann et al., 2014) in order to remove spurious
edges. We use the implementation of Bühlmann et al. (2014) based on the R function gamboost
from the mboost package. For each variable Xi, a generalized additive model is fitted against the
current parents of Xi and a significance test of covariance is applied. Parents with a p-value higher
than 0.001 are removed from the parent set. Similarly to what Bühlmann et al. (2014) observed, this
pruning phase generally has the effect of greatly reducing the SHD without considerably changing
the SID.

Ablation study: In Table 4, we present an ablation study which shows the effect of adding PNS and
pruning to GraN-DAG on different performance metrics and on the negative log-likelihood (NLL)
of the training and validation set. Note that, before computing both NLL, we reset all parameters
of GraN-DAG except the mask and retrained the model on the training set without any acyclicity
constraint (acyclicity is already ensure by the masks at this point). This retraining procedure is
important since the pruning removes edges (i.e. some additional NN inputs are masked) and it
affects the likelihood of the model (hence the need to retrain).

Table 4: PNS and pruning ablation study for GraN-DAG (averaged over 10 datasets from ER1 with
50 nodes)

PNS Pruning SHD SID NLL (train) NLL (validation)

False False 1086.8±48.8 31.6±23.6 0.36±0.07 1.44±0.21
True False 540.4±70.3 17.4±16.7 0.52±0.08 1.16±0.17
False True 11.8±5.0 39.7±25.5 0.78±0.12 0.84±0.12
True True 6.1±3.3 29.3±19.5 0.78±0.13 0.83±0.12

A first observation is that adding PNS and pruning improve the NLL on the validation set while de-
teriorating the NLL on the training set, showing that those two steps are indeed reducing overfitting.
Secondly, the effect on SHD is really important while the effect on SID is almost nonexistent. This
can be explained by the fact that SID has more to do with the ordering of the nodes than with false
positive edges. For instance, if we have a complete DAG with a node ordering coherent with the
ground truth graph, the SID is zero, but the SHD is not due to all the false positive edges. Without
the regularizing effect of PNS and pruning, GraN-DAG manages to find a DAG with a good ordering
but with many spurious edges (explaining the poor SHD, the good SID and the big gap between the
NLL of the training set and validation set). PNS and pruning helps reducing the number of spurious
edges, hence improving SHD.

We also implemented PNS and pruning for NOTEARS and DAG-GNN to see whether their perfor-
mance could also be improved. Table 5 reports an ablation study for DAG-GNN and NOTEARS.
First, the SHD improvement is not as important as for GraN-DAG and is almost not statistically
significant. The improved SHD does not come close to performance of GraN-DAG. Second, PNS
and pruning do not have a significant effect of SID, as was the case for GraN-DAG. The lack of
improvement for those methods is probably due to the fact that they are not overfitting like GraN-
DAG, as the training and validation (unregularized) scores shows. NOTEARS captures only linear
relationships, thus it will have a hard time overfitting nonlinear data and DAG-GNN uses a strong
form of parameter sharing between its conditional densities which possibly cause underfitting in a
setup where all the parameters of the conditionals are sampled independently.
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Moreover, DAG-GNN and NOTEARS threshold aggressively their respective weighted adjacency
matrix at the end of training (with the default parameters used in the code), which also acts as a
form of heavy regularization, and allow them to remove many spurious edges. GraN-DAG without
PNS and pruning does not threshold as strongly by default which explains the high SHD of Table 4.
To test this explanation, we removed all edges (i, j) for which (Aφ)ij < 0.33 for GraN-DAG and
obtained an SHD of 29.4±15.9 and an SID of 85.6±45.7, showing a significant improvement over
NOTEARS and DAG-GNN, even without PNS and pruning.

Table 5: PNS and pruning ablation study for DAG-GNN and NOTEARS (averaged over 10 datasets
from ER1 with 50 nodes)

Algorithm PNS Pruning SHD SID Score (train) Score (validation)

DAG-GNN False False 56.8±11.1 322.9±103.8 -2.8±1.5 -2.2±1.6
True False 55.5±10.2 314.5±107.6 -2.1±1.6 -2.1±1.7
False True 49.4±7.8 325.1±103.7 -1.8±1.1 -1.8±1.2
True True 47.7±7.3 316.5±105.6 -1.9±1.6 -1.9±1.6

NOTEARS False False 64.2±9.5 327.1±110.9 -23.1±1.8 -23.2±2.1
True False 54.1±10.9 321.5±104.5 -25.2±2.7 -25.4±2.8
False True 49.5±8.8 327.7±111.3 -26.7±2.0 -26.8±2.1
True True 49.0±7.6 326.4±106.9 -26.23±2.2 -26.4±2.4

A.4 DETAILS ON DATA SETS GENERATION

Post nonlinear data sets: Like the synthetic data introduced in Section 4.1, a ground truth DAG
G is randomly sampled following the ER scheme and then the data is generated. PNL-GP is gen-
erated following Xj |XπGj

∼ σ(fj(XπGj
) + Laplace(0, lj)) ∀j with the functions fj independently

sampled from a Gaussian process with bandwidth one and lj ∼ U [0, 1]. Root variables are sam-
pled from U [−1, 1]. In the two-variable case, this model is identifiable following the Corollary
9 from Zhang & Hyvärinen (2009). To get identifiability according to this corollary, it is impor-
tant to use non-Gaussian noise, explaining our design choices. PNL-MULT is generated following
Xj |XπGj

∼ exp(log(
∑
i∈πGj

Xi) + |N (0, σ2
j )|) ∀j where σ2

j ∼ U [0, 1]. Root variables are sampled
from U [0, 2]. This model is adapted from Zhang et al. (2015).

SynTReN: Ten datasets have been generated using the SynTReN generator (http:
//bioinformatics.intec.ugent.be/kmarchal/SynTReN/index.html) using the
software default parameters except for the probability for complex 2-regulator interactions that was
set to 1 and the random seeds used were 0 to 9. Each dataset contains 500 samples and comes from
a 20 nodes graph.

Graph types: Erdős-Rényi (ER) graphs are generated by randomly sampling a topological order
and by adding directed edges were it is allowed independently with probability p = 2e

d2−d were e is
the expected number of edges in the resulting DAG. Scale-free (SF) graphs were generated using the
BarabsiAlbert model (Barabási & Albert, 1999) which is based on preferential attachment. Nodes
are added one by one. Between the new node and the existing nodes, m edges (where m is equal
to d or 4d) will be added. An existing node i have the probability p(ki) = ki∑

j kj
to be chosen,

where ki represents the degree of the node i. While ER graphs have a degree distribution following
a Poisson distribution, SF graphs have a degree distribution following a power law: few nodes, often
called hubs, have a high degree. Barabási (2009) have stated that these types of graphs have similar
properties to real-world networks which can be found in many different fields, although these claims
remain controversial (Clauset et al., 2009).

A.5 SUPPLEMENTARY EXPERIMENTS

The results for 20 and 100 nodes are presented in Table 6 and 7 using exactly the same additive
gaussian data set types introduced in Section 4.1. The conclusions drawn remain similar to the 10

3This was the default value of thresholding used in NOTEARS and DAG-GNN.
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and 50 nodes experiments. For GES and PC, the SHD and SID are respectively presented in Table 8
and 9. Their performances do not compare favorably to the GraN-DAG nor CAM. Table 10 contains
the performance of GraN-DAG and other baselines on post nonlinear data described in Section 4.1.
Note that GSF results are missing for two data set types in Tables 7 and 10. This is because the
search algorithm could not finish inside 12 hours, even when the maximal in-degree was limited to
5. All other methods could run in less than 6 hours.

Figure 1 shows the entries of the weighted adjacency matrix Aφ as training proceeds in a typical run
for 10 nodes.

Table 6: Results for ER and SF graphs of 20 nodes
ER1 ER4 SF1 SF4

SHD SID SHD SID SHD SID SHD SID

GraN-DAG 4.0 ±3.4 17.9±19.5 45.2±10.7 165.1±21.0 7.6±2.5 28.8±10.4 36.8±5.1 62.5±18.8
DAG-GNN 25.6±7.5 109.1±53.1 75.0±7.7 344.8±17.0 19.5±1.8 60.1±12.8 49.5±5.4 115.2±33.3
NOTEARS 30.3±7.8 107.3±47.6 79.0±8.0 346.6±13.2 23.9±3.5 69.4±19.7 52.0±4.5 120.5±32.5
CAM 2.7±1.8 10.6±8.6 41.0±11.9 157.9±41.2 5.7±2.6 23.3±18.0 35.6±4.5 59.1±18.8
GSF 12.3±4.6 [15.0±19.9 41.8±13.8 [153.7±49.4 7.4±3.5 [5.7±7.1 38.6±3.6 [54.9±14.4

45.6±22.9] 201.6±37.9] 27.3±13.2] 86.7±24.2]
RANDOM 103.0±39.6 94.3±53.0 117.5±25.9 298.5±28.7 105.2±48.8 81.1±54.4 121.5±28.5 204.8±38.5

Table 7: Results for ER and SF graphs of 100 nodes
ER1 ER4 SF1 SF4

SHD SID SHD SID SHD SID SHD SID

GraN-DAG 15.1±6.0 83.9±46.0 206.6±31.5 4207.3±419.7 59.2±7.7 265.4±64.2 262.7±19.6 872.0±130.4
DAG-GNN 110.2±10.5 883.0±320.9 379.5±24.7 8036.1±656.2 97.6±1.5 438.6±112.7 316.0±14.3 1394.6±165.9
NOTEARS 125.6±12.1 913.1±343.8 387.8±25.3 8124.7±577.4 111.7±5.4 484.3±138.4 327.2±15.8 1442.8±210.1
CAM 17.3±4.5 124.9±65.0 186.4±28.8 4601.9±482.7 52.7±9.3 230.3±36.9 255.6±21.7 845.8±161.3
GSF 66.8±7.3 [104.7±59.5 > 12 hours — 71.4±11.2 [212.7±71.1 275.9±21.0 [793.9±152.5

238.6±59.3] — 325.3±105.2] 993.4±149.2]
RANDOM 1561.6±1133.4 1175.3±547.9 2380.9±1458.0 7729.7±1056.0 2222.2±1141.2 1164.2±593.3 2485.0±1403.9 4206.4±1642.1

Table 8: SHD for GES and PC (against GraN-DAG for reference)
10 nodes 20 nodes 50 nodes 100 nodes
ER1 ER4 ER1 ER4 ER1 ER4 ER1 ER4

GraN-DAG 1.7±2.5 8.3±2.8 4.0 ±3.4 45.2±10.7 5.1±2.8 102.6±21.2 15.1±6.0 206.6±31.5
GES 13.8±4.8 32.3±4.3 43.3±12.4 94.6±9.8 106.6±24.7 254.4±39.3 292.9±33.6 542.6±51.2
PC 8.4±3 34±2.6 20.136.4±6.5 73.1±5.8 44.0±11.6 183.6±20 95.2±9.1 358.8±20.6

SF1 SF4 SF1 SF4 SF1 SF4 SF1 SF4

GraN-DAG 1.2±1.1 9.9±4.0 7.6±2.5 36.8±5.1 25.5±6.2 111.3±12.3 59.2±7.7 262.7±19.6
GES 8.1±2.4 17.4±4.5 26.2±7.5 50.7±6.2 73.9±7.4 178.8±16.5 190.3±22 408.7±24.9
PC 4.8±2.4 16.4±2.8 13.6±2.1 44.4±4.6 43.1±5.7 135.4±10.7 97.6±6.6 314.2±17.5

Table 9: Lower and upper bound on the SID for GES and PC (against GraN-DAG for reference).
See Appendix A.6 for details on how to compute SID for CPDAGs.

10 nodes 20 nodes 50 nodes 100 nodes
ER1 ER4 ER1 ER4 ER1 ER4 ER1 ER4

GraN-DAG 1.7±3.1 21.8±8.9 17.9±19.5 165.1±21.0 22.4±17.8 1060.1±109.4 83.9±46.0 4207.3±419.7

GES [24.1±17.3
27.2±17.5]

[ 68.5±10.5
75±7]

[ 62.1±44
65.7±44.5]

[ 301.9±19.4
319.3±13.3]

[150.9±72.7
155.1±74]

[ 1996.6±73.1
2032.9±88.7]

[ 582.5±391.1
598.9±408.6]

[ 8054±524.8
8124.2±470.2]

PC [22.6±15.5
27.3±13.1]

[78.1±7.4
79.2±5.7]

[80.9±51.1
94.9±46.1]

[316.7±25.7
328.7±25.6]

[222.7±138
256.7±127.3]

[2167.9±88.4
2178.8±80.8]

[620.7±240.9
702.5±255.8]

[8236.9±478.5
8265.4±470.2]

SF1 SF4 SF1 SF4 SF1 SF4 SF1 SF4

GraN-DAG 4.1±6.1 16.4±6.0 28.8±10.4 62.5±18.8 90.0±18.9 271.2±65.4 265.4±64.2 872.0±130.4

GES [11.6±9.2
16.4±11.7]

[39.3±11.2
43.9±14.9]

[54.9±23.1
57.9±24.6]

[89.5±38.4
105.1±44.3]

[171.6±70.1
182.7±77]

[496.3±154.1
529.7±184.5]

[511.5±257.6
524±252.2]

[1421.7±247.4
1485.4±233.6]

PC [8.3±4.6
16.8±12.3]

[36.5±6.2
41.7±6.9]

[42.2±14
59.7±14.9]

[95.6±37
118.5±30]

[124.2±38.3
167.1±41.4]

[453.2±115.9
538±143.7]

[414.5±124.4
486.5±120.9]

[1369.2±259.9
1513.7±296.2]
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Figure 1: Entries of the weighted adjacency matrix Aφ as training proceeds in GraN-DAG for a
synthetic data set ER4 with 10 nodes. Green curves represent edges which appear in the ground
truth graph while red ones represent edges which do not. The horizontal dashed line at 10−4 is the
threshold ε introduced in Section 3.4. We can see that GraN-DAG successfully recovers most edges
correctly while keeping few spurious edges.

Table 10: Synthetic post nonlinear data sets
PNL-GP PNL-MULT
SHD SID SHD SID

10 nodes ER1 GraN-DAG 1.6±3.0 3.9±8.0 13.1±3.8 35.7±12.3
DAG-GNN 11.5±6.8 32.4±19.3 17.900±6.2 40.700±14.743
NOTEARS 10.7±5.5 34.4±19.1 14.0±4.0 38.6±11.9
CAM 1.5±2.6 6.8±12.1 12.0±6.4 36.3±17.7
GSF 6.2±3.3 [7.7±8.7, 18.9±12.4] 10.7±3.0 [9.8±11.9, 25.3±11.5]
RANDOM 23.8±2.9 36.8±19.1 23.7±2.9 37.7±20.7

10 nodes ER4 GraN-DAG 10.9±6.8 39.8±21.1 32.1±4.5 77.7±5.9
DAG-GNN 32.3±4.3 75.8±9.3 37.0±3.1 82.7±6.4
NOTEARS 34.1±3.2 80.8±5.5 37.7±3.0 81.700±7.258
CAM 8.4±4.8 30.5±20.0 34.4±3.9 79.6±3.8
GSF 25.0±6.0 [44.3±14.5, 66.1±10.1] 31.3±5.4 [58.6±8.1, 76.4±9.9]
RANDOM 35.0±3.3 80.0±5.1 33.6±3.5 76.2±7.3

50 nodes ER1 GraN-DAG 16.5±7.0 64.1±35.4 38.2±11.4 213.8±114.4
DAG-GNN 56.5±11.1 334.3±80.3 83.9±23.8 507.7±253.4
NOTEARS 50.1±9.9 319.1±76.9 78.5±21.5 425.7±197.0
CAM 5.1±2.6 10.7±12.4 44.9±9.9 284.3±124.9
GSF 31.2±6.0 [59.5±34.1, 122.4±32.0] 46.3±12.1 [65.8±62.2, 141.6±72.6]
RANDOM 688.4±4.9 307.0±98.5 691.3±7.3 488.0±247.8

50 nodes ER4 GraN-DAG 68.7±17.0 1127.0±188.5 211.7±12.6 2047.7±77.7
DAG-GNN 203.8±18.9 2173.1±87.7 246.7±16.1 2239.1±42.3
NOTEARS 189.5±16.0 2134.2±125.6 220.0±9.9 2175.2±58.3
CAM 48.2±10.3 899.5±195.6 208.1±14.8 2029.7±55.4
GSF 105.2±15.5 [1573.7±121.2, 1620±102.8] > 12 hours —
RANDOM 722.3±9.0 1897.4±83.7 710.2±9.5 1935.8±56.9

A.6 METRICS

SHD takes two partially directed acyclic graphs (PDAG) and counts the number of edge for which
the edge type differs in both PDAGs. There are four edge types: i ← j, i → j, i −− j and i j.
Since this distance is defined over the space of PDAGs, we can use it to compare DAGs with DAGs,
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DAGs with CPDAGs and CPDAGs with CPDAGs. When comparing a DAG with a CPDAG, having
i← j instead of i −− j counts as a mistake.

SHD-C is very similar to SHD. The only difference is that both DAGs are first mapped to their
respective CPDAGs before measuring the SHD.

Introduced by Peters & Bühlmann (2015), SID counts the number of interventional distribution
of the form p(xi| do(xj = x̂j)) that would be miscalculated using the parent adjustment for-
mula (Pearl, 2009) if we were to use the predicted DAG instead of the ground truth DAG to form
the parent adjustment set. Some care needs to be taken to evaluate the SID for methods outputting a
CPDAG such as GES and PC. Peters & Bühlmann (2015) proposes to report the SID of the DAGs
which have approximately the minimal and the maximal SID in the Markov equivalence class given
by the CPDAG. See Peters & Bühlmann (2015) for more details.

A.7 HYPERPARAMETERS

All GraN-DAG runs were performed using the following set of hyperparameters. We used RM-
Sprop as optimizer with learning rate of 10−2 for the first subproblem and 10−4 for all subsequent
suproblems. Each NN has two hidden layers with 10 units (except for the real and pseudo-real data
experiments which uses only 1 hidden layer). Leaky-ReLU is used as activation functions. The NN
are initialized using the initialization scheme proposed in Glorot & Bengio (2010) also known as
Xavier initialization. We used minibatches of 64 samples.

For NOTEARS, DAG-GNN, and GSF, we used the default hyperparameters found in the authors
code. It happens rarely that NOTEARS and DAG-GNN returns a cyclic graph. In those cases, we
removed edges starting from the weaker ones to the strongest (according to their respective weighted
adjacency matrices), stopping as soon as acyclicity is acheived. For GES and PC, we used default
hyperparameters of the pcalg R package. For CAM, we used the the default hyperparameters
found in the CAM R package, with default PNS and DAG pruning.
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