
Under review as a conference paper at ICLR 2020

SPATIALLY PARALLEL ATTENTION AND COMPONENT
EXTRACTION FOR SCENE DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a generative latent variable model for unsupervised scene decompo-
sition. Our model, SPACE, provides a unified probabilistic modeling framework
to combine the best of previous models. SPACE can explicitly provide factorized
object representation per foreground object while also decomposing background
segments of complex morphology. Previous models are good at either of these, but
not both. With the proposed parallel-spatial attention, SPACE resolves the scala-
bility problem of previous methods and thus makes the model applicable to scenes
with a much larger number of objects without performance degradation. Besides,
the foreground/background distinction of SPACE is more effective and intuitive
than other methods because unlike other methods SPACE can detect static ob-
jects that have been difficult to detect as foreground. In experiments on Atari and
3D-Rooms, we show that SPACE achieves the above properties consistently in all
experiments in comparison to SPAIR, IODINE, and GENESIS.

1 INTRODUCTION

One of the unsolved key challenges in machine learning is unsupervised learning of structured rep-
resentation for a visual scene containing many objects with occlusion, partial observability, and
complex background. When properly decomposed into meaningful symbolic entities such as objects
and spaces, this structured representation brings many advantages of symbolic representation that
contemporary deep learning with continuous vector representation has not been successful. The ad-
vantages include sample efficiency of downstream tasks such as a deep reinforcement learning agent
(Mnih et al., 2013), ability of visual variable binding (Sun, 1992) for reasoning and causal inference
over the relationship between the objects and agents in a scene, and compositionality and transfer-
ability for generalization. Recently, several methods have been proposed for this problem, unsu-
pervised object-oriented scene decomposition, and these can be categorized into two approaches:
mixture-scene models and spatial-attention models.

In the mixture-scene models (Greff et al., 2017; 2019; Burgess et al., 2019; Engelcke et al., 2019),
a scene is explained by a mixture of K component images. The main benefit is to provide flexible
segmentation maps for objects and background segments with complex morphology for which spa-
tial attention with bounding boxes may have difficulties. However, this approach has limitations in
scalability to scenes with many objects, and thus currently has been applied to scenes with only less
than ten components. This is because, to obtain a jointly complete scene, a component needs to refer
to other components, and thus inference is inherently performed sequentially either by an RNN gen-
erating a component per step or by iterative inference (Marino et al., 2018). Besides, because each
component corresponds to a full-scale image, important physical features of objects like position
and scale are only implicitly encoded in the scale of a full image, and thus further disentanglement
is required to extract these useful features.

The spatial-attention models (Eslami et al., 2016; Crawford & Pineau, 2019) show the opposite
properties to mixture-scene models. It detects objects using spatial attention and thus can obtain not
only the appearance representation but also fully disentangled explicit geometric representation of
an object such as position and scale. Such features grounded on the semantics of physics should be
useful in many ways (e.g., sample efficiency, interpretability, geometric reasoning and inference, and
transferability). However, representing areas such as complex background segments that have too
flexible morphology to be captured by spatial attention (e.g., based on rectangular bounding boxes)
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is the main limitation of this approach. It also shows scalability issues as objects are processed
sequentially.

In this paper, we propose a method, called Spatially Parallel Attention and Component Extraction
(SPACE), that combines the best of both approaches. SPACE learns to process foreground objects,
which can be captured efficiently by bounding boxes, by using parallel spatial-attention while de-
composing the remaining area that includes both morphologically complex objects and background
segments by the component mixture. Thus, SPACE provides object-wise disentangled representa-
tion of foreground objects along with explicit properties like where per object while also providing
decomposed representations of complex background components. Besides, we resolve the scalabil-
ity issue of existing spatial attention methods by developing fully parallel foreground-object process-
ing. In experiments on 3D-room scenes and Atari game scenes, we quantitatively and qualitatively
compare the representation of SPACE to other models and show that SPACE combines the benefits
of both approaches in addition to significant speed-ups due to the parallel foreground processing.

The contributions of the paper are as follows. First, we introduce a model that unifies the benefits of
two existing approaches in a principled framework of probabilistic latent variable modeling. Second,
we introduce a spatially parallel multi-object processing module and demonstrate that it can signif-
icantly mitigate the scalability problem of previous methods. Third, we demonstrate SPACE can
detect static objects (e.g., the key in Montezuma’s revenge) that always appear in the same position
in all training images and thus are typically treated as a part of the background in other models. This
problem has been a key challenge in unsupervised object detection. Lastly, we provide extensive
analysis on and comparisons to previous models.

2 THE PROPOSED MODEL: SPACE

In this section, we describe our proposed model, Spatially Parallel Attention and Component Ex-
traction (SPACE). The main idea of SPACE is to propose a unified probabilistic generative model
that combines the benefits of the spatial-attention models and mixture-scene models.

2.1 GENERATIVE PROCESS

SPACE assumes that a scene x is decomposed into two latents: foreground zfg and background zbg.
The foreground is further decomposed into a set of independent foreground objects zfg = {zfg

i } and
the background is also decomposed further into a sequence of background segments zbg = zbg

1:K .
The foreground is first generated and then the generation of the background is conditioned on the
foreground. The image distributions of the foreground objects and the background components
are combined together into the following pixel-wise mixture model to produce the complete image
distribution.

p(x|zfg, zbg) = αp(x|zfg)︸ ︷︷ ︸
Foreground

+(1− α)
K∑
k=1

πk p(x|zbg
k )︸ ︷︷ ︸

Background

. (1)

Here, the foreground mixing probability α is computed as α = fα(zfg). This way, the foreground
is given precedence in assigning its own mixing weight and the remaining is apportioned to the
background. The mixing weight assigned to the background is further sub-divided among the K
background components. These weights are computed as πk = fπk

(zbg
1:k) and

∑
k πk = 1. With

these notations, the complete generative model can be described as follows.

p(x) =

∫∫
p(x|zfg, zbg)p(zbg|zfg)p(zfg)dzfgdzbg (2)

We now describe the foreground and background models in more detail.

Foreground. SPACE implements zfg as a structured latent. In this structure, an image is treated as if
it were divided into H ×W cells and each cell is tasked with modeling at most one (nearby) object
in the scene. This type of structuring has been used in (Redmon et al., 2016; Santoro et al., 2017;
Crawford & Pineau, 2019). Similarly to SPAIR, in order to model an object, each cell i is associated
with a set of latents (zpres

i , zwhere
i , zdepth

i , zwhat
i ). In this notation, zpres is a binary random variable
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denoting if the cell models any object or not, zwhere denotes the size of the object and its location
relative to the cell, zdepth denotes the depth of the object to resolve occlusions and zwhat models the
object appearance and its mask. These latents may then be used to compute the foreground image
component p(x|zfg) which is modeled as a Gaussian distribution N (µfg, σ2

fg). In practice, we treat
σ2

fg as a hyperparameter and decode only the mean image µfg. In this process, SPACE reconstructs
the objects associated to each cell having zpres = 1. For each such cell, the model uses the zwhat

i
to decode the object glimpse and its mask and the glimpse is then positioned on a full-resolution
canvas using zwhere

i via the Spatial Transformer Network (Jaderberg et al., 2015). Using the object
masks and zdepth

i , all the foreground objects are combined into a single foreground mean-image µfg

and the foreground mask α (See Appendix D for more details).

SPACE imposes a prior distribution on these latents as follows:

p(zfg) =

H×W∏
i

p(zpres
i )

(
p(zwhere

i )p(zdepth
i )p(zwhat

i )
)zpres

i

(3)

Here, only zpres
i is modeled using a Bernoulli distribution while the remaining are modeled as Gaus-

sian.

Background. To model the background, SPACE implements zbg
k , similar to GENESIS, as (zmk , z

c
k)

where zmk models the mixing probabilities πk of the components and zck models the RGB distribu-
tion p(x|zbg

k ) of the kth background component as a Gaussian N (µbg
i , σ

2
bg). The following prior is

imposed upon these latents.

p(zbg|zfg) =

K∏
k=1

p(zck|zmk )p(zmk |zm<k, zfg) (4)

2.2 INFERENCE AND TRAINING

Since we cannot analytically evaluate the integrals in equation 2 due to the continuous latents zfg and
zbg
1:K , we train the model using a variational approximation. The true posterior on these variables is

approximated as follows.

p(zbg
1:K , z

fg|x) ≈ q(zfg|x)

K∏
k=1

q(zbg
k |z

bg
<k, z

fg,x) (5)

This is used to derive the following ELBO to train the model using reparameterization trick and
SGD (Kingma & Welling, 2013).

L(x) = Eq(zfg,zbg
1:K |x)

log
[
p(x|zfg, zbg)

]
−DKL(q(zfg|x) ‖ p(zfg))

− Eq(zfg|x)

K∑
k=1

Eq(zbg
<k|x,zfg)DKL(q(zbg

k |z
bg
<k, z

fg,x) ‖ p(zbg
k |z

bg
<k, z

fg))
(6)

See Appendix B for the derivation of the ELBO and the related details.

Parallel Inference of Cell Latents. One of the attractive features of SPACE is the mean-field
modeling of the approximate inference where zfg

i = (zpres
i , zwhere

i , zdepth
i , zwhat

i ) for each cell do not
depend on other cells.

q(zfg|x) =

HW∏
i=1

q(zpres
i |x)

(
q(zwhere

i |x)q(zdepth
i |x)q(zwhat

i |zwhere
i ,x)

)zpres
i

. (7)

On the contrary, SPAIR’s inference for each cell’s latents auto-regressively depend on some or all of
the previously traversed cells in a row-major order i.e., q(zfg|x) =

∏HW
i=1 q(z

fg
i |zfg

<i,x). Although, in
principle, it appears attractive to model such dependence between objects, it becomes prohibitively
expensive in practice as the number of objects increases. On the other hand, SPACE ’s inference can
be executed in parallel for all cells resulting in significant gains in training speeds. Consequently,
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SPACE can efficiently deal with scenes with a much larger number of objects. Our experiments
demonstrate that this can be done without any adverse effects on the modeling performance.

Preventing Box-Splitting. If the prior for the bounding box size is set to be too small, then the
model could split a large object by multiple bounding boxes and when the size prior is too large,
the model may not capture small objects in the scene, hence, causing a trade-off between the prior
values of the bounding box size. To alleviate this problem, we found it helpful to introduce an
auxiliary loss which we call the boundary loss. In the boundary loss, we construct a boundary of
thickness b pixels along the borders of each glimpse. Then, we restrict an object to be inside this
boundary and penalize the model if an object’s mask overlaps with the boundary area. Thus, the
model is penalized if it tries to split a large object by multiple smaller bounding boxes. A detailed
implementation of the boundary loss is mentioned in Appendix C.

3 RELATED WORKS

Our proposed model is inspired by several recent works in unsupervised object-oriented scene de-
composition. The Attend-Infer-Repeat (AIR) (Eslami et al., 2016) framework uses a recurrent neu-
ral network to attend to different objects in a scene and each object is sequentially processed one
at a time. An object-oriented latent representation is prescribed that consists of ‘what’, ‘where’,
and ‘presence’ variables. The ‘what’ variable stores the appearance information of the object, the
‘where’ variable represents the location of the object in the image, and the ‘presence’ variable con-
trols how many steps the recurrent network runs and acts as an interruption variable when the model
decides that all objects have been processed.

Since the number of steps AIR runs scales with the number of objects it attends to, it does not scale
well to images with many objects. Spatially Invariant Attend, Infer, Repeat (SPAIR) (Crawford &
Pineau, 2019) attempts to address this issue by replacing the recurrent network with a convolutional
network. Similar to YOLO (Redmon et al., 2016), the locations of objects are specified relative
to local grid cells rather than the entire image, which allow for spatially invariant computations.
In the encoder network, a convolutional neural network is first used to map the image to a feature
volume with dimensions equal to a pre-specified grid size. Then, each cell of the grid is processed
sequentially to produce objects. This is done sequentially because the processing of each cell takes
as input feature vectors and sampled objects of nearby cells that have already been processed. SPAIR
therefore scales with the pre-defined grid size which also represents the maximum number of objects
that can be detected. Our model uses an approach similar to SPAIR to detect foreground objects,
but importantly we make the foreground object processing fully parallel to scale to large number of
objects without performance degradation.

For unsupervised mixture-scene models, several recent models have shown promising results.
MONet (Burgess et al., 2019) leverages a deterministic recurrent attention network that outputs
pixel-wise masks for the scene components. A variational autoencoder (VAE) (Kingma & Welling,
2013) is then used to model each component. IODINE (Greff et al., 2019) approaches the problem
from a spatial mixture model perspective and uses amortized iterative refinement of latent object rep-
resentations within the variational framework. GENESIS (Engelcke et al., 2019) also uses a spatial
mixture model which is encoded by component-wise latent variables. Relationships between these
components are captured with an autoregressive prior, allowing complete images to be modeled by
a collection of components.

4 EVALUATION

We evaluate our model on two datasets: 1) an Atari (Bellemare et al., 2013) dataset that consists of
random images from a pretrained agent playing the games, and 2) a generated 3D-room dataset that
consists of images of a walled enclosure with a random number of objects on the floor. In order to
test the scalability of our model, we use both a small 3D-room dataset that has 4-8 objects and a
large 3D-room dataset that has 18-24 objects. Each image is taken from a random camera angle and
the colors of the objects, walls, floor, and sky are also chosen at random. Additional details of the
datasets can be found in the Appendix E.
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Figure 1: Qualitative comparison between SPACE , SPAIR, IODINE and GENESIS for the 3D-Room dataset.

Baselines. We compare our model against two mixture-scene models (IODINE and GENESIS) and
one spatial-attention model (SPAIR). Since SPAIR does not have an explicit background compo-
nent, we add an additional VAE for processing the background. Additionally, we test against two
implementations of SPAIR: one where we train on the entire image using a 16×16 grid and another
where we train on random 32 × 32 pixel patches using a 4 × 4 grid. The latter is consistent with
SPAIR’s training regime on Space Invaders. This kind of patch-based learning is employed because
training SPAIR on the larger grid size is slow due to the sequential nature of the latent inference in
SPAIR. Lastly, for performance reasons, unlike the original SPAIR implementation, we use parallel
processing for rendering the objects from their respective latents onto the canvas1. Thus, our SPAIR
implementation can be seen as a stronger baseline in terms of the speed than the original SPAIR.
The complete details of the architecture used is given in Appendix D.

4.1 QUALITATIVE COMPARISON OF INFERRED REPRESENTATIONS

In this section, we provide a qualitative analysis of the generated representations of the different
models. More qualitative results of SPACE can be found in Appendix A. Figure 1 shows sample
scene decompositions from the 3D-Room dataset and Figure 2 shows the results on Atari. Note
that SPAIR does not use component masks and IODINE and GENESIS do not separate foreground
from background, hence the corresponding cells are left empty. Additionally, we only show a few

1It is important to note that the worst case complexity of rendering is O(hw ×HW ), (where (h,w) is the
image size) which is extremely time consuming when we have large image size and/or large number of objects.
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Figure 2: Qualitative comparison between SPACE , SPAIR, IODINE and GENESIS for Space Invaders, Air
Raid, and River Raid.

representative components for IODINE and GENESIS since we ran those experiments with larger
K than can be displayed.

IODINE & GENESIS. In the 3D-Room environment, IODINE is able to segment the objects and
the background into separate components. However, it occasionally does not properly decompose
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Figure 3: Case illustration of Montezuma’s Revenge comparing object-detection behaviour in SPACE and
SPAIR.

objects (see the orange ball in the Small 3D-Room experiment is missing from the reconstruction)
and may generate blurry objects. GENESIS, on the other hand, is unable to capture foreground
objects, instead segments the background walls, floor, and sky into multiple components. In Atari,
for all games, both IODINE and GENESIS fail to capture the foreground properly. We believe this
is because the objects in Atari games are smaller, less regular and lack the obvious latent factors like
color and shape as in the 3D dataset, which demonstrates that detection-based approaches are more
appropriate in this case.

SPAIR. The 16 × 16 implementation of SPAIR is able to detect tight bounding boxes in both 3D-
Room and most Atari games. When SPAIR is trained on patches, it often fails to detect the fore-
ground objects in proper bounding boxes, frequently uses multiple bounding boxes for one object
and redundantly detects parts of the background as foreground objects. This is a limitation of the
patch training as the receptive field of each patch is limited to a 32 × 32, hence prohibiting it to
detect objects larger than that and making it difficult to distinguish the background from foreground.
These two properties are illustrated well in Space Invaders, where it is able to detect the small aliens,
but it detects the long piece of background ground on the bottom of the image as foreground objects.

SPACE. In 3D-Room, SPACE is able to accurately detect almost all objects despite the large varia-
tions in object positions, colors and shapes, while producing a clean segmentation of the background
walls, ground, and sky. This is in contrast to the SPAIR model, while being able to provide a similar
foreground detection quality, encodes the whole background into a single component, which makes
the representation less disentangled and the reconstruction more blurry. Similarly in Atari, SPACE
consistently captures all foreground objects while producing clean background segmentation across
many different games.

Dynamic Backgrounds. SPACE and SPAIR exhibit some very interesting behavior when trained
on games with dynamic backgrounds. For the most static game - Space Invaders, both SPACE and
SPAIR work well. For Air Raid, in which the background building moves, SPACE captures all
objects accurately while providing a two-component segmentation, whereas SPAIR 16 × 16 and
SPAIR 4 × 4 patch produce splitting and heavy re-detections. In the most dynamic games, SPAIR
completely fails because of the difficulty to model dynamic background with a single VAE compo-
nent, while SPACE is able to perfectly segment the blue racing track while accurately detecting all
foreground objects.

Foreground vs Background. Typically, foreground is the dynamic local part of the scene that we
are interested in, and background is the relatively static and global part. This definition, though in-
tuitive, is ambiguous. Some of the objects, such as the red shields near the bottom in Space Invaders
and the key in Montezuma’s Revenge (Figure 3) are detected as foreground objects in SPACE, but
are considered background in SPAIR. Though these objects are static2, they are important elements
of the games and should be considered as foreground objects. We believe this is an interesting prop-
erty of SPACE and could be very important for providing useful representations for downstream
tasks. By using a spatial broadcast network (Watters et al., 2019) which is much weaker when com-
pared to other decoders like sub-pixel convolutional nets (Shi et al. (2016)), we limit the capacity of
background module, which favors modeling static objects as foreground rather than background.

2The pretrained agent used to collect the game frames for Montezuma’s Revenge does not reach a state in
which it can actually capture the key, hence the position of the key remains constant over time
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Boundary Loss. We notice SPAIR sometimes splits objects into two whereas SPACE is able to
create the correct bounding box for the objects (for example, see Air Raid). This may be attributed
to the addendum of the auxiliary boundary loss in the SPACE model that would penalize splitting
an object with multiple bounding boxes.

Joint Training. Figure 4 shows the results of training SPACE jointly across 10 Atari games. We see
that even in this setting, SPACE is able to correctly detect foreground objects and cleanly segment
the background. We also note that in Atlantis, SPACE detects some foreground objects from the
middle base that is above the water. Similar to the key in Montezuma’s Revenge this is another case
of the model discovering useful foreground objects that are difficult to detect as foreground.

Figure 4: Qualitative demonstration of SPACE trained jointly on a selection of 10 ATARI games

4.2 QUANTITATIVE COMPARISON

In this section we compare SPACE with the baselines in several quantitative metrics. We first note
that each of the baseline models has a different decomposition capacity, which we define as the
capability of the model to decompose the scene into its semantic constituents such as the foreground
objects and the background segmented components. For SPACE, the decomposition capacity is
equal to the number of grid cells H × W (which is the maximum number of foreground objects
that can be detected) plus the number of background components K. For SPAIR, the decomposition
capacity is equal to the number of grid cells H × W plus 1 for background. For IODINE and
GENESIS, it is equal to the number of components K.

Gradient Step Latency. The leftmost chart of Figure 5 shows the time taken to complete one
gradient step for different decomposition capacities for each of the models. We see that SPAIR’s
latency grows with the number of cells because of the sequential nature of its latent inference step.

8



Under review as a conference paper at ICLR 2020

4× 4 8× 8 16× 16 24× 24

2−2

2−1

20

21

22

23

24

Number of Cells (H ×W )

G
ra
d
ie
n
t
S
te
p
L
at
en
cy

(i
n
s)

Training Latency Plot

1 2 3 4 5

·104

200

400

600

800

1,000

1,200

Wall Clock Time (in s)

R
ec
on

st
ru
ct
io
n
P
ix
el

M
S
E

Convergence Plot for 3D Room using 4× 4 Cells

1 2 3 4 5

·104

200

600

1,000

1,400

1,800

2,200

2,600

3,000

Wall Clock Time (in s)

Convergence Plot for 3D Room using 8× 8 Cells

1 2 3 4 5

·104

200

400

600

800

1,000

1,200

Wall Clock Time (in s)

Convergence Plot for 3D Room using 16× 16 Cells

Figure 5: Quantitative performance comparison between SPACE , SPAIR, IODINE and GENESIS in terms
of batch-processing time during training, training convergence and converged pixel MSE. Convergence plots
showing pixel-MSE were computed on a held-out validation set during training.

Model Dataset Avg. Precision
IOU = 0.5

Avg. Precision
IOU ∈ [0.5, 0.95]

Object Count Error Rate

SPACE (16× 16) 3D-Room Large 0.7256 0.2346 0.0541
SPAIR (16× 16) 3D-Room Large 0.7131 0.2596 0.1279

SPACE (8× 8) 3D-Room Small 0.6177 0.2091 0.0889
SPAIR (8× 8) 3D-Room Small 0.6016 0.1718 0.2473

Table 1: Comparison of SPACE with the SPAIR baseline with respect to the quality of the bounding boxes in
the 3D-Room setting.

Similarly GENESIS and IODINE’s latency grows with the number of components K because each
component is processed sequentially in both the models. IODINE is the slowest overall with its
computationally expensive iterative inference procedure. Furthermore, both IODINE and GENESIS
require storing data for each of the K components, so we were unable to run our experiments
on 256 components or greater before running out of memory on our 22GB GPU. On the other
hand, SPACE employs parallel processing for the foreground which makes it scalable to large grid
sizes, allowing it to detect a large number of foreground objects without any significant performance
degradation. Although this data was collected for gradient step latency, this comparison implies a
similar relationship exists with inference time as which is a main component in the gradient step.

Time for Convergence. The remaining three charts in Figure 5 show the amount of time each
model takes to converge in different experimental settings. We use the pixel-wise mean squared
error (MSE) as a measurement of how close a model is to convergence. We see that not only does
SPACE achieve the lowest MSE, it also converges the quickest out of all the models.

Average Precision and Error Rate. In order to assess the quality of our bounding box predictions,
we measure the Average Precision and Object Count Error Rate of our predictions. Our results are
shown in Table 1. We only report these metrics for 3D-Room since we have access to the ground
truth bounding boxes for each of the objects in the scene. SPACE has a slightly better error rate
than our implementation of SPAIR but a comparable average precision. We can assert that, despite
using a parallel foreground module and thus having much faster inference latency for large number
of objects, SPACE can still find similar quality bounding boxes as SPAIR.

5 CONCLUSION

We propose SPACE, a unified probabilistic model that combines the benefits of the object represen-
tation models based on spatial attention and the scene decomposition models based on component
mixture. SPACE can explicitly provide factorized object representation per foreground object while
also decomposing complex background segments. SPACE also achieves a significant speed-up and
thus makes the model applicable to scenes with a much larger number of objects without perfor-
mance degradation. Besides, the detected objects in SPACE are also more intuitive than other meth-
ods. We show the above properties of SPACE on Atari and 3D-Rooms. Interesting future directions
are to replace the sequential processing of background by a parallel one and to improve the model
for natural images. Our next plan is to apply SPACE for object-oriented model-based reinforcement
learning.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In ICLR, 2016.

Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convolu-
tional neural networks. In Proceedings of AAAI, 2019.

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Generative
scene inference and sampling with object-centric latent representations, 2019.

SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, and Geoffrey E
Hinton. Attend, infer, repeat: Fast scene understanding with generative models. In Advances in
Neural Information Processing Systems, pp. 3225–3233, 2016.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
Advances in Neural Information Processing Systems, pp. 6691–6701, 2017.
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A ADDITIONAL RESULTS OF SPACE

Figure 6: Object detection and background segmentation using SPACE on 3D-Room data set with small num-
ber of objects. Each row corresponds to one input image.
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Figure 7: Object detection and background segmentation using SPACE on 3D-Room data set with large num-
ber of objects.
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B ELBO DERIVATIONS

In this section, we derive the ELBO for the log-likelihood log p(x).

log p(x) = log

∫∫
p(x|zfg, zbg

1:K)

[
p(zfg)

K∏
k=1

p(zbg
k |z

bg
<k, z

fg)

]
dz1:Kdz

fg

= logEq(zfg,zg
1:K |x)p(x|z

fg, zbg
1:K)

p(zfg)
∏K
k=1 p(z

bg
k |z

bg
<k, z

fg)

q(zfg|x)
∏K
k=1 q(z

bg
k |z

bg
<k, z

fg,x)

≥ Eq(zfg,zg
1:K |x) log

[
p(x|zfg, zbg

1:K)
p(zfg)

∏K
k=1 p(z

bg
k |z

bg
<k, z

fg)

q(zfg|x)
∏K
k=1 q(z

bg
k |z

bg
<k, z

fg,x)

]
= Eq(zfg,zbg

1:K |x)
log
[
p(x|zfg, zbg)

]
−DKL(q(zfg|x) ‖ p(zfg))

− Eq(zfg|x)

K∑
k=1

Eq(zbg
<k|x,zfg)DKL(q(zbg

k |z
bg
<k, z

fg,x) ‖ p(zbg
k |z

bg
<k, z

fg))

KL Divergence for the Foreground Latents Under the SPACE ’s approximate inference, the
DKL(q(zfg|x) ‖ p(zfg)), is evaluated as follows.

DKL(q(zfg|x) ‖ p(zfg))
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KL Divergence for the Background Latents Under our GENESIS-like modeling of inference for
the background latents, the KL term for the background is evaluated as follows.

DKL(q(zbg
k |z

bg
<k, z

fg,x) ‖ p(zbg
k |z

bg
<k, z

fg))

= DKL(q(zmk |zm<k, zfg,x) ‖ p(zmk |zm<k, zfg)) + Eq(zm
k |zm

<k,z
fg,x)DKL(q(zck|zmk ,x) ‖ p(zck|zmk ))

Relaxed treatment of zpres In our implementation, we model the Bernoulli random variable zpres
i

using the Gumbel-Softmax distribution (Jang et al., 2016). We use the relaxed value of zpres in the
entire training and use hard samples only for the visualizations.

C BOUNDARY LOSS

In this section we elaborate on the implementation details of the boundary loss. We construct a
kernel of the size of the glimpse, gs × gs (we use gs = 32) with a boundary gap of b = 6 having
negative uniform weights inside the boundary and a zero weight in the region between the boundary
and the glimpse. This ensures that the model is penalized when the object is outside the boundary.
This kernel is first mapped onto the global space via STN Jaderberg et al. (2015) to obtain the global
kernel. This is then multiplied element-wise with global object mask α to obtain the boundary loss
map. The objective of the loss is to minimize the mean of this boundary loss map. In addition to the
ELBO, this loss is also back-propagated via RMSProp (Tieleman & Hinton. (2012)).
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D IMPLEMENTATION DETAILS

D.1 ALGORITHMS

Algorithm 1 and Algorithm 2 present SPACE’s inference for foreground and background. Algo-
rithm 3 show the details of the generation process of the background module. For foreground gen-
eration, we simply sample the latent variables from the priors instead of conditioning on the input.
Note that, for convenience the algorithms for the foreground module and background module are
presented with for loops, but inference for all variables of the foreground module are implemented
as parallel convolution operations and most operations of the background module (barring the LSTM
module) are parallel as well.

Algorithm 1: Foreground Inference
Input: image x
Output: foreground mask α, appearance µfg

eimg = ImageEncoderFg(x)
for i← 1 to HW do

/* The following is performed in parallel */

ρi = ZPresNet(eimg
i )

[µdepth
i ,σdepth

i ] = ZDepthNet(eimg
i )

[µscale
i ,σscale

i ] = ZScaleNet(eimg
i )

[µshift
i ,σshift

i ] = ZShiftNet(eimg
i )

zpres
i ∼ Bern(ρi)

zdepth
i ∼ N (µdepth

i ,σdepth,2
i )

zscale
i ∼ N (µscale

i ,σscale,2
i )

zshift
i ∼ N (µshift

i ,σshift,2
i )

/* rescale local shift to global shift */
zwhere
i = [σ(zscale

i ), rescale(tanh(zshift
i ))]

/* Extract glimpses with a Spatial Transformer */
x̂i = ST(x, zwhere

i )
[µwhat
i ,σwhat

i ] =GlimpseEncoder(x̂i)
zwhat
i ∼ N (µwhat

i ,σwhat,2
i )

/* Foreground mask and appearance */
[αatt
i ,o

att
i ] = GlimpseDecoder(zwhat

i )
α̂att
i = αatt

i � zpres
i

yatt
i = α̂att

i � oatt
i

end
/* Compute weights for each component */
w = softmax(−c · σ(zdepth)� α̂att)
/* Compute global weighted mask and foreground appearance */
α = sum(w � α̂att)

µfg = sum(w � yatt)

D.2 TRAINING REGIME AND HYPERPARAMETERS

For all experiments we use an image size of 128 × 128 and a batch size of 12 to 16 depending on
memory usage. We use the RMSProp (Tieleman & Hinton. (2012)) optimizer with a learning rate
of 1× 10−5 for the foreground module and Adam (Kingma & Ba (2014)) optimizer with a learning
rate of 1×10−3 for the background module. We use gradient clipping with a maximum norm of 1.0.
For Atari games, we find it beneficial to set α to be fixed for the first 1000-2000 steps, and vary the
actual value and number of steps for different games. This allows both the foreground as well as the
background module to learn in the early stage of training. For 3D Room datasets, we found that the
quality of background segmentation would degrade if trained for too long, so we set the background
learning rate to zero at appropriate steps.

15



Under review as a conference paper at ICLR 2020

Algorithm 2: Background Inference
Input: image x, initial LSTM states h0, c0, initial dummy mask zm0
Output: background masks πk, appearance µbg

k , for k = 1, . . . ,K
eimg = ImageEncoderBg(x)
for k ← 1 to K do

hk, ck = LSTM([zmk−1, e
img], ck−1,hk−1)

[µmk ,σ
m
k ] = PredictMask(hk)

zm ∼ N (µmk ,σ
m,2
k )

/* Actually decoded in parallel */
π̂k = MaskDecoder(zmk )
/* Stick breaking process as described in GENESIS */
πk = SBP(π̂1:k)
[µck,σ

c
k] = CompEncoder([πk,x])

zc ∼ N (µck,σ
c,2
k )

µbg
k =CompDecoder(zck)

end

Algorithm 3: Background Generation
Input: initial LSTM states h0, c0, initial dummy mask zm0
Output: background masks πk, appearance µbg

k , for k = 1, . . . ,K
for k ← 1 to K do

hk, ck = LSTM(zmk−1, ck−1,hk−1)
[µmk ,σ

m
k ] = PredictMaskPrior(hk)

zm ∼ N (µmk ,σ
m,2
k )

/* Actually decoded in parallel */
π̂k = MaskDecoder(zmk )
/* Stick breaking process as described in GENESIS */
πk = SBP(π̂1:k)
[µck,σ

c
k] = PredictComp(zmk )

zck ∼ N (µck,σ
c,2
k )

µbg
k =CompDecoder(zck)

end
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We list out our hyperparameters for 3D large dataset and joint training for 10 static Atari games
below. Hyperparameters for other experiments are similar, but are finetuned for each dataset indi-
vidually. In the tables below, (m→ n) : (p→ q) denotes annealing the hyperparameter value from
m to n, starting from step p and till step q.

3D Room Large
Name Symbol Value

zpres prior prob ρ (0.1→ 0.01) : (4000→ 10000)
zscale prior mean µscale (−1.0→ −2.0) : (10000→ 20000)
zscale prior stdev σscale 0.1
zshift prior µshift,σshift N (0, I)
zdepth prior µdepth,σdepth N (0, I)
zwhat prior µwhat,σwhat N (0, I)
foreground stdev σfg 0.15
background stdev σbg 0.15
component number K 5
gumbel-softmax temperature τ 2.0
#steps to fix α N/A
fixed α value N/A

Joint Training on 10 Atari Games
Name Symbol Value

zpres prior prob ρ 0.01
zscale prior mean µscale (−2.0→ −2.5) : (0→ 20000)
zscale prior stdev σscale 0.1
zshift prior µshift,σshift N (0, I)
zdepth prior µdepth,σdepth N (0, I)
zwhat prior µwhat,σwhat N (0, I)
foreground stdev σfg 0.20
background stdev σbg 0.10
component number K 3
gumbel-softmax temperature τ 2.5
#steps to fix α 2000
fixed α value 0.1

D.3 MODEL ARCHITECTURE

Here we describe the architecture of our 16 × 16 SPACE model. The model for 8 × 8 grid cells is
the same but with a stride-2 convolution for the last layer of the image encoder.

All modules that output distribution parameters are implemented with either one single fully con-
nected layer or convolution layer, with the appropriate output size. Image encoders are fully convo-
lutional networks that output a feature map of shape H ×W , and the glimpse encoder comprises
of convolutional layers followed by a final linear layer that computes the parameters of a Gaussian
distribution. For the glimpse decoder of the foreground module and the mask decoder of the back-
ground module we use the sub-pixel convolution layer (Shi et al. (2016)). On the lines of GENESIS
(Engelcke et al. (2019)) and IODINE (Greff et al. (2019)), we adopt Spatial Broadcast Network
(Watters et al. (2019)) as the component decoder to decode zck into background components.

For inference and generation of the background module, the dependence of zmk on zm1:k−1 is im-
plemented with LSTMs, with hidden sizes of 64. Dependence of zck on zmk is implemented with a
MLP with two hidden layers with 64 units per layer. We apply softplus when computing standard
deviations for all Gaussian distributions, and apply sigmoid when computing reconstruction and
masks. We use either Group Normalization (GN) (Wu & He (2018)) and CELU (Barron (2017)) or
Batch Normalization (BN) (Ioffe & Szegedy (2015)) and ELU (Clevert et al. (2016)) depending on
the module type.

17



Under review as a conference paper at ICLR 2020

The rest of the architecture details are described below. In the following tables, ConvSub(n) denotes
a sub-pixel convolution layer implemented as a stride-1 convolution and a PyTorch PixelShuffle(n)
layer, and GN(n) denotes Group Normalization with n groups.

Name Value Comment

zdepth dim 1
zpres dim 1
zscale dim 2 for x and y axis
zshift dim 2 for x and y axis
zwhat dim 32
zm dim 32
zc dim 32
glimpse shape (32, 32) for oatt,αatt

image shape (128, 128)

Background Image Encoder
Layer Size/Ch. Stride Norm./Act.

Input 3
Conv 3× 3 64 2 BN/ELU
Conv 3× 3 64 2 BN/ELU
Conv 3× 3 64 2 BN/ELU
Conv 3× 3 64 2 BN/ELU
Flatten
Linear 64 ELU

Glimpse Encoder
Layer Size/Ch. Stride Norm./Act.

Input 3
Conv 3× 3 16 1 GN(4)/CELU
Conv 4× 4 32 2 GN(8)/CELU
Conv 3× 3 32 1 GN(4)/CELU
Conv 4× 4 64 1 GN(8)/CELU
Conv 4× 4 128 2 GN(8)/CELU
Conv 4× 4 256 1 GN(16)/CELU
Linear 32 + 32

Glimpse Decoder
Layer Size/Ch. Stride Norm./Act.

Input 32
Conv 1× 1 256 1 GN(16)/CELU
ConvSub(2) 128 1 GN(16)/CELU
Conv 3× 3 128 1 GN(16)/CELU
ConvSub(2) 128 1 GN(16)/CELU
Conv 3× 3 128 1 GN(16)/CELU
ConvSub(2) 64 1 GN(8)/CELU
Conv 3× 3 64 1 GN(8)/CELU
ConvSub(2) 32 1 GN(8)/CELU
Conv 3× 3 32 3 GN(8)/CELU
ConvSub(2) 16 1 GN(4)/CELU
Conv 3× 3 16 1 GN(4)/CELU
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Background Image Encoder
Layer Size/Ch. Stride Norm./Act.

Input 3
Conv 3× 3 64 2 BN/ELU
Conv 3× 3 64 2 BN/ELU
Conv 3× 3 64 2 BN/ELU
Conv 3× 3 64 2 BN/ELU
Flatten
Linear 64 ELU

Mask Decoder
Layer Size/Ch. Stride Norm./Act.

Input 32
Conv 1× 1 256 1 GN(16)/CELU
ConvSub(4) 256 1 GN(16)/CELU
Conv 3× 3 256 1 GN(16)/CELU
ConvSub(2) 128 1 GN(16)/CELU
Conv 3× 3 128 1 GN(16)/CELU
ConvSub(4) 64 1 GN(8)/CELU
Conv 3× 3 64 1 GN(8)/CELU
ConvSub(4) 16 1 GN(4)/CELU
Conv 3× 3 16 1 GN(4)/CELU
Conv 3× 3 1 1

Component Encoder
Layer Size/Ch. Stride Norm./Act.

Input 3+1 (RGB+mask)
Conv 3× 3 32 2 BN/ELU
Conv 3× 3 32 2 BN/ELU
Conv 3× 3 64 2 BN/ELU
Conv 3× 3 64 2 BN/ELU
Flatten
Linear 32+32

Component Decoder
Layer Size/Ch. Stride Norm./Act.

Input 32 (1d)
Spatial Broadcast 32+2 (3d)
Conv 3× 3 32 1 BN/ELU
Conv 3× 3 32 1 BN/ELU
Conv 3× 3 32 1 BN/ELU
Conv 3× 3 3 1

D.4 BASELINE SPAIR

Here we give out the details of the background encoder and decoder in training of SPAIR (both full
image as well as patch-wise training). The image encoder is same as that of SPACE with the only
difference that the inferred latents are conditioned on previous cells’ latents as described in Section
2.2.

19



Under review as a conference paper at ICLR 2020

SPAIR Background Encoder - Full Image training
Layer Size/Ch. Norm./Act.

Input 3× 128× 128
Linear 256 GN(16)/CELU
Linear 128 GN(16)/CELU
Linear 32

SPAIR Background Decoder
Layer Size/Ch. Stride Norm./Act.

Input 16
Conv 3× 3 256 1 GN(16)/CELU
ConvSub 3× 3 128 1 GN(16)/CELU
Conv 3× 3 128 1 GN(16)/CELU
ConvSub 3× 3 64 1 GN(8)/CELU
Conv 3× 3 64 1 GN(8)/CELU
ConvSub 3× 3 16 1 GN(4)/CELU
Conv 3× 3 16 1 GN(4)/CELU
Conv 3× 3 16 1 GN(4)/CELU
Conv 3× 3 3 1

SPAIR Background Encoder For Patch Training
Layer Size/Ch. Stride Norm./Act.

Input 3
Conv 2× 2 16 2 GN(4)/CELU
Conv 2× 2 32 2 GN(8)/CELU
Conv 2× 2 64 2 GN(8)/CELU
Conv 2× 2 128 2 GN(16)/CELU
Conv 2× 2 32 2 GN(4)/CELU

SPAIR Background Decoder For Patch Training
Layer Size/Ch. Stride Norm./Act.

Input 16
Conv 1× 1 256 1 GN(16)/CELU
Conv 1× 1 2048 1
ConvSub(4) 128 1 GN(16)/CELU
Conv 3× 3 128 1 GN(16)/CELU
Conv 1× 1 256 1
ConvSub(2) 64 1 GN(8)/CELU
Conv 3× 3 64 1 GN(8)/CELU
Conv 1× 1 256 1
ConvSub(4) 16 1 GN(4)/CELU
Conv 3× 3 16 1 GN(4)/CELU
Conv 3× 3 16 1 GN(4)/CELU
Conv 3× 3 3 1

E DATASET DETAILS

Atari. For each game, we sample 60,000 random images from a pretrained agent (Wu et al., 2016).
We split the images into 50,000 for the training set, 5,000 for the validation set, and 5,000 for the
testing set. Each image is preprocessed into a size of 128 × 128 pixels with BGR color channels.
We present the results for the following games: Space Invaders, Air Raid, River Raid, Montezuma’s
Revenge.

We also train our model on a dataset of 10 games jointly, where we have 8,000 training images, 1,000
validation images, and 1,000 testing images for each game. We use the following games: Asterix,
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Atlantis, Carnival, Double Dunk, Kangaroo, Montezuma Revenge, Pacman, Pooyan, Qbert, Space
Invaders.

Room 3D. We use MuJoCo (Todorov et al., 2012) to generate this dataset. Each image consists of a
walled enclosure with a random number of objects on the floor. The possible objects are randomly
sized spheres, cubes, and cylinders. The small 3D-Room dataset has 4-8 objects and the large 3D-
Room dataset has 18-24 objects. The color of the objects are randomly chosen from 8 different
colors and the colors of the background (wall, ground, sky) are chosen randomly from 5 different
colors. The angle of the camera is also selected randomly. We use a training set of 63,000 images,
a validation set of 7,000 images, and a test set of 7,000 images. We use a 2-D projection from the
camera to determine the ground truth bounding boxes of the objects so that we can report the average
precision of the different models.
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