
Under review as a conference paper at ICLR 2020

LOGIC AND THE 2-SIMPLICIAL TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the 2-simplicial Transformer, an extension of the Transformer which
includes a form of higher-dimensional attention generalising the dot-product at-
tention, and uses this attention to update entity representations with tensor prod-
ucts of value vectors. We show that this architecture is a useful inductive bias for
logical reasoning in the context of deep reinforcement learning.

1 INTRODUCTION

Deep learning has grown to incorporate a range of differentiable algorithms for computing with
learned representations. The most successful examples of such representations, those learned by
convolutional neural networks, are structured by the scale and translational symmetries of the un-
derlying space (e.g. a two-dimensional Euclidean space for images). It has been suggested that in
humans the ability to make rich inferences based on abstract reasoning is rooted in the same neural
mechanisms underlying relational reasoning in space (Constantinescu et al., 2016; Epstein et al.,
2017; Behrens et al., 2018; Bellmund et al., 2018) and more specifically that abstract reasoning is
facilitated by the learning of structural representations which serve to organise other learned rep-
resentations in the same way that space organises the representations that enable spatial navigation
(Whittington et al., 2018; Liu et al., 2019). This raises a natural question: are there any ideas from
mathematics that might be useful in designing general inductive biases for learning such structural
representations?

As a motivating example we take the recent progress on natural language tasks based on the Trans-
former architecture (Vaswani et al., 2017) which simultaneously learns to represent both entities
(typically words) and relations between entities (for instance the relation between “cat” and “he”
in the sentence “There was a cat and he liked to sleep”). These representations of relations take
the form of query and key vectors governing the passing of messages between entities; messages
update entity representations over several rounds of computation until the final representations re-
flect not just the meaning of words but also their context in a sentence. There is some evidence
that the geometry of these final representations serve to organise word representations in a syntax
tree, which could be seen as the appropriate analogue to two-dimensional space in the context of
language (Hewitt & Manning, 2019).

The Transformer may therefore be viewed as an inductive bias for learning structural representa-
tions which are graphs, with entities as vertices and relations as edges. While a graph is a discrete
mathematical object, there is a naturally associated topological space which is obtained by gluing
1-simplices (copies of the unit interval) indexed by edges along 0-simplices (points) indexed by
vertices. There is a general mathematical notion of a simplicial set which is a discrete structure
containing a set of n-simplices for all n ≥ 0 together with an encoding of the incidence relations
between these simplices. Associated to each simplicial set is a topological space, obtained by gluing
together vertices, edges, triangles (2-simplices), tetrahedrons (3-simplices), and so on, according to
the instructions contained in the simplicial set. Following the aforementioned works in neuroscience
(Constantinescu et al., 2016; Epstein et al., 2017; Behrens et al., 2018; Bellmund et al., 2018; Whit-
tington et al., 2018; Liu et al., 2019) and their emphasis on spatial structure, it is natural to ask if a
simplicial inductive bias for learning structural representations can facilitate abstract reasoning.

With this motivation, we begin in this paper an investigation of simplicial inductive biases for ab-
stract reasoning in neural networks, by giving a simple method for incorporating 2-simplices (which
relate three entities) into the existing Transformer architecture. We call this the 2-simplicial Trans-
former block. It has been established in recent work (Santoro et al., 2017; Zambaldi et al., 2019;

1

Under review as a conference paper at ICLR 2020

Vinyals et al., 2019) that relational inductive biases are useful for solving problems that draw on
abstract reasoning in humans. In Section 5 we show that when embedded in a deep reinforce-
ment learning agent our 2-simplicial Transformer block confers an advantage over the ordinary
Transformer block in an environment with logical structure, and on this basis we argue that further
investigation of simplicial inductive biases is warranted.

The environment in our reinforcement learning problem is a variant of the BoxWorld environment
from (Zambaldi et al., 2019). The original BoxWorld is played on a rectangular grid populated
by keys and locked boxes of varying colours, with the goal being to open the box containing the
“Gem” by following the solution path in the presence of distractor branches. In our variant of the
BoxWorld environment, bridge BoxWorld, each episode now requires two keys to obtain the Gem
and beginning at each loose key is a solution path leading to one of the keys required to open the
box containing the Gem. The eponymous bridges allow the player to cross between solution paths,
thereby rendering the puzzle unsolvable.

The design of the BoxWorld environment was intended to stress the planning and reasoning compo-
nents of an agent’s policy (Zambaldi et al., 2019, p.2) and for this reason it is the underlying logical
structure of the environment (rather than its representation in terms of coloured keys) that is of cen-
tral importance. To explain this logical structure we introduce the following notation: given a colour
c, we use C to stand for the proposition that a key of this colour is obtainable. Each episode ex-
presses its own set of basic facts, or axioms, about obtainability. For instance, a loose key of colour
c gives C as an axiom, and a locked box requiring a key of colour c in order to obtain a key of colour
d gives an axiom that at first glance appears to be the implication C −→ D of classical logic. How-
ever, since a key may only be used once, this is actually incorrect; instead the logical structure of
this situation is captured by the linear implication C (D of linear logic (Girard, 1987). With this
understood, each episode of the original BoxWorld provides in visual form a set of axioms Γ such
that a strategy for obtaining the Gem is equivalent to a proof of Γ ` G in intuitionistic linear logic,
where G stands for the proposition that the Gem is obtainable. There is a general correspondence in
logic between strategies and proofs which we recall in Appendix I.

To describe the logical structure of bridge BoxWorld we need to encode the fact that two keys (say
a green key and a blue key) are required to obtain the Gem. Once again, it is the linear conjunction
⊗ of linear logic (also called the tensor product) rather than the conjunction of classical logic that
properly captures the semantics. The axioms Γ encoded in an episode of bridge BoxWorld contain
a single formula of the form X1 ⊗X2 (G where x1, x2 are the colours of the keys on the Gem,
and again a strategy is equivalent to a proof of Γ ` G. In conclusion, the logical structure of the
original BoxWorld consists of a fragment of linear logic containing only the connective (, while
bridge BoxWorld captures a slightly larger fragment containing (and ⊗. The problem faced by
the agent is to learn, purely through interaction, this underlying logical structure.

The architecture of our deep reinforcement learning agent largely follows (Zambaldi et al., 2019) and
the details are given in Section 4. The key difference between our simplicial agent and the relational
agent of (Zambaldi et al., 2019) is that in place of a standard Transformer block we use a 2-simplicial
Transformer block. Our use of tensor products of value vectors is inspired by the semantics of linear
logic in vector spaces (Girard, 1987; Melliès, 2009; Clift & Murfet, 2017; Wallbridge, 2018) in
which an algorithm with multiple inputs computes on the tensor product of those inputs, but this is
an old idea in natural language processing, used in models including the second-order RNN (Giles
et al., 1989; Pollack, 1991; Goudreau et al., 1994; Giles et al., 1991), multiplicative RNN (Sutskever
et al., 2011; Irsoy & Cardie, 2015), Neural Tensor Network (Socher et al., 2013) and the factored 3-
way Restricted Boltzmann Machine (Ranzato et al., 2010), see Appendix A. More recently tensors
have been used to model predicates in a number of neural network architectures aimed at logical
reasoning (Serafini & Garcez, 2016; Dong et al., 2019). The main novelty in our model lies in
the introduction of the 2-simplicial attention, which allows these ideas to be incorporated into the
Transformer architecture.

2 2-SIMPLICIAL TRANSFORMER

In this section we first review the definition of the ordinary Transformer block and then explain the 2-
simplicial Transformer block. We distinguish between the Transformer architecture which contains
a word embedding layer, an encoder and a decoder (Vaswani et al., 2017), and the Transformer

2

Under review as a conference paper at ICLR 2020

block which is the sub-model of the encoder that is repeated. The fundamental idea, of propagating
information between nodes using weights that depend on the dot product of vectors associated to
those nodes, comes ultimately from statistical mechanics via the Hopfield network (Appendix B).

The ordinary and 2-simplicial Transformer blocks define operators on sequences e1, . . . , eN of entity
representations. Strictly speaking the entities are indices 1 ≤ i ≤ N but we sometimes identify the
entity i with its representation ei. The space of entity representations is denoted V , while the space
of query, key and value vectors is denoted H . We use only the vector space structure on V , but
H = Rd is an inner product space with the usual dot product pairing (h, h′) 7→ h ·h′ and in defining
the 2-simplicial Transformer block we will use additional algebraic structure on H , including the
“multiplication” tensor B : H ⊗ H −→ H of (10) (used to propagate tensor products of value
vectors) and the Clifford algebra of H (used to define the 2-simplicial attention).

In the first step of the standard Transformer block we generate from each entity ei a tuple of vectors
via a learned linear transformation E : V −→ H⊕3. These vectors are referred to respectively as
query, key and value vectors and we write

(qi, ki, vi) = E(ei) . (1)

Stated differently, qi = WQei, ki = WKei, vi = WV ei for weight matrices WQ,WK ,WV . In
the second step we compute a refined value vector for each entity

v′i =

N∑
j=1

eqi·kj∑N
s=1 e

qi·ks
vj =

N∑
j=1

softmax(qi · k1, . . . , qi · kN)jvj . (2)

Finally, the new entity representation e′i is computed by the application of a feedforward network
gθ, layer normalisation and a skip connection

e′i = LayerNorm
(
gθ(v

′
i) + ei

)
. (3)

Remark 2.1. In the introduction we referred to the idea that a Transformer model learns represen-
tations of relations. To be more precise, these representations are heads, each of which determines
an independent set of transformations WQ,WK ,WV which extract queries, keys and values from
entities. Thus a head determines not only which entities are related (via WQ,WK) but also what
information to transmit between them (via WV). In multiple-head attention with K heads, there are
K channels along which to propagate information between every pair of entities, each of dimension
dim(H)/K. More precisely, we choose a decomposition H = H1 ⊕ · · · ⊕HK so that

E : V −→
K⊕
u=1

(H⊕3u)

and write
(qi,(1), ki,(1), vi,(1), . . . , qi,(K), ki,(K), vi,(K)) = E(ei) .

To compute the output of the attention, we take a direct sum of the value vectors propagated along
every one of these K channels, as in the formula

e′i = LayerNorm
(
gθ

[K⊕
u=1

N∑
j=1

softmax(qi,(u) · k1,(u), . . . , qi,(u) · kN,(u))jvj,(u)
]

+ ei

)
. (4)

In combinatorial topology the canonical one-dimensional object is the 1-simplex (or edge) j −→ i.
Since the standard Transformer model learns representations of relations, we refer to this form
of attention as 1-simplicial attention. The canonical two-dimensional object is the 2-simplex (or
triangle) which we may represent diagrammatically in terms of indices i, j, k as

j

%%
k

99

// i

(5)

In the 2-simplicial Transformer block, in addition to the 1-simplicial contribution, each entity ei is
updated as a function of pairs of entities ej , ek using the tensor product of value vectors uj ⊗ uk

3

Under review as a conference paper at ICLR 2020

and a probability distribution derived from a scalar triple product 〈pi, l1j , l2k〉 in place of the scalar
product qi · kj . This means that we associate to each entity ei a four-tuple of vectors via a learned
linear transformation E : V −→ H⊕4, denoted

(pi, l
1
i , l

2
i , ui) = E(ei) . (6)

We still refer to pi as the query, l1i , l
2
i as the keys and ui as the value. Stated differently, pi =

WP ei, l
1
i = WL1ei, l

2
i = WL2ei and ui = WUei for weight matrices WP ,WL1 ,WL2 ,WU .

Definition 2.2. The unsigned scalar triple product of a, b, c ∈ H is

〈a, b, c〉 =
∥∥(a · b)c− (a · c)b+ (b · c)a

∥∥ (7)

whose square is a polynomial in the pairwise dot products

〈a, b, c〉2 = (a · b)2(c · c) + (b · c)2(a · a) + (a · c)2(b · b)− 2(a · b)(a · c)(b · c) . (8)

This scalar triple product has a simple geometric interpretation in terms of the volume of the tetra-
hedron with vertices 0, a, b, c. To explain, recall that the triangle spanned by two unit vectors a, b in
R2 has an area A which can be written in terms of the dot product of a and b. In three dimensions,
the analogous formula involves the volume V of the tetrahedron with vertices given by unit vectors
a, b, c, and the scalar triple product as shown in Figure 1.

a
b

b
a

c

(a · b)2 = 1− 4A2 〈a, b, c〉2 = 1− 36V 2

Figure 1: The geometry of 1- and 2-simplicial attention. Left: the dot product in terms of the area A
in R2. Right: the triple product in terms of the volume V in R3.

In general, given nonzero vectors a, b, c let â, b̂, ĉ denote unit vectors in the same directions. Then
we can by Lemma C.10(v) factor out the length in the scalar triple product

〈a, b, c〉 = ‖a‖‖b‖‖c‖〈â, b̂, ĉ〉 (9)

so that a general scalar triple product can be understood in terms of the vector norms and config-
urations of three points on the 2-sphere. One standard approach to calculating volumes of such
tetrahedrons is the cross product which is only defined in three dimensions. Since the space of rep-
resentations H is high dimensional the natural framework for the triple scalar product 〈a, b, c〉 is
instead the Clifford algebra of H (see Appendix C).

For present purposes, we need to know that 〈a, b, c〉 attains its minimum value (which is zero) when
a, b, c are pairwise orthogonal, and attains its maximum value (which is ‖a‖‖b‖‖c‖) if and only
if {a, b, c} is linearly dependent (Lemma C.10). Using the number 〈pi, l1j , l2k〉 as a measure of the
degree to which entity i is attending to (j, k), or put differently, the degree to which the network
predicts the existence of a 2-simplex (i, j, k), the update rule for the entities when using purely
2-simplicial attention is

v′i =

N∑
j,k=1

e〈pi,l
1
j ,l

2
k〉∑N

s,t=1 e
〈pi,l1s,l2t 〉

B(uj ⊗ uk) (10)

whereB : H⊗H −→ H is a learned linear transformation. Although we do not impose any further
constraints, the motivation here is to equip H with the structure of an algebra; in this respect we
model conjunction by multiplication, an idea going back to Boole (Boole, 1847).

We compute multiple-head 2-simplicial attention in the same way as in the 1-simplicial case. To
combine 1-simplicial heads (that is, ordinary Transformer heads) and 2-simplicial heads we use

4

Under review as a conference paper at ICLR 2020

separate inner product spaces H1, H2 for each simplicial dimension, so that there are learned linear
transformations E1 : V −→ (H1)⊕3, E2 : V −→ (H2)⊕4 and the queries, keys and values are
extracted from an entity ei according to

(qi, ki, vi) = E1(ei) ,

(pi, l
1
i , l

2
i , ui) = E2(ei) .

The update rule (for a single head in each simplicial dimension) is then:

v′i =
{ N∑
j=1

eqi·kj∑N
s=1 e

qi·ks
vj

}
⊕ LayerNorm

{ N∑
j,k=1

e〈pi,l
1
j ,l

2
k〉∑N

s,t=1 e
〈pi,l1s,l2t 〉

B(uj ⊗ uk)
}
, (11)

e′i = LayerNorm
(
gθ(v

′
i) + ei

)
. (12)

If there are K1 heads of 1-simplicial attention and K2 heads of 2-simplicial attention, then (11) is
modified in the obvious way using H1 =

⊕K1

u=1H
1
u and H2 =

⊕K2

u=1H
2
u.

Remark 2.3. Without the additional layer normalisation on the output of the 2-simplicial attention
we find that training is unstable. The natural explanation is that these outputs are constructed from
polynomials of higher degree than the 1-simplicial attention, and thus computational paths that go
through the 2-simplicial attention will be more vulnerable to exploding or vanishing gradients.

The time complexity of 1-simplicial attention as a function of the number of entities isO(N2) while
the time complexity of 2-simplicial attention is O(N3) since we have to calculate the attention for
every triple (i, j, k) of entities. For this reason we consider only triples (i, j, k) where the base of the
2-simplex (j, k) is taken from a set of pairs predicted by the ordinary attention, which we view as
the primary locus of computation. More precisely, we introduce in addition to the N entities (now
referred to as standard entities) a set of M virtual entities eN+1, . . . , eN+M . These virtual entities
serve as a “scratch pad” onto which the iterated ordinary attention can write representations, and we
restrict j, k to lie in the range N < j, k ≤ N + M so that only value vectors obtained from virtual
entities are propagated by the 2-simplicial attention.

With virtual entities the update rule is for 1 ≤ i ≤ N

v′i =

{
N∑
j=1

eqi·kj∑N
s=1 e

qi·ks
vj

}
⊕ LayerNorm

{
N+M∑

j,k=N+1

e〈pi,l
1
j ,l

2
k〉∑N+M

s,t=1 e
〈pi,l1l ,l2m〉

B(uj ⊗ uk)

}
(13)

and for N < i ≤ N +M

v′i =

{
N+M∑
j=1

eqi·kj∑N+M
s=1 eqi·ks

vj

}
⊕ LayerNorm(ui) . (14)

The updated representation e′i is computed from v′i, ei using (12) as before. Observe that the virtual
entities are not used to update the standard entities during 1-simplicial attention and the 2-simplicial
attention is not used to update the virtual entities; instead the second summand in (14) involves the
vector ui = WUei, which adds recurrence to the update of the virtual entities. After the attention
phase the virtual entities are discarded.

The method for updating the virtual entities is similar to the role of the memory nodes in the rela-
tional recurrent architecture of (Santoro et al., 2018), the master node in (Gilmer et al., 2017, §5.2)
and memory slots in the Neural Turing Machine (Graves et al., 2014). The update rule has complex-
ity O(NM2) and so if we take M to be of order

√
N we get the desired complexity O(N2).

3 RL ENVIRONMENT

The environment in our reinforcement learning problem is a variant of the BoxWorld environment
from (Zambaldi et al., 2019). The standard BoxWorld environment is a rectangular grid in which
are situated the player (a dark gray tile) and a number of locked boxes represented by a pair of
horizontally adjacent tiles with a tile of colour x, the key colour, on the left and a tile of colour
y, the lock colour, on the right. There is also one loose key in each episode, which is a coloured

5

Under review as a conference paper at ICLR 2020

tile not initially adjacent to any other coloured tile. All other tiles are blank (light gray) and are
traversable by the player. The rightmost column of the screen is the inventory, which fills from the
top and contains keys that have been collected by the player. The player can pick up any loose key
by walking over it. In order to open a locked box, with key and lock colours x, y, the player must
step on the lock while in possession of a copy of y, in which case one copy of this key is removed
from the inventory and replaced by a key of colour x.

The goal is to attain a white key, referred to as the Gem (represented by a white square) as shown
in the sample episode of Figure 2. In this episode, there is a loose pink key (marked 1) which can
be used to open one of two locked boxes, obtaining in this way either key 5 or key 21. The correct
choice is 2, since this leads via the sequence of keys 3, 4 to the Gem.

1

2

3

4

5

1 2

3 4

1 2

3 4

(2,1,3) bridge (2,1,4) bridge

1 2

3 4

(2,2,3) bridge

1 2

3 4

(2,2,4) bridge

bridge

Figure 2: Right: a sample episode of the BoxWorld environment. The rightmost column is the player
inventory, currently empty. Left: graph representation of the puzzle, with key colours as vertices and
an arrow C −→ D if key C can be used to obtain key D.

Some locked boxes, if opened, provide keys that are not useful for attaining the Gem. Since each
key may only be used once, opening such boxes means the episode is rendered unsolvable. Such
boxes are called distractors. An episode ends when the player either obtains the Gem (with a reward
of +10) or opens a distractor box (reward −1). Opening any non-distractor box, or picking up a
loose key, garners a reward of +1. The solution length is the number of locked boxes (including the
one with the Gem) in the episode on the path from the loose key to the Gem. The episode in Figure 2
has solution length four.

1

2

3

4

5

1 2

3 4

1 2

3 4

(2,1,3) bridge (2,1,4) bridge

1 2

3 4

(2,2,3) bridge

1 2

3 4

(2,2,4) bridge

bridge

Figure 3: Right: a sample episode of the bridge BoxWorld environment, in which the Gem has two
locks and there is a marked bridge. Left: graph representation of the puzzle, with upper and lower
solutions paths and the bridge between them.

Our variant of the BoxWorld environment, bridge BoxWorld, is shown in Figure 3. In each episode
two keys are now required to obtain the Gem, and there are therefore two loose keys on the board.
To obtain the Gem, the player must step on either of the lock tiles with both keys in the inventory,
at which point the episode ends with the usual +10 reward. Graphically, Gems with multiple locks
are denoted with two vertical white tiles on the left, and the two lock tiles on the right. Two solution
paths (of the same length) leading to each of the locks on the Gem are generated with no overlapping
colours, beginning with two loose keys. In episodes with multiple locks we do not consider distractor
boxes of the old kind; instead there is a new type of distractor that we call a bridge. This is a locked
box whose lock colour is taken from one solution branch and whose key colour is taken from the
other branch. Opening the bridge renders the puzzle unsolvable. An episode ends when the player

1The agent sees only the colours of tiles, not the numbers which are added here for exposition.

6

Under review as a conference paper at ICLR 2020

either obtains the Gem (reward +10) or opens the bridge (reward−1). Opening a box other than the
bridge, or picking up a loose key, has a reward of +1 as before. In this paper we consider episodes
with zero or one bridge (the player cannot fail to solve an episode with no bridge).

4 RL AGENT ARCHITECTURE

Our baseline relational agent is modeled closely on (Zambaldi et al., 2019) except that we found that
a different arrangement of layer normalisations worked better in our experiments, see Remark 4.1.
The code for our implementation of both agents is available online. In the following we describe
the network architecture of both the relational and simplicial agent; we will note the differences
between the two models as they arise.

The input to the agent’s network is an RGB image, represented as a tensor of shape [R,C + 1, 3]
(i.e. an element of RR⊗RC+1⊗R3) where R is the number of rows and C the number of columns
(the C + 1 is due to the inventory). This tensor is divided by 255 and then passed through a 2 × 2
convolutional layer with 12 features, and then a 2 × 2 convolutional layer with 24 features. Both
activation functions are ReLU and the padding on our convolutional layers is “valid” so that the
output has shape [R − 2, C − 1, 24]. We then multiply by a weight matrix of shape 24 × 62 to
obtain a tensor of shape [R − 2, C − 1, 62]. Each feature vector has concatenated to it a two-
dimensional positional encoding, and then the result is reshaped into a tensor of shape [N, 64] where
N = (R − 2)(C − 1) is the number of Transformer entities. This is the list (e1, . . . , eN) of entity
representations ei ∈ V = R64.

In the case of the simplicial agent, a further two learned embedding vectors eN+1, eN+2 are added to
this list; these are the virtual entities. So with M = 0 in the case of the relational agent and M = 2
for the simplicial agent, the entity representations form a tensor of shape [N+M, 64]. This tensor is
then passed through two iterations of the Transformer block (either purely 1-simplicial in the case of
the relational agent, or including both 1 and 2-simplicial attention in the case of the simplicial agent).
In the case of the simplicial agent the virtual entities are then discarded, so that in both cases we have
a sequence of entities e′′1 , . . . , e

′′
N . Inside each block are two feedforward layers separated by a ReLU

activation with 64 hidden nodes; the weights are shared between iterations of the Transformer block.
In the 2-simplicial Transformer block the input tensor, after layer normalisation, is passed through
the 2-simplicial attention and the result (after an additional layer normalisation) is concatenated to
the output of the 1-simplicial attention heads before being passed through the feedforward layers.
The pseudo-code for the ordinary and 2-simplicial Transformer blocks are:

d e f t r a n s f o r m e r b l o c k (e) :
x = LayerNorm (e)
a = 1 S i m p l i c i a l A t t e n t i o n (x)
b = DenseLayer1 (a)
c = DenseLayer2 (b)
r = Add ([e , c])
epr ime = LayerNorm (r)
r e t u r n epr ime

d e f s i m p l i c i a l t r a n s f o r m e r b l o c k (e) :
x = LayerNorm (e)
a1 = 1 S i m p l i c i a l A t t e n t i o n (x)
a2 = 2 S i m p l i c i a l A t t e n t i o n (x)
a2n = LayerNorm (a2)
ac = C o n c a t e n a t e ([a1 , a2n])
b = DenseLayer1 (ac)
c = DenseLayer2 (b)
r = Add ([e , c])
epr ime = LayerNorm (r)
r e t u r n epr ime

Our implementation of the standard Transformer block is based on an implementation in Keras from
(Mavreshko, 2019). In both the relational and simplicial agent, the space V of entity representations
has dimension 64 and we denote byH1, H2 the spaces of 1-simplicial and 2-simplicial queries, keys
and values. In both the relational and simplicial agent there are two heads of 1-simplicial attention,
H1 = H1

1 ⊕H1
2 with dim(H1

i) = 32. In the simplicial agent there is a single head of 2-simplicial
attention with dim(H2) = 48 and two virtual entities.

The output of our Transformer block is a tensor of shape [N + M, 64]. To this final entity tensor
we apply max-pooling over the entity dimension, that is, we compute a vector v ∈ R64 by the rule
vi = max1≤j≤N (e′′j)i for 1 ≤ i ≤ 64. This vector v is then passed through four fully-connected
layers with 256 hidden nodes and ReLU activations. The output of the final fully-connected layer is

7

Under review as a conference paper at ICLR 2020

multiplied by one 256× 4 weight matrix to produce logits for the actions (left, up, right and down)
and another 256× 1 weight matrix to produce the value function.

Remark 4.1. There is wide variation in the use of layer normalisation in the literature on Trans-
former models, compare (Vaswani et al., 2017; Child et al., 2019; Zambaldi et al., 2019). The
architecture described in (Zambaldi et al., 2019) involves layer normalisation in two places: on the
concatenation of the Q,K, V matrices, and on the output of the feedforward network gθ. We keep
this second normalisation but move the first from after the linear transformation E of (1) to before
this linear transformation, so that it is applied directly to the incoming entity representations. We
found this works well in our experiments.

5 EXPERIMENTS AND RESULTS

The training of our agents uses the implementation in Ray RLlib (Liang et al., 2018) of the dis-
tributed off-policy actor-critic architecture IMPALA of (Espeholt et al., 2018) with optimisation
algorithm RMSProp. The hyperparameters for IMPALA and RMSProp are given in Table 1 of Ap-
pendix E. Following (Zambaldi et al., 2019) and other recent work in deep reinforcement learning,
we use RMSProp with a large value of the hyperparameter ε = 0.1. As we explain in Appendix G,
this is effectively RMSProp with smoothed gradient clipping.

First we verified that our implementation of the relational agent can solve the standard BoxWorld
environment (Zambaldi et al., 2019) with a solution length sampled from [1, 5] and number of dis-
tractors sampled from [0, 4] on a 9× 9 grid. After training for 2.35× 109 timesteps our implemen-
tation solved over 93% of puzzles (regarding the discrepancy with the reported sample complexity
in (Zambaldi et al., 2019) see Appendix D).

Next we trained the relational and simplicial agent on bridge BoxWorld, under the following con-
ditions: half of the episodes contain a bridge, the solution length is uniformly sampled from [1, 3]
(both solution paths are of the same length), colours are uniformly sampled from a set of 20 colours2

and the boxes and loose keys are arranged randomly on a 7 × 9 grid, under the constraint that the
box containing the Gem does not occur in the rightmost column or bottom row, and keys appear
only in positions (y, x) = (2r, 3c − 1) for 1 ≤ r ≤ 3, 1 ≤ c ≤ 3. The starting and ending point of
the bridge are uniformly sampled with no restrictions (e.g. the bridge can involve the colours of the
loose keys and locks on the Gem) but the lock colour is always on the top solution path. There is no
curriculum and no cap on timesteps per episode.

We trained four independent trials of both agents to either 5.5 × 109 timesteps or convergence,
whichever came first. In Figure 4 we give the mean and standard deviation of these four trials
of each agent, showing a clear advantage of the simplicial agent. We make some remarks about
performance comparisons taking into account the fact that the relational agent is simpler (and hence
faster to execute) than the simplicial agent in Appendix D. The training runs for the relational and
simplicial agents are shown in Figure 6 and Figure 7 of Appendix F, together with analysis and
visualization of the 1- and 2-simplicial attention in specific examples.

In the reported experiments we use only two Transformer blocks; we performed two trials of a
relational agent using four Transformer blocks, but after 5.5 × 109 timesteps neither trial exceeded
the 0.85 plateau in terms of fraction solved. Our overall results therefore suggest that the 2-simplicial
Transformer is more powerful than the standard Transformer, with its performance not matched by
adding greater depth. This is further supported by the fact on a time-adjusted basis, the 2-simplicial
model still converges faster than the ordinary model; see Figure 5 of Appendix D. The upshot is
that parallel computation with simplicial representations is superior to deeper computation with
relational representations, at least in this class of problems.

6 DISCUSSION

Motivated by the idea that abstract reasoning in humans is grounded in structural representations
that are adapted from those evolved for spatial reasoning, we have presented a simplicial inductive
bias and shown that in the context of a deep reinforcement learning environment with nontrivial

2Saturation 0.7, brightness 0.8 and hue 18k
360

for 0 ≤ k ≤ 19.

8

Under review as a conference paper at ICLR 2020

Figure 4: Training curve of mean relational and simplicial agents on bridge BoxWorld. Shown are
the mean and standard deviation of four runs of each agent, including the best run of each.

logical structure, this bias is superior to a purely relational inductive bias. In this concluding section
we briefly address some of the limitations of our work, and future directions.

Limitations. Our experiments involve only a small number of virtual entities, and a small number
of iterations of the Transformer block: it is possible that for large numbers of virtual entities and
iterations, our choices of layer normalisation are not optimal. Our aim was to test the viability of the
simplicial Transformer starting with the minimal configuration, so we have also not tested multiple
heads of 2-simplicial attention. Deep reinforcement learning is notorious for poor reproducibility
(Henderson et al., 2017), and in an attempt to follow the emerging best practices we are releasing
our agent and environment code, trained agent weights, and training notebooks.

Future directions. It is clear using the general formulas for the unsigned scalar product how to
define an n-simplicial Transformer block, and this is arguably an idiomatic expression in the con-
text of deep learning of the linear logic semantics of the ⊗ connective. It would be interesting to
extend this to include other connectives, in environments encoding a larger fragment of linear logic
proofs. However, at present this seems out of reach because the O(N2) complexity makes scaling
to much larger environments impractical. We hope that some of the scaling work being done in the
Transformer literature can be adapted to the simplicial Transformer; see (Child et al., 2019).

9

Under review as a conference paper at ICLR 2020

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. In Proceedings of the International Conference on Learning Representations, 2016.

Aristotle. Sophistical refutations. In J. Barnes (ed.), Complete works of Aristotle, Volume 1: The
revised Oxford translation. Princeton University Press, 1984.

David G. T. Barrett, Felix Hill, Adam Santoro, Ari S. Morcos, and Timothy P. Lillicrap. Measuring
abstract reasoning in neural networks. In Proceedings of the 35th International Conference on
Machine Learning, pp. 4477–4486, 2018.

Timothy E.J. Behrens, Timothy H. Muller, James C.R. Whittington, Shirley Mark, Alon B. Baram,
Kimberly L. Stachenfeld, and Zeb Kurth-Nelson. What is a cognitive map? Organizing knowl-
edge for flexible behavior. Neuron, 100(2):490 – 509, 2018.

Jacob Bellmund, Peter Gärdenfors, Edvard Moser, and Christian F. Doeller. Navigating cognition:
Spatial codes for human thinking. Science, 362, 11 2018.

George Boole. The mathematical analysis of logic: being an essay towards a calculus of deductive
reasoning. Macmillan, Barclay & Macmillan, Cambridge, 1847.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. preprint arXiv:1904.10509, 2019.

James Clift and Daniel Murfet. Cofree coalgebras and differential linear logic. preprint
arXiv:1701.01285, 2017.

Alexandra O. Constantinescu, Jill X. O’Reilly, and Timothy E.J. Behrens. Organising conceptual
knowledge in humans with a gridlike code. Science, 352:1464–1468, 2016.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In Proceedings of the International Conference on Learning Representations, 2019.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In Proceedings of the International Conference on Learning Representations, 2019.

Russell A. Epstein, Eva Zita Patai, Joshua B. Julian, and Hugo J. Spiers. The cognitive map in
humans: spatial navigation and beyond. Nature Neuroscience, 20:1504–1513, 2017.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architectures. In Proceed-
ings of the 35th International Conference on Machine Learning, pp. 1407–1416, 2018.

Gottlob Frege. On sense and denotation (über sinn und bedeutung). Zeitschrift für Philosophie und
philosophische Kritik, 100:25–50, 1892.

C. Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, and Dong Chen. Higher order
recurrent networks and grammatical inference. In Advances in Neural Information Processing
Systems 2, pp. 380–387. 1989.

C. Lee Giles, Dong Chen, Clifford B. Miller, Hsing-Hen Chen, Guo-Zheng Sun, and Yee-Chun
Lee. Second-order recurrent neural networks for grammatical inference. In IJCNN-91-Seattle
International Joint Conference on Neural Networks, volume 2, pp. 273–281, 1991.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning, pp. 1263–1272, 2017.

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

10

Under review as a conference paper at ICLR 2020

Mark W. Goudreau, C. Lee Giles, Srimat T. Chakradhar, and Dong Chen. First-order versus second-
order single-layer recurrent neural networks. IEEE Transactions on Neural Networks, 5(3):511–
513, 1994.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. preprint arXiv:1410.5401,
2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez, Edward Grefenstette, Tiago Ramalho, John Agapiou, Adrià Puig-
domènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King,
Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hybrid com-
puting using a neural network with dynamic external memory. Nature, 538, 10 2016.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. preprint arXiv:1709.06560, 2017.

David Hestenes. New foundations for classical mechanics. Kluwer Academic Publishers, 2nd
edition, 2002.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), 2019.

John J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.

Martin Hyland. Game semantics, pp. 131–184. Publications of the Newton Institute. Cambridge
University Press, 1997.

Ozan Irsoy and Claire Cardie. Modeling compositionality with multiplicative recurrent neural net-
works. In Proceedings of the International Conference on Learning Representations, 2015.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks. preprint arXiv:1711.09846,
2017.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning, pp. 1885–1894, 2017.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gonza-
lez, Michael I. Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement learning.
In Proceedings of the 35th International Conference on Machine Learning, pp. 3059–3068, 2018.

Yunzhe Liu, Raymond J. Dolan, Zeb Kurth-Nelson, and Timothy E.J. Behrens. Human replay
spontaneously reorganizes experience. Cell, 178(3):640 – 652, 2019.

Alan Macdonald. Sobczyk’s simplicial calculus does not have a proper foundation. preprint
arXiv:1710.08274, 2017.

David J.C. MacKay. Information theory, inference and learning algorithms. Cambridge University
Press, 2003.

Nicholas John Mackintosh. Animal learning, 2019. https://www.britannica.com/
science/animal-learning/Insight-and-reasoning.

Chris Martens. Programming interactive worlds with linear logic. PhD thesis, Carnegie Mellon
University, 2015.

Kirill Mavreshko. keras-transformer. https://github.com/kpot/keras-transformer,
2019.

11

https://www.britannica.com/science/animal-learning/Insight-and-reasoning
https://www.britannica.com/science/animal-learning/Insight-and-reasoning
https://github.com/kpot/keras-transformer

Under review as a conference paper at ICLR 2020

Paul-André Melliès. Categorical semantics of linear logic. In Interactive Models of Computation
and Program Behaviour, Panoramas et Synthèses 27, Société Mathématique de France 1–196,
2009.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature visualization: uncovering
the different types of features learned by each neuron in deep neural networks. In Proceedings of
the 33rd International Conference on Machine Learning, 2016.

Jordan B. Pollack. The induction of dynamical recognizers. Machine Learning, 7(2):227–252, 1991.

Marc’Aurelio Ranzato, Alex Krizhevsky, and Geoffrey Hinton. Factored 3-way restricted Boltz-
mann machines for modeling natural images. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, volume 9, pp. 621–628, 2010.

David Raposo. Personal communication, May 13, 2019.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In
Advances in Neural Information Processing Systems 30, pp. 4967–4976. 2017.

Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Théophane Weber,
Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy Lillicrap. Relational recurrent neural
networks. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pp. 7310–7321, 2018.

Luciano Serafini and Artur S. d’Avila Garcez. Logic tensor networks: Deep learning and logi-
cal reasoning from data and knowledge. In Proceedings of the 11th International Workshop on
Neural-Symbolic Learning and Reasoning (NeSy’16), 2016.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70, pp. 3145–3153, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In Proceedings of the International
Conference on Learning Representations, 2013.

Robin Smith. Aristotle’s logic. In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy.
Metaphysics Research Lab, Stanford University, summer 2019 edition, 2019.

Garret Sobczyk. Simplicial calculus with geometric algebra. Fundamental Theories of Physics, vol.
47, 1992.

Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. In Advances in Neural Information Processing
Systems 26, pp. 926–934. 2013.

Paul Vincent Spade and Jaakko J. Hintikka. History of logic, 2019. URL https://www.
britannica.com/topic/history-of-logic/Aristotle.

Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference on Machine Learning, pp. 1017–1024, 2011.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. Adaptive Com-
putation and Machine Learning series. MIT Press, 2018.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2818–2826, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5 - rmsprop: Divide the gradient by a running
average of its recent magnitude. [Coursera] Neural Networks for Machine Learning (University
of Toronto), 2012.

12

https://www.britannica.com/topic/history-of-logic/Aristotle
https://www.britannica.com/topic/history-of-logic/Aristotle

Under review as a conference paper at ICLR 2020

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30, pp. 5998–6008. 2017.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wojtek Czar-
necki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo Ewalds, Dan Hor-
gan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin Dalibard, David Choi,
Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor Cai, David Budden, Tom
Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Yuhuai Wu, Dani Yogatama, Ju-
lia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Chris Apps, Koray
Kavukcuoglu, Demis Hassabis, and David Silver. Alphastar: Mastering the real-time strategy
game starcraft ii, 2019.

James Wallbridge. Jets and differential linear logic. preprint arXiv:1811.06235, 2018.

James C. R. Whittington, Timothy H. Muller, Shirely Mark, Caswell Barry, and Tim E. J. Behrens.
Generalisation of structural knowledge in the hippocampal-entorhinal system. In Advances in
Neural Information Processing Systems 31, pp. 8493–8504, 2018.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter Battaglia. Deep rein-
forcement learning with relational inductive biases. In Proceedings of the International Confer-
ence on Learning Representations, 2019.

APPENDIX

A COMPARISON TO THE NTM

The Transformer model and descendents such as the Universal Transformer (Dehghani et al., 2019)
can be viewed as general units for computing with learned representations; in this sense they have a
similar conceptual role to the Neural Turing Machine (NTM) (Graves et al., 2014) and Differentiable
Neural Computer (Graves et al., 2016). As pointed out in (Dehghani et al., 2019, §4) one can view
the Transformer as a block of parallel RNNs (one for each entity) which update their hidden states
at each time step by attending to the sequence of hidden states of the other RNNs at the previous
step. We expand on those remarks here in order to explain the connection between the 2-simplicial
Transformer and earlier work in the NLP literature, which is written in terms of RNNs.

We consider a NTM with content-based addressing only and no sharpening. The core of the NTM
is an RNN controller with update rule

h′ = ReLU(M +Wh+ Ux+ b) (15)

where W,U, b are weight matrices, x is the current input symbol, h is the previous hidden state, h′
is the next hidden state and M is the output of the memory read head

M =

N∑
j=1

softmax(K[q,M1], . . . ,K[q,MN])jMj (16)

where there areN memory slots containingM1, . . .MN , q is a query generated from the hidden state
of the RNN by a weight matrix q = Zh, and K[u, v] = (u · v)/(‖u‖‖v‖). We omit the mechanism
for writing to the memory here, since it is less obvious how that relates to the Transformer; see
(Graves et al., 2014, §3.2). Note that while we can view Mj as the “hidden state” of memory slot j,
the controller’s hidden state and the hidden states of the memory slots play asymmetric roles, since
the former is updated with a feedforward network at each time step, while the latter is not.

The Transformer with shared transition functions between layers is analogous to a NTM with this
asymmetry removed: there is no longer a separate recurrent controller, and every memory slot is
updated with a feedforward network in each timestep. To explain, view the entity representations
e1, . . . , eN of the Transformer as the hidden states of N parallel RNNs. The new representation is

e′i = LayerNorm(gθ(A) + ei) (17)

13

Under review as a conference paper at ICLR 2020

where the attention term is

A =

N∑
j=1

softmax(qi · k1, . . . , qi · kN)vj (18)

and qi = Zei is a query vector obtained by a weight matrix from the hidden state, the kj = Kej are
key vectors and vj = V ej is the value vector. Note that in the Transformer the double role of Mj

in the NTM has been replaced by two separate vectors, the key and value, and the cosine similarity
K[−,−] has been replaced by the dot product.

Having now made the connection between the Transformer and RNNs, we note that the second-order
RNN (Giles et al., 1989; Pollack, 1991; Goudreau et al., 1994; Giles et al., 1991) and the similar
multiplicative RNN (Sutskever et al., 2011; Irsoy & Cardie, 2015) have in common that the update
rule for the hidden state of the RNN involves a term V (x ⊗ h) which is a linear function of the
tensor product of the current input symbol x and the current hidden state h. One way to think of this
is that the weight matrix V maps inputs x to linear operators on the hidden state. In (Socher et al.,
2013) the update rule contains a term V (e1 ⊗ e2) where e1, e2 are entity vectors, and this is directly
analogous to our construction.

B CONNECTION TO HOPFIELD NETWORKS

The continuous Hopfield network (Hopfield, 1982) (MacKay, 2003, Ch.42) with N nodes updates
in each timestep a sequence of vectors {ei}Ni=1 by the rules

e′i = tanh
[
η
∑
j

(ei · ej) ej
]

(19)

for some parameter η. The Transformer block may therefore be viewed as a refinement of the Hop-
field network, in which the three occurrences of entity vectors in (19) are replaced by query, key
and value vectors WQei,W

Kej ,W
V ej respectively, the nonlinearity is replaced by a feedforward

network with multiple layers, and the dynamics are stabilised by layer normalisation. The initial
representations ei also incorporate information about the underlying lattice, via the positional em-
beddings.

The idea that the structure of a sentence acts to transform the meaning of its parts is due to Frege
(Frege, 1892) and underlies the denotational semantics of logic. From this point of view the Trans-
former architecture is an inheritor both of the logical tradition of denotational semantics, and of the
statistical mechanics tradition via Hopfield networks.

C CLIFFORD ALGEBRA

The volume of an n-simplex in Rn with vertices at 0, v1, . . . , vn is

Voln =
∣∣∣ 1

n!
det(v1, . . . , vn)

∣∣∣
which is 1

n! times the volume of the n-dimensional parallelotope which shares n edges with the n-
simplex. In our applications the space of representationsH is high dimensional, but we wish to speak
of the volume of k-simplices for k < dim(H) and use those volumes to define the coefficients of our
simplicial attention. The theory of Clifford algebras (Hestenes, 2002) is one appropriate framework
for such calculations.

Let H be an inner product space with pairing (v, w) 7→ v · w. The Clifford algebra Cl(H) is the
associative unital R-algebra generated by the vectors v ∈ H with relations

vw + wv = 2(v · w) · 1 .
The canonical k-linear map H −→ Cl(H) is injective, and since v2 = ‖v‖2 · 1 in Cl(H), any
nonzero vector v ∈ H is a unit in the Clifford algebra. While as an algebra Cl(H) is only Z2-
graded, there is nonetheless a Z-grading of the underlying vector space which can be defined as
follows: let {ei}ni=1 be an orthonormal basis of H , then the set

B =
{
ei1 · · · eim

}
i1<···<im

14

Under review as a conference paper at ICLR 2020

is a basis for Cl(H), with m ranging over the set {0, . . . , n}. If we assign the basis element
ei1 · · · eim the degree m, then this determines a Z-grading [−]k of the Clifford algebra which is
easily checked to be independent of the choice of basis.
Definition C.1. [A]k denotes the homogeneous component of A ∈ Cl(H) of degree k.
Example C.2. Given a, b, c ∈ H we have [ab]0 = a · b, [ab]2 = a ∧ b and

[abc]1 = (a · b)c− (a · c)b+ (b · c)a , [abc]3 = a ∧ b ∧ c . (20)

There is an operation on elements of the Clifford algebra called reversion in geometric algebra
(Hestenes, 2002, p.45) which arises as follows: the opposite algebra Cl(H)op admits a k-linear map
j : H −→ Cl(H)op with j(v) = v which satisfies j(v)j(w) + j(w)j(v) = 2(v · w) · 1, and so by
the universal property there is a unique morphism of algebras

(−)† : Cl(H) −→ Cl(H)op

which restricts to the identity on H . Note (v1 · · · vk)† = v†k · · · v
†
1 for v1, . . . , vk ∈ H and (−)† is

homogeneous of degree zero with respect to the Z-grading. Using this operation we can define the
magnitude (Hestenes, 2002, p.46) of any element of the Clifford algebra.
Definition C.3. The magnitude of A ∈ Cl(H) is |A| =

√
[A†A]0.

For vectors v1, . . . , vk ∈ H ,
|v1 · · · vk|2 = [vk · · · v1v1 · · · vk]0 = ‖v1‖2 · · · ‖vk‖2 (21)

and in particular for v ∈ H we have |v| = ‖v‖.
Lemma C.4. Set n = dim(H). Then for A ∈ Cl(H) we have

|A|2 =

n∑
i=0

|[A]i|2 .

Proof. See (Hestenes, 2002, Chapter 2 (1.33)).

Example C.5. For a, b, c ∈ H the lemma gives
‖a‖2‖b‖2‖c‖2 = |[abc]1|2 + |[abc]3|2 = ‖(a · b)c− (a · c)b+ (b · c)a‖2 + |a ∧ b ∧ c|2

and hence
‖(a · b)c− (a · c)b+ (b · c)a‖2 = ‖a‖2‖b‖2‖c‖2 − |a ∧ b ∧ c|2 .

Remark C.6. Given vectors v1, . . . , vk ∈ H the wedge product v1 ∧ · · · ∧ vk is an element in the
exterior algebra

∧
H . Using the chosen basis B we can identify the underlying vector space of

Cl(H) with
∧
H and using this identification (set vi =

∑
j λijej)

[v1 · · · vk]k =
[(n∑

j1=1

λ1j1ej1
)
· · ·
(n∑
jk=1

λkjkejk
)]
k

=
∑

j1,...,jk

λ1j1 · · ·λkjk [ej1 · · · ejk]k

=
∑

1≤j1<···<jk≤n
σ∈Sk

λ1jσ(1) · · ·λkjσ(k) [ejσ(1) · · · ejσ(k)]k

=
∑

1≤j1<···<jk≤n
σ∈Sk

(−1)|σ|λ1jσ(1) · · ·λkjσ(k)ej1 · · · ejk

= v1 ∧ · · · ∧ vk
where Sk is the permutation group on k letters. That is, the top degree piece of v1 · · · vk in Cl(H) is
always the wedge product. It is then easy to check that the squared magnitude of this wedge product
is

|[v1 · · · vk]k|2 =
∑

1≤j1<···<jk≤n

(∑
σ∈Sk

λ1jσ(1) · · ·λkjσ(k)
)2
. (22)

The term in the innermost bracket is the determinant of the k × k submatrix with columns j =
(j1, . . . , jk) and in the special case where k = n = dim(H) we see that the squared magnitude is
just the square of the determinant of the matrix (λij)1≤i,j≤n.

15

Under review as a conference paper at ICLR 2020

The wedge product of k-vectors inH can be thought of as an oriented k-simplex, and the magnitude
of this wedge product in the Clifford algebra computes the volume.

Definition C.7. The volume of a k-simplex in H with vertices 0, v1, . . . , vk is

Volk =
1

k!

∣∣[v1 · · · vk]k
∣∣ . (23)

Definition C.8. Given v1, . . . , vk ∈ H the k-fold unsigned scalar product is

〈v1, . . . , vk〉 =

√√√√k−1∑
i=0

∣∣[v1 · · · vk]i
∣∣2 . (24)

By Lemma C.4 and (21) we have

〈v1, . . . , vk〉2 = ‖v1‖2 · · · ‖vk‖2 − (k!)2 Vol2k (25)

which gives the desired generalisation of the equations in Figure 1.

Example C.9. For k = 2 the unsigned scalar product is the absolute value of the dot product,
〈a, b〉 = |a · b|. For k = 3 we obtain the formulas of Definition 2.2, from which it is easy to check
that

〈a, b, c〉 = ‖a‖‖b‖‖c‖
√

cos2 θab + cos2 θbc + cos2 θac − 2 cos θab cos θac cos θbc (26)

where θac, θab, θac are the angles between a, b, c. The geometry of the three-dimensional case is
more familiar: if dim(H) = 3 then |[abc]3| is the absolute value of the determinant by (22), so that
Vol3 = 1

6 |a · (b× c)| is the usual formula for the volume of the 3-simplex. Recall that |a · (b× c)| =
‖a‖‖b‖‖c‖| sin(θbc)|| cos(φ)| where φ is the angle between a and the cross product b× c. Hence, in
this case the scalar triple product is

〈a, b, c〉 = ‖a‖‖b‖‖c‖
√

1− sin2(θab) cos2(φ) . (27)

With these formulas in mind the geometric content of the following lemma is clear:

Lemma C.10. Let v1, . . . , vk ∈ H . Then

(i) 0 ≤ 〈v1, . . . , vk〉 ≤ ‖v1‖ · · · ‖vk‖.

(ii) If the vi are all pairwise orthogonal then 〈v1, . . . , vk〉 = 0.

(iii) The set {v1, . . . , vk} is linearly dependent if and only if 〈v1, . . . , vk〉 = ‖v1‖ · · · ‖vk‖.

(iv) For any σ ∈ Sk we have 〈v1, . . . , vk〉 = 〈vσ(1), · · · , vσ(k)〉.

(v) For λ1, . . . , λk ∈ R, we have

〈λ1v1, . . . , λkvk〉 = |λ1| · · · |λk|〈v1, . . . , vk〉 .

Proof. (i) is obvious from (24), (25). For (ii) note that

v1 ∧ · · · ∧ vk =
1

k!

∑
σ∈Sk

(−1)|σ|vσ(1) · · · vσ(k) (28)

and hence if the vi are pairwise orthogonal, and therefore anticommute in Cl(H), we have v1∧· · ·∧
vk = v1 · · · vk. But the left hand side is homogeneous of degree k, so this means that [v1 · · · vk]i = 0
for i < k and hence that 〈v1, . . . , vk〉 = 0. The property (iii) is a standard property of wedge
products. Finally, (iv) is clear from (25) and (v) is clear since |λA| = |λ||A| for anyA ∈ Cl(H).

For more on simplicial methods in the context of geometric algebra see (Sobczyk, 1992; Macdonald,
2017).

16

Under review as a conference paper at ICLR 2020

D TIME ADJUSTED PERFORMANCE

Experiments were conducted either on the Google Cloud Platform with a single head node with 12
virtual CPUs and one NVIDIA Tesla P100 GPU and 192 additional virtual CPUs spread over two
pre-emptible worker nodes, or on the University of Melbourne Nectar research cloud with a single
head node with 12 virtual CPUs and two NVIDIA Tesla K80 GPUs, and 222 worker virtual CPUs.

The experiments in the original BoxWorld paper (Zambaldi et al., 2019) contain an unreported cap
on timesteps per episode (an episode horizon) of 120 timesteps (Raposo, 2019). We have chosen
to run our experiments without an episode horizon, and since this means our reported sample com-
plexities diverge substantially from the original paper (some part of which it seems reasonable to
attribute to the lack of horizon) it is necessary to justify this choice.

When designing an architecture for deep reinforcement learning the goal is to reduce the expected
generalisation error (Goodfellow et al., 2016, §8.1.1) with respect to some class of similar environ-
ments. Although this class is typically difficult to specify and is often left implicit, in our case the
class includes a range of visual logic puzzles involving spatial navigation, which can be solved with-
out memory3. A learning curriculum undermines this goal, by making our expectations of generali-
sation conditional on the provision of a suitable curriculum, whose existence for a given member of
the problem class may not be clear in advance. The episode horizon serves as a de facto curriculum,
since early in training it biases the distribution of experience rollouts towards the initial problems
that an agent has to solve (e.g. learning to pick up the loose key). In order to avoid compromising
our ability to expect generalisation to similar puzzles which do not admit such a useful curriculum,
we have chosen not to employ an episode horizon. Fortunately, the relational agent performs well
even without a curriculum on the original BoxWorld, as our results show.

In Figure 4 of Section 5, the horizontal axis was environment steps. However, since the simplicial
agent has a more complex model, each environment step takes longer to execute and the gradient de-
scent steps are slower. In a typical experiment run on the GCP configuration, the training throughput
of the relational agent is 1.9 × 104 environment frames per second (FPS) and that of the simplicial
agent is 1.4×104 FPS. The relative performance gap decreases as the GPU memory and the number
of IMPALA workers are increased, and this is consistent with the fact that the primary performance
difference appears to be the time taken to compute the gradients (35ms vs 80ms). In Figure 5 we
give the time-adjusted performance of the simplicial agent (the graph for the relational agent is as
before) where the x-axis of the graph of the simplicial agent is scaled by 1.9/1.4.

In principle there is no reason for a significant performance mismatch: the 2-simplicial attention can
be run in parallel to the ordinary attention (perhaps with two iterations of the 1-simplicial attention
per iteration of the 2-simplicial attention) so that with better engineering it should be possible to
reduce this gap.

E HYPERPARAMETERS

Hyperparameter Value

IMPALA entropy 5× 10−3

Discount factor γ 0.99
Unroll length 40 timesteps
Batch size 1280 timesteps
Learning rate 2× 10−4

RMSProp momentum 0
RMSProp ε 0.1
RMSProp decay 0.99

Table 1: Hyperparameters for agent training.

3The bridge is the unique box both of whose colours appear three times on the board. However, this is not a
reliable strategy for detecting bridges for an agent without memory, because once the agent has collected some
of the keys on the board, some of the colours necessary to make this deduction may no longer be present.

17

Under review as a conference paper at ICLR 2020

Figure 5: Training curve of mean relational and simplicial agents on bridge BoxWorld, with time-
adjusted x-axis for the simplicial agent.

F ANALYSIS

We analyse the simplicial agent, with two main goals: firstly, to establish that the agent has actually
learned to use the 2-simplicial attention, and secondly to examine the hypothesis that the agent has
learned a form of logical reasoning. The results of our analysis are positive in the first case but
inconclusive in the second: while the agent has clearly learned to use both the 1-simplicial and 2-
simplicial attention, we are unable to identify the structure in the attention as a homomorphic image
of a logically correct explicit strategy, and so we leave as an open question whether the agent is
performing logical reasoning according to the standard elaborated in Appendix H.

The training runs for the relational and simplicial agents are shown in Figure 6 and Figure 7 re-
spectively. For the analysis, it will be convenient to organise episodes of bridge BoxWorld by their
puzzle type, which is the tuple (a, b, c) where 1 ≤ a ≤ 3 is the solution length, 1 ≤ b ≤ a is the
bridge source and a+1 ≤ c ≤ 2a is the bridge target, with indices increasing with the distance from
the gem. For example, the episode in Figure 3 has puzzle type (3, 2, 5). Throughout this section
simplicial agent means simplicial agent A of Figure 7.

F.1 ATTENTION

We provide a preliminary analysis of the attention of the trained simplicial agent, with an aim to
answer the following questions: which standard entities attend to which other standard entities?
What do the virtual entities attend to? Is the 2-simplicial attention being used? Our answers are
anecdotal, based on examining visualisations of rollouts; we leave a more systematic investigation
of the agent’s strategy to future work.

The analysis of the agent’s attention is complicated by the fact that our 2×2 convolutional layers (of
which there are two) are not padded, so the number of entities processed by the Transformer blocks is
(R−2)(C−1) where the original game board isR×C and there is an extra column for the inventory
(here R is the number of rows). This means there is not a one-to-one correspondence between game
board tiles and entities; for example, all the experiments reported in Figure 4 are on a 7×9 board, so
that there areN = 40 Transformer entities which can be arranged on a 5×8 grid (information about
this grid is passed to the Transformer blocks via the positional encoding). Nonetheless we found
that for trained agents there is a strong relation between a tile in position (y, x) and the Transformer
entity with index x+ (C − 1)(y− 1)− 1 for (y, x) ∈ [1, R− 2]× [1, C − 1] ⊆ [0, R− 1]× [0, C].
This correspondence is presumed in the following analysis, and in our visualisations.

18

Under review as a conference paper at ICLR 2020

Figure 6: Training curves for the relational agent on bridge BoxWorld.

Figure 7: Training curves for the simplicial agent on bridge BoxWorld.

Across our four trained simplicial agents, the roles of the virtual entities and heads vary: the follow-
ing comments are all in the context of the best simplicial agent (simplicial agent A of Figure 7) but
we observe similar patterns in the other trials.

F.1.1 1-SIMPLICIAL ATTENTION OF STANDARD ENTITIES

The standard entities are now indexed by 0 ≤ i ≤ 39 and virtual entities by i = 40, 41. In the
first iteration of the 2-simplicial Transformer block, the first 1-simplicial head appears to propagate
information about the inventory. At the beginning of an episode the attention of each standard entity
is distributed between entities 7, 15, 23, 31 (the entities in the rightmost column), it concentrates
sharply on 7 (the entity closest to the first inventory slot) after the acquisition of the first loose key,
and sharply on 7, 15 after the acquisition of the second loose key. The second 1-simplicial head
seems to acquire the meaning described in (Zambaldi et al., 2019), where tiles of the same colour
attend to one another. A typical example is shown in Figure 8. The video of this episode is available
online.

19

Under review as a conference paper at ICLR 2020

Figure 8: Visualisation of 1-simplicial attention in first Transformer block, between standard entities
in heads one and two. The vertical axes on the second and third images are the query index 0 ≤ i ≤
39, the horizontal axes are the key index 0 ≤ j ≤ 39.

F.1.2 2-SIMPLICIAL ATTENTION

The standard entities are updated using 2-simplices in the first iteration of the 2-simplicial Trans-
former block, but this is not interesting as initially the virtual entities are learned embedding vectors,
containing no information about the current episode. So we restrict our analysis to the 2-simplicial
attention in the second iteration of the Transformer block. In brief, we observe that the agent has
learned to use the 2-simplicial attention to direct tensor products of value vectors to specific query
entities. In a typical timestep most query entities i attend strongly to a common pair (j, k) (which
is (2, 2) in Figures 9 and 11 and (2, 1) in Figure 10), and we refer to this attention as generic. The
top and bottom locks on the Gem, the player, and the entities 7, 15 associated to the inventory are
often observed to have a non-generic 2-simplicial attention, and some of the relevant 2-simplices are
drawn in the aforementioned figures.

325C timestep 18

Figure 9: The 1-simplicial attention of the virtual entities in the first iteration (first and second row,
second and third column) and 2-simplicial attention in the second iteration, in step 18 of an episode
of puzzle type (3, 2, 5). Entity 17 is the top lock on the Gem, 25 is the bottom lock on the Gem, 39
is the player. Shown is a 2-simplex with query entity 25. In the visualisations of the 1-simplicial
attention, the rows are query entities i and the columns are key entities j. In the visualisation of
the 2-simplicial attention, the columns are query entities i and rows are key entity pairs (j, k) in
lexicographic order (1, 1), (1, 2), (2, 1), (2, 2).

20

Under review as a conference paper at ICLR 2020

335A timestep 13

Figure 10: Visualisation of the 2-simplicial attention in the second Transformer block in step 13 of
an episode of puzzle type (3, 3, 5). Entity 1 is the top lock on the Gem, 15 is associated with the
inventory, 36 is the lock directly below the player. Shown is a 2-simplex with target 15.

335E timestep 29

Figure 11: Visualisation of the 2-simplicial attention in the second Transformer block in step 29 of
an episode of puzzle type (3, 3, 5). Entity 7 is associated with the inventory, 17 is the player. Shown
is a 2-simplex with target 17.

To give more details we must first examine the content of the virtual entities after the first iteration,
which is a function of the 1-simplicial attention of the virtual entities in the first iteration. In Figures
9, 10, 11 we show these attention distributions multiplied by the pixels in the region [1, R − 2] ×
[1, C − 1] of the original board, in the second and third columns of the second and third rows.4
Let f1 = e40 and f2 = e41 denote the initial representations of the first and second virtual entities,
before the first iteration. We use the index z ∈ {1, 2} to stand for a virtual entity. In the first iteration

4For visibility in print the 1-simplicial attention of the virtual entities in these figures has been sharpened, by
multiplying the logits by 2. The 2-simplicial attention and 1-simplicial attention of standard entities have not
been sharpened. In this connection, we remark that in Figure 9 there is one entity whose unsharpened attention
coefficient for the first virtual entity in the first head is more than one standard deviation above the mean, and
there are two such entities for the second virtual entity and second head.

21

Under review as a conference paper at ICLR 2020

the representations are updated by (14) to

f ′z = LayerNorm
(
gθ

[{∑
α

azαvα

}
⊕
{∑

α

bzαvα

}]
+ fz

)
(29)

where the sum is over all entities α, the azα are the attention coefficients of the first 1-simplicial head
and the coefficients bzα are the attention of the second 1-simplicial head. Writing 01,02 for the zero
vector in H1

1 , H
1
2 respectively, this can be written as

f ′z = LayerNorm
(
gθ

[∑
α

azα(vα ⊕ 02) +
∑
α

bzα(01 ⊕ vα)
]

+ fz

)
. (30)

For a query entity i the vector propagated by the 2-simplicial part of the second iteration has the
following terms, where B̃ = B ◦ (WU ⊗WU)

Ai1,1B̃(f ′1 ⊗ f ′1) +Ai1,2B̃(f ′1 ⊗ f ′2) +Ai2,1B̃(f ′2 ⊗ f ′1) +Ai2,2B̃(f ′2 ⊗ f ′2) . (31)

Here Aij,k is the 2-simplicial attention with logits 〈pi, l1j , l2k〉 associated to (i, j, k).

The tuple (Ai1,1, A
i
1,2, A

i
2,1, A

i
2,2) is the ith column in our visualisations of the 2-simplicial attention,

so in the situation of Figure 9 with i = 25 we haveA25
1,2 ≈ 1 and hence the output of the 2-simplicial

head used to update the entity representation of the bottom lock on the Gem is approximately B̃(f ′1⊗
f ′2). If we ignore the layer normalisation, feedforward network and skip connection in (30) then
f ′1 ≈ v1 ⊕ 02 and f ′2 ≈ 01 ⊕ v0 so that the output of the 2-simplicial head with target i = 25 is
approximately

B̃((v1 ⊕ 02)⊗ (01 ⊕ v0)) . (32)
Following Boole (Boole, 1847) and Girard (Girard, 1987) it is natural to read the “product” (32) as
a conjunction (consider together the entity 1 and the entity 0) and the sum in (31) as a disjunction.
An additional layer normalisation is applied to this vector, and the result is concatenated with the in-
coming information for entity 25 from the 1-simplicial attention, before all of this is passed through
(12) to form e′25.

Given that the output of the 2-simplicial head is the only nontrivial difference between the simplicial
and relational agent (with a transformer depth of two, the first 2-simplicial Transformer block only
updates the standard entities with information from embedding vectors) the performance differences
reported in Figure 4 suggest that this output is informative about avoiding bridges.

F.2 THE PLATEAU

In the training curves of the agents of Figure 6 and Figure 7 we observe a common plateau at a win
rate of 0.85. In Figure 12 we show the per-puzzle win rate of simplicial agent A and relational agent
A, on (1, 1, 2) puzzles. These graphs make clear that the transition of both agents to the plateau at
0.85 is explained by solving the (1, 1, 2) type (and to a lesser degree by progress on all puzzle types
with b = 1). In Figure 12 and Figure 13 we give the per-puzzle win rates for a small sample of other
puzzle types. Shown are the mean and standard deviation of 100 runs across various checkpoints of
simplicial agent A and relational agent A.

G LARGE EPSILON RMSPROP

As originally presented in (Tieleman & Hinton, 2012) the optimisation algorithm RMSProp is a
mini-batch version of Rprop, where instead of dividing by a different number in every mini-batch
(namely, the absolute value of the gradient) we force this number to be similar for adjacent mini-
batches by keeping a moving average of the square of the gradient. In more detail, one step Rprop
is computed by the algorithm

ri ← g2i

xi ← xi −
κgi√
ri + ε

22

Under review as a conference paper at ICLR 2020

v2, v8 final

1 2

3 4

1 2

3 4

(2,1,3) bridge (2,1,4) bridge

1 2

3 4

(2,2,3) bridge

1 2

3 4

(2,2,4) bridge(1,1,2) bridge

2

1 2

3 4

1 2

3 4

(2,1,3) bridge (2,1,4) bridge

1 2

3 4

(2,2,3) bridge

1 2

3 4

(2,2,4) bridge(2,2,4) bridge

Figure 12: Simplicial and relational agent win rate on puzzle types (1, 1, 2), (2, 2, 4).

1 2 3

4 5 6

(3,1,4) bridge

1 2 3

4 5 6

(3,1,5) bridge

1 2 3

4 5 6

(3,1,6) bridge

1 2 3

4 5 6

(3,2,4) bridge

1 2 3

4 5 6

(3,2,5) bridge

1 2 3

4 5 6

(3,2,6) bridge

1 2 3

4 5 6

(3,3,4) bridge

1 2 3

4 5 6

(3,3,5) bridge

1 2 3

4 5 6

(3,3,6) bridge

1 2 3

4 5 6

(3,1,4) bridge

1 2 3

4 5 6

(3,1,5) bridge

1 2 3

4 5 6

(3,1,6) bridge

1 2 3

4 5 6

(3,2,4) bridge

1 2 3

4 5 6

(3,2,5) bridge

1 2 3

4 5 6

(3,2,6) bridge

1 2 3

4 5 6

(3,3,4) bridge

1 2 3

4 5 6

(3,3,5) bridge

1 2 3

4 5 6

(3,3,6) bridge

Figure 13: Simplicial and relational agent win rate on puzzle types (3, 3, 5), (3, 3, 6).

where κ is the learning rate, xi is a weight, gi is the associated gradient and ε is a small constant (the
TensorFlow default value is 10−10) added for numerical stability. The idea of Rprop is to update
weights using only the sign of the gradient: every weight is updated by the same absolute amount
κ in each step, with only the sign gi/

√
ri = gi/|gi| of the update varying with i. The algorithm

RMSprop was introduced as a refinement of Rprop:

ri ← pri + (1− p)g2i
xi ← xi −

κgi√
ri + ε

where p is the decay rate (in our experiments the value is 0.99). Clearly Rprop is the p→ 0 limit of
RMSprop. For further background see (Goodfellow et al., 2016, §8.5.2).

In recent years there has been a trend in the literature towards using RMSprop with large values of
the hyperparameter ε. For example in (Zambaldi et al., 2019) RMSProp is used with ε = 0.1, which
is also one of the range of values in (Espeholt et al., 2018, Table D.1) explored by population based
training (Jaderberg et al., 2017). This “large ε RMSProp” seems to have originated in (Szegedy

23

Under review as a conference paper at ICLR 2020

et al., 2016, §8). To understand what large ε RMSProp is doing, let us rewrite the algorithm as

ri ← pri + (1− p)g2i

xi ← xi −
κgi√
ri
· 1√

1 + ε/ri

= xi −
κgi√
ri
S
[√ri√

ε

]
where S is the sigmoid S(u) = u/

√
1 + u2 which asymptotes to 1 as u → +∞ and is well-

approximated by the identity function for small u. We see a new multiplicative factor S(
√
ri/ε) in

the optimisation algorithm. Note that
√
ri is a moving average of |gi|. Recall the original purpose

of Rprop was to update weights using only the sign of the gradient and the learning rate, namely
κgi/
√
ri. The new S factor in the above reinserts the size of the gradient, but scaled by the sigmoid

to be in the unit interval.

In the limit ε → 0 we squash the outputs of the sigmoid up near 1 and the standard conceptual
description of RMSProp applies. But as ε → 1 the sigmoid S(

√
ri) has the effect that for large

stable gradients we get updates of size κ and for small stable gradients we get updates of the same
magnitude as the gradient. In conclusion, large ε RMSprop is a form of RMSprop with smoothed
gradient clipping (Goodfellow et al., 2016, §10.11.1).

H LOGIC AND REINFORCEMENT LEARNING

It is no simple matter to define logical reasoning nor to recognise when an agent (be it an animal
or a deep reinforcement learning agent) is employing such reasoning (Mackintosh, 2019; Barrett
et al., 2018). We therefore begin by returning to Aristotle, who viewed logic as the study of general
patterns by which one could distinguish valid and invalid forms of philosophical argumentation;
this study having as its purpose the production of strategies for winning such argumentation games
(Aristotle, 1984; Smith, 2019; Spade & Hintikka, 2019). In this view, logic involves

• two players with one asserting the truth of a proposition and attempting to defend it, and
the latter asserting its falsehood and attempting to refute it, and an

• observer attempting to learn the general patterns which are predictive of which of the two
players will win such a game given some intermediate state.

Suppose we observe over a series of games5 that a player is following an explicit strategy which has
been distilled from general patterns observed in a large distribution of games, and that by following
this strategy they almost always win. A component of that explicit strategy can be thought of as
logical reasoning to the degree that it consists of rules that are independent of the particulars of
the game (Aristotle, 1984, §11.25). The problem of recognising logical reasoning in behaviour
is therefore twofold: the strategy employed by a player is typically implicit, and even if we can
recognise explicit components of the strategy, in practice there is not always a clear way to decide
which rules are domain-specific.

In mathematical logic the idea of argumentation games has been developed into a theory of math-
ematical proof as strategy in the game semantics of linear logic (Hyland, 1997) where one player
(the prover) asserts a proposition G and the other player (the refuter) interrogates this assertion.6
Consider a reinforcement learning problem (Sutton & Barto, 2018) in which the deterministic envi-
ronment encodes G together with a multiset of hypotheses Γ which are sufficient to prove G. Such

5We cannot infer that a behaviour constitutes logical reasoning if we only observe it over the course of a
single game. For example, while it may appear that a human proving a statement in mathematics by correctly
applying a set of deduction rules is engaged in logical reasoning, this appearance may be false, for if we
were to observe one thousand attempts to prove a sample of similar propositions, and in only one attempt was
the human able to correctly apply the deduction rules, we would have to retract our characterisation of the
behaviour as logical reasoning. The concept is also empty if we insist that it applies only if in every such
attempt the deduction rules are correctly applied, because human mathematicians make mistakes.

6It is possible for the prover to win such an argument without possessing a proof (for instance if G is the
disjunct of propositions A,B and the refuter demands a proof of A in a situation where the prover knows a
proof of A but not of B) but the only strategy guaranteed to win is to play according to a proof.

24

Under review as a conference paper at ICLR 2020

a pair is called a sequent and is denoted Γ ` G. The goal of the agent (in the role of prover) is
to synthesise a proof of G from Γ through a series of actions. The environment (in the role of re-
futer) delivers a positive reward if the agent succeeds, and a negative reward if the agent’s actions
indicate a commitment to a line of proof which cannot possibly succeed. Consider a deep rein-
forcement learning agent with a policy network parametrised by a vector of weights w ∈ RD and a
sequence of full-episode rollouts of this policy in the environment, each of which either ends with
the agent constructing a proof (prover wins) or failing to construct a proof (refuter wins) with the
sequent Γ ` G being randomly sampled in each episode. Viewing these episodes as instances of an
argumentation game, the goal of Aristotle’s observer is to learn from this data to predict, given an in-
termediate state of some particular episode, which actions by the prover will lead to success (proof)
or failure (refutation). As the reward is correlated with success and failure in this sense, the goal
of the observer may be identified with the training objective of the action-value network underlying
the agent’s policy, and we may identify the triple player, opponent, observer with the triple agent,
environment and optimisation process. If this process succeeds, so that the trained agent wins in
almost every episode, then by definition the weights w are an implicit strategy for proving sequents
Γ ` G.

This leads to the question: is the deep reinforcement learning agent parametrised by w performing
logical reasoning? We would have no reason to deny that logical reasoning is present if we were
to find, in the weights w and dynamics of the agent’s network, an isomorphic image of an explicit
strategy that we recognise as logically correct. In general, however, it seems more useful to ask
to what degree the behaviour is governed by logical reasoning, and thus to what extent we can
identify an approximate homomorphic image in the weights and dynamics of a logically correct
explicit strategy. Ultimately this should be automated using “logic probes” along the lines of recent
developments in neural network probes (Alain & Bengio, 2016; Koh & Liang, 2017; Nguyen et al.,
2016; Shrikumar et al., 2017; Simonyan et al., 2013).

Remark H.1. In the context of bridge BoxWorld, here is a strategy that would qualify as logical
reasoning by the above standard: call a pair of boxes α, β a source if they have the same lock colour
but distinct key colours, and a sink if they have the same key colour but distinct lock colours. If α, β
is a source or a sink then either α is the bridge or β is the bridge. Therefore, if you observe both
a source and a sink then you can locate the bridge. This strategy contains perceptual components
(learning to recognise sources and sinks) and components that qualify as logical reasoning (using
the combination of a source and a sink to identify the bridge).

I STRATEGIES AND PROOF TREES

We explain the correspondence between agent behaviour in bridge BoxWorld and proofs in linear
logic. For an introduction to linear logic tailored to the setting of games see (Martens, 2015, Ch.2).
Recall that to each colour c we have associated a proposition C which can be read as “the key of
colour c is obtainable”. If a box β appears in an episode of bridge BoxWorld (this includes loose
keys and the box with the Gem) then we assume given a proof πβ of a sequent associated to the box
by the following rules: the sequentXβ ` Yβ associated to a loose key of colour c is ` C, the sequent
associated to an ordinary box with a lock of colour c and containing a key of colour c′ is C ` C ′
and the sequent associated to a multiple lock on the Gem, with key colours c, c′ is C ⊗ C ′ ` G. In
the following we identify the box β with its associated sequent, and write for example π`C for the
chosen proof associated to the loose key of colour c. The set of premises (or axioms) in an episode
of bridge BoxWorld is the multiset Γ of proofs πβ as β ranges over all boxes.

Definition I.1. Given a formula A (thought of as representing the contents of the inventory) and a
box β we define the proof πβA to be

A ` A

πβ

...

Xβ ` Yβ
⊗R

A,Xβ ` A⊗ Yβ
⊗L

A⊗Xβ ` A⊗ Yβ

(33)

25

Under review as a conference paper at ICLR 2020

One can think of this proof as the algorithm which acts to update the contents of the inventory upon
opening the box β.
Example I.2. Consider the episode of Figure 3 and suppose that the agent follows the upper solution
path and then the lower, obtaining the keys in the following order: g (green), o (orange), g′ (dark
green), m (magenta), p (purple) and b (blue). Then the proof tree whose computational content
matches this behaviour is given by:

π`G...
` G

πG`O...
G ` O

` O

πO`G
′

...
O ` G′

` G′

π`MG′...
G′ ` G′ ⊗M

` G′ ⊗M

πM`PG′...
G′ ⊗M ` G′ ⊗ P

` G′ ⊗ P

πP`BG′...
G′ ⊗ P ` G′ ⊗B

` G′ ⊗B

(34)

where unlabelled deduction rules are cuts. Cutting this proof tree against the proof πG
′⊗B`G asso-

ciated to the final box gives the proof encoding the agent’s strategy.

This example makes clear the general rule for associating a proof tree to an agent’s strategy, as
embodied in its behaviour: take the sequence of boxes β1, . . . , βN opened by the agent together
with the state of the inventory I1, . . . , IN at the time of each opening, and cut the corresponding
sequence of proofs πβiIi against one another.

26

	Introduction
	2-simplicial transformer
	RL environment
	RL agent architecture
	Experiments and results
	Discussion
	Comparison to the NTM
	Connection to Hopfield networks
	Clifford algebra
	Time adjusted performance
	Hyperparameters
	Analysis
	Attention
	1-simplicial attention of standard entities
	2-simplicial attention

	The plateau

	Large epsilon RMSProp
	Logic and reinforcement learning
	Strategies and proof trees

